]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/vdev.c
Update openzfs to 2.0.0-rc2-g4ce06f
[FreeBSD/FreeBSD.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, Datto Inc. All rights reserved.
31  */
32
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa.h>
36 #include <sys/spa_impl.h>
37 #include <sys/bpobj.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_rebuild.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/space_map.h>
47 #include <sys/space_reftree.h>
48 #include <sys/zio.h>
49 #include <sys/zap.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/arc.h>
52 #include <sys/zil.h>
53 #include <sys/dsl_scan.h>
54 #include <sys/abd.h>
55 #include <sys/vdev_initialize.h>
56 #include <sys/vdev_trim.h>
57 #include <sys/zvol.h>
58 #include <sys/zfs_ratelimit.h>
59
60 /* default target for number of metaslabs per top-level vdev */
61 int zfs_vdev_default_ms_count = 200;
62
63 /* minimum number of metaslabs per top-level vdev */
64 int zfs_vdev_min_ms_count = 16;
65
66 /* practical upper limit of total metaslabs per top-level vdev */
67 int zfs_vdev_ms_count_limit = 1ULL << 17;
68
69 /* lower limit for metaslab size (512M) */
70 int zfs_vdev_default_ms_shift = 29;
71
72 /* upper limit for metaslab size (16G) */
73 int zfs_vdev_max_ms_shift = 34;
74
75 int vdev_validate_skip = B_FALSE;
76
77 /*
78  * Since the DTL space map of a vdev is not expected to have a lot of
79  * entries, we default its block size to 4K.
80  */
81 int zfs_vdev_dtl_sm_blksz = (1 << 12);
82
83 /*
84  * Rate limit slow IO (delay) events to this many per second.
85  */
86 unsigned int zfs_slow_io_events_per_second = 20;
87
88 /*
89  * Rate limit checksum events after this many checksum errors per second.
90  */
91 unsigned int zfs_checksum_events_per_second = 20;
92
93 /*
94  * Ignore errors during scrub/resilver.  Allows to work around resilver
95  * upon import when there are pool errors.
96  */
97 int zfs_scan_ignore_errors = 0;
98
99 /*
100  * vdev-wide space maps that have lots of entries written to them at
101  * the end of each transaction can benefit from a higher I/O bandwidth
102  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
103  */
104 int zfs_vdev_standard_sm_blksz = (1 << 17);
105
106 /*
107  * Tunable parameter for debugging or performance analysis. Setting this
108  * will cause pool corruption on power loss if a volatile out-of-order
109  * write cache is enabled.
110  */
111 int zfs_nocacheflush = 0;
112
113 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX;
114 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
115
116 /*PRINTFLIKE2*/
117 void
118 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
119 {
120         va_list adx;
121         char buf[256];
122
123         va_start(adx, fmt);
124         (void) vsnprintf(buf, sizeof (buf), fmt, adx);
125         va_end(adx);
126
127         if (vd->vdev_path != NULL) {
128                 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
129                     vd->vdev_path, buf);
130         } else {
131                 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
132                     vd->vdev_ops->vdev_op_type,
133                     (u_longlong_t)vd->vdev_id,
134                     (u_longlong_t)vd->vdev_guid, buf);
135         }
136 }
137
138 void
139 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
140 {
141         char state[20];
142
143         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
144                 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
145                     vd->vdev_ops->vdev_op_type);
146                 return;
147         }
148
149         switch (vd->vdev_state) {
150         case VDEV_STATE_UNKNOWN:
151                 (void) snprintf(state, sizeof (state), "unknown");
152                 break;
153         case VDEV_STATE_CLOSED:
154                 (void) snprintf(state, sizeof (state), "closed");
155                 break;
156         case VDEV_STATE_OFFLINE:
157                 (void) snprintf(state, sizeof (state), "offline");
158                 break;
159         case VDEV_STATE_REMOVED:
160                 (void) snprintf(state, sizeof (state), "removed");
161                 break;
162         case VDEV_STATE_CANT_OPEN:
163                 (void) snprintf(state, sizeof (state), "can't open");
164                 break;
165         case VDEV_STATE_FAULTED:
166                 (void) snprintf(state, sizeof (state), "faulted");
167                 break;
168         case VDEV_STATE_DEGRADED:
169                 (void) snprintf(state, sizeof (state), "degraded");
170                 break;
171         case VDEV_STATE_HEALTHY:
172                 (void) snprintf(state, sizeof (state), "healthy");
173                 break;
174         default:
175                 (void) snprintf(state, sizeof (state), "<state %u>",
176                     (uint_t)vd->vdev_state);
177         }
178
179         zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
180             "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
181             vd->vdev_islog ? " (log)" : "",
182             (u_longlong_t)vd->vdev_guid,
183             vd->vdev_path ? vd->vdev_path : "N/A", state);
184
185         for (uint64_t i = 0; i < vd->vdev_children; i++)
186                 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
187 }
188
189 /*
190  * Virtual device management.
191  */
192
193 static vdev_ops_t *vdev_ops_table[] = {
194         &vdev_root_ops,
195         &vdev_raidz_ops,
196         &vdev_mirror_ops,
197         &vdev_replacing_ops,
198         &vdev_spare_ops,
199         &vdev_disk_ops,
200         &vdev_file_ops,
201         &vdev_missing_ops,
202         &vdev_hole_ops,
203         &vdev_indirect_ops,
204         NULL
205 };
206
207 /*
208  * Given a vdev type, return the appropriate ops vector.
209  */
210 static vdev_ops_t *
211 vdev_getops(const char *type)
212 {
213         vdev_ops_t *ops, **opspp;
214
215         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
216                 if (strcmp(ops->vdev_op_type, type) == 0)
217                         break;
218
219         return (ops);
220 }
221
222 /* ARGSUSED */
223 void
224 vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res)
225 {
226         res->rs_start = in->rs_start;
227         res->rs_end = in->rs_end;
228 }
229
230 /*
231  * Derive the enumerated allocation bias from string input.
232  * String origin is either the per-vdev zap or zpool(1M).
233  */
234 static vdev_alloc_bias_t
235 vdev_derive_alloc_bias(const char *bias)
236 {
237         vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
238
239         if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
240                 alloc_bias = VDEV_BIAS_LOG;
241         else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
242                 alloc_bias = VDEV_BIAS_SPECIAL;
243         else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
244                 alloc_bias = VDEV_BIAS_DEDUP;
245
246         return (alloc_bias);
247 }
248
249 /*
250  * Default asize function: return the MAX of psize with the asize of
251  * all children.  This is what's used by anything other than RAID-Z.
252  */
253 uint64_t
254 vdev_default_asize(vdev_t *vd, uint64_t psize)
255 {
256         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
257         uint64_t csize;
258
259         for (int c = 0; c < vd->vdev_children; c++) {
260                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
261                 asize = MAX(asize, csize);
262         }
263
264         return (asize);
265 }
266
267 /*
268  * Get the minimum allocatable size. We define the allocatable size as
269  * the vdev's asize rounded to the nearest metaslab. This allows us to
270  * replace or attach devices which don't have the same physical size but
271  * can still satisfy the same number of allocations.
272  */
273 uint64_t
274 vdev_get_min_asize(vdev_t *vd)
275 {
276         vdev_t *pvd = vd->vdev_parent;
277
278         /*
279          * If our parent is NULL (inactive spare or cache) or is the root,
280          * just return our own asize.
281          */
282         if (pvd == NULL)
283                 return (vd->vdev_asize);
284
285         /*
286          * The top-level vdev just returns the allocatable size rounded
287          * to the nearest metaslab.
288          */
289         if (vd == vd->vdev_top)
290                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
291
292         /*
293          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
294          * so each child must provide at least 1/Nth of its asize.
295          */
296         if (pvd->vdev_ops == &vdev_raidz_ops)
297                 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
298                     pvd->vdev_children);
299
300         return (pvd->vdev_min_asize);
301 }
302
303 void
304 vdev_set_min_asize(vdev_t *vd)
305 {
306         vd->vdev_min_asize = vdev_get_min_asize(vd);
307
308         for (int c = 0; c < vd->vdev_children; c++)
309                 vdev_set_min_asize(vd->vdev_child[c]);
310 }
311
312 vdev_t *
313 vdev_lookup_top(spa_t *spa, uint64_t vdev)
314 {
315         vdev_t *rvd = spa->spa_root_vdev;
316
317         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
318
319         if (vdev < rvd->vdev_children) {
320                 ASSERT(rvd->vdev_child[vdev] != NULL);
321                 return (rvd->vdev_child[vdev]);
322         }
323
324         return (NULL);
325 }
326
327 vdev_t *
328 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
329 {
330         vdev_t *mvd;
331
332         if (vd->vdev_guid == guid)
333                 return (vd);
334
335         for (int c = 0; c < vd->vdev_children; c++)
336                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
337                     NULL)
338                         return (mvd);
339
340         return (NULL);
341 }
342
343 static int
344 vdev_count_leaves_impl(vdev_t *vd)
345 {
346         int n = 0;
347
348         if (vd->vdev_ops->vdev_op_leaf)
349                 return (1);
350
351         for (int c = 0; c < vd->vdev_children; c++)
352                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
353
354         return (n);
355 }
356
357 int
358 vdev_count_leaves(spa_t *spa)
359 {
360         int rc;
361
362         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
363         rc = vdev_count_leaves_impl(spa->spa_root_vdev);
364         spa_config_exit(spa, SCL_VDEV, FTAG);
365
366         return (rc);
367 }
368
369 void
370 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
371 {
372         size_t oldsize, newsize;
373         uint64_t id = cvd->vdev_id;
374         vdev_t **newchild;
375
376         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
377         ASSERT(cvd->vdev_parent == NULL);
378
379         cvd->vdev_parent = pvd;
380
381         if (pvd == NULL)
382                 return;
383
384         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
385
386         oldsize = pvd->vdev_children * sizeof (vdev_t *);
387         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
388         newsize = pvd->vdev_children * sizeof (vdev_t *);
389
390         newchild = kmem_alloc(newsize, KM_SLEEP);
391         if (pvd->vdev_child != NULL) {
392                 bcopy(pvd->vdev_child, newchild, oldsize);
393                 kmem_free(pvd->vdev_child, oldsize);
394         }
395
396         pvd->vdev_child = newchild;
397         pvd->vdev_child[id] = cvd;
398
399         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
400         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
401
402         /*
403          * Walk up all ancestors to update guid sum.
404          */
405         for (; pvd != NULL; pvd = pvd->vdev_parent)
406                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
407
408         if (cvd->vdev_ops->vdev_op_leaf) {
409                 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
410                 cvd->vdev_spa->spa_leaf_list_gen++;
411         }
412 }
413
414 void
415 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
416 {
417         int c;
418         uint_t id = cvd->vdev_id;
419
420         ASSERT(cvd->vdev_parent == pvd);
421
422         if (pvd == NULL)
423                 return;
424
425         ASSERT(id < pvd->vdev_children);
426         ASSERT(pvd->vdev_child[id] == cvd);
427
428         pvd->vdev_child[id] = NULL;
429         cvd->vdev_parent = NULL;
430
431         for (c = 0; c < pvd->vdev_children; c++)
432                 if (pvd->vdev_child[c])
433                         break;
434
435         if (c == pvd->vdev_children) {
436                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
437                 pvd->vdev_child = NULL;
438                 pvd->vdev_children = 0;
439         }
440
441         if (cvd->vdev_ops->vdev_op_leaf) {
442                 spa_t *spa = cvd->vdev_spa;
443                 list_remove(&spa->spa_leaf_list, cvd);
444                 spa->spa_leaf_list_gen++;
445         }
446
447         /*
448          * Walk up all ancestors to update guid sum.
449          */
450         for (; pvd != NULL; pvd = pvd->vdev_parent)
451                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
452 }
453
454 /*
455  * Remove any holes in the child array.
456  */
457 void
458 vdev_compact_children(vdev_t *pvd)
459 {
460         vdev_t **newchild, *cvd;
461         int oldc = pvd->vdev_children;
462         int newc;
463
464         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
465
466         if (oldc == 0)
467                 return;
468
469         for (int c = newc = 0; c < oldc; c++)
470                 if (pvd->vdev_child[c])
471                         newc++;
472
473         if (newc > 0) {
474                 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
475
476                 for (int c = newc = 0; c < oldc; c++) {
477                         if ((cvd = pvd->vdev_child[c]) != NULL) {
478                                 newchild[newc] = cvd;
479                                 cvd->vdev_id = newc++;
480                         }
481                 }
482         } else {
483                 newchild = NULL;
484         }
485
486         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
487         pvd->vdev_child = newchild;
488         pvd->vdev_children = newc;
489 }
490
491 /*
492  * Allocate and minimally initialize a vdev_t.
493  */
494 vdev_t *
495 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
496 {
497         vdev_t *vd;
498         vdev_indirect_config_t *vic;
499
500         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
501         vic = &vd->vdev_indirect_config;
502
503         if (spa->spa_root_vdev == NULL) {
504                 ASSERT(ops == &vdev_root_ops);
505                 spa->spa_root_vdev = vd;
506                 spa->spa_load_guid = spa_generate_guid(NULL);
507         }
508
509         if (guid == 0 && ops != &vdev_hole_ops) {
510                 if (spa->spa_root_vdev == vd) {
511                         /*
512                          * The root vdev's guid will also be the pool guid,
513                          * which must be unique among all pools.
514                          */
515                         guid = spa_generate_guid(NULL);
516                 } else {
517                         /*
518                          * Any other vdev's guid must be unique within the pool.
519                          */
520                         guid = spa_generate_guid(spa);
521                 }
522                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
523         }
524
525         vd->vdev_spa = spa;
526         vd->vdev_id = id;
527         vd->vdev_guid = guid;
528         vd->vdev_guid_sum = guid;
529         vd->vdev_ops = ops;
530         vd->vdev_state = VDEV_STATE_CLOSED;
531         vd->vdev_ishole = (ops == &vdev_hole_ops);
532         vic->vic_prev_indirect_vdev = UINT64_MAX;
533
534         rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
535         mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
536         vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
537             0, 0);
538
539         /*
540          * Initialize rate limit structs for events.  We rate limit ZIO delay
541          * and checksum events so that we don't overwhelm ZED with thousands
542          * of events when a disk is acting up.
543          */
544         zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
545             1);
546         zfs_ratelimit_init(&vd->vdev_checksum_rl,
547             &zfs_checksum_events_per_second, 1);
548
549         list_link_init(&vd->vdev_config_dirty_node);
550         list_link_init(&vd->vdev_state_dirty_node);
551         list_link_init(&vd->vdev_initialize_node);
552         list_link_init(&vd->vdev_leaf_node);
553         list_link_init(&vd->vdev_trim_node);
554         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
555         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
556         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
557         mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
558
559         mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
560         mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
561         cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
562         cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
563
564         mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
565         mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
566         mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
567         cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
568         cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
569         cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
570
571         mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
572         mutex_init(&vd->vdev_rebuild_io_lock, NULL, MUTEX_DEFAULT, NULL);
573         cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
574         cv_init(&vd->vdev_rebuild_io_cv, NULL, CV_DEFAULT, NULL);
575
576         for (int t = 0; t < DTL_TYPES; t++) {
577                 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
578                     0);
579         }
580
581         txg_list_create(&vd->vdev_ms_list, spa,
582             offsetof(struct metaslab, ms_txg_node));
583         txg_list_create(&vd->vdev_dtl_list, spa,
584             offsetof(struct vdev, vdev_dtl_node));
585         vd->vdev_stat.vs_timestamp = gethrtime();
586         vdev_queue_init(vd);
587         vdev_cache_init(vd);
588
589         return (vd);
590 }
591
592 /*
593  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
594  * creating a new vdev or loading an existing one - the behavior is slightly
595  * different for each case.
596  */
597 int
598 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
599     int alloctype)
600 {
601         vdev_ops_t *ops;
602         char *type;
603         uint64_t guid = 0, islog, nparity;
604         vdev_t *vd;
605         vdev_indirect_config_t *vic;
606         char *tmp = NULL;
607         int rc;
608         vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
609         boolean_t top_level = (parent && !parent->vdev_parent);
610
611         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
612
613         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
614                 return (SET_ERROR(EINVAL));
615
616         if ((ops = vdev_getops(type)) == NULL)
617                 return (SET_ERROR(EINVAL));
618
619         /*
620          * If this is a load, get the vdev guid from the nvlist.
621          * Otherwise, vdev_alloc_common() will generate one for us.
622          */
623         if (alloctype == VDEV_ALLOC_LOAD) {
624                 uint64_t label_id;
625
626                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
627                     label_id != id)
628                         return (SET_ERROR(EINVAL));
629
630                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
631                         return (SET_ERROR(EINVAL));
632         } else if (alloctype == VDEV_ALLOC_SPARE) {
633                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
634                         return (SET_ERROR(EINVAL));
635         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
636                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
637                         return (SET_ERROR(EINVAL));
638         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
639                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
640                         return (SET_ERROR(EINVAL));
641         }
642
643         /*
644          * The first allocated vdev must be of type 'root'.
645          */
646         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
647                 return (SET_ERROR(EINVAL));
648
649         /*
650          * Determine whether we're a log vdev.
651          */
652         islog = 0;
653         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
654         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
655                 return (SET_ERROR(ENOTSUP));
656
657         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
658                 return (SET_ERROR(ENOTSUP));
659
660         /*
661          * Set the nparity property for RAID-Z vdevs.
662          */
663         nparity = -1ULL;
664         if (ops == &vdev_raidz_ops) {
665                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
666                     &nparity) == 0) {
667                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
668                                 return (SET_ERROR(EINVAL));
669                         /*
670                          * Previous versions could only support 1 or 2 parity
671                          * device.
672                          */
673                         if (nparity > 1 &&
674                             spa_version(spa) < SPA_VERSION_RAIDZ2)
675                                 return (SET_ERROR(ENOTSUP));
676                         if (nparity > 2 &&
677                             spa_version(spa) < SPA_VERSION_RAIDZ3)
678                                 return (SET_ERROR(ENOTSUP));
679                 } else {
680                         /*
681                          * We require the parity to be specified for SPAs that
682                          * support multiple parity levels.
683                          */
684                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
685                                 return (SET_ERROR(EINVAL));
686                         /*
687                          * Otherwise, we default to 1 parity device for RAID-Z.
688                          */
689                         nparity = 1;
690                 }
691         } else {
692                 nparity = 0;
693         }
694         ASSERT(nparity != -1ULL);
695
696         /*
697          * If creating a top-level vdev, check for allocation classes input
698          */
699         if (top_level && alloctype == VDEV_ALLOC_ADD) {
700                 char *bias;
701
702                 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
703                     &bias) == 0) {
704                         alloc_bias = vdev_derive_alloc_bias(bias);
705
706                         /* spa_vdev_add() expects feature to be enabled */
707                         if (spa->spa_load_state != SPA_LOAD_CREATE &&
708                             !spa_feature_is_enabled(spa,
709                             SPA_FEATURE_ALLOCATION_CLASSES)) {
710                                 return (SET_ERROR(ENOTSUP));
711                         }
712                 }
713         }
714
715         vd = vdev_alloc_common(spa, id, guid, ops);
716         vic = &vd->vdev_indirect_config;
717
718         vd->vdev_islog = islog;
719         vd->vdev_nparity = nparity;
720         if (top_level && alloc_bias != VDEV_BIAS_NONE)
721                 vd->vdev_alloc_bias = alloc_bias;
722
723         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
724                 vd->vdev_path = spa_strdup(vd->vdev_path);
725
726         /*
727          * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
728          * fault on a vdev and want it to persist across imports (like with
729          * zpool offline -f).
730          */
731         rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
732         if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
733                 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
734                 vd->vdev_faulted = 1;
735                 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
736         }
737
738         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
739                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
740         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
741             &vd->vdev_physpath) == 0)
742                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
743
744         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
745             &vd->vdev_enc_sysfs_path) == 0)
746                 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
747
748         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
749                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
750
751         /*
752          * Set the whole_disk property.  If it's not specified, leave the value
753          * as -1.
754          */
755         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
756             &vd->vdev_wholedisk) != 0)
757                 vd->vdev_wholedisk = -1ULL;
758
759         ASSERT0(vic->vic_mapping_object);
760         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
761             &vic->vic_mapping_object);
762         ASSERT0(vic->vic_births_object);
763         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
764             &vic->vic_births_object);
765         ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
766         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
767             &vic->vic_prev_indirect_vdev);
768
769         /*
770          * Look for the 'not present' flag.  This will only be set if the device
771          * was not present at the time of import.
772          */
773         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
774             &vd->vdev_not_present);
775
776         /*
777          * Get the alignment requirement.
778          */
779         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
780
781         /*
782          * Retrieve the vdev creation time.
783          */
784         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
785             &vd->vdev_crtxg);
786
787         /*
788          * If we're a top-level vdev, try to load the allocation parameters.
789          */
790         if (top_level &&
791             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
792                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
793                     &vd->vdev_ms_array);
794                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
795                     &vd->vdev_ms_shift);
796                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
797                     &vd->vdev_asize);
798                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
799                     &vd->vdev_removing);
800                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
801                     &vd->vdev_top_zap);
802         } else {
803                 ASSERT0(vd->vdev_top_zap);
804         }
805
806         if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
807                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
808                     alloctype == VDEV_ALLOC_ADD ||
809                     alloctype == VDEV_ALLOC_SPLIT ||
810                     alloctype == VDEV_ALLOC_ROOTPOOL);
811                 /* Note: metaslab_group_create() is now deferred */
812         }
813
814         if (vd->vdev_ops->vdev_op_leaf &&
815             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
816                 (void) nvlist_lookup_uint64(nv,
817                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
818         } else {
819                 ASSERT0(vd->vdev_leaf_zap);
820         }
821
822         /*
823          * If we're a leaf vdev, try to load the DTL object and other state.
824          */
825
826         if (vd->vdev_ops->vdev_op_leaf &&
827             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
828             alloctype == VDEV_ALLOC_ROOTPOOL)) {
829                 if (alloctype == VDEV_ALLOC_LOAD) {
830                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
831                             &vd->vdev_dtl_object);
832                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
833                             &vd->vdev_unspare);
834                 }
835
836                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
837                         uint64_t spare = 0;
838
839                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
840                             &spare) == 0 && spare)
841                                 spa_spare_add(vd);
842                 }
843
844                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
845                     &vd->vdev_offline);
846
847                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
848                     &vd->vdev_resilver_txg);
849
850                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
851                     &vd->vdev_rebuild_txg);
852
853                 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
854                         vdev_defer_resilver(vd);
855
856                 /*
857                  * In general, when importing a pool we want to ignore the
858                  * persistent fault state, as the diagnosis made on another
859                  * system may not be valid in the current context.  The only
860                  * exception is if we forced a vdev to a persistently faulted
861                  * state with 'zpool offline -f'.  The persistent fault will
862                  * remain across imports until cleared.
863                  *
864                  * Local vdevs will remain in the faulted state.
865                  */
866                 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
867                     spa_load_state(spa) == SPA_LOAD_IMPORT) {
868                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
869                             &vd->vdev_faulted);
870                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
871                             &vd->vdev_degraded);
872                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
873                             &vd->vdev_removed);
874
875                         if (vd->vdev_faulted || vd->vdev_degraded) {
876                                 char *aux;
877
878                                 vd->vdev_label_aux =
879                                     VDEV_AUX_ERR_EXCEEDED;
880                                 if (nvlist_lookup_string(nv,
881                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
882                                     strcmp(aux, "external") == 0)
883                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
884                                 else
885                                         vd->vdev_faulted = 0ULL;
886                         }
887                 }
888         }
889
890         /*
891          * Add ourselves to the parent's list of children.
892          */
893         vdev_add_child(parent, vd);
894
895         *vdp = vd;
896
897         return (0);
898 }
899
900 void
901 vdev_free(vdev_t *vd)
902 {
903         spa_t *spa = vd->vdev_spa;
904
905         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
906         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
907         ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
908         ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
909
910         /*
911          * Scan queues are normally destroyed at the end of a scan. If the
912          * queue exists here, that implies the vdev is being removed while
913          * the scan is still running.
914          */
915         if (vd->vdev_scan_io_queue != NULL) {
916                 mutex_enter(&vd->vdev_scan_io_queue_lock);
917                 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
918                 vd->vdev_scan_io_queue = NULL;
919                 mutex_exit(&vd->vdev_scan_io_queue_lock);
920         }
921
922         /*
923          * vdev_free() implies closing the vdev first.  This is simpler than
924          * trying to ensure complicated semantics for all callers.
925          */
926         vdev_close(vd);
927
928         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
929         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
930
931         /*
932          * Free all children.
933          */
934         for (int c = 0; c < vd->vdev_children; c++)
935                 vdev_free(vd->vdev_child[c]);
936
937         ASSERT(vd->vdev_child == NULL);
938         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
939
940         /*
941          * Discard allocation state.
942          */
943         if (vd->vdev_mg != NULL) {
944                 vdev_metaslab_fini(vd);
945                 metaslab_group_destroy(vd->vdev_mg);
946                 vd->vdev_mg = NULL;
947         }
948
949         ASSERT0(vd->vdev_stat.vs_space);
950         ASSERT0(vd->vdev_stat.vs_dspace);
951         ASSERT0(vd->vdev_stat.vs_alloc);
952
953         /*
954          * Remove this vdev from its parent's child list.
955          */
956         vdev_remove_child(vd->vdev_parent, vd);
957
958         ASSERT(vd->vdev_parent == NULL);
959         ASSERT(!list_link_active(&vd->vdev_leaf_node));
960
961         /*
962          * Clean up vdev structure.
963          */
964         vdev_queue_fini(vd);
965         vdev_cache_fini(vd);
966
967         if (vd->vdev_path)
968                 spa_strfree(vd->vdev_path);
969         if (vd->vdev_devid)
970                 spa_strfree(vd->vdev_devid);
971         if (vd->vdev_physpath)
972                 spa_strfree(vd->vdev_physpath);
973
974         if (vd->vdev_enc_sysfs_path)
975                 spa_strfree(vd->vdev_enc_sysfs_path);
976
977         if (vd->vdev_fru)
978                 spa_strfree(vd->vdev_fru);
979
980         if (vd->vdev_isspare)
981                 spa_spare_remove(vd);
982         if (vd->vdev_isl2cache)
983                 spa_l2cache_remove(vd);
984
985         txg_list_destroy(&vd->vdev_ms_list);
986         txg_list_destroy(&vd->vdev_dtl_list);
987
988         mutex_enter(&vd->vdev_dtl_lock);
989         space_map_close(vd->vdev_dtl_sm);
990         for (int t = 0; t < DTL_TYPES; t++) {
991                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
992                 range_tree_destroy(vd->vdev_dtl[t]);
993         }
994         mutex_exit(&vd->vdev_dtl_lock);
995
996         EQUIV(vd->vdev_indirect_births != NULL,
997             vd->vdev_indirect_mapping != NULL);
998         if (vd->vdev_indirect_births != NULL) {
999                 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1000                 vdev_indirect_births_close(vd->vdev_indirect_births);
1001         }
1002
1003         if (vd->vdev_obsolete_sm != NULL) {
1004                 ASSERT(vd->vdev_removing ||
1005                     vd->vdev_ops == &vdev_indirect_ops);
1006                 space_map_close(vd->vdev_obsolete_sm);
1007                 vd->vdev_obsolete_sm = NULL;
1008         }
1009         range_tree_destroy(vd->vdev_obsolete_segments);
1010         rw_destroy(&vd->vdev_indirect_rwlock);
1011         mutex_destroy(&vd->vdev_obsolete_lock);
1012
1013         mutex_destroy(&vd->vdev_dtl_lock);
1014         mutex_destroy(&vd->vdev_stat_lock);
1015         mutex_destroy(&vd->vdev_probe_lock);
1016         mutex_destroy(&vd->vdev_scan_io_queue_lock);
1017
1018         mutex_destroy(&vd->vdev_initialize_lock);
1019         mutex_destroy(&vd->vdev_initialize_io_lock);
1020         cv_destroy(&vd->vdev_initialize_io_cv);
1021         cv_destroy(&vd->vdev_initialize_cv);
1022
1023         mutex_destroy(&vd->vdev_trim_lock);
1024         mutex_destroy(&vd->vdev_autotrim_lock);
1025         mutex_destroy(&vd->vdev_trim_io_lock);
1026         cv_destroy(&vd->vdev_trim_cv);
1027         cv_destroy(&vd->vdev_autotrim_cv);
1028         cv_destroy(&vd->vdev_trim_io_cv);
1029
1030         mutex_destroy(&vd->vdev_rebuild_lock);
1031         mutex_destroy(&vd->vdev_rebuild_io_lock);
1032         cv_destroy(&vd->vdev_rebuild_cv);
1033         cv_destroy(&vd->vdev_rebuild_io_cv);
1034
1035         zfs_ratelimit_fini(&vd->vdev_delay_rl);
1036         zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1037
1038         if (vd == spa->spa_root_vdev)
1039                 spa->spa_root_vdev = NULL;
1040
1041         kmem_free(vd, sizeof (vdev_t));
1042 }
1043
1044 /*
1045  * Transfer top-level vdev state from svd to tvd.
1046  */
1047 static void
1048 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1049 {
1050         spa_t *spa = svd->vdev_spa;
1051         metaslab_t *msp;
1052         vdev_t *vd;
1053         int t;
1054
1055         ASSERT(tvd == tvd->vdev_top);
1056
1057         tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1058         tvd->vdev_ms_array = svd->vdev_ms_array;
1059         tvd->vdev_ms_shift = svd->vdev_ms_shift;
1060         tvd->vdev_ms_count = svd->vdev_ms_count;
1061         tvd->vdev_top_zap = svd->vdev_top_zap;
1062
1063         svd->vdev_ms_array = 0;
1064         svd->vdev_ms_shift = 0;
1065         svd->vdev_ms_count = 0;
1066         svd->vdev_top_zap = 0;
1067
1068         if (tvd->vdev_mg)
1069                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1070         tvd->vdev_mg = svd->vdev_mg;
1071         tvd->vdev_ms = svd->vdev_ms;
1072
1073         svd->vdev_mg = NULL;
1074         svd->vdev_ms = NULL;
1075
1076         if (tvd->vdev_mg != NULL)
1077                 tvd->vdev_mg->mg_vd = tvd;
1078
1079         tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1080         svd->vdev_checkpoint_sm = NULL;
1081
1082         tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1083         svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1084
1085         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1086         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1087         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1088
1089         svd->vdev_stat.vs_alloc = 0;
1090         svd->vdev_stat.vs_space = 0;
1091         svd->vdev_stat.vs_dspace = 0;
1092
1093         /*
1094          * State which may be set on a top-level vdev that's in the
1095          * process of being removed.
1096          */
1097         ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1098         ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1099         ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1100         ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1101         ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1102         ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1103         ASSERT0(tvd->vdev_removing);
1104         ASSERT0(tvd->vdev_rebuilding);
1105         tvd->vdev_removing = svd->vdev_removing;
1106         tvd->vdev_rebuilding = svd->vdev_rebuilding;
1107         tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1108         tvd->vdev_indirect_config = svd->vdev_indirect_config;
1109         tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1110         tvd->vdev_indirect_births = svd->vdev_indirect_births;
1111         range_tree_swap(&svd->vdev_obsolete_segments,
1112             &tvd->vdev_obsolete_segments);
1113         tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1114         svd->vdev_indirect_config.vic_mapping_object = 0;
1115         svd->vdev_indirect_config.vic_births_object = 0;
1116         svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1117         svd->vdev_indirect_mapping = NULL;
1118         svd->vdev_indirect_births = NULL;
1119         svd->vdev_obsolete_sm = NULL;
1120         svd->vdev_removing = 0;
1121         svd->vdev_rebuilding = 0;
1122
1123         for (t = 0; t < TXG_SIZE; t++) {
1124                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1125                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1126                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1127                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1128                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1129                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1130         }
1131
1132         if (list_link_active(&svd->vdev_config_dirty_node)) {
1133                 vdev_config_clean(svd);
1134                 vdev_config_dirty(tvd);
1135         }
1136
1137         if (list_link_active(&svd->vdev_state_dirty_node)) {
1138                 vdev_state_clean(svd);
1139                 vdev_state_dirty(tvd);
1140         }
1141
1142         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1143         svd->vdev_deflate_ratio = 0;
1144
1145         tvd->vdev_islog = svd->vdev_islog;
1146         svd->vdev_islog = 0;
1147
1148         dsl_scan_io_queue_vdev_xfer(svd, tvd);
1149 }
1150
1151 static void
1152 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1153 {
1154         if (vd == NULL)
1155                 return;
1156
1157         vd->vdev_top = tvd;
1158
1159         for (int c = 0; c < vd->vdev_children; c++)
1160                 vdev_top_update(tvd, vd->vdev_child[c]);
1161 }
1162
1163 /*
1164  * Add a mirror/replacing vdev above an existing vdev.
1165  */
1166 vdev_t *
1167 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1168 {
1169         spa_t *spa = cvd->vdev_spa;
1170         vdev_t *pvd = cvd->vdev_parent;
1171         vdev_t *mvd;
1172
1173         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1174
1175         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1176
1177         mvd->vdev_asize = cvd->vdev_asize;
1178         mvd->vdev_min_asize = cvd->vdev_min_asize;
1179         mvd->vdev_max_asize = cvd->vdev_max_asize;
1180         mvd->vdev_psize = cvd->vdev_psize;
1181         mvd->vdev_ashift = cvd->vdev_ashift;
1182         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1183         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1184         mvd->vdev_state = cvd->vdev_state;
1185         mvd->vdev_crtxg = cvd->vdev_crtxg;
1186
1187         vdev_remove_child(pvd, cvd);
1188         vdev_add_child(pvd, mvd);
1189         cvd->vdev_id = mvd->vdev_children;
1190         vdev_add_child(mvd, cvd);
1191         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1192
1193         if (mvd == mvd->vdev_top)
1194                 vdev_top_transfer(cvd, mvd);
1195
1196         return (mvd);
1197 }
1198
1199 /*
1200  * Remove a 1-way mirror/replacing vdev from the tree.
1201  */
1202 void
1203 vdev_remove_parent(vdev_t *cvd)
1204 {
1205         vdev_t *mvd = cvd->vdev_parent;
1206         vdev_t *pvd = mvd->vdev_parent;
1207
1208         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1209
1210         ASSERT(mvd->vdev_children == 1);
1211         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1212             mvd->vdev_ops == &vdev_replacing_ops ||
1213             mvd->vdev_ops == &vdev_spare_ops);
1214         cvd->vdev_ashift = mvd->vdev_ashift;
1215         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1216         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1217         vdev_remove_child(mvd, cvd);
1218         vdev_remove_child(pvd, mvd);
1219
1220         /*
1221          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1222          * Otherwise, we could have detached an offline device, and when we
1223          * go to import the pool we'll think we have two top-level vdevs,
1224          * instead of a different version of the same top-level vdev.
1225          */
1226         if (mvd->vdev_top == mvd) {
1227                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1228                 cvd->vdev_orig_guid = cvd->vdev_guid;
1229                 cvd->vdev_guid += guid_delta;
1230                 cvd->vdev_guid_sum += guid_delta;
1231
1232                 /*
1233                  * If pool not set for autoexpand, we need to also preserve
1234                  * mvd's asize to prevent automatic expansion of cvd.
1235                  * Otherwise if we are adjusting the mirror by attaching and
1236                  * detaching children of non-uniform sizes, the mirror could
1237                  * autoexpand, unexpectedly requiring larger devices to
1238                  * re-establish the mirror.
1239                  */
1240                 if (!cvd->vdev_spa->spa_autoexpand)
1241                         cvd->vdev_asize = mvd->vdev_asize;
1242         }
1243         cvd->vdev_id = mvd->vdev_id;
1244         vdev_add_child(pvd, cvd);
1245         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1246
1247         if (cvd == cvd->vdev_top)
1248                 vdev_top_transfer(mvd, cvd);
1249
1250         ASSERT(mvd->vdev_children == 0);
1251         vdev_free(mvd);
1252 }
1253
1254 static void
1255 vdev_metaslab_group_create(vdev_t *vd)
1256 {
1257         spa_t *spa = vd->vdev_spa;
1258
1259         /*
1260          * metaslab_group_create was delayed until allocation bias was available
1261          */
1262         if (vd->vdev_mg == NULL) {
1263                 metaslab_class_t *mc;
1264
1265                 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1266                         vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1267
1268                 ASSERT3U(vd->vdev_islog, ==,
1269                     (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1270
1271                 switch (vd->vdev_alloc_bias) {
1272                 case VDEV_BIAS_LOG:
1273                         mc = spa_log_class(spa);
1274                         break;
1275                 case VDEV_BIAS_SPECIAL:
1276                         mc = spa_special_class(spa);
1277                         break;
1278                 case VDEV_BIAS_DEDUP:
1279                         mc = spa_dedup_class(spa);
1280                         break;
1281                 default:
1282                         mc = spa_normal_class(spa);
1283                 }
1284
1285                 vd->vdev_mg = metaslab_group_create(mc, vd,
1286                     spa->spa_alloc_count);
1287
1288                 /*
1289                  * The spa ashift values currently only reflect the
1290                  * general vdev classes. Class destination is late
1291                  * binding so ashift checking had to wait until now
1292                  */
1293                 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1294                     mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1295                         if (vd->vdev_ashift > spa->spa_max_ashift)
1296                                 spa->spa_max_ashift = vd->vdev_ashift;
1297                         if (vd->vdev_ashift < spa->spa_min_ashift)
1298                                 spa->spa_min_ashift = vd->vdev_ashift;
1299                 }
1300         }
1301 }
1302
1303 int
1304 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1305 {
1306         spa_t *spa = vd->vdev_spa;
1307         objset_t *mos = spa->spa_meta_objset;
1308         uint64_t m;
1309         uint64_t oldc = vd->vdev_ms_count;
1310         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1311         metaslab_t **mspp;
1312         int error;
1313         boolean_t expanding = (oldc != 0);
1314
1315         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1316
1317         /*
1318          * This vdev is not being allocated from yet or is a hole.
1319          */
1320         if (vd->vdev_ms_shift == 0)
1321                 return (0);
1322
1323         ASSERT(!vd->vdev_ishole);
1324
1325         ASSERT(oldc <= newc);
1326
1327         mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1328
1329         if (expanding) {
1330                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1331                 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1332         }
1333
1334         vd->vdev_ms = mspp;
1335         vd->vdev_ms_count = newc;
1336         for (m = oldc; m < newc; m++) {
1337                 uint64_t object = 0;
1338
1339                 /*
1340                  * vdev_ms_array may be 0 if we are creating the "fake"
1341                  * metaslabs for an indirect vdev for zdb's leak detection.
1342                  * See zdb_leak_init().
1343                  */
1344                 if (txg == 0 && vd->vdev_ms_array != 0) {
1345                         error = dmu_read(mos, vd->vdev_ms_array,
1346                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
1347                             DMU_READ_PREFETCH);
1348                         if (error != 0) {
1349                                 vdev_dbgmsg(vd, "unable to read the metaslab "
1350                                     "array [error=%d]", error);
1351                                 return (error);
1352                         }
1353                 }
1354
1355 #ifndef _KERNEL
1356                 /*
1357                  * To accommodate zdb_leak_init() fake indirect
1358                  * metaslabs, we allocate a metaslab group for
1359                  * indirect vdevs which normally don't have one.
1360                  */
1361                 if (vd->vdev_mg == NULL) {
1362                         ASSERT0(vdev_is_concrete(vd));
1363                         vdev_metaslab_group_create(vd);
1364                 }
1365 #endif
1366                 error = metaslab_init(vd->vdev_mg, m, object, txg,
1367                     &(vd->vdev_ms[m]));
1368                 if (error != 0) {
1369                         vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1370                             error);
1371                         return (error);
1372                 }
1373         }
1374
1375         if (txg == 0)
1376                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1377
1378         /*
1379          * If the vdev is being removed we don't activate
1380          * the metaslabs since we want to ensure that no new
1381          * allocations are performed on this device.
1382          */
1383         if (!expanding && !vd->vdev_removing) {
1384                 metaslab_group_activate(vd->vdev_mg);
1385         }
1386
1387         if (txg == 0)
1388                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1389
1390         /*
1391          * Regardless whether this vdev was just added or it is being
1392          * expanded, the metaslab count has changed. Recalculate the
1393          * block limit.
1394          */
1395         spa_log_sm_set_blocklimit(spa);
1396
1397         return (0);
1398 }
1399
1400 void
1401 vdev_metaslab_fini(vdev_t *vd)
1402 {
1403         if (vd->vdev_checkpoint_sm != NULL) {
1404                 ASSERT(spa_feature_is_active(vd->vdev_spa,
1405                     SPA_FEATURE_POOL_CHECKPOINT));
1406                 space_map_close(vd->vdev_checkpoint_sm);
1407                 /*
1408                  * Even though we close the space map, we need to set its
1409                  * pointer to NULL. The reason is that vdev_metaslab_fini()
1410                  * may be called multiple times for certain operations
1411                  * (i.e. when destroying a pool) so we need to ensure that
1412                  * this clause never executes twice. This logic is similar
1413                  * to the one used for the vdev_ms clause below.
1414                  */
1415                 vd->vdev_checkpoint_sm = NULL;
1416         }
1417
1418         if (vd->vdev_ms != NULL) {
1419                 metaslab_group_t *mg = vd->vdev_mg;
1420                 metaslab_group_passivate(mg);
1421
1422                 uint64_t count = vd->vdev_ms_count;
1423                 for (uint64_t m = 0; m < count; m++) {
1424                         metaslab_t *msp = vd->vdev_ms[m];
1425                         if (msp != NULL)
1426                                 metaslab_fini(msp);
1427                 }
1428                 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1429                 vd->vdev_ms = NULL;
1430
1431                 vd->vdev_ms_count = 0;
1432
1433                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
1434                         ASSERT0(mg->mg_histogram[i]);
1435         }
1436         ASSERT0(vd->vdev_ms_count);
1437         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1438 }
1439
1440 typedef struct vdev_probe_stats {
1441         boolean_t       vps_readable;
1442         boolean_t       vps_writeable;
1443         int             vps_flags;
1444 } vdev_probe_stats_t;
1445
1446 static void
1447 vdev_probe_done(zio_t *zio)
1448 {
1449         spa_t *spa = zio->io_spa;
1450         vdev_t *vd = zio->io_vd;
1451         vdev_probe_stats_t *vps = zio->io_private;
1452
1453         ASSERT(vd->vdev_probe_zio != NULL);
1454
1455         if (zio->io_type == ZIO_TYPE_READ) {
1456                 if (zio->io_error == 0)
1457                         vps->vps_readable = 1;
1458                 if (zio->io_error == 0 && spa_writeable(spa)) {
1459                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1460                             zio->io_offset, zio->io_size, zio->io_abd,
1461                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1462                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1463                 } else {
1464                         abd_free(zio->io_abd);
1465                 }
1466         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1467                 if (zio->io_error == 0)
1468                         vps->vps_writeable = 1;
1469                 abd_free(zio->io_abd);
1470         } else if (zio->io_type == ZIO_TYPE_NULL) {
1471                 zio_t *pio;
1472                 zio_link_t *zl;
1473
1474                 vd->vdev_cant_read |= !vps->vps_readable;
1475                 vd->vdev_cant_write |= !vps->vps_writeable;
1476
1477                 if (vdev_readable(vd) &&
1478                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1479                         zio->io_error = 0;
1480                 } else {
1481                         ASSERT(zio->io_error != 0);
1482                         vdev_dbgmsg(vd, "failed probe");
1483                         (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1484                             spa, vd, NULL, NULL, 0);
1485                         zio->io_error = SET_ERROR(ENXIO);
1486                 }
1487
1488                 mutex_enter(&vd->vdev_probe_lock);
1489                 ASSERT(vd->vdev_probe_zio == zio);
1490                 vd->vdev_probe_zio = NULL;
1491                 mutex_exit(&vd->vdev_probe_lock);
1492
1493                 zl = NULL;
1494                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1495                         if (!vdev_accessible(vd, pio))
1496                                 pio->io_error = SET_ERROR(ENXIO);
1497
1498                 kmem_free(vps, sizeof (*vps));
1499         }
1500 }
1501
1502 /*
1503  * Determine whether this device is accessible.
1504  *
1505  * Read and write to several known locations: the pad regions of each
1506  * vdev label but the first, which we leave alone in case it contains
1507  * a VTOC.
1508  */
1509 zio_t *
1510 vdev_probe(vdev_t *vd, zio_t *zio)
1511 {
1512         spa_t *spa = vd->vdev_spa;
1513         vdev_probe_stats_t *vps = NULL;
1514         zio_t *pio;
1515
1516         ASSERT(vd->vdev_ops->vdev_op_leaf);
1517
1518         /*
1519          * Don't probe the probe.
1520          */
1521         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1522                 return (NULL);
1523
1524         /*
1525          * To prevent 'probe storms' when a device fails, we create
1526          * just one probe i/o at a time.  All zios that want to probe
1527          * this vdev will become parents of the probe io.
1528          */
1529         mutex_enter(&vd->vdev_probe_lock);
1530
1531         if ((pio = vd->vdev_probe_zio) == NULL) {
1532                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1533
1534                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1535                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1536                     ZIO_FLAG_TRYHARD;
1537
1538                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1539                         /*
1540                          * vdev_cant_read and vdev_cant_write can only
1541                          * transition from TRUE to FALSE when we have the
1542                          * SCL_ZIO lock as writer; otherwise they can only
1543                          * transition from FALSE to TRUE.  This ensures that
1544                          * any zio looking at these values can assume that
1545                          * failures persist for the life of the I/O.  That's
1546                          * important because when a device has intermittent
1547                          * connectivity problems, we want to ensure that
1548                          * they're ascribed to the device (ENXIO) and not
1549                          * the zio (EIO).
1550                          *
1551                          * Since we hold SCL_ZIO as writer here, clear both
1552                          * values so the probe can reevaluate from first
1553                          * principles.
1554                          */
1555                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1556                         vd->vdev_cant_read = B_FALSE;
1557                         vd->vdev_cant_write = B_FALSE;
1558                 }
1559
1560                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1561                     vdev_probe_done, vps,
1562                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1563
1564                 /*
1565                  * We can't change the vdev state in this context, so we
1566                  * kick off an async task to do it on our behalf.
1567                  */
1568                 if (zio != NULL) {
1569                         vd->vdev_probe_wanted = B_TRUE;
1570                         spa_async_request(spa, SPA_ASYNC_PROBE);
1571                 }
1572         }
1573
1574         if (zio != NULL)
1575                 zio_add_child(zio, pio);
1576
1577         mutex_exit(&vd->vdev_probe_lock);
1578
1579         if (vps == NULL) {
1580                 ASSERT(zio != NULL);
1581                 return (NULL);
1582         }
1583
1584         for (int l = 1; l < VDEV_LABELS; l++) {
1585                 zio_nowait(zio_read_phys(pio, vd,
1586                     vdev_label_offset(vd->vdev_psize, l,
1587                     offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1588                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1589                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1590                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1591         }
1592
1593         if (zio == NULL)
1594                 return (pio);
1595
1596         zio_nowait(pio);
1597         return (NULL);
1598 }
1599
1600 static void
1601 vdev_open_child(void *arg)
1602 {
1603         vdev_t *vd = arg;
1604
1605         vd->vdev_open_thread = curthread;
1606         vd->vdev_open_error = vdev_open(vd);
1607         vd->vdev_open_thread = NULL;
1608 }
1609
1610 static boolean_t
1611 vdev_uses_zvols(vdev_t *vd)
1612 {
1613 #ifdef _KERNEL
1614         if (zvol_is_zvol(vd->vdev_path))
1615                 return (B_TRUE);
1616 #endif
1617
1618         for (int c = 0; c < vd->vdev_children; c++)
1619                 if (vdev_uses_zvols(vd->vdev_child[c]))
1620                         return (B_TRUE);
1621
1622         return (B_FALSE);
1623 }
1624
1625 void
1626 vdev_open_children(vdev_t *vd)
1627 {
1628         taskq_t *tq;
1629         int children = vd->vdev_children;
1630
1631         /*
1632          * in order to handle pools on top of zvols, do the opens
1633          * in a single thread so that the same thread holds the
1634          * spa_namespace_lock
1635          */
1636         if (vdev_uses_zvols(vd)) {
1637 retry_sync:
1638                 for (int c = 0; c < children; c++)
1639                         vd->vdev_child[c]->vdev_open_error =
1640                             vdev_open(vd->vdev_child[c]);
1641         } else {
1642                 tq = taskq_create("vdev_open", children, minclsyspri,
1643                     children, children, TASKQ_PREPOPULATE);
1644                 if (tq == NULL)
1645                         goto retry_sync;
1646
1647                 for (int c = 0; c < children; c++)
1648                         VERIFY(taskq_dispatch(tq, vdev_open_child,
1649                             vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1650
1651                 taskq_destroy(tq);
1652         }
1653
1654         vd->vdev_nonrot = B_TRUE;
1655
1656         for (int c = 0; c < children; c++)
1657                 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1658 }
1659
1660 /*
1661  * Compute the raidz-deflation ratio.  Note, we hard-code
1662  * in 128k (1 << 17) because it is the "typical" blocksize.
1663  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1664  * otherwise it would inconsistently account for existing bp's.
1665  */
1666 static void
1667 vdev_set_deflate_ratio(vdev_t *vd)
1668 {
1669         if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1670                 vd->vdev_deflate_ratio = (1 << 17) /
1671                     (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1672         }
1673 }
1674
1675 /*
1676  * Maximize performance by inflating the configured ashift for top level
1677  * vdevs to be as close to the physical ashift as possible while maintaining
1678  * administrator defined limits and ensuring it doesn't go below the
1679  * logical ashift.
1680  */
1681 static void
1682 vdev_ashift_optimize(vdev_t *vd)
1683 {
1684         ASSERT(vd == vd->vdev_top);
1685
1686         if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1687                 vd->vdev_ashift = MIN(
1688                     MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1689                     MAX(zfs_vdev_min_auto_ashift,
1690                     vd->vdev_physical_ashift));
1691         } else {
1692                 /*
1693                  * If the logical and physical ashifts are the same, then
1694                  * we ensure that the top-level vdev's ashift is not smaller
1695                  * than our minimum ashift value. For the unusual case
1696                  * where logical ashift > physical ashift, we can't cap
1697                  * the calculated ashift based on max ashift as that
1698                  * would cause failures.
1699                  * We still check if we need to increase it to match
1700                  * the min ashift.
1701                  */
1702                 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1703                     vd->vdev_ashift);
1704         }
1705 }
1706
1707 /*
1708  * Prepare a virtual device for access.
1709  */
1710 int
1711 vdev_open(vdev_t *vd)
1712 {
1713         spa_t *spa = vd->vdev_spa;
1714         int error;
1715         uint64_t osize = 0;
1716         uint64_t max_osize = 0;
1717         uint64_t asize, max_asize, psize;
1718         uint64_t logical_ashift = 0;
1719         uint64_t physical_ashift = 0;
1720
1721         ASSERT(vd->vdev_open_thread == curthread ||
1722             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1723         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1724             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1725             vd->vdev_state == VDEV_STATE_OFFLINE);
1726
1727         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1728         vd->vdev_cant_read = B_FALSE;
1729         vd->vdev_cant_write = B_FALSE;
1730         vd->vdev_min_asize = vdev_get_min_asize(vd);
1731
1732         /*
1733          * If this vdev is not removed, check its fault status.  If it's
1734          * faulted, bail out of the open.
1735          */
1736         if (!vd->vdev_removed && vd->vdev_faulted) {
1737                 ASSERT(vd->vdev_children == 0);
1738                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1739                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1740                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1741                     vd->vdev_label_aux);
1742                 return (SET_ERROR(ENXIO));
1743         } else if (vd->vdev_offline) {
1744                 ASSERT(vd->vdev_children == 0);
1745                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1746                 return (SET_ERROR(ENXIO));
1747         }
1748
1749         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1750             &logical_ashift, &physical_ashift);
1751         /*
1752          * Physical volume size should never be larger than its max size, unless
1753          * the disk has shrunk while we were reading it or the device is buggy
1754          * or damaged: either way it's not safe for use, bail out of the open.
1755          */
1756         if (osize > max_osize) {
1757                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1758                     VDEV_AUX_OPEN_FAILED);
1759                 return (SET_ERROR(ENXIO));
1760         }
1761
1762         /*
1763          * Reset the vdev_reopening flag so that we actually close
1764          * the vdev on error.
1765          */
1766         vd->vdev_reopening = B_FALSE;
1767         if (zio_injection_enabled && error == 0)
1768                 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
1769
1770         if (error) {
1771                 if (vd->vdev_removed &&
1772                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1773                         vd->vdev_removed = B_FALSE;
1774
1775                 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1776                         vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1777                             vd->vdev_stat.vs_aux);
1778                 } else {
1779                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1780                             vd->vdev_stat.vs_aux);
1781                 }
1782                 return (error);
1783         }
1784
1785         vd->vdev_removed = B_FALSE;
1786
1787         /*
1788          * Recheck the faulted flag now that we have confirmed that
1789          * the vdev is accessible.  If we're faulted, bail.
1790          */
1791         if (vd->vdev_faulted) {
1792                 ASSERT(vd->vdev_children == 0);
1793                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1794                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1795                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1796                     vd->vdev_label_aux);
1797                 return (SET_ERROR(ENXIO));
1798         }
1799
1800         if (vd->vdev_degraded) {
1801                 ASSERT(vd->vdev_children == 0);
1802                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1803                     VDEV_AUX_ERR_EXCEEDED);
1804         } else {
1805                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1806         }
1807
1808         /*
1809          * For hole or missing vdevs we just return success.
1810          */
1811         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1812                 return (0);
1813
1814         for (int c = 0; c < vd->vdev_children; c++) {
1815                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1816                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1817                             VDEV_AUX_NONE);
1818                         break;
1819                 }
1820         }
1821
1822         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1823         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1824
1825         if (vd->vdev_children == 0) {
1826                 if (osize < SPA_MINDEVSIZE) {
1827                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1828                             VDEV_AUX_TOO_SMALL);
1829                         return (SET_ERROR(EOVERFLOW));
1830                 }
1831                 psize = osize;
1832                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1833                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1834                     VDEV_LABEL_END_SIZE);
1835         } else {
1836                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1837                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1838                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1839                             VDEV_AUX_TOO_SMALL);
1840                         return (SET_ERROR(EOVERFLOW));
1841                 }
1842                 psize = 0;
1843                 asize = osize;
1844                 max_asize = max_osize;
1845         }
1846
1847         /*
1848          * If the vdev was expanded, record this so that we can re-create the
1849          * uberblock rings in labels {2,3}, during the next sync.
1850          */
1851         if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1852                 vd->vdev_copy_uberblocks = B_TRUE;
1853
1854         vd->vdev_psize = psize;
1855
1856         /*
1857          * Make sure the allocatable size hasn't shrunk too much.
1858          */
1859         if (asize < vd->vdev_min_asize) {
1860                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1861                     VDEV_AUX_BAD_LABEL);
1862                 return (SET_ERROR(EINVAL));
1863         }
1864
1865         /*
1866          * We can always set the logical/physical ashift members since
1867          * their values are only used to calculate the vdev_ashift when
1868          * the device is first added to the config. These values should
1869          * not be used for anything else since they may change whenever
1870          * the device is reopened and we don't store them in the label.
1871          */
1872         vd->vdev_physical_ashift =
1873             MAX(physical_ashift, vd->vdev_physical_ashift);
1874         vd->vdev_logical_ashift = MAX(logical_ashift,
1875             vd->vdev_logical_ashift);
1876
1877         if (vd->vdev_asize == 0) {
1878                 /*
1879                  * This is the first-ever open, so use the computed values.
1880                  * For compatibility, a different ashift can be requested.
1881                  */
1882                 vd->vdev_asize = asize;
1883                 vd->vdev_max_asize = max_asize;
1884
1885                 /*
1886                  * If the vdev_ashift was not overriden at creation time,
1887                  * then set it the logical ashift and optimize the ashift.
1888                  */
1889                 if (vd->vdev_ashift == 0) {
1890                         vd->vdev_ashift = vd->vdev_logical_ashift;
1891
1892                         if (vd->vdev_logical_ashift > ASHIFT_MAX) {
1893                                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1894                                     VDEV_AUX_ASHIFT_TOO_BIG);
1895                                 return (SET_ERROR(EDOM));
1896                         }
1897
1898                         if (vd->vdev_top == vd) {
1899                                 vdev_ashift_optimize(vd);
1900                         }
1901                 }
1902                 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1903                     vd->vdev_ashift > ASHIFT_MAX)) {
1904                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1905                             VDEV_AUX_BAD_ASHIFT);
1906                         return (SET_ERROR(EDOM));
1907                 }
1908         } else {
1909                 /*
1910                  * Make sure the alignment required hasn't increased.
1911                  */
1912                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1913                     vd->vdev_ops->vdev_op_leaf) {
1914                         (void) zfs_ereport_post(
1915                             FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1916                             spa, vd, NULL, NULL, 0);
1917                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1918                             VDEV_AUX_BAD_LABEL);
1919                         return (SET_ERROR(EDOM));
1920                 }
1921                 vd->vdev_max_asize = max_asize;
1922         }
1923
1924         /*
1925          * If all children are healthy we update asize if either:
1926          * The asize has increased, due to a device expansion caused by dynamic
1927          * LUN growth or vdev replacement, and automatic expansion is enabled;
1928          * making the additional space available.
1929          *
1930          * The asize has decreased, due to a device shrink usually caused by a
1931          * vdev replace with a smaller device. This ensures that calculations
1932          * based of max_asize and asize e.g. esize are always valid. It's safe
1933          * to do this as we've already validated that asize is greater than
1934          * vdev_min_asize.
1935          */
1936         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1937             ((asize > vd->vdev_asize &&
1938             (vd->vdev_expanding || spa->spa_autoexpand)) ||
1939             (asize < vd->vdev_asize)))
1940                 vd->vdev_asize = asize;
1941
1942         vdev_set_min_asize(vd);
1943
1944         /*
1945          * Ensure we can issue some IO before declaring the
1946          * vdev open for business.
1947          */
1948         if (vd->vdev_ops->vdev_op_leaf &&
1949             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1950                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1951                     VDEV_AUX_ERR_EXCEEDED);
1952                 return (error);
1953         }
1954
1955         /*
1956          * Track the min and max ashift values for normal data devices.
1957          */
1958         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1959             vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1960             vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
1961                 if (vd->vdev_ashift > spa->spa_max_ashift)
1962                         spa->spa_max_ashift = vd->vdev_ashift;
1963                 if (vd->vdev_ashift < spa->spa_min_ashift)
1964                         spa->spa_min_ashift = vd->vdev_ashift;
1965         }
1966
1967         /*
1968          * If this is a leaf vdev, assess whether a resilver is needed.
1969          * But don't do this if we are doing a reopen for a scrub, since
1970          * this would just restart the scrub we are already doing.
1971          */
1972         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
1973                 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
1974
1975         return (0);
1976 }
1977
1978 /*
1979  * Called once the vdevs are all opened, this routine validates the label
1980  * contents. This needs to be done before vdev_load() so that we don't
1981  * inadvertently do repair I/Os to the wrong device.
1982  *
1983  * This function will only return failure if one of the vdevs indicates that it
1984  * has since been destroyed or exported.  This is only possible if
1985  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1986  * will be updated but the function will return 0.
1987  */
1988 int
1989 vdev_validate(vdev_t *vd)
1990 {
1991         spa_t *spa = vd->vdev_spa;
1992         nvlist_t *label;
1993         uint64_t guid = 0, aux_guid = 0, top_guid;
1994         uint64_t state;
1995         nvlist_t *nvl;
1996         uint64_t txg;
1997
1998         if (vdev_validate_skip)
1999                 return (0);
2000
2001         for (uint64_t c = 0; c < vd->vdev_children; c++)
2002                 if (vdev_validate(vd->vdev_child[c]) != 0)
2003                         return (SET_ERROR(EBADF));
2004
2005         /*
2006          * If the device has already failed, or was marked offline, don't do
2007          * any further validation.  Otherwise, label I/O will fail and we will
2008          * overwrite the previous state.
2009          */
2010         if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2011                 return (0);
2012
2013         /*
2014          * If we are performing an extreme rewind, we allow for a label that
2015          * was modified at a point after the current txg.
2016          * If config lock is not held do not check for the txg. spa_sync could
2017          * be updating the vdev's label before updating spa_last_synced_txg.
2018          */
2019         if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2020             spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2021                 txg = UINT64_MAX;
2022         else
2023                 txg = spa_last_synced_txg(spa);
2024
2025         if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2026                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2027                     VDEV_AUX_BAD_LABEL);
2028                 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2029                     "txg %llu", (u_longlong_t)txg);
2030                 return (0);
2031         }
2032
2033         /*
2034          * Determine if this vdev has been split off into another
2035          * pool.  If so, then refuse to open it.
2036          */
2037         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2038             &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2039                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2040                     VDEV_AUX_SPLIT_POOL);
2041                 nvlist_free(label);
2042                 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2043                 return (0);
2044         }
2045
2046         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2047                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2048                     VDEV_AUX_CORRUPT_DATA);
2049                 nvlist_free(label);
2050                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2051                     ZPOOL_CONFIG_POOL_GUID);
2052                 return (0);
2053         }
2054
2055         /*
2056          * If config is not trusted then ignore the spa guid check. This is
2057          * necessary because if the machine crashed during a re-guid the new
2058          * guid might have been written to all of the vdev labels, but not the
2059          * cached config. The check will be performed again once we have the
2060          * trusted config from the MOS.
2061          */
2062         if (spa->spa_trust_config && guid != spa_guid(spa)) {
2063                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2064                     VDEV_AUX_CORRUPT_DATA);
2065                 nvlist_free(label);
2066                 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2067                     "match config (%llu != %llu)", (u_longlong_t)guid,
2068                     (u_longlong_t)spa_guid(spa));
2069                 return (0);
2070         }
2071
2072         if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2073             != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2074             &aux_guid) != 0)
2075                 aux_guid = 0;
2076
2077         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2078                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2079                     VDEV_AUX_CORRUPT_DATA);
2080                 nvlist_free(label);
2081                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2082                     ZPOOL_CONFIG_GUID);
2083                 return (0);
2084         }
2085
2086         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2087             != 0) {
2088                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2089                     VDEV_AUX_CORRUPT_DATA);
2090                 nvlist_free(label);
2091                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2092                     ZPOOL_CONFIG_TOP_GUID);
2093                 return (0);
2094         }
2095
2096         /*
2097          * If this vdev just became a top-level vdev because its sibling was
2098          * detached, it will have adopted the parent's vdev guid -- but the
2099          * label may or may not be on disk yet. Fortunately, either version
2100          * of the label will have the same top guid, so if we're a top-level
2101          * vdev, we can safely compare to that instead.
2102          * However, if the config comes from a cachefile that failed to update
2103          * after the detach, a top-level vdev will appear as a non top-level
2104          * vdev in the config. Also relax the constraints if we perform an
2105          * extreme rewind.
2106          *
2107          * If we split this vdev off instead, then we also check the
2108          * original pool's guid. We don't want to consider the vdev
2109          * corrupt if it is partway through a split operation.
2110          */
2111         if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2112                 boolean_t mismatch = B_FALSE;
2113                 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2114                         if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2115                                 mismatch = B_TRUE;
2116                 } else {
2117                         if (vd->vdev_guid != top_guid &&
2118                             vd->vdev_top->vdev_guid != guid)
2119                                 mismatch = B_TRUE;
2120                 }
2121
2122                 if (mismatch) {
2123                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2124                             VDEV_AUX_CORRUPT_DATA);
2125                         nvlist_free(label);
2126                         vdev_dbgmsg(vd, "vdev_validate: config guid "
2127                             "doesn't match label guid");
2128                         vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2129                             (u_longlong_t)vd->vdev_guid,
2130                             (u_longlong_t)vd->vdev_top->vdev_guid);
2131                         vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2132                             "aux_guid %llu", (u_longlong_t)guid,
2133                             (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2134                         return (0);
2135                 }
2136         }
2137
2138         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2139             &state) != 0) {
2140                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2141                     VDEV_AUX_CORRUPT_DATA);
2142                 nvlist_free(label);
2143                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2144                     ZPOOL_CONFIG_POOL_STATE);
2145                 return (0);
2146         }
2147
2148         nvlist_free(label);
2149
2150         /*
2151          * If this is a verbatim import, no need to check the
2152          * state of the pool.
2153          */
2154         if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2155             spa_load_state(spa) == SPA_LOAD_OPEN &&
2156             state != POOL_STATE_ACTIVE) {
2157                 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2158                     "for spa %s", (u_longlong_t)state, spa->spa_name);
2159                 return (SET_ERROR(EBADF));
2160         }
2161
2162         /*
2163          * If we were able to open and validate a vdev that was
2164          * previously marked permanently unavailable, clear that state
2165          * now.
2166          */
2167         if (vd->vdev_not_present)
2168                 vd->vdev_not_present = 0;
2169
2170         return (0);
2171 }
2172
2173 static void
2174 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2175 {
2176         if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2177                 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2178                         zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2179                             "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2180                             dvd->vdev_path, svd->vdev_path);
2181                         spa_strfree(dvd->vdev_path);
2182                         dvd->vdev_path = spa_strdup(svd->vdev_path);
2183                 }
2184         } else if (svd->vdev_path != NULL) {
2185                 dvd->vdev_path = spa_strdup(svd->vdev_path);
2186                 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2187                     (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2188         }
2189 }
2190
2191 /*
2192  * Recursively copy vdev paths from one vdev to another. Source and destination
2193  * vdev trees must have same geometry otherwise return error. Intended to copy
2194  * paths from userland config into MOS config.
2195  */
2196 int
2197 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2198 {
2199         if ((svd->vdev_ops == &vdev_missing_ops) ||
2200             (svd->vdev_ishole && dvd->vdev_ishole) ||
2201             (dvd->vdev_ops == &vdev_indirect_ops))
2202                 return (0);
2203
2204         if (svd->vdev_ops != dvd->vdev_ops) {
2205                 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2206                     svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2207                 return (SET_ERROR(EINVAL));
2208         }
2209
2210         if (svd->vdev_guid != dvd->vdev_guid) {
2211                 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2212                     "%llu)", (u_longlong_t)svd->vdev_guid,
2213                     (u_longlong_t)dvd->vdev_guid);
2214                 return (SET_ERROR(EINVAL));
2215         }
2216
2217         if (svd->vdev_children != dvd->vdev_children) {
2218                 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2219                     "%llu != %llu", (u_longlong_t)svd->vdev_children,
2220                     (u_longlong_t)dvd->vdev_children);
2221                 return (SET_ERROR(EINVAL));
2222         }
2223
2224         for (uint64_t i = 0; i < svd->vdev_children; i++) {
2225                 int error = vdev_copy_path_strict(svd->vdev_child[i],
2226                     dvd->vdev_child[i]);
2227                 if (error != 0)
2228                         return (error);
2229         }
2230
2231         if (svd->vdev_ops->vdev_op_leaf)
2232                 vdev_copy_path_impl(svd, dvd);
2233
2234         return (0);
2235 }
2236
2237 static void
2238 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2239 {
2240         ASSERT(stvd->vdev_top == stvd);
2241         ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2242
2243         for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2244                 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2245         }
2246
2247         if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2248                 return;
2249
2250         /*
2251          * The idea here is that while a vdev can shift positions within
2252          * a top vdev (when replacing, attaching mirror, etc.) it cannot
2253          * step outside of it.
2254          */
2255         vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2256
2257         if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2258                 return;
2259
2260         ASSERT(vd->vdev_ops->vdev_op_leaf);
2261
2262         vdev_copy_path_impl(vd, dvd);
2263 }
2264
2265 /*
2266  * Recursively copy vdev paths from one root vdev to another. Source and
2267  * destination vdev trees may differ in geometry. For each destination leaf
2268  * vdev, search a vdev with the same guid and top vdev id in the source.
2269  * Intended to copy paths from userland config into MOS config.
2270  */
2271 void
2272 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2273 {
2274         uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2275         ASSERT(srvd->vdev_ops == &vdev_root_ops);
2276         ASSERT(drvd->vdev_ops == &vdev_root_ops);
2277
2278         for (uint64_t i = 0; i < children; i++) {
2279                 vdev_copy_path_search(srvd->vdev_child[i],
2280                     drvd->vdev_child[i]);
2281         }
2282 }
2283
2284 /*
2285  * Close a virtual device.
2286  */
2287 void
2288 vdev_close(vdev_t *vd)
2289 {
2290         vdev_t *pvd = vd->vdev_parent;
2291         spa_t *spa __maybe_unused = vd->vdev_spa;
2292
2293         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2294
2295         /*
2296          * If our parent is reopening, then we are as well, unless we are
2297          * going offline.
2298          */
2299         if (pvd != NULL && pvd->vdev_reopening)
2300                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2301
2302         vd->vdev_ops->vdev_op_close(vd);
2303
2304         vdev_cache_purge(vd);
2305
2306         /*
2307          * We record the previous state before we close it, so that if we are
2308          * doing a reopen(), we don't generate FMA ereports if we notice that
2309          * it's still faulted.
2310          */
2311         vd->vdev_prevstate = vd->vdev_state;
2312
2313         if (vd->vdev_offline)
2314                 vd->vdev_state = VDEV_STATE_OFFLINE;
2315         else
2316                 vd->vdev_state = VDEV_STATE_CLOSED;
2317         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2318 }
2319
2320 void
2321 vdev_hold(vdev_t *vd)
2322 {
2323         spa_t *spa = vd->vdev_spa;
2324
2325         ASSERT(spa_is_root(spa));
2326         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2327                 return;
2328
2329         for (int c = 0; c < vd->vdev_children; c++)
2330                 vdev_hold(vd->vdev_child[c]);
2331
2332         if (vd->vdev_ops->vdev_op_leaf)
2333                 vd->vdev_ops->vdev_op_hold(vd);
2334 }
2335
2336 void
2337 vdev_rele(vdev_t *vd)
2338 {
2339         ASSERT(spa_is_root(vd->vdev_spa));
2340         for (int c = 0; c < vd->vdev_children; c++)
2341                 vdev_rele(vd->vdev_child[c]);
2342
2343         if (vd->vdev_ops->vdev_op_leaf)
2344                 vd->vdev_ops->vdev_op_rele(vd);
2345 }
2346
2347 /*
2348  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2349  * reopen leaf vdevs which had previously been opened as they might deadlock
2350  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2351  * If the leaf has never been opened then open it, as usual.
2352  */
2353 void
2354 vdev_reopen(vdev_t *vd)
2355 {
2356         spa_t *spa = vd->vdev_spa;
2357
2358         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2359
2360         /* set the reopening flag unless we're taking the vdev offline */
2361         vd->vdev_reopening = !vd->vdev_offline;
2362         vdev_close(vd);
2363         (void) vdev_open(vd);
2364
2365         /*
2366          * Call vdev_validate() here to make sure we have the same device.
2367          * Otherwise, a device with an invalid label could be successfully
2368          * opened in response to vdev_reopen().
2369          */
2370         if (vd->vdev_aux) {
2371                 (void) vdev_validate_aux(vd);
2372                 if (vdev_readable(vd) && vdev_writeable(vd) &&
2373                     vd->vdev_aux == &spa->spa_l2cache) {
2374                         /*
2375                          * In case the vdev is present we should evict all ARC
2376                          * buffers and pointers to log blocks and reclaim their
2377                          * space before restoring its contents to L2ARC.
2378                          */
2379                         if (l2arc_vdev_present(vd)) {
2380                                 l2arc_rebuild_vdev(vd, B_TRUE);
2381                         } else {
2382                                 l2arc_add_vdev(spa, vd);
2383                         }
2384                         spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2385                         spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2386                 }
2387         } else {
2388                 (void) vdev_validate(vd);
2389         }
2390
2391         /*
2392          * Reassess parent vdev's health.
2393          */
2394         vdev_propagate_state(vd);
2395 }
2396
2397 int
2398 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2399 {
2400         int error;
2401
2402         /*
2403          * Normally, partial opens (e.g. of a mirror) are allowed.
2404          * For a create, however, we want to fail the request if
2405          * there are any components we can't open.
2406          */
2407         error = vdev_open(vd);
2408
2409         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2410                 vdev_close(vd);
2411                 return (error ? error : SET_ERROR(ENXIO));
2412         }
2413
2414         /*
2415          * Recursively load DTLs and initialize all labels.
2416          */
2417         if ((error = vdev_dtl_load(vd)) != 0 ||
2418             (error = vdev_label_init(vd, txg, isreplacing ?
2419             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2420                 vdev_close(vd);
2421                 return (error);
2422         }
2423
2424         return (0);
2425 }
2426
2427 void
2428 vdev_metaslab_set_size(vdev_t *vd)
2429 {
2430         uint64_t asize = vd->vdev_asize;
2431         uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2432         uint64_t ms_shift;
2433
2434         /*
2435          * There are two dimensions to the metaslab sizing calculation:
2436          * the size of the metaslab and the count of metaslabs per vdev.
2437          *
2438          * The default values used below are a good balance between memory
2439          * usage (larger metaslab size means more memory needed for loaded
2440          * metaslabs; more metaslabs means more memory needed for the
2441          * metaslab_t structs), metaslab load time (larger metaslabs take
2442          * longer to load), and metaslab sync time (more metaslabs means
2443          * more time spent syncing all of them).
2444          *
2445          * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2446          * The range of the dimensions are as follows:
2447          *
2448          *      2^29 <= ms_size  <= 2^34
2449          *        16 <= ms_count <= 131,072
2450          *
2451          * On the lower end of vdev sizes, we aim for metaslabs sizes of
2452          * at least 512MB (2^29) to minimize fragmentation effects when
2453          * testing with smaller devices.  However, the count constraint
2454          * of at least 16 metaslabs will override this minimum size goal.
2455          *
2456          * On the upper end of vdev sizes, we aim for a maximum metaslab
2457          * size of 16GB.  However, we will cap the total count to 2^17
2458          * metaslabs to keep our memory footprint in check and let the
2459          * metaslab size grow from there if that limit is hit.
2460          *
2461          * The net effect of applying above constrains is summarized below.
2462          *
2463          *   vdev size       metaslab count
2464          *  --------------|-----------------
2465          *      < 8GB        ~16
2466          *  8GB   - 100GB   one per 512MB
2467          *  100GB - 3TB     ~200
2468          *  3TB   - 2PB     one per 16GB
2469          *      > 2PB       ~131,072
2470          *  --------------------------------
2471          *
2472          *  Finally, note that all of the above calculate the initial
2473          *  number of metaslabs. Expanding a top-level vdev will result
2474          *  in additional metaslabs being allocated making it possible
2475          *  to exceed the zfs_vdev_ms_count_limit.
2476          */
2477
2478         if (ms_count < zfs_vdev_min_ms_count)
2479                 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2480         else if (ms_count > zfs_vdev_default_ms_count)
2481                 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2482         else
2483                 ms_shift = zfs_vdev_default_ms_shift;
2484
2485         if (ms_shift < SPA_MAXBLOCKSHIFT) {
2486                 ms_shift = SPA_MAXBLOCKSHIFT;
2487         } else if (ms_shift > zfs_vdev_max_ms_shift) {
2488                 ms_shift = zfs_vdev_max_ms_shift;
2489                 /* cap the total count to constrain memory footprint */
2490                 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2491                         ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2492         }
2493
2494         vd->vdev_ms_shift = ms_shift;
2495         ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2496 }
2497
2498 void
2499 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2500 {
2501         ASSERT(vd == vd->vdev_top);
2502         /* indirect vdevs don't have metaslabs or dtls */
2503         ASSERT(vdev_is_concrete(vd) || flags == 0);
2504         ASSERT(ISP2(flags));
2505         ASSERT(spa_writeable(vd->vdev_spa));
2506
2507         if (flags & VDD_METASLAB)
2508                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2509
2510         if (flags & VDD_DTL)
2511                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2512
2513         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2514 }
2515
2516 void
2517 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2518 {
2519         for (int c = 0; c < vd->vdev_children; c++)
2520                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2521
2522         if (vd->vdev_ops->vdev_op_leaf)
2523                 vdev_dirty(vd->vdev_top, flags, vd, txg);
2524 }
2525
2526 /*
2527  * DTLs.
2528  *
2529  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2530  * the vdev has less than perfect replication.  There are four kinds of DTL:
2531  *
2532  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2533  *
2534  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2535  *
2536  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2537  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2538  *      txgs that was scrubbed.
2539  *
2540  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2541  *      persistent errors or just some device being offline.
2542  *      Unlike the other three, the DTL_OUTAGE map is not generally
2543  *      maintained; it's only computed when needed, typically to
2544  *      determine whether a device can be detached.
2545  *
2546  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2547  * either has the data or it doesn't.
2548  *
2549  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2550  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2551  * if any child is less than fully replicated, then so is its parent.
2552  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2553  * comprising only those txgs which appear in 'maxfaults' or more children;
2554  * those are the txgs we don't have enough replication to read.  For example,
2555  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2556  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2557  * two child DTL_MISSING maps.
2558  *
2559  * It should be clear from the above that to compute the DTLs and outage maps
2560  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2561  * Therefore, that is all we keep on disk.  When loading the pool, or after
2562  * a configuration change, we generate all other DTLs from first principles.
2563  */
2564 void
2565 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2566 {
2567         range_tree_t *rt = vd->vdev_dtl[t];
2568
2569         ASSERT(t < DTL_TYPES);
2570         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2571         ASSERT(spa_writeable(vd->vdev_spa));
2572
2573         mutex_enter(&vd->vdev_dtl_lock);
2574         if (!range_tree_contains(rt, txg, size))
2575                 range_tree_add(rt, txg, size);
2576         mutex_exit(&vd->vdev_dtl_lock);
2577 }
2578
2579 boolean_t
2580 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2581 {
2582         range_tree_t *rt = vd->vdev_dtl[t];
2583         boolean_t dirty = B_FALSE;
2584
2585         ASSERT(t < DTL_TYPES);
2586         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2587
2588         /*
2589          * While we are loading the pool, the DTLs have not been loaded yet.
2590          * Ignore the DTLs and try all devices.  This avoids a recursive
2591          * mutex enter on the vdev_dtl_lock, and also makes us try hard
2592          * when loading the pool (relying on the checksum to ensure that
2593          * we get the right data -- note that we while loading, we are
2594          * only reading the MOS, which is always checksummed).
2595          */
2596         if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2597                 return (B_FALSE);
2598
2599         mutex_enter(&vd->vdev_dtl_lock);
2600         if (!range_tree_is_empty(rt))
2601                 dirty = range_tree_contains(rt, txg, size);
2602         mutex_exit(&vd->vdev_dtl_lock);
2603
2604         return (dirty);
2605 }
2606
2607 boolean_t
2608 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2609 {
2610         range_tree_t *rt = vd->vdev_dtl[t];
2611         boolean_t empty;
2612
2613         mutex_enter(&vd->vdev_dtl_lock);
2614         empty = range_tree_is_empty(rt);
2615         mutex_exit(&vd->vdev_dtl_lock);
2616
2617         return (empty);
2618 }
2619
2620 /*
2621  * Returns B_TRUE if vdev determines offset needs to be resilvered.
2622  */
2623 boolean_t
2624 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2625 {
2626         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2627
2628         if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2629             vd->vdev_ops->vdev_op_leaf)
2630                 return (B_TRUE);
2631
2632         return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2633 }
2634
2635 /*
2636  * Returns the lowest txg in the DTL range.
2637  */
2638 static uint64_t
2639 vdev_dtl_min(vdev_t *vd)
2640 {
2641         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2642         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2643         ASSERT0(vd->vdev_children);
2644
2645         return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2646 }
2647
2648 /*
2649  * Returns the highest txg in the DTL.
2650  */
2651 static uint64_t
2652 vdev_dtl_max(vdev_t *vd)
2653 {
2654         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2655         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2656         ASSERT0(vd->vdev_children);
2657
2658         return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2659 }
2660
2661 /*
2662  * Determine if a resilvering vdev should remove any DTL entries from
2663  * its range. If the vdev was resilvering for the entire duration of the
2664  * scan then it should excise that range from its DTLs. Otherwise, this
2665  * vdev is considered partially resilvered and should leave its DTL
2666  * entries intact. The comment in vdev_dtl_reassess() describes how we
2667  * excise the DTLs.
2668  */
2669 static boolean_t
2670 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2671 {
2672         ASSERT0(vd->vdev_children);
2673
2674         if (vd->vdev_state < VDEV_STATE_DEGRADED)
2675                 return (B_FALSE);
2676
2677         if (vd->vdev_resilver_deferred)
2678                 return (B_FALSE);
2679
2680         if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2681                 return (B_TRUE);
2682
2683         if (rebuild_done) {
2684                 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2685                 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
2686
2687                 /* Rebuild not initiated by attach */
2688                 if (vd->vdev_rebuild_txg == 0)
2689                         return (B_TRUE);
2690
2691                 /*
2692                  * When a rebuild completes without error then all missing data
2693                  * up to the rebuild max txg has been reconstructed and the DTL
2694                  * is eligible for excision.
2695                  */
2696                 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
2697                     vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
2698                         ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
2699                         ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
2700                         ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
2701                         return (B_TRUE);
2702                 }
2703         } else {
2704                 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
2705                 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
2706
2707                 /* Resilver not initiated by attach */
2708                 if (vd->vdev_resilver_txg == 0)
2709                         return (B_TRUE);
2710
2711                 /*
2712                  * When a resilver is initiated the scan will assign the
2713                  * scn_max_txg value to the highest txg value that exists
2714                  * in all DTLs. If this device's max DTL is not part of this
2715                  * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
2716                  * then it is not eligible for excision.
2717                  */
2718                 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2719                         ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
2720                         ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
2721                         ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
2722                         return (B_TRUE);
2723                 }
2724         }
2725
2726         return (B_FALSE);
2727 }
2728
2729 /*
2730  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2731  * write operations will be issued to the pool.
2732  */
2733 void
2734 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
2735     boolean_t scrub_done, boolean_t rebuild_done)
2736 {
2737         spa_t *spa = vd->vdev_spa;
2738         avl_tree_t reftree;
2739         int minref;
2740
2741         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2742
2743         for (int c = 0; c < vd->vdev_children; c++)
2744                 vdev_dtl_reassess(vd->vdev_child[c], txg,
2745                     scrub_txg, scrub_done, rebuild_done);
2746
2747         if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2748                 return;
2749
2750         if (vd->vdev_ops->vdev_op_leaf) {
2751                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2752                 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2753                 boolean_t check_excise = B_FALSE;
2754                 boolean_t wasempty = B_TRUE;
2755
2756                 mutex_enter(&vd->vdev_dtl_lock);
2757
2758                 /*
2759                  * If requested, pretend the scan or rebuild completed cleanly.
2760                  */
2761                 if (zfs_scan_ignore_errors) {
2762                         if (scn != NULL)
2763                                 scn->scn_phys.scn_errors = 0;
2764                         if (vr != NULL)
2765                                 vr->vr_rebuild_phys.vrp_errors = 0;
2766                 }
2767
2768                 if (scrub_txg != 0 &&
2769                     !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2770                         wasempty = B_FALSE;
2771                         zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
2772                             "dtl:%llu/%llu errors:%llu",
2773                             (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
2774                             (u_longlong_t)scrub_txg, spa->spa_scrub_started,
2775                             (u_longlong_t)vdev_dtl_min(vd),
2776                             (u_longlong_t)vdev_dtl_max(vd),
2777                             (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
2778                 }
2779
2780                 /*
2781                  * If we've completed a scrub/resilver or a rebuild cleanly
2782                  * then determine if this vdev should remove any DTLs. We
2783                  * only want to excise regions on vdevs that were available
2784                  * during the entire duration of this scan.
2785                  */
2786                 if (rebuild_done &&
2787                     vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
2788                         check_excise = B_TRUE;
2789                 } else {
2790                         if (spa->spa_scrub_started ||
2791                             (scn != NULL && scn->scn_phys.scn_errors == 0)) {
2792                                 check_excise = B_TRUE;
2793                         }
2794                 }
2795
2796                 if (scrub_txg && check_excise &&
2797                     vdev_dtl_should_excise(vd, rebuild_done)) {
2798                         /*
2799                          * We completed a scrub, resilver or rebuild up to
2800                          * scrub_txg.  If we did it without rebooting, then
2801                          * the scrub dtl will be valid, so excise the old
2802                          * region and fold in the scrub dtl.  Otherwise,
2803                          * leave the dtl as-is if there was an error.
2804                          *
2805                          * There's little trick here: to excise the beginning
2806                          * of the DTL_MISSING map, we put it into a reference
2807                          * tree and then add a segment with refcnt -1 that
2808                          * covers the range [0, scrub_txg).  This means
2809                          * that each txg in that range has refcnt -1 or 0.
2810                          * We then add DTL_SCRUB with a refcnt of 2, so that
2811                          * entries in the range [0, scrub_txg) will have a
2812                          * positive refcnt -- either 1 or 2.  We then convert
2813                          * the reference tree into the new DTL_MISSING map.
2814                          */
2815                         space_reftree_create(&reftree);
2816                         space_reftree_add_map(&reftree,
2817                             vd->vdev_dtl[DTL_MISSING], 1);
2818                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2819                         space_reftree_add_map(&reftree,
2820                             vd->vdev_dtl[DTL_SCRUB], 2);
2821                         space_reftree_generate_map(&reftree,
2822                             vd->vdev_dtl[DTL_MISSING], 1);
2823                         space_reftree_destroy(&reftree);
2824
2825                         if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2826                                 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
2827                                     (u_longlong_t)vdev_dtl_min(vd),
2828                                     (u_longlong_t)vdev_dtl_max(vd));
2829                         } else if (!wasempty) {
2830                                 zfs_dbgmsg("DTL_MISSING is now empty");
2831                         }
2832                 }
2833                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2834                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2835                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2836                 if (scrub_done)
2837                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2838                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2839                 if (!vdev_readable(vd))
2840                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2841                 else
2842                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2843                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2844
2845                 /*
2846                  * If the vdev was resilvering or rebuilding and no longer
2847                  * has any DTLs then reset the appropriate flag and dirty
2848                  * the top level so that we persist the change.
2849                  */
2850                 if (txg != 0 &&
2851                     range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2852                     range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2853                         if (vd->vdev_rebuild_txg != 0) {
2854                                 vd->vdev_rebuild_txg = 0;
2855                                 vdev_config_dirty(vd->vdev_top);
2856                         } else if (vd->vdev_resilver_txg != 0) {
2857                                 vd->vdev_resilver_txg = 0;
2858                                 vdev_config_dirty(vd->vdev_top);
2859                         }
2860                 }
2861
2862                 mutex_exit(&vd->vdev_dtl_lock);
2863
2864                 if (txg != 0)
2865                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2866                 return;
2867         }
2868
2869         mutex_enter(&vd->vdev_dtl_lock);
2870         for (int t = 0; t < DTL_TYPES; t++) {
2871                 /* account for child's outage in parent's missing map */
2872                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2873                 if (t == DTL_SCRUB)
2874                         continue;                       /* leaf vdevs only */
2875                 if (t == DTL_PARTIAL)
2876                         minref = 1;                     /* i.e. non-zero */
2877                 else if (vd->vdev_nparity != 0)
2878                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2879                 else
2880                         minref = vd->vdev_children;     /* any kind of mirror */
2881                 space_reftree_create(&reftree);
2882                 for (int c = 0; c < vd->vdev_children; c++) {
2883                         vdev_t *cvd = vd->vdev_child[c];
2884                         mutex_enter(&cvd->vdev_dtl_lock);
2885                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2886                         mutex_exit(&cvd->vdev_dtl_lock);
2887                 }
2888                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2889                 space_reftree_destroy(&reftree);
2890         }
2891         mutex_exit(&vd->vdev_dtl_lock);
2892 }
2893
2894 int
2895 vdev_dtl_load(vdev_t *vd)
2896 {
2897         spa_t *spa = vd->vdev_spa;
2898         objset_t *mos = spa->spa_meta_objset;
2899         int error = 0;
2900
2901         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2902                 ASSERT(vdev_is_concrete(vd));
2903
2904                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2905                     vd->vdev_dtl_object, 0, -1ULL, 0);
2906                 if (error)
2907                         return (error);
2908                 ASSERT(vd->vdev_dtl_sm != NULL);
2909
2910                 mutex_enter(&vd->vdev_dtl_lock);
2911                 error = space_map_load(vd->vdev_dtl_sm,
2912                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2913                 mutex_exit(&vd->vdev_dtl_lock);
2914
2915                 return (error);
2916         }
2917
2918         for (int c = 0; c < vd->vdev_children; c++) {
2919                 error = vdev_dtl_load(vd->vdev_child[c]);
2920                 if (error != 0)
2921                         break;
2922         }
2923
2924         return (error);
2925 }
2926
2927 static void
2928 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2929 {
2930         spa_t *spa = vd->vdev_spa;
2931         objset_t *mos = spa->spa_meta_objset;
2932         vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2933         const char *string;
2934
2935         ASSERT(alloc_bias != VDEV_BIAS_NONE);
2936
2937         string =
2938             (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2939             (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2940             (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2941
2942         ASSERT(string != NULL);
2943         VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2944             1, strlen(string) + 1, string, tx));
2945
2946         if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2947                 spa_activate_allocation_classes(spa, tx);
2948         }
2949 }
2950
2951 void
2952 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2953 {
2954         spa_t *spa = vd->vdev_spa;
2955
2956         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2957         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2958             zapobj, tx));
2959 }
2960
2961 uint64_t
2962 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2963 {
2964         spa_t *spa = vd->vdev_spa;
2965         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2966             DMU_OT_NONE, 0, tx);
2967
2968         ASSERT(zap != 0);
2969         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2970             zap, tx));
2971
2972         return (zap);
2973 }
2974
2975 void
2976 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2977 {
2978         if (vd->vdev_ops != &vdev_hole_ops &&
2979             vd->vdev_ops != &vdev_missing_ops &&
2980             vd->vdev_ops != &vdev_root_ops &&
2981             !vd->vdev_top->vdev_removing) {
2982                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2983                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2984                 }
2985                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2986                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2987                         if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2988                                 vdev_zap_allocation_data(vd, tx);
2989                 }
2990         }
2991
2992         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2993                 vdev_construct_zaps(vd->vdev_child[i], tx);
2994         }
2995 }
2996
2997 static void
2998 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2999 {
3000         spa_t *spa = vd->vdev_spa;
3001         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3002         objset_t *mos = spa->spa_meta_objset;
3003         range_tree_t *rtsync;
3004         dmu_tx_t *tx;
3005         uint64_t object = space_map_object(vd->vdev_dtl_sm);
3006
3007         ASSERT(vdev_is_concrete(vd));
3008         ASSERT(vd->vdev_ops->vdev_op_leaf);
3009
3010         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3011
3012         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3013                 mutex_enter(&vd->vdev_dtl_lock);
3014                 space_map_free(vd->vdev_dtl_sm, tx);
3015                 space_map_close(vd->vdev_dtl_sm);
3016                 vd->vdev_dtl_sm = NULL;
3017                 mutex_exit(&vd->vdev_dtl_lock);
3018
3019                 /*
3020                  * We only destroy the leaf ZAP for detached leaves or for
3021                  * removed log devices. Removed data devices handle leaf ZAP
3022                  * cleanup later, once cancellation is no longer possible.
3023                  */
3024                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3025                     vd->vdev_top->vdev_islog)) {
3026                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3027                         vd->vdev_leaf_zap = 0;
3028                 }
3029
3030                 dmu_tx_commit(tx);
3031                 return;
3032         }
3033
3034         if (vd->vdev_dtl_sm == NULL) {
3035                 uint64_t new_object;
3036
3037                 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3038                 VERIFY3U(new_object, !=, 0);
3039
3040                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3041                     0, -1ULL, 0));
3042                 ASSERT(vd->vdev_dtl_sm != NULL);
3043         }
3044
3045         rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3046
3047         mutex_enter(&vd->vdev_dtl_lock);
3048         range_tree_walk(rt, range_tree_add, rtsync);
3049         mutex_exit(&vd->vdev_dtl_lock);
3050
3051         space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3052         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3053         range_tree_vacate(rtsync, NULL, NULL);
3054
3055         range_tree_destroy(rtsync);
3056
3057         /*
3058          * If the object for the space map has changed then dirty
3059          * the top level so that we update the config.
3060          */
3061         if (object != space_map_object(vd->vdev_dtl_sm)) {
3062                 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3063                     "new object %llu", (u_longlong_t)txg, spa_name(spa),
3064                     (u_longlong_t)object,
3065                     (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3066                 vdev_config_dirty(vd->vdev_top);
3067         }
3068
3069         dmu_tx_commit(tx);
3070 }
3071
3072 /*
3073  * Determine whether the specified vdev can be offlined/detached/removed
3074  * without losing data.
3075  */
3076 boolean_t
3077 vdev_dtl_required(vdev_t *vd)
3078 {
3079         spa_t *spa = vd->vdev_spa;
3080         vdev_t *tvd = vd->vdev_top;
3081         uint8_t cant_read = vd->vdev_cant_read;
3082         boolean_t required;
3083
3084         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3085
3086         if (vd == spa->spa_root_vdev || vd == tvd)
3087                 return (B_TRUE);
3088
3089         /*
3090          * Temporarily mark the device as unreadable, and then determine
3091          * whether this results in any DTL outages in the top-level vdev.
3092          * If not, we can safely offline/detach/remove the device.
3093          */
3094         vd->vdev_cant_read = B_TRUE;
3095         vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3096         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3097         vd->vdev_cant_read = cant_read;
3098         vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3099
3100         if (!required && zio_injection_enabled) {
3101                 required = !!zio_handle_device_injection(vd, NULL,
3102                     SET_ERROR(ECHILD));
3103         }
3104
3105         return (required);
3106 }
3107
3108 /*
3109  * Determine if resilver is needed, and if so the txg range.
3110  */
3111 boolean_t
3112 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3113 {
3114         boolean_t needed = B_FALSE;
3115         uint64_t thismin = UINT64_MAX;
3116         uint64_t thismax = 0;
3117
3118         if (vd->vdev_children == 0) {
3119                 mutex_enter(&vd->vdev_dtl_lock);
3120                 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3121                     vdev_writeable(vd)) {
3122
3123                         thismin = vdev_dtl_min(vd);
3124                         thismax = vdev_dtl_max(vd);
3125                         needed = B_TRUE;
3126                 }
3127                 mutex_exit(&vd->vdev_dtl_lock);
3128         } else {
3129                 for (int c = 0; c < vd->vdev_children; c++) {
3130                         vdev_t *cvd = vd->vdev_child[c];
3131                         uint64_t cmin, cmax;
3132
3133                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3134                                 thismin = MIN(thismin, cmin);
3135                                 thismax = MAX(thismax, cmax);
3136                                 needed = B_TRUE;
3137                         }
3138                 }
3139         }
3140
3141         if (needed && minp) {
3142                 *minp = thismin;
3143                 *maxp = thismax;
3144         }
3145         return (needed);
3146 }
3147
3148 /*
3149  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3150  * will contain either the checkpoint spacemap object or zero if none exists.
3151  * All other errors are returned to the caller.
3152  */
3153 int
3154 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3155 {
3156         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3157
3158         if (vd->vdev_top_zap == 0) {
3159                 *sm_obj = 0;
3160                 return (0);
3161         }
3162
3163         int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3164             VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3165         if (error == ENOENT) {
3166                 *sm_obj = 0;
3167                 error = 0;
3168         }
3169
3170         return (error);
3171 }
3172
3173 int
3174 vdev_load(vdev_t *vd)
3175 {
3176         int error = 0;
3177
3178         /*
3179          * Recursively load all children.
3180          */
3181         for (int c = 0; c < vd->vdev_children; c++) {
3182                 error = vdev_load(vd->vdev_child[c]);
3183                 if (error != 0) {
3184                         return (error);
3185                 }
3186         }
3187
3188         vdev_set_deflate_ratio(vd);
3189
3190         /*
3191          * On spa_load path, grab the allocation bias from our zap
3192          */
3193         if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3194                 spa_t *spa = vd->vdev_spa;
3195                 char bias_str[64];
3196
3197                 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3198                     VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3199                     bias_str);
3200                 if (error == 0) {
3201                         ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3202                         vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3203                 } else if (error != ENOENT) {
3204                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3205                             VDEV_AUX_CORRUPT_DATA);
3206                         vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3207                             "failed [error=%d]", vd->vdev_top_zap, error);
3208                         return (error);
3209                 }
3210         }
3211
3212         /*
3213          * Load any rebuild state from the top-level vdev zap.
3214          */
3215         if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3216                 error = vdev_rebuild_load(vd);
3217                 if (error && error != ENOTSUP) {
3218                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3219                             VDEV_AUX_CORRUPT_DATA);
3220                         vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3221                             "failed [error=%d]", error);
3222                         return (error);
3223                 }
3224         }
3225
3226         /*
3227          * If this is a top-level vdev, initialize its metaslabs.
3228          */
3229         if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3230                 vdev_metaslab_group_create(vd);
3231
3232                 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3233                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3234                             VDEV_AUX_CORRUPT_DATA);
3235                         vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3236                             "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3237                             (u_longlong_t)vd->vdev_asize);
3238                         return (SET_ERROR(ENXIO));
3239                 }
3240
3241                 error = vdev_metaslab_init(vd, 0);
3242                 if (error != 0) {
3243                         vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3244                             "[error=%d]", error);
3245                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3246                             VDEV_AUX_CORRUPT_DATA);
3247                         return (error);
3248                 }
3249
3250                 uint64_t checkpoint_sm_obj;
3251                 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3252                 if (error == 0 && checkpoint_sm_obj != 0) {
3253                         objset_t *mos = spa_meta_objset(vd->vdev_spa);
3254                         ASSERT(vd->vdev_asize != 0);
3255                         ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3256
3257                         error = space_map_open(&vd->vdev_checkpoint_sm,
3258                             mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3259                             vd->vdev_ashift);
3260                         if (error != 0) {
3261                                 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3262                                     "failed for checkpoint spacemap (obj %llu) "
3263                                     "[error=%d]",
3264                                     (u_longlong_t)checkpoint_sm_obj, error);
3265                                 return (error);
3266                         }
3267                         ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3268
3269                         /*
3270                          * Since the checkpoint_sm contains free entries
3271                          * exclusively we can use space_map_allocated() to
3272                          * indicate the cumulative checkpointed space that
3273                          * has been freed.
3274                          */
3275                         vd->vdev_stat.vs_checkpoint_space =
3276                             -space_map_allocated(vd->vdev_checkpoint_sm);
3277                         vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3278                             vd->vdev_stat.vs_checkpoint_space;
3279                 } else if (error != 0) {
3280                         vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3281                             "checkpoint space map object from vdev ZAP "
3282                             "[error=%d]", error);
3283                         return (error);
3284                 }
3285         }
3286
3287         /*
3288          * If this is a leaf vdev, load its DTL.
3289          */
3290         if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3291                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3292                     VDEV_AUX_CORRUPT_DATA);
3293                 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3294                     "[error=%d]", error);
3295                 return (error);
3296         }
3297
3298         uint64_t obsolete_sm_object;
3299         error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3300         if (error == 0 && obsolete_sm_object != 0) {
3301                 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3302                 ASSERT(vd->vdev_asize != 0);
3303                 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3304
3305                 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3306                     obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3307                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3308                             VDEV_AUX_CORRUPT_DATA);
3309                         vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3310                             "obsolete spacemap (obj %llu) [error=%d]",
3311                             (u_longlong_t)obsolete_sm_object, error);
3312                         return (error);
3313                 }
3314         } else if (error != 0) {
3315                 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3316                     "space map object from vdev ZAP [error=%d]", error);
3317                 return (error);
3318         }
3319
3320         return (0);
3321 }
3322
3323 /*
3324  * The special vdev case is used for hot spares and l2cache devices.  Its
3325  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3326  * we make sure that we can open the underlying device, then try to read the
3327  * label, and make sure that the label is sane and that it hasn't been
3328  * repurposed to another pool.
3329  */
3330 int
3331 vdev_validate_aux(vdev_t *vd)
3332 {
3333         nvlist_t *label;
3334         uint64_t guid, version;
3335         uint64_t state;
3336
3337         if (!vdev_readable(vd))
3338                 return (0);
3339
3340         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3341                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3342                     VDEV_AUX_CORRUPT_DATA);
3343                 return (-1);
3344         }
3345
3346         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3347             !SPA_VERSION_IS_SUPPORTED(version) ||
3348             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3349             guid != vd->vdev_guid ||
3350             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3351                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3352                     VDEV_AUX_CORRUPT_DATA);
3353                 nvlist_free(label);
3354                 return (-1);
3355         }
3356
3357         /*
3358          * We don't actually check the pool state here.  If it's in fact in
3359          * use by another pool, we update this fact on the fly when requested.
3360          */
3361         nvlist_free(label);
3362         return (0);
3363 }
3364
3365 static void
3366 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3367 {
3368         objset_t *mos = spa_meta_objset(vd->vdev_spa);
3369
3370         if (vd->vdev_top_zap == 0)
3371                 return;
3372
3373         uint64_t object = 0;
3374         int err = zap_lookup(mos, vd->vdev_top_zap,
3375             VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3376         if (err == ENOENT)
3377                 return;
3378         VERIFY0(err);
3379
3380         VERIFY0(dmu_object_free(mos, object, tx));
3381         VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3382             VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3383 }
3384
3385 /*
3386  * Free the objects used to store this vdev's spacemaps, and the array
3387  * that points to them.
3388  */
3389 void
3390 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3391 {
3392         if (vd->vdev_ms_array == 0)
3393                 return;
3394
3395         objset_t *mos = vd->vdev_spa->spa_meta_objset;
3396         uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3397         size_t array_bytes = array_count * sizeof (uint64_t);
3398         uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3399         VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3400             array_bytes, smobj_array, 0));
3401
3402         for (uint64_t i = 0; i < array_count; i++) {
3403                 uint64_t smobj = smobj_array[i];
3404                 if (smobj == 0)
3405                         continue;
3406
3407                 space_map_free_obj(mos, smobj, tx);
3408         }
3409
3410         kmem_free(smobj_array, array_bytes);
3411         VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3412         vdev_destroy_ms_flush_data(vd, tx);
3413         vd->vdev_ms_array = 0;
3414 }
3415
3416 static void
3417 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3418 {
3419         spa_t *spa = vd->vdev_spa;
3420
3421         ASSERT(vd->vdev_islog);
3422         ASSERT(vd == vd->vdev_top);
3423         ASSERT3U(txg, ==, spa_syncing_txg(spa));
3424
3425         dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3426
3427         vdev_destroy_spacemaps(vd, tx);
3428         if (vd->vdev_top_zap != 0) {
3429                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3430                 vd->vdev_top_zap = 0;
3431         }
3432
3433         dmu_tx_commit(tx);
3434 }
3435
3436 void
3437 vdev_sync_done(vdev_t *vd, uint64_t txg)
3438 {
3439         metaslab_t *msp;
3440         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3441
3442         ASSERT(vdev_is_concrete(vd));
3443
3444         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3445             != NULL)
3446                 metaslab_sync_done(msp, txg);
3447
3448         if (reassess)
3449                 metaslab_sync_reassess(vd->vdev_mg);
3450 }
3451
3452 void
3453 vdev_sync(vdev_t *vd, uint64_t txg)
3454 {
3455         spa_t *spa = vd->vdev_spa;
3456         vdev_t *lvd;
3457         metaslab_t *msp;
3458
3459         ASSERT3U(txg, ==, spa->spa_syncing_txg);
3460         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3461         if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3462                 ASSERT(vd->vdev_removing ||
3463                     vd->vdev_ops == &vdev_indirect_ops);
3464
3465                 vdev_indirect_sync_obsolete(vd, tx);
3466
3467                 /*
3468                  * If the vdev is indirect, it can't have dirty
3469                  * metaslabs or DTLs.
3470                  */
3471                 if (vd->vdev_ops == &vdev_indirect_ops) {
3472                         ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3473                         ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3474                         dmu_tx_commit(tx);
3475                         return;
3476                 }
3477         }
3478
3479         ASSERT(vdev_is_concrete(vd));
3480
3481         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3482             !vd->vdev_removing) {
3483                 ASSERT(vd == vd->vdev_top);
3484                 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3485                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3486                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3487                 ASSERT(vd->vdev_ms_array != 0);
3488                 vdev_config_dirty(vd);
3489         }
3490
3491         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3492                 metaslab_sync(msp, txg);
3493                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3494         }
3495
3496         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3497                 vdev_dtl_sync(lvd, txg);
3498
3499         /*
3500          * If this is an empty log device being removed, destroy the
3501          * metadata associated with it.
3502          */
3503         if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3504                 vdev_remove_empty_log(vd, txg);
3505
3506         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3507         dmu_tx_commit(tx);
3508 }
3509
3510 uint64_t
3511 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3512 {
3513         return (vd->vdev_ops->vdev_op_asize(vd, psize));
3514 }
3515
3516 /*
3517  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3518  * not be opened, and no I/O is attempted.
3519  */
3520 int
3521 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3522 {
3523         vdev_t *vd, *tvd;
3524
3525         spa_vdev_state_enter(spa, SCL_NONE);
3526
3527         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3528                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3529
3530         if (!vd->vdev_ops->vdev_op_leaf)
3531                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3532
3533         tvd = vd->vdev_top;
3534
3535         /*
3536          * If user did a 'zpool offline -f' then make the fault persist across
3537          * reboots.
3538          */
3539         if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3540                 /*
3541                  * There are two kinds of forced faults: temporary and
3542                  * persistent.  Temporary faults go away at pool import, while
3543                  * persistent faults stay set.  Both types of faults can be
3544                  * cleared with a zpool clear.
3545                  *
3546                  * We tell if a vdev is persistently faulted by looking at the
3547                  * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
3548                  * import then it's a persistent fault.  Otherwise, it's
3549                  * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
3550                  * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
3551                  * tells vdev_config_generate() (which gets run later) to set
3552                  * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3553                  */
3554                 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3555                 vd->vdev_tmpoffline = B_FALSE;
3556                 aux = VDEV_AUX_EXTERNAL;
3557         } else {
3558                 vd->vdev_tmpoffline = B_TRUE;
3559         }
3560
3561         /*
3562          * We don't directly use the aux state here, but if we do a
3563          * vdev_reopen(), we need this value to be present to remember why we
3564          * were faulted.
3565          */
3566         vd->vdev_label_aux = aux;
3567
3568         /*
3569          * Faulted state takes precedence over degraded.
3570          */
3571         vd->vdev_delayed_close = B_FALSE;
3572         vd->vdev_faulted = 1ULL;
3573         vd->vdev_degraded = 0ULL;
3574         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3575
3576         /*
3577          * If this device has the only valid copy of the data, then
3578          * back off and simply mark the vdev as degraded instead.
3579          */
3580         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3581                 vd->vdev_degraded = 1ULL;
3582                 vd->vdev_faulted = 0ULL;
3583
3584                 /*
3585                  * If we reopen the device and it's not dead, only then do we
3586                  * mark it degraded.
3587                  */
3588                 vdev_reopen(tvd);
3589
3590                 if (vdev_readable(vd))
3591                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3592         }
3593
3594         return (spa_vdev_state_exit(spa, vd, 0));
3595 }
3596
3597 /*
3598  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3599  * user that something is wrong.  The vdev continues to operate as normal as far
3600  * as I/O is concerned.
3601  */
3602 int
3603 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3604 {
3605         vdev_t *vd;
3606
3607         spa_vdev_state_enter(spa, SCL_NONE);
3608
3609         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3610                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3611
3612         if (!vd->vdev_ops->vdev_op_leaf)
3613                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3614
3615         /*
3616          * If the vdev is already faulted, then don't do anything.
3617          */
3618         if (vd->vdev_faulted || vd->vdev_degraded)
3619                 return (spa_vdev_state_exit(spa, NULL, 0));
3620
3621         vd->vdev_degraded = 1ULL;
3622         if (!vdev_is_dead(vd))
3623                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3624                     aux);
3625
3626         return (spa_vdev_state_exit(spa, vd, 0));
3627 }
3628
3629 /*
3630  * Online the given vdev.
3631  *
3632  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3633  * spare device should be detached when the device finishes resilvering.
3634  * Second, the online should be treated like a 'test' online case, so no FMA
3635  * events are generated if the device fails to open.
3636  */
3637 int
3638 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3639 {
3640         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3641         boolean_t wasoffline;
3642         vdev_state_t oldstate;
3643
3644         spa_vdev_state_enter(spa, SCL_NONE);
3645
3646         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3647                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3648
3649         if (!vd->vdev_ops->vdev_op_leaf)
3650                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3651
3652         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3653         oldstate = vd->vdev_state;
3654
3655         tvd = vd->vdev_top;
3656         vd->vdev_offline = B_FALSE;
3657         vd->vdev_tmpoffline = B_FALSE;
3658         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3659         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3660
3661         /* XXX - L2ARC 1.0 does not support expansion */
3662         if (!vd->vdev_aux) {
3663                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3664                         pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3665                             spa->spa_autoexpand);
3666                 vd->vdev_expansion_time = gethrestime_sec();
3667         }
3668
3669         vdev_reopen(tvd);
3670         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3671
3672         if (!vd->vdev_aux) {
3673                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3674                         pvd->vdev_expanding = B_FALSE;
3675         }
3676
3677         if (newstate)
3678                 *newstate = vd->vdev_state;
3679         if ((flags & ZFS_ONLINE_UNSPARE) &&
3680             !vdev_is_dead(vd) && vd->vdev_parent &&
3681             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3682             vd->vdev_parent->vdev_child[0] == vd)
3683                 vd->vdev_unspare = B_TRUE;
3684
3685         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3686
3687                 /* XXX - L2ARC 1.0 does not support expansion */
3688                 if (vd->vdev_aux)
3689                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3690                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3691         }
3692
3693         /* Restart initializing if necessary */
3694         mutex_enter(&vd->vdev_initialize_lock);
3695         if (vdev_writeable(vd) &&
3696             vd->vdev_initialize_thread == NULL &&
3697             vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3698                 (void) vdev_initialize(vd);
3699         }
3700         mutex_exit(&vd->vdev_initialize_lock);
3701
3702         /*
3703          * Restart trimming if necessary. We do not restart trimming for cache
3704          * devices here. This is triggered by l2arc_rebuild_vdev()
3705          * asynchronously for the whole device or in l2arc_evict() as it evicts
3706          * space for upcoming writes.
3707          */
3708         mutex_enter(&vd->vdev_trim_lock);
3709         if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
3710             vd->vdev_trim_thread == NULL &&
3711             vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3712                 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3713                     vd->vdev_trim_secure);
3714         }
3715         mutex_exit(&vd->vdev_trim_lock);
3716
3717         if (wasoffline ||
3718             (oldstate < VDEV_STATE_DEGRADED &&
3719             vd->vdev_state >= VDEV_STATE_DEGRADED))
3720                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3721
3722         return (spa_vdev_state_exit(spa, vd, 0));
3723 }
3724
3725 static int
3726 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3727 {
3728         vdev_t *vd, *tvd;
3729         int error = 0;
3730         uint64_t generation;
3731         metaslab_group_t *mg;
3732
3733 top:
3734         spa_vdev_state_enter(spa, SCL_ALLOC);
3735
3736         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3737                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3738
3739         if (!vd->vdev_ops->vdev_op_leaf)
3740                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3741
3742         tvd = vd->vdev_top;
3743         mg = tvd->vdev_mg;
3744         generation = spa->spa_config_generation + 1;
3745
3746         /*
3747          * If the device isn't already offline, try to offline it.
3748          */
3749         if (!vd->vdev_offline) {
3750                 /*
3751                  * If this device has the only valid copy of some data,
3752                  * don't allow it to be offlined. Log devices are always
3753                  * expendable.
3754                  */
3755                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3756                     vdev_dtl_required(vd))
3757                         return (spa_vdev_state_exit(spa, NULL,
3758                             SET_ERROR(EBUSY)));
3759
3760                 /*
3761                  * If the top-level is a slog and it has had allocations
3762                  * then proceed.  We check that the vdev's metaslab group
3763                  * is not NULL since it's possible that we may have just
3764                  * added this vdev but not yet initialized its metaslabs.
3765                  */
3766                 if (tvd->vdev_islog && mg != NULL) {
3767                         /*
3768                          * Prevent any future allocations.
3769                          */
3770                         metaslab_group_passivate(mg);
3771                         (void) spa_vdev_state_exit(spa, vd, 0);
3772
3773                         error = spa_reset_logs(spa);
3774
3775                         /*
3776                          * If the log device was successfully reset but has
3777                          * checkpointed data, do not offline it.
3778                          */
3779                         if (error == 0 &&
3780                             tvd->vdev_checkpoint_sm != NULL) {
3781                                 ASSERT3U(space_map_allocated(
3782                                     tvd->vdev_checkpoint_sm), !=, 0);
3783                                 error = ZFS_ERR_CHECKPOINT_EXISTS;
3784                         }
3785
3786                         spa_vdev_state_enter(spa, SCL_ALLOC);
3787
3788                         /*
3789                          * Check to see if the config has changed.
3790                          */
3791                         if (error || generation != spa->spa_config_generation) {
3792                                 metaslab_group_activate(mg);
3793                                 if (error)
3794                                         return (spa_vdev_state_exit(spa,
3795                                             vd, error));
3796                                 (void) spa_vdev_state_exit(spa, vd, 0);
3797                                 goto top;
3798                         }
3799                         ASSERT0(tvd->vdev_stat.vs_alloc);
3800                 }
3801
3802                 /*
3803                  * Offline this device and reopen its top-level vdev.
3804                  * If the top-level vdev is a log device then just offline
3805                  * it. Otherwise, if this action results in the top-level
3806                  * vdev becoming unusable, undo it and fail the request.
3807                  */
3808                 vd->vdev_offline = B_TRUE;
3809                 vdev_reopen(tvd);
3810
3811                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3812                     vdev_is_dead(tvd)) {
3813                         vd->vdev_offline = B_FALSE;
3814                         vdev_reopen(tvd);
3815                         return (spa_vdev_state_exit(spa, NULL,
3816                             SET_ERROR(EBUSY)));
3817                 }
3818
3819                 /*
3820                  * Add the device back into the metaslab rotor so that
3821                  * once we online the device it's open for business.
3822                  */
3823                 if (tvd->vdev_islog && mg != NULL)
3824                         metaslab_group_activate(mg);
3825         }
3826
3827         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3828
3829         return (spa_vdev_state_exit(spa, vd, 0));
3830 }
3831
3832 int
3833 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3834 {
3835         int error;
3836
3837         mutex_enter(&spa->spa_vdev_top_lock);
3838         error = vdev_offline_locked(spa, guid, flags);
3839         mutex_exit(&spa->spa_vdev_top_lock);
3840
3841         return (error);
3842 }
3843
3844 /*
3845  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3846  * vdev_offline(), we assume the spa config is locked.  We also clear all
3847  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3848  */
3849 void
3850 vdev_clear(spa_t *spa, vdev_t *vd)
3851 {
3852         vdev_t *rvd = spa->spa_root_vdev;
3853
3854         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3855
3856         if (vd == NULL)
3857                 vd = rvd;
3858
3859         vd->vdev_stat.vs_read_errors = 0;
3860         vd->vdev_stat.vs_write_errors = 0;
3861         vd->vdev_stat.vs_checksum_errors = 0;
3862         vd->vdev_stat.vs_slow_ios = 0;
3863
3864         for (int c = 0; c < vd->vdev_children; c++)
3865                 vdev_clear(spa, vd->vdev_child[c]);
3866
3867         /*
3868          * It makes no sense to "clear" an indirect vdev.
3869          */
3870         if (!vdev_is_concrete(vd))
3871                 return;
3872
3873         /*
3874          * If we're in the FAULTED state or have experienced failed I/O, then
3875          * clear the persistent state and attempt to reopen the device.  We
3876          * also mark the vdev config dirty, so that the new faulted state is
3877          * written out to disk.
3878          */
3879         if (vd->vdev_faulted || vd->vdev_degraded ||
3880             !vdev_readable(vd) || !vdev_writeable(vd)) {
3881                 /*
3882                  * When reopening in response to a clear event, it may be due to
3883                  * a fmadm repair request.  In this case, if the device is
3884                  * still broken, we want to still post the ereport again.
3885                  */
3886                 vd->vdev_forcefault = B_TRUE;
3887
3888                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3889                 vd->vdev_cant_read = B_FALSE;
3890                 vd->vdev_cant_write = B_FALSE;
3891                 vd->vdev_stat.vs_aux = 0;
3892
3893                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3894
3895                 vd->vdev_forcefault = B_FALSE;
3896
3897                 if (vd != rvd && vdev_writeable(vd->vdev_top))
3898                         vdev_state_dirty(vd->vdev_top);
3899
3900                 /* If a resilver isn't required, check if vdevs can be culled */
3901                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
3902                     !dsl_scan_resilvering(spa->spa_dsl_pool) &&
3903                     !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
3904                         spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3905
3906                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3907         }
3908
3909         /*
3910          * When clearing a FMA-diagnosed fault, we always want to
3911          * unspare the device, as we assume that the original spare was
3912          * done in response to the FMA fault.
3913          */
3914         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3915             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3916             vd->vdev_parent->vdev_child[0] == vd)
3917                 vd->vdev_unspare = B_TRUE;
3918 }
3919
3920 boolean_t
3921 vdev_is_dead(vdev_t *vd)
3922 {
3923         /*
3924          * Holes and missing devices are always considered "dead".
3925          * This simplifies the code since we don't have to check for
3926          * these types of devices in the various code paths.
3927          * Instead we rely on the fact that we skip over dead devices
3928          * before issuing I/O to them.
3929          */
3930         return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3931             vd->vdev_ops == &vdev_hole_ops ||
3932             vd->vdev_ops == &vdev_missing_ops);
3933 }
3934
3935 boolean_t
3936 vdev_readable(vdev_t *vd)
3937 {
3938         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3939 }
3940
3941 boolean_t
3942 vdev_writeable(vdev_t *vd)
3943 {
3944         return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3945             vdev_is_concrete(vd));
3946 }
3947
3948 boolean_t
3949 vdev_allocatable(vdev_t *vd)
3950 {
3951         uint64_t state = vd->vdev_state;
3952
3953         /*
3954          * We currently allow allocations from vdevs which may be in the
3955          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3956          * fails to reopen then we'll catch it later when we're holding
3957          * the proper locks.  Note that we have to get the vdev state
3958          * in a local variable because although it changes atomically,
3959          * we're asking two separate questions about it.
3960          */
3961         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3962             !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3963             vd->vdev_mg->mg_initialized);
3964 }
3965
3966 boolean_t
3967 vdev_accessible(vdev_t *vd, zio_t *zio)
3968 {
3969         ASSERT(zio->io_vd == vd);
3970
3971         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3972                 return (B_FALSE);
3973
3974         if (zio->io_type == ZIO_TYPE_READ)
3975                 return (!vd->vdev_cant_read);
3976
3977         if (zio->io_type == ZIO_TYPE_WRITE)
3978                 return (!vd->vdev_cant_write);
3979
3980         return (B_TRUE);
3981 }
3982
3983 static void
3984 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
3985 {
3986         for (int t = 0; t < VS_ZIO_TYPES; t++) {
3987                 vs->vs_ops[t] += cvs->vs_ops[t];
3988                 vs->vs_bytes[t] += cvs->vs_bytes[t];
3989         }
3990
3991         cvs->vs_scan_removing = cvd->vdev_removing;
3992 }
3993
3994 /*
3995  * Get extended stats
3996  */
3997 static void
3998 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3999 {
4000         int t, b;
4001         for (t = 0; t < ZIO_TYPES; t++) {
4002                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4003                         vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4004
4005                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4006                         vsx->vsx_total_histo[t][b] +=
4007                             cvsx->vsx_total_histo[t][b];
4008                 }
4009         }
4010
4011         for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4012                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4013                         vsx->vsx_queue_histo[t][b] +=
4014                             cvsx->vsx_queue_histo[t][b];
4015                 }
4016                 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4017                 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4018
4019                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4020                         vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4021
4022                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4023                         vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4024         }
4025
4026 }
4027
4028 boolean_t
4029 vdev_is_spacemap_addressable(vdev_t *vd)
4030 {
4031         if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4032                 return (B_TRUE);
4033
4034         /*
4035          * If double-word space map entries are not enabled we assume
4036          * 47 bits of the space map entry are dedicated to the entry's
4037          * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4038          * to calculate the maximum address that can be described by a
4039          * space map entry for the given device.
4040          */
4041         uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4042
4043         if (shift >= 63) /* detect potential overflow */
4044                 return (B_TRUE);
4045
4046         return (vd->vdev_asize < (1ULL << shift));
4047 }
4048
4049 /*
4050  * Get statistics for the given vdev.
4051  */
4052 static void
4053 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4054 {
4055         int t;
4056         /*
4057          * If we're getting stats on the root vdev, aggregate the I/O counts
4058          * over all top-level vdevs (i.e. the direct children of the root).
4059          */
4060         if (!vd->vdev_ops->vdev_op_leaf) {
4061                 if (vs) {
4062                         memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4063                         memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4064                 }
4065                 if (vsx)
4066                         memset(vsx, 0, sizeof (*vsx));
4067
4068                 for (int c = 0; c < vd->vdev_children; c++) {
4069                         vdev_t *cvd = vd->vdev_child[c];
4070                         vdev_stat_t *cvs = &cvd->vdev_stat;
4071                         vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4072
4073                         vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4074                         if (vs)
4075                                 vdev_get_child_stat(cvd, vs, cvs);
4076                         if (vsx)
4077                                 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4078
4079                 }
4080         } else {
4081                 /*
4082                  * We're a leaf.  Just copy our ZIO active queue stats in.  The
4083                  * other leaf stats are updated in vdev_stat_update().
4084                  */
4085                 if (!vsx)
4086                         return;
4087
4088                 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4089
4090                 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4091                         vsx->vsx_active_queue[t] =
4092                             vd->vdev_queue.vq_class[t].vqc_active;
4093                         vsx->vsx_pend_queue[t] = avl_numnodes(
4094                             &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4095                 }
4096         }
4097 }
4098
4099 void
4100 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4101 {
4102         vdev_t *tvd = vd->vdev_top;
4103         mutex_enter(&vd->vdev_stat_lock);
4104         if (vs) {
4105                 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
4106                 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4107                 vs->vs_state = vd->vdev_state;
4108                 vs->vs_rsize = vdev_get_min_asize(vd);
4109
4110                 if (vd->vdev_ops->vdev_op_leaf) {
4111                         vs->vs_rsize += VDEV_LABEL_START_SIZE +
4112                             VDEV_LABEL_END_SIZE;
4113                         /*
4114                          * Report initializing progress. Since we don't
4115                          * have the initializing locks held, this is only
4116                          * an estimate (although a fairly accurate one).
4117                          */
4118                         vs->vs_initialize_bytes_done =
4119                             vd->vdev_initialize_bytes_done;
4120                         vs->vs_initialize_bytes_est =
4121                             vd->vdev_initialize_bytes_est;
4122                         vs->vs_initialize_state = vd->vdev_initialize_state;
4123                         vs->vs_initialize_action_time =
4124                             vd->vdev_initialize_action_time;
4125
4126                         /*
4127                          * Report manual TRIM progress. Since we don't have
4128                          * the manual TRIM locks held, this is only an
4129                          * estimate (although fairly accurate one).
4130                          */
4131                         vs->vs_trim_notsup = !vd->vdev_has_trim;
4132                         vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4133                         vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4134                         vs->vs_trim_state = vd->vdev_trim_state;
4135                         vs->vs_trim_action_time = vd->vdev_trim_action_time;
4136
4137                         /* Set when there is a deferred resilver. */
4138                         vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4139                 }
4140
4141                 /*
4142                  * Report expandable space on top-level, non-auxiliary devices
4143                  * only. The expandable space is reported in terms of metaslab
4144                  * sized units since that determines how much space the pool
4145                  * can expand.
4146                  */
4147                 if (vd->vdev_aux == NULL && tvd != NULL) {
4148                         vs->vs_esize = P2ALIGN(
4149                             vd->vdev_max_asize - vd->vdev_asize,
4150                             1ULL << tvd->vdev_ms_shift);
4151                 }
4152
4153                 vs->vs_configured_ashift = vd->vdev_top != NULL
4154                     ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4155                 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4156                 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4157
4158                 /*
4159                  * Report fragmentation and rebuild progress for top-level,
4160                  * non-auxiliary, concrete devices.
4161                  */
4162                 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4163                     vdev_is_concrete(vd)) {
4164                         vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4165                             vd->vdev_mg->mg_fragmentation : 0;
4166                 }
4167         }
4168
4169         vdev_get_stats_ex_impl(vd, vs, vsx);
4170         mutex_exit(&vd->vdev_stat_lock);
4171 }
4172
4173 void
4174 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4175 {
4176         return (vdev_get_stats_ex(vd, vs, NULL));
4177 }
4178
4179 void
4180 vdev_clear_stats(vdev_t *vd)
4181 {
4182         mutex_enter(&vd->vdev_stat_lock);
4183         vd->vdev_stat.vs_space = 0;
4184         vd->vdev_stat.vs_dspace = 0;
4185         vd->vdev_stat.vs_alloc = 0;
4186         mutex_exit(&vd->vdev_stat_lock);
4187 }
4188
4189 void
4190 vdev_scan_stat_init(vdev_t *vd)
4191 {
4192         vdev_stat_t *vs = &vd->vdev_stat;
4193
4194         for (int c = 0; c < vd->vdev_children; c++)
4195                 vdev_scan_stat_init(vd->vdev_child[c]);
4196
4197         mutex_enter(&vd->vdev_stat_lock);
4198         vs->vs_scan_processed = 0;
4199         mutex_exit(&vd->vdev_stat_lock);
4200 }
4201
4202 void
4203 vdev_stat_update(zio_t *zio, uint64_t psize)
4204 {
4205         spa_t *spa = zio->io_spa;
4206         vdev_t *rvd = spa->spa_root_vdev;
4207         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4208         vdev_t *pvd;
4209         uint64_t txg = zio->io_txg;
4210         vdev_stat_t *vs = &vd->vdev_stat;
4211         vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4212         zio_type_t type = zio->io_type;
4213         int flags = zio->io_flags;
4214
4215         /*
4216          * If this i/o is a gang leader, it didn't do any actual work.
4217          */
4218         if (zio->io_gang_tree)
4219                 return;
4220
4221         if (zio->io_error == 0) {
4222                 /*
4223                  * If this is a root i/o, don't count it -- we've already
4224                  * counted the top-level vdevs, and vdev_get_stats() will
4225                  * aggregate them when asked.  This reduces contention on
4226                  * the root vdev_stat_lock and implicitly handles blocks
4227                  * that compress away to holes, for which there is no i/o.
4228                  * (Holes never create vdev children, so all the counters
4229                  * remain zero, which is what we want.)
4230                  *
4231                  * Note: this only applies to successful i/o (io_error == 0)
4232                  * because unlike i/o counts, errors are not additive.
4233                  * When reading a ditto block, for example, failure of
4234                  * one top-level vdev does not imply a root-level error.
4235                  */
4236                 if (vd == rvd)
4237                         return;
4238
4239                 ASSERT(vd == zio->io_vd);
4240
4241                 if (flags & ZIO_FLAG_IO_BYPASS)
4242                         return;
4243
4244                 mutex_enter(&vd->vdev_stat_lock);
4245
4246                 if (flags & ZIO_FLAG_IO_REPAIR) {
4247                         /*
4248                          * Repair is the result of a resilver issued by the
4249                          * scan thread (spa_sync).
4250                          */
4251                         if (flags & ZIO_FLAG_SCAN_THREAD) {
4252                                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4253                                 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4254                                 uint64_t *processed = &scn_phys->scn_processed;
4255
4256                                 if (vd->vdev_ops->vdev_op_leaf)
4257                                         atomic_add_64(processed, psize);
4258                                 vs->vs_scan_processed += psize;
4259                         }
4260
4261                         /*
4262                          * Repair is the result of a rebuild issued by the
4263                          * rebuild thread (vdev_rebuild_thread).
4264                          */
4265                         if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4266                                 vdev_t *tvd = vd->vdev_top;
4267                                 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4268                                 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4269                                 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4270
4271                                 if (vd->vdev_ops->vdev_op_leaf)
4272                                         atomic_add_64(rebuilt, psize);
4273                                 vs->vs_rebuild_processed += psize;
4274                         }
4275
4276                         if (flags & ZIO_FLAG_SELF_HEAL)
4277                                 vs->vs_self_healed += psize;
4278                 }
4279
4280                 /*
4281                  * The bytes/ops/histograms are recorded at the leaf level and
4282                  * aggregated into the higher level vdevs in vdev_get_stats().
4283                  */
4284                 if (vd->vdev_ops->vdev_op_leaf &&
4285                     (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4286                         zio_type_t vs_type = type;
4287                         zio_priority_t priority = zio->io_priority;
4288
4289                         /*
4290                          * TRIM ops and bytes are reported to user space as
4291                          * ZIO_TYPE_IOCTL.  This is done to preserve the
4292                          * vdev_stat_t structure layout for user space.
4293                          */
4294                         if (type == ZIO_TYPE_TRIM)
4295                                 vs_type = ZIO_TYPE_IOCTL;
4296
4297                         /*
4298                          * Solely for the purposes of 'zpool iostat -lqrw'
4299                          * reporting use the priority to catagorize the IO.
4300                          * Only the following are reported to user space:
4301                          *
4302                          *   ZIO_PRIORITY_SYNC_READ,
4303                          *   ZIO_PRIORITY_SYNC_WRITE,
4304                          *   ZIO_PRIORITY_ASYNC_READ,
4305                          *   ZIO_PRIORITY_ASYNC_WRITE,
4306                          *   ZIO_PRIORITY_SCRUB,
4307                          *   ZIO_PRIORITY_TRIM.
4308                          */
4309                         if (priority == ZIO_PRIORITY_REBUILD) {
4310                                 priority = ((type == ZIO_TYPE_WRITE) ?
4311                                     ZIO_PRIORITY_ASYNC_WRITE :
4312                                     ZIO_PRIORITY_SCRUB);
4313                         } else if (priority == ZIO_PRIORITY_INITIALIZING) {
4314                                 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4315                                 priority = ZIO_PRIORITY_ASYNC_WRITE;
4316                         } else if (priority == ZIO_PRIORITY_REMOVAL) {
4317                                 priority = ((type == ZIO_TYPE_WRITE) ?
4318                                     ZIO_PRIORITY_ASYNC_WRITE :
4319                                     ZIO_PRIORITY_ASYNC_READ);
4320                         }
4321
4322                         vs->vs_ops[vs_type]++;
4323                         vs->vs_bytes[vs_type] += psize;
4324
4325                         if (flags & ZIO_FLAG_DELEGATED) {
4326                                 vsx->vsx_agg_histo[priority]
4327                                     [RQ_HISTO(zio->io_size)]++;
4328                         } else {
4329                                 vsx->vsx_ind_histo[priority]
4330                                     [RQ_HISTO(zio->io_size)]++;
4331                         }
4332
4333                         if (zio->io_delta && zio->io_delay) {
4334                                 vsx->vsx_queue_histo[priority]
4335                                     [L_HISTO(zio->io_delta - zio->io_delay)]++;
4336                                 vsx->vsx_disk_histo[type]
4337                                     [L_HISTO(zio->io_delay)]++;
4338                                 vsx->vsx_total_histo[type]
4339                                     [L_HISTO(zio->io_delta)]++;
4340                         }
4341                 }
4342
4343                 mutex_exit(&vd->vdev_stat_lock);
4344                 return;
4345         }
4346
4347         if (flags & ZIO_FLAG_SPECULATIVE)
4348                 return;
4349
4350         /*
4351          * If this is an I/O error that is going to be retried, then ignore the
4352          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4353          * hard errors, when in reality they can happen for any number of
4354          * innocuous reasons (bus resets, MPxIO link failure, etc).
4355          */
4356         if (zio->io_error == EIO &&
4357             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4358                 return;
4359
4360         /*
4361          * Intent logs writes won't propagate their error to the root
4362          * I/O so don't mark these types of failures as pool-level
4363          * errors.
4364          */
4365         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4366                 return;
4367
4368         if (spa->spa_load_state == SPA_LOAD_NONE &&
4369             type == ZIO_TYPE_WRITE && txg != 0 &&
4370             (!(flags & ZIO_FLAG_IO_REPAIR) ||
4371             (flags & ZIO_FLAG_SCAN_THREAD) ||
4372             spa->spa_claiming)) {
4373                 /*
4374                  * This is either a normal write (not a repair), or it's
4375                  * a repair induced by the scrub thread, or it's a repair
4376                  * made by zil_claim() during spa_load() in the first txg.
4377                  * In the normal case, we commit the DTL change in the same
4378                  * txg as the block was born.  In the scrub-induced repair
4379                  * case, we know that scrubs run in first-pass syncing context,
4380                  * so we commit the DTL change in spa_syncing_txg(spa).
4381                  * In the zil_claim() case, we commit in spa_first_txg(spa).
4382                  *
4383                  * We currently do not make DTL entries for failed spontaneous
4384                  * self-healing writes triggered by normal (non-scrubbing)
4385                  * reads, because we have no transactional context in which to
4386                  * do so -- and it's not clear that it'd be desirable anyway.
4387                  */
4388                 if (vd->vdev_ops->vdev_op_leaf) {
4389                         uint64_t commit_txg = txg;
4390                         if (flags & ZIO_FLAG_SCAN_THREAD) {
4391                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4392                                 ASSERT(spa_sync_pass(spa) == 1);
4393                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4394                                 commit_txg = spa_syncing_txg(spa);
4395                         } else if (spa->spa_claiming) {
4396                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4397                                 commit_txg = spa_first_txg(spa);
4398                         }
4399                         ASSERT(commit_txg >= spa_syncing_txg(spa));
4400                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4401                                 return;
4402                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4403                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4404                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4405                 }
4406                 if (vd != rvd)
4407                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4408         }
4409 }
4410
4411 int64_t
4412 vdev_deflated_space(vdev_t *vd, int64_t space)
4413 {
4414         ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4415         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4416
4417         return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4418 }
4419
4420 /*
4421  * Update the in-core space usage stats for this vdev, its metaslab class,
4422  * and the root vdev.
4423  */
4424 void
4425 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4426     int64_t space_delta)
4427 {
4428         int64_t dspace_delta;
4429         spa_t *spa = vd->vdev_spa;
4430         vdev_t *rvd = spa->spa_root_vdev;
4431
4432         ASSERT(vd == vd->vdev_top);
4433
4434         /*
4435          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4436          * factor.  We must calculate this here and not at the root vdev
4437          * because the root vdev's psize-to-asize is simply the max of its
4438          * children's, thus not accurate enough for us.
4439          */
4440         dspace_delta = vdev_deflated_space(vd, space_delta);
4441
4442         mutex_enter(&vd->vdev_stat_lock);
4443         /* ensure we won't underflow */
4444         if (alloc_delta < 0) {
4445                 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4446         }
4447
4448         vd->vdev_stat.vs_alloc += alloc_delta;
4449         vd->vdev_stat.vs_space += space_delta;
4450         vd->vdev_stat.vs_dspace += dspace_delta;
4451         mutex_exit(&vd->vdev_stat_lock);
4452
4453         /* every class but log contributes to root space stats */
4454         if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4455                 ASSERT(!vd->vdev_isl2cache);
4456                 mutex_enter(&rvd->vdev_stat_lock);
4457                 rvd->vdev_stat.vs_alloc += alloc_delta;
4458                 rvd->vdev_stat.vs_space += space_delta;
4459                 rvd->vdev_stat.vs_dspace += dspace_delta;
4460                 mutex_exit(&rvd->vdev_stat_lock);
4461         }
4462         /* Note: metaslab_class_space_update moved to metaslab_space_update */
4463 }
4464
4465 /*
4466  * Mark a top-level vdev's config as dirty, placing it on the dirty list
4467  * so that it will be written out next time the vdev configuration is synced.
4468  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4469  */
4470 void
4471 vdev_config_dirty(vdev_t *vd)
4472 {
4473         spa_t *spa = vd->vdev_spa;
4474         vdev_t *rvd = spa->spa_root_vdev;
4475         int c;
4476
4477         ASSERT(spa_writeable(spa));
4478
4479         /*
4480          * If this is an aux vdev (as with l2cache and spare devices), then we
4481          * update the vdev config manually and set the sync flag.
4482          */
4483         if (vd->vdev_aux != NULL) {
4484                 spa_aux_vdev_t *sav = vd->vdev_aux;
4485                 nvlist_t **aux;
4486                 uint_t naux;
4487
4488                 for (c = 0; c < sav->sav_count; c++) {
4489                         if (sav->sav_vdevs[c] == vd)
4490                                 break;
4491                 }
4492
4493                 if (c == sav->sav_count) {
4494                         /*
4495                          * We're being removed.  There's nothing more to do.
4496                          */
4497                         ASSERT(sav->sav_sync == B_TRUE);
4498                         return;
4499                 }
4500
4501                 sav->sav_sync = B_TRUE;
4502
4503                 if (nvlist_lookup_nvlist_array(sav->sav_config,
4504                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4505                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4506                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4507                 }
4508
4509                 ASSERT(c < naux);
4510
4511                 /*
4512                  * Setting the nvlist in the middle if the array is a little
4513                  * sketchy, but it will work.
4514                  */
4515                 nvlist_free(aux[c]);
4516                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4517
4518                 return;
4519         }
4520
4521         /*
4522          * The dirty list is protected by the SCL_CONFIG lock.  The caller
4523          * must either hold SCL_CONFIG as writer, or must be the sync thread
4524          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4525          * so this is sufficient to ensure mutual exclusion.
4526          */
4527         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4528             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4529             spa_config_held(spa, SCL_CONFIG, RW_READER)));
4530
4531         if (vd == rvd) {
4532                 for (c = 0; c < rvd->vdev_children; c++)
4533                         vdev_config_dirty(rvd->vdev_child[c]);
4534         } else {
4535                 ASSERT(vd == vd->vdev_top);
4536
4537                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
4538                     vdev_is_concrete(vd)) {
4539                         list_insert_head(&spa->spa_config_dirty_list, vd);
4540                 }
4541         }
4542 }
4543
4544 void
4545 vdev_config_clean(vdev_t *vd)
4546 {
4547         spa_t *spa = vd->vdev_spa;
4548
4549         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4550             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4551             spa_config_held(spa, SCL_CONFIG, RW_READER)));
4552
4553         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4554         list_remove(&spa->spa_config_dirty_list, vd);
4555 }
4556
4557 /*
4558  * Mark a top-level vdev's state as dirty, so that the next pass of
4559  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4560  * the state changes from larger config changes because they require
4561  * much less locking, and are often needed for administrative actions.
4562  */
4563 void
4564 vdev_state_dirty(vdev_t *vd)
4565 {
4566         spa_t *spa = vd->vdev_spa;
4567
4568         ASSERT(spa_writeable(spa));
4569         ASSERT(vd == vd->vdev_top);
4570
4571         /*
4572          * The state list is protected by the SCL_STATE lock.  The caller
4573          * must either hold SCL_STATE as writer, or must be the sync thread
4574          * (which holds SCL_STATE as reader).  There's only one sync thread,
4575          * so this is sufficient to ensure mutual exclusion.
4576          */
4577         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4578             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4579             spa_config_held(spa, SCL_STATE, RW_READER)));
4580
4581         if (!list_link_active(&vd->vdev_state_dirty_node) &&
4582             vdev_is_concrete(vd))
4583                 list_insert_head(&spa->spa_state_dirty_list, vd);
4584 }
4585
4586 void
4587 vdev_state_clean(vdev_t *vd)
4588 {
4589         spa_t *spa = vd->vdev_spa;
4590
4591         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4592             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4593             spa_config_held(spa, SCL_STATE, RW_READER)));
4594
4595         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4596         list_remove(&spa->spa_state_dirty_list, vd);
4597 }
4598
4599 /*
4600  * Propagate vdev state up from children to parent.
4601  */
4602 void
4603 vdev_propagate_state(vdev_t *vd)
4604 {
4605         spa_t *spa = vd->vdev_spa;
4606         vdev_t *rvd = spa->spa_root_vdev;
4607         int degraded = 0, faulted = 0;
4608         int corrupted = 0;
4609         vdev_t *child;
4610
4611         if (vd->vdev_children > 0) {
4612                 for (int c = 0; c < vd->vdev_children; c++) {
4613                         child = vd->vdev_child[c];
4614
4615                         /*
4616                          * Don't factor holes or indirect vdevs into the
4617                          * decision.
4618                          */
4619                         if (!vdev_is_concrete(child))
4620                                 continue;
4621
4622                         if (!vdev_readable(child) ||
4623                             (!vdev_writeable(child) && spa_writeable(spa))) {
4624                                 /*
4625                                  * Root special: if there is a top-level log
4626                                  * device, treat the root vdev as if it were
4627                                  * degraded.
4628                                  */
4629                                 if (child->vdev_islog && vd == rvd)
4630                                         degraded++;
4631                                 else
4632                                         faulted++;
4633                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4634                                 degraded++;
4635                         }
4636
4637                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4638                                 corrupted++;
4639                 }
4640
4641                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4642
4643                 /*
4644                  * Root special: if there is a top-level vdev that cannot be
4645                  * opened due to corrupted metadata, then propagate the root
4646                  * vdev's aux state as 'corrupt' rather than 'insufficient
4647                  * replicas'.
4648                  */
4649                 if (corrupted && vd == rvd &&
4650                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4651                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4652                             VDEV_AUX_CORRUPT_DATA);
4653         }
4654
4655         if (vd->vdev_parent)
4656                 vdev_propagate_state(vd->vdev_parent);
4657 }
4658
4659 /*
4660  * Set a vdev's state.  If this is during an open, we don't update the parent
4661  * state, because we're in the process of opening children depth-first.
4662  * Otherwise, we propagate the change to the parent.
4663  *
4664  * If this routine places a device in a faulted state, an appropriate ereport is
4665  * generated.
4666  */
4667 void
4668 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4669 {
4670         uint64_t save_state;
4671         spa_t *spa = vd->vdev_spa;
4672
4673         if (state == vd->vdev_state) {
4674                 /*
4675                  * Since vdev_offline() code path is already in an offline
4676                  * state we can miss a statechange event to OFFLINE. Check
4677                  * the previous state to catch this condition.
4678                  */
4679                 if (vd->vdev_ops->vdev_op_leaf &&
4680                     (state == VDEV_STATE_OFFLINE) &&
4681                     (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4682                         /* post an offline state change */
4683                         zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4684                 }
4685                 vd->vdev_stat.vs_aux = aux;
4686                 return;
4687         }
4688
4689         save_state = vd->vdev_state;
4690
4691         vd->vdev_state = state;
4692         vd->vdev_stat.vs_aux = aux;
4693
4694         /*
4695          * If we are setting the vdev state to anything but an open state, then
4696          * always close the underlying device unless the device has requested
4697          * a delayed close (i.e. we're about to remove or fault the device).
4698          * Otherwise, we keep accessible but invalid devices open forever.
4699          * We don't call vdev_close() itself, because that implies some extra
4700          * checks (offline, etc) that we don't want here.  This is limited to
4701          * leaf devices, because otherwise closing the device will affect other
4702          * children.
4703          */
4704         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4705             vd->vdev_ops->vdev_op_leaf)
4706                 vd->vdev_ops->vdev_op_close(vd);
4707
4708         if (vd->vdev_removed &&
4709             state == VDEV_STATE_CANT_OPEN &&
4710             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4711                 /*
4712                  * If the previous state is set to VDEV_STATE_REMOVED, then this
4713                  * device was previously marked removed and someone attempted to
4714                  * reopen it.  If this failed due to a nonexistent device, then
4715                  * keep the device in the REMOVED state.  We also let this be if
4716                  * it is one of our special test online cases, which is only
4717                  * attempting to online the device and shouldn't generate an FMA
4718                  * fault.
4719                  */
4720                 vd->vdev_state = VDEV_STATE_REMOVED;
4721                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4722         } else if (state == VDEV_STATE_REMOVED) {
4723                 vd->vdev_removed = B_TRUE;
4724         } else if (state == VDEV_STATE_CANT_OPEN) {
4725                 /*
4726                  * If we fail to open a vdev during an import or recovery, we
4727                  * mark it as "not available", which signifies that it was
4728                  * never there to begin with.  Failure to open such a device
4729                  * is not considered an error.
4730                  */
4731                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4732                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4733                     vd->vdev_ops->vdev_op_leaf)
4734                         vd->vdev_not_present = 1;
4735
4736                 /*
4737                  * Post the appropriate ereport.  If the 'prevstate' field is
4738                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
4739                  * that this is part of a vdev_reopen().  In this case, we don't
4740                  * want to post the ereport if the device was already in the
4741                  * CANT_OPEN state beforehand.
4742                  *
4743                  * If the 'checkremove' flag is set, then this is an attempt to
4744                  * online the device in response to an insertion event.  If we
4745                  * hit this case, then we have detected an insertion event for a
4746                  * faulted or offline device that wasn't in the removed state.
4747                  * In this scenario, we don't post an ereport because we are
4748                  * about to replace the device, or attempt an online with
4749                  * vdev_forcefault, which will generate the fault for us.
4750                  */
4751                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4752                     !vd->vdev_not_present && !vd->vdev_checkremove &&
4753                     vd != spa->spa_root_vdev) {
4754                         const char *class;
4755
4756                         switch (aux) {
4757                         case VDEV_AUX_OPEN_FAILED:
4758                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4759                                 break;
4760                         case VDEV_AUX_CORRUPT_DATA:
4761                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4762                                 break;
4763                         case VDEV_AUX_NO_REPLICAS:
4764                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4765                                 break;
4766                         case VDEV_AUX_BAD_GUID_SUM:
4767                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4768                                 break;
4769                         case VDEV_AUX_TOO_SMALL:
4770                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4771                                 break;
4772                         case VDEV_AUX_BAD_LABEL:
4773                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4774                                 break;
4775                         case VDEV_AUX_BAD_ASHIFT:
4776                                 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4777                                 break;
4778                         default:
4779                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4780                         }
4781
4782                         (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
4783                             save_state);
4784                 }
4785
4786                 /* Erase any notion of persistent removed state */
4787                 vd->vdev_removed = B_FALSE;
4788         } else {
4789                 vd->vdev_removed = B_FALSE;
4790         }
4791
4792         /*
4793          * Notify ZED of any significant state-change on a leaf vdev.
4794          *
4795          */
4796         if (vd->vdev_ops->vdev_op_leaf) {
4797                 /* preserve original state from a vdev_reopen() */
4798                 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4799                     (vd->vdev_prevstate != vd->vdev_state) &&
4800                     (save_state <= VDEV_STATE_CLOSED))
4801                         save_state = vd->vdev_prevstate;
4802
4803                 /* filter out state change due to initial vdev_open */
4804                 if (save_state > VDEV_STATE_CLOSED)
4805                         zfs_post_state_change(spa, vd, save_state);
4806         }
4807
4808         if (!isopen && vd->vdev_parent)
4809                 vdev_propagate_state(vd->vdev_parent);
4810 }
4811
4812 boolean_t
4813 vdev_children_are_offline(vdev_t *vd)
4814 {
4815         ASSERT(!vd->vdev_ops->vdev_op_leaf);
4816
4817         for (uint64_t i = 0; i < vd->vdev_children; i++) {
4818                 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4819                         return (B_FALSE);
4820         }
4821
4822         return (B_TRUE);
4823 }
4824
4825 /*
4826  * Check the vdev configuration to ensure that it's capable of supporting
4827  * a root pool. We do not support partial configuration.
4828  */
4829 boolean_t
4830 vdev_is_bootable(vdev_t *vd)
4831 {
4832         if (!vd->vdev_ops->vdev_op_leaf) {
4833                 const char *vdev_type = vd->vdev_ops->vdev_op_type;
4834
4835                 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4836                     strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4837                         return (B_FALSE);
4838                 }
4839         }
4840
4841         for (int c = 0; c < vd->vdev_children; c++) {
4842                 if (!vdev_is_bootable(vd->vdev_child[c]))
4843                         return (B_FALSE);
4844         }
4845         return (B_TRUE);
4846 }
4847
4848 boolean_t
4849 vdev_is_concrete(vdev_t *vd)
4850 {
4851         vdev_ops_t *ops = vd->vdev_ops;
4852         if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4853             ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4854                 return (B_FALSE);
4855         } else {
4856                 return (B_TRUE);
4857         }
4858 }
4859
4860 /*
4861  * Determine if a log device has valid content.  If the vdev was
4862  * removed or faulted in the MOS config then we know that
4863  * the content on the log device has already been written to the pool.
4864  */
4865 boolean_t
4866 vdev_log_state_valid(vdev_t *vd)
4867 {
4868         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4869             !vd->vdev_removed)
4870                 return (B_TRUE);
4871
4872         for (int c = 0; c < vd->vdev_children; c++)
4873                 if (vdev_log_state_valid(vd->vdev_child[c]))
4874                         return (B_TRUE);
4875
4876         return (B_FALSE);
4877 }
4878
4879 /*
4880  * Expand a vdev if possible.
4881  */
4882 void
4883 vdev_expand(vdev_t *vd, uint64_t txg)
4884 {
4885         ASSERT(vd->vdev_top == vd);
4886         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4887         ASSERT(vdev_is_concrete(vd));
4888
4889         vdev_set_deflate_ratio(vd);
4890
4891         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4892             vdev_is_concrete(vd)) {
4893                 vdev_metaslab_group_create(vd);
4894                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4895                 vdev_config_dirty(vd);
4896         }
4897 }
4898
4899 /*
4900  * Split a vdev.
4901  */
4902 void
4903 vdev_split(vdev_t *vd)
4904 {
4905         vdev_t *cvd, *pvd = vd->vdev_parent;
4906
4907         vdev_remove_child(pvd, vd);
4908         vdev_compact_children(pvd);
4909
4910         cvd = pvd->vdev_child[0];
4911         if (pvd->vdev_children == 1) {
4912                 vdev_remove_parent(cvd);
4913                 cvd->vdev_splitting = B_TRUE;
4914         }
4915         vdev_propagate_state(cvd);
4916 }
4917
4918 void
4919 vdev_deadman(vdev_t *vd, char *tag)
4920 {
4921         for (int c = 0; c < vd->vdev_children; c++) {
4922                 vdev_t *cvd = vd->vdev_child[c];
4923
4924                 vdev_deadman(cvd, tag);
4925         }
4926
4927         if (vd->vdev_ops->vdev_op_leaf) {
4928                 vdev_queue_t *vq = &vd->vdev_queue;
4929
4930                 mutex_enter(&vq->vq_lock);
4931                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
4932                         spa_t *spa = vd->vdev_spa;
4933                         zio_t *fio;
4934                         uint64_t delta;
4935
4936                         zfs_dbgmsg("slow vdev: %s has %d active IOs",
4937                             vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
4938
4939                         /*
4940                          * Look at the head of all the pending queues,
4941                          * if any I/O has been outstanding for longer than
4942                          * the spa_deadman_synctime invoke the deadman logic.
4943                          */
4944                         fio = avl_first(&vq->vq_active_tree);
4945                         delta = gethrtime() - fio->io_timestamp;
4946                         if (delta > spa_deadman_synctime(spa))
4947                                 zio_deadman(fio, tag);
4948                 }
4949                 mutex_exit(&vq->vq_lock);
4950         }
4951 }
4952
4953 void
4954 vdev_defer_resilver(vdev_t *vd)
4955 {
4956         ASSERT(vd->vdev_ops->vdev_op_leaf);
4957
4958         vd->vdev_resilver_deferred = B_TRUE;
4959         vd->vdev_spa->spa_resilver_deferred = B_TRUE;
4960 }
4961
4962 /*
4963  * Clears the resilver deferred flag on all leaf devs under vd. Returns
4964  * B_TRUE if we have devices that need to be resilvered and are available to
4965  * accept resilver I/Os.
4966  */
4967 boolean_t
4968 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
4969 {
4970         boolean_t resilver_needed = B_FALSE;
4971         spa_t *spa = vd->vdev_spa;
4972
4973         for (int c = 0; c < vd->vdev_children; c++) {
4974                 vdev_t *cvd = vd->vdev_child[c];
4975                 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
4976         }
4977
4978         if (vd == spa->spa_root_vdev &&
4979             spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
4980                 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4981                 vdev_config_dirty(vd);
4982                 spa->spa_resilver_deferred = B_FALSE;
4983                 return (resilver_needed);
4984         }
4985
4986         if (!vdev_is_concrete(vd) || vd->vdev_aux ||
4987             !vd->vdev_ops->vdev_op_leaf)
4988                 return (resilver_needed);
4989
4990         vd->vdev_resilver_deferred = B_FALSE;
4991
4992         return (!vdev_is_dead(vd) && !vd->vdev_offline &&
4993             vdev_resilver_needed(vd, NULL, NULL));
4994 }
4995
4996 /*
4997  * Translate a logical range to the physical range for the specified vdev_t.
4998  * This function is initially called with a leaf vdev and will walk each
4999  * parent vdev until it reaches a top-level vdev. Once the top-level is
5000  * reached the physical range is initialized and the recursive function
5001  * begins to unwind. As it unwinds it calls the parent's vdev specific
5002  * translation function to do the real conversion.
5003  */
5004 void
5005 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5006     range_seg64_t *physical_rs)
5007 {
5008         /*
5009          * Walk up the vdev tree
5010          */
5011         if (vd != vd->vdev_top) {
5012                 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
5013         } else {
5014                 /*
5015                  * We've reached the top-level vdev, initialize the
5016                  * physical range to the logical range and start to
5017                  * unwind.
5018                  */
5019                 physical_rs->rs_start = logical_rs->rs_start;
5020                 physical_rs->rs_end = logical_rs->rs_end;
5021                 return;
5022         }
5023
5024         vdev_t *pvd = vd->vdev_parent;
5025         ASSERT3P(pvd, !=, NULL);
5026         ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5027
5028         /*
5029          * As this recursive function unwinds, translate the logical
5030          * range into its physical components by calling the
5031          * vdev specific translate function.
5032          */
5033         range_seg64_t intermediate = { 0 };
5034         pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
5035
5036         physical_rs->rs_start = intermediate.rs_start;
5037         physical_rs->rs_end = intermediate.rs_end;
5038 }
5039
5040 /*
5041  * Look at the vdev tree and determine whether any devices are currently being
5042  * replaced.
5043  */
5044 boolean_t
5045 vdev_replace_in_progress(vdev_t *vdev)
5046 {
5047         ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5048
5049         if (vdev->vdev_ops == &vdev_replacing_ops)
5050                 return (B_TRUE);
5051
5052         /*
5053          * A 'spare' vdev indicates that we have a replace in progress, unless
5054          * it has exactly two children, and the second, the hot spare, has
5055          * finished being resilvered.
5056          */
5057         if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5058             !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5059                 return (B_TRUE);
5060
5061         for (int i = 0; i < vdev->vdev_children; i++) {
5062                 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5063                         return (B_TRUE);
5064         }
5065
5066         return (B_FALSE);
5067 }
5068
5069 EXPORT_SYMBOL(vdev_fault);
5070 EXPORT_SYMBOL(vdev_degrade);
5071 EXPORT_SYMBOL(vdev_online);
5072 EXPORT_SYMBOL(vdev_offline);
5073 EXPORT_SYMBOL(vdev_clear);
5074
5075 /* BEGIN CSTYLED */
5076 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW,
5077         "Target number of metaslabs per top-level vdev");
5078
5079 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW,
5080         "Default limit for metaslab size");
5081
5082 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW,
5083         "Minimum number of metaslabs per top-level vdev");
5084
5085 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW,
5086         "Practical upper limit of total metaslabs per top-level vdev");
5087
5088 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
5089         "Rate limit slow IO (delay) events to this many per second");
5090
5091 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
5092         "Rate limit checksum events to this many checksum errors per second "
5093         "(do not set below zed threshold).");
5094
5095 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
5096         "Ignore errors during resilver/scrub");
5097
5098 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
5099         "Bypass vdev_validate()");
5100
5101 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
5102         "Disable cache flushes");
5103
5104 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
5105         param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
5106         "Minimum ashift used when creating new top-level vdevs");
5107
5108 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
5109         param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
5110         "Maximum ashift used when optimizing for logical -> physical sector "
5111         "size on new top-level vdevs");
5112 /* END CSTYLED */