]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/amd64/vmm/intel/vmx.c
MFV r337193:
[FreeBSD/FreeBSD.git] / sys / amd64 / vmm / intel / vmx.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/smp.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/pcpu.h>
40 #include <sys/proc.h>
41 #include <sys/sysctl.h>
42
43 #include <vm/vm.h>
44 #include <vm/pmap.h>
45
46 #include <machine/psl.h>
47 #include <machine/cpufunc.h>
48 #include <machine/md_var.h>
49 #include <machine/reg.h>
50 #include <machine/segments.h>
51 #include <machine/smp.h>
52 #include <machine/specialreg.h>
53 #include <machine/vmparam.h>
54
55 #include <machine/vmm.h>
56 #include <machine/vmm_dev.h>
57 #include <machine/vmm_instruction_emul.h>
58 #include "vmm_lapic.h"
59 #include "vmm_host.h"
60 #include "vmm_ioport.h"
61 #include "vmm_ktr.h"
62 #include "vmm_stat.h"
63 #include "vatpic.h"
64 #include "vlapic.h"
65 #include "vlapic_priv.h"
66
67 #include "ept.h"
68 #include "vmx_cpufunc.h"
69 #include "vmx.h"
70 #include "vmx_msr.h"
71 #include "x86.h"
72 #include "vmx_controls.h"
73
74 #define PINBASED_CTLS_ONE_SETTING                                       \
75         (PINBASED_EXTINT_EXITING        |                               \
76          PINBASED_NMI_EXITING           |                               \
77          PINBASED_VIRTUAL_NMI)
78 #define PINBASED_CTLS_ZERO_SETTING      0
79
80 #define PROCBASED_CTLS_WINDOW_SETTING                                   \
81         (PROCBASED_INT_WINDOW_EXITING   |                               \
82          PROCBASED_NMI_WINDOW_EXITING)
83
84 #define PROCBASED_CTLS_ONE_SETTING                                      \
85         (PROCBASED_SECONDARY_CONTROLS   |                               \
86          PROCBASED_MWAIT_EXITING        |                               \
87          PROCBASED_MONITOR_EXITING      |                               \
88          PROCBASED_IO_EXITING           |                               \
89          PROCBASED_MSR_BITMAPS          |                               \
90          PROCBASED_CTLS_WINDOW_SETTING  |                               \
91          PROCBASED_CR8_LOAD_EXITING     |                               \
92          PROCBASED_CR8_STORE_EXITING)
93 #define PROCBASED_CTLS_ZERO_SETTING     \
94         (PROCBASED_CR3_LOAD_EXITING |   \
95         PROCBASED_CR3_STORE_EXITING |   \
96         PROCBASED_IO_BITMAPS)
97
98 #define PROCBASED_CTLS2_ONE_SETTING     PROCBASED2_ENABLE_EPT
99 #define PROCBASED_CTLS2_ZERO_SETTING    0
100
101 #define VM_EXIT_CTLS_ONE_SETTING                                        \
102         (VM_EXIT_SAVE_DEBUG_CONTROLS            |                       \
103         VM_EXIT_HOST_LMA                        |                       \
104         VM_EXIT_SAVE_EFER                       |                       \
105         VM_EXIT_LOAD_EFER                       |                       \
106         VM_EXIT_ACKNOWLEDGE_INTERRUPT)
107
108 #define VM_EXIT_CTLS_ZERO_SETTING       0
109
110 #define VM_ENTRY_CTLS_ONE_SETTING                                       \
111         (VM_ENTRY_LOAD_DEBUG_CONTROLS           |                       \
112         VM_ENTRY_LOAD_EFER)
113
114 #define VM_ENTRY_CTLS_ZERO_SETTING                                      \
115         (VM_ENTRY_INTO_SMM                      |                       \
116         VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
117
118 #define HANDLED         1
119 #define UNHANDLED       0
120
121 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
122 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
123
124 SYSCTL_DECL(_hw_vmm);
125 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
126
127 int vmxon_enabled[MAXCPU];
128 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
129
130 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
131 static uint32_t exit_ctls, entry_ctls;
132
133 static uint64_t cr0_ones_mask, cr0_zeros_mask;
134 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
135              &cr0_ones_mask, 0, NULL);
136 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
137              &cr0_zeros_mask, 0, NULL);
138
139 static uint64_t cr4_ones_mask, cr4_zeros_mask;
140 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
141              &cr4_ones_mask, 0, NULL);
142 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
143              &cr4_zeros_mask, 0, NULL);
144
145 static int vmx_initialized;
146 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
147            &vmx_initialized, 0, "Intel VMX initialized");
148
149 /*
150  * Optional capabilities
151  */
152 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL);
153
154 static int cap_halt_exit;
155 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
156     "HLT triggers a VM-exit");
157
158 static int cap_pause_exit;
159 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
160     0, "PAUSE triggers a VM-exit");
161
162 static int cap_unrestricted_guest;
163 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
164     &cap_unrestricted_guest, 0, "Unrestricted guests");
165
166 static int cap_monitor_trap;
167 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
168     &cap_monitor_trap, 0, "Monitor trap flag");
169
170 static int cap_invpcid;
171 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
172     0, "Guests are allowed to use INVPCID");
173
174 static int virtual_interrupt_delivery;
175 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
176     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
177
178 static int posted_interrupts;
179 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
180     &posted_interrupts, 0, "APICv posted interrupt support");
181
182 static int pirvec = -1;
183 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
184     &pirvec, 0, "APICv posted interrupt vector");
185
186 static struct unrhdr *vpid_unr;
187 static u_int vpid_alloc_failed;
188 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
189             &vpid_alloc_failed, 0, NULL);
190
191 /*
192  * The definitions of SDT probes for VMX.
193  */
194
195 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
196     "struct vmx *", "int", "struct vm_exit *");
197
198 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
199     "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
200
201 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
202     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
203
204 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
205     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
206
207 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
208     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
209
210 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
211     "struct vmx *", "int", "struct vm_exit *");
212
213 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
214     "struct vmx *", "int", "struct vm_exit *");
215
216 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
217     "struct vmx *", "int", "struct vm_exit *");
218
219 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
220     "struct vmx *", "int", "struct vm_exit *");
221
222 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
223     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
224
225 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
226     "struct vmx *", "int", "struct vm_exit *");
227
228 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
229     "struct vmx *", "int", "struct vm_exit *");
230
231 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
232     "struct vmx *", "int", "struct vm_exit *");
233
234 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
235     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
236
237 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
238     "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
239
240 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
241     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
242
243 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
244     "struct vmx *", "int", "struct vm_exit *");
245
246 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
247     "struct vmx *", "int", "struct vm_exit *");
248
249 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
250     "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
251
252 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
253     "struct vmx *", "int", "struct vm_exit *");
254
255 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
256     "struct vmx *", "int", "struct vm_exit *");
257
258 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
259     "struct vmx *", "int", "struct vm_exit *");
260
261 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
262     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
263
264 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
265     "struct vmx *", "int", "struct vm_exit *", "int");
266
267 /*
268  * Use the last page below 4GB as the APIC access address. This address is
269  * occupied by the boot firmware so it is guaranteed that it will not conflict
270  * with a page in system memory.
271  */
272 #define APIC_ACCESS_ADDRESS     0xFFFFF000
273
274 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
275 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
276 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
277 static void vmx_inject_pir(struct vlapic *vlapic);
278
279 #ifdef KTR
280 static const char *
281 exit_reason_to_str(int reason)
282 {
283         static char reasonbuf[32];
284
285         switch (reason) {
286         case EXIT_REASON_EXCEPTION:
287                 return "exception";
288         case EXIT_REASON_EXT_INTR:
289                 return "extint";
290         case EXIT_REASON_TRIPLE_FAULT:
291                 return "triplefault";
292         case EXIT_REASON_INIT:
293                 return "init";
294         case EXIT_REASON_SIPI:
295                 return "sipi";
296         case EXIT_REASON_IO_SMI:
297                 return "iosmi";
298         case EXIT_REASON_SMI:
299                 return "smi";
300         case EXIT_REASON_INTR_WINDOW:
301                 return "intrwindow";
302         case EXIT_REASON_NMI_WINDOW:
303                 return "nmiwindow";
304         case EXIT_REASON_TASK_SWITCH:
305                 return "taskswitch";
306         case EXIT_REASON_CPUID:
307                 return "cpuid";
308         case EXIT_REASON_GETSEC:
309                 return "getsec";
310         case EXIT_REASON_HLT:
311                 return "hlt";
312         case EXIT_REASON_INVD:
313                 return "invd";
314         case EXIT_REASON_INVLPG:
315                 return "invlpg";
316         case EXIT_REASON_RDPMC:
317                 return "rdpmc";
318         case EXIT_REASON_RDTSC:
319                 return "rdtsc";
320         case EXIT_REASON_RSM:
321                 return "rsm";
322         case EXIT_REASON_VMCALL:
323                 return "vmcall";
324         case EXIT_REASON_VMCLEAR:
325                 return "vmclear";
326         case EXIT_REASON_VMLAUNCH:
327                 return "vmlaunch";
328         case EXIT_REASON_VMPTRLD:
329                 return "vmptrld";
330         case EXIT_REASON_VMPTRST:
331                 return "vmptrst";
332         case EXIT_REASON_VMREAD:
333                 return "vmread";
334         case EXIT_REASON_VMRESUME:
335                 return "vmresume";
336         case EXIT_REASON_VMWRITE:
337                 return "vmwrite";
338         case EXIT_REASON_VMXOFF:
339                 return "vmxoff";
340         case EXIT_REASON_VMXON:
341                 return "vmxon";
342         case EXIT_REASON_CR_ACCESS:
343                 return "craccess";
344         case EXIT_REASON_DR_ACCESS:
345                 return "draccess";
346         case EXIT_REASON_INOUT:
347                 return "inout";
348         case EXIT_REASON_RDMSR:
349                 return "rdmsr";
350         case EXIT_REASON_WRMSR:
351                 return "wrmsr";
352         case EXIT_REASON_INVAL_VMCS:
353                 return "invalvmcs";
354         case EXIT_REASON_INVAL_MSR:
355                 return "invalmsr";
356         case EXIT_REASON_MWAIT:
357                 return "mwait";
358         case EXIT_REASON_MTF:
359                 return "mtf";
360         case EXIT_REASON_MONITOR:
361                 return "monitor";
362         case EXIT_REASON_PAUSE:
363                 return "pause";
364         case EXIT_REASON_MCE_DURING_ENTRY:
365                 return "mce-during-entry";
366         case EXIT_REASON_TPR:
367                 return "tpr";
368         case EXIT_REASON_APIC_ACCESS:
369                 return "apic-access";
370         case EXIT_REASON_GDTR_IDTR:
371                 return "gdtridtr";
372         case EXIT_REASON_LDTR_TR:
373                 return "ldtrtr";
374         case EXIT_REASON_EPT_FAULT:
375                 return "eptfault";
376         case EXIT_REASON_EPT_MISCONFIG:
377                 return "eptmisconfig";
378         case EXIT_REASON_INVEPT:
379                 return "invept";
380         case EXIT_REASON_RDTSCP:
381                 return "rdtscp";
382         case EXIT_REASON_VMX_PREEMPT:
383                 return "vmxpreempt";
384         case EXIT_REASON_INVVPID:
385                 return "invvpid";
386         case EXIT_REASON_WBINVD:
387                 return "wbinvd";
388         case EXIT_REASON_XSETBV:
389                 return "xsetbv";
390         case EXIT_REASON_APIC_WRITE:
391                 return "apic-write";
392         default:
393                 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
394                 return (reasonbuf);
395         }
396 }
397 #endif  /* KTR */
398
399 static int
400 vmx_allow_x2apic_msrs(struct vmx *vmx)
401 {
402         int i, error;
403
404         error = 0;
405
406         /*
407          * Allow readonly access to the following x2APIC MSRs from the guest.
408          */
409         error += guest_msr_ro(vmx, MSR_APIC_ID);
410         error += guest_msr_ro(vmx, MSR_APIC_VERSION);
411         error += guest_msr_ro(vmx, MSR_APIC_LDR);
412         error += guest_msr_ro(vmx, MSR_APIC_SVR);
413
414         for (i = 0; i < 8; i++)
415                 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
416
417         for (i = 0; i < 8; i++)
418                 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
419         
420         for (i = 0; i < 8; i++)
421                 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
422
423         error += guest_msr_ro(vmx, MSR_APIC_ESR);
424         error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
425         error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
426         error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
427         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
428         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
429         error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
430         error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
431         error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
432         error += guest_msr_ro(vmx, MSR_APIC_ICR);
433
434         /*
435          * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
436          *
437          * These registers get special treatment described in the section
438          * "Virtualizing MSR-Based APIC Accesses".
439          */
440         error += guest_msr_rw(vmx, MSR_APIC_TPR);
441         error += guest_msr_rw(vmx, MSR_APIC_EOI);
442         error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
443
444         return (error);
445 }
446
447 u_long
448 vmx_fix_cr0(u_long cr0)
449 {
450
451         return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
452 }
453
454 u_long
455 vmx_fix_cr4(u_long cr4)
456 {
457
458         return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
459 }
460
461 static void
462 vpid_free(int vpid)
463 {
464         if (vpid < 0 || vpid > 0xffff)
465                 panic("vpid_free: invalid vpid %d", vpid);
466
467         /*
468          * VPIDs [0,VM_MAXCPU] are special and are not allocated from
469          * the unit number allocator.
470          */
471
472         if (vpid > VM_MAXCPU)
473                 free_unr(vpid_unr, vpid);
474 }
475
476 static void
477 vpid_alloc(uint16_t *vpid, int num)
478 {
479         int i, x;
480
481         if (num <= 0 || num > VM_MAXCPU)
482                 panic("invalid number of vpids requested: %d", num);
483
484         /*
485          * If the "enable vpid" execution control is not enabled then the
486          * VPID is required to be 0 for all vcpus.
487          */
488         if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
489                 for (i = 0; i < num; i++)
490                         vpid[i] = 0;
491                 return;
492         }
493
494         /*
495          * Allocate a unique VPID for each vcpu from the unit number allocator.
496          */
497         for (i = 0; i < num; i++) {
498                 x = alloc_unr(vpid_unr);
499                 if (x == -1)
500                         break;
501                 else
502                         vpid[i] = x;
503         }
504
505         if (i < num) {
506                 atomic_add_int(&vpid_alloc_failed, 1);
507
508                 /*
509                  * If the unit number allocator does not have enough unique
510                  * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
511                  *
512                  * These VPIDs are not be unique across VMs but this does not
513                  * affect correctness because the combined mappings are also
514                  * tagged with the EP4TA which is unique for each VM.
515                  *
516                  * It is still sub-optimal because the invvpid will invalidate
517                  * combined mappings for a particular VPID across all EP4TAs.
518                  */
519                 while (i-- > 0)
520                         vpid_free(vpid[i]);
521
522                 for (i = 0; i < num; i++)
523                         vpid[i] = i + 1;
524         }
525 }
526
527 static void
528 vpid_init(void)
529 {
530         /*
531          * VPID 0 is required when the "enable VPID" execution control is
532          * disabled.
533          *
534          * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
535          * unit number allocator does not have sufficient unique VPIDs to
536          * satisfy the allocation.
537          *
538          * The remaining VPIDs are managed by the unit number allocator.
539          */
540         vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
541 }
542
543 static void
544 vmx_disable(void *arg __unused)
545 {
546         struct invvpid_desc invvpid_desc = { 0 };
547         struct invept_desc invept_desc = { 0 };
548
549         if (vmxon_enabled[curcpu]) {
550                 /*
551                  * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
552                  *
553                  * VMXON or VMXOFF are not required to invalidate any TLB
554                  * caching structures. This prevents potential retention of
555                  * cached information in the TLB between distinct VMX episodes.
556                  */
557                 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
558                 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
559                 vmxoff();
560         }
561         load_cr4(rcr4() & ~CR4_VMXE);
562 }
563
564 static int
565 vmx_cleanup(void)
566 {
567         
568         if (pirvec >= 0)
569                 lapic_ipi_free(pirvec);
570
571         if (vpid_unr != NULL) {
572                 delete_unrhdr(vpid_unr);
573                 vpid_unr = NULL;
574         }
575
576         smp_rendezvous(NULL, vmx_disable, NULL, NULL);
577
578         return (0);
579 }
580
581 static void
582 vmx_enable(void *arg __unused)
583 {
584         int error;
585         uint64_t feature_control;
586
587         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
588         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
589             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
590                 wrmsr(MSR_IA32_FEATURE_CONTROL,
591                     feature_control | IA32_FEATURE_CONTROL_VMX_EN |
592                     IA32_FEATURE_CONTROL_LOCK);
593         }
594
595         load_cr4(rcr4() | CR4_VMXE);
596
597         *(uint32_t *)vmxon_region[curcpu] = vmx_revision();
598         error = vmxon(vmxon_region[curcpu]);
599         if (error == 0)
600                 vmxon_enabled[curcpu] = 1;
601 }
602
603 static void
604 vmx_restore(void)
605 {
606
607         if (vmxon_enabled[curcpu])
608                 vmxon(vmxon_region[curcpu]);
609 }
610
611 static int
612 vmx_init(int ipinum)
613 {
614         int error, use_tpr_shadow;
615         uint64_t basic, fixed0, fixed1, feature_control;
616         uint32_t tmp, procbased2_vid_bits;
617
618         /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
619         if (!(cpu_feature2 & CPUID2_VMX)) {
620                 printf("vmx_init: processor does not support VMX operation\n");
621                 return (ENXIO);
622         }
623
624         /*
625          * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
626          * are set (bits 0 and 2 respectively).
627          */
628         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
629         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
630             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
631                 printf("vmx_init: VMX operation disabled by BIOS\n");
632                 return (ENXIO);
633         }
634
635         /*
636          * Verify capabilities MSR_VMX_BASIC:
637          * - bit 54 indicates support for INS/OUTS decoding
638          */
639         basic = rdmsr(MSR_VMX_BASIC);
640         if ((basic & (1UL << 54)) == 0) {
641                 printf("vmx_init: processor does not support desired basic "
642                     "capabilities\n");
643                 return (EINVAL);
644         }
645
646         /* Check support for primary processor-based VM-execution controls */
647         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
648                                MSR_VMX_TRUE_PROCBASED_CTLS,
649                                PROCBASED_CTLS_ONE_SETTING,
650                                PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
651         if (error) {
652                 printf("vmx_init: processor does not support desired primary "
653                        "processor-based controls\n");
654                 return (error);
655         }
656
657         /* Clear the processor-based ctl bits that are set on demand */
658         procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
659
660         /* Check support for secondary processor-based VM-execution controls */
661         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
662                                MSR_VMX_PROCBASED_CTLS2,
663                                PROCBASED_CTLS2_ONE_SETTING,
664                                PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
665         if (error) {
666                 printf("vmx_init: processor does not support desired secondary "
667                        "processor-based controls\n");
668                 return (error);
669         }
670
671         /* Check support for VPID */
672         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
673                                PROCBASED2_ENABLE_VPID, 0, &tmp);
674         if (error == 0)
675                 procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
676
677         /* Check support for pin-based VM-execution controls */
678         error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
679                                MSR_VMX_TRUE_PINBASED_CTLS,
680                                PINBASED_CTLS_ONE_SETTING,
681                                PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
682         if (error) {
683                 printf("vmx_init: processor does not support desired "
684                        "pin-based controls\n");
685                 return (error);
686         }
687
688         /* Check support for VM-exit controls */
689         error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
690                                VM_EXIT_CTLS_ONE_SETTING,
691                                VM_EXIT_CTLS_ZERO_SETTING,
692                                &exit_ctls);
693         if (error) {
694                 printf("vmx_init: processor does not support desired "
695                     "exit controls\n");
696                 return (error);
697         }
698
699         /* Check support for VM-entry controls */
700         error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
701             VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
702             &entry_ctls);
703         if (error) {
704                 printf("vmx_init: processor does not support desired "
705                     "entry controls\n");
706                 return (error);
707         }
708
709         /*
710          * Check support for optional features by testing them
711          * as individual bits
712          */
713         cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
714                                         MSR_VMX_TRUE_PROCBASED_CTLS,
715                                         PROCBASED_HLT_EXITING, 0,
716                                         &tmp) == 0);
717
718         cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
719                                         MSR_VMX_PROCBASED_CTLS,
720                                         PROCBASED_MTF, 0,
721                                         &tmp) == 0);
722
723         cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
724                                          MSR_VMX_TRUE_PROCBASED_CTLS,
725                                          PROCBASED_PAUSE_EXITING, 0,
726                                          &tmp) == 0);
727
728         cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
729                                         MSR_VMX_PROCBASED_CTLS2,
730                                         PROCBASED2_UNRESTRICTED_GUEST, 0,
731                                         &tmp) == 0);
732
733         cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
734             MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
735             &tmp) == 0);
736
737         /*
738          * Check support for virtual interrupt delivery.
739          */
740         procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
741             PROCBASED2_VIRTUALIZE_X2APIC_MODE |
742             PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
743             PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
744
745         use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
746             MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
747             &tmp) == 0);
748
749         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
750             procbased2_vid_bits, 0, &tmp);
751         if (error == 0 && use_tpr_shadow) {
752                 virtual_interrupt_delivery = 1;
753                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
754                     &virtual_interrupt_delivery);
755         }
756
757         if (virtual_interrupt_delivery) {
758                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
759                 procbased_ctls2 |= procbased2_vid_bits;
760                 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
761
762                 /*
763                  * No need to emulate accesses to %CR8 if virtual
764                  * interrupt delivery is enabled.
765                  */
766                 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
767                 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
768
769                 /*
770                  * Check for Posted Interrupts only if Virtual Interrupt
771                  * Delivery is enabled.
772                  */
773                 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
774                     MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
775                     &tmp);
776                 if (error == 0) {
777                         pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
778                             &IDTVEC(justreturn));
779                         if (pirvec < 0) {
780                                 if (bootverbose) {
781                                         printf("vmx_init: unable to allocate "
782                                             "posted interrupt vector\n");
783                                 }
784                         } else {
785                                 posted_interrupts = 1;
786                                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
787                                     &posted_interrupts);
788                         }
789                 }
790         }
791
792         if (posted_interrupts)
793                     pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
794
795         /* Initialize EPT */
796         error = ept_init(ipinum);
797         if (error) {
798                 printf("vmx_init: ept initialization failed (%d)\n", error);
799                 return (error);
800         }
801
802         /*
803          * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
804          */
805         fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
806         fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
807         cr0_ones_mask = fixed0 & fixed1;
808         cr0_zeros_mask = ~fixed0 & ~fixed1;
809
810         /*
811          * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
812          * if unrestricted guest execution is allowed.
813          */
814         if (cap_unrestricted_guest)
815                 cr0_ones_mask &= ~(CR0_PG | CR0_PE);
816
817         /*
818          * Do not allow the guest to set CR0_NW or CR0_CD.
819          */
820         cr0_zeros_mask |= (CR0_NW | CR0_CD);
821
822         fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
823         fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
824         cr4_ones_mask = fixed0 & fixed1;
825         cr4_zeros_mask = ~fixed0 & ~fixed1;
826
827         vpid_init();
828
829         vmx_msr_init();
830
831         /* enable VMX operation */
832         smp_rendezvous(NULL, vmx_enable, NULL, NULL);
833
834         vmx_initialized = 1;
835
836         return (0);
837 }
838
839 static void
840 vmx_trigger_hostintr(int vector)
841 {
842         uintptr_t func;
843         struct gate_descriptor *gd;
844
845         gd = &idt[vector];
846
847         KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
848             "invalid vector %d", vector));
849         KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
850             vector));
851         KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
852             "has invalid type %d", vector, gd->gd_type));
853         KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
854             "has invalid dpl %d", vector, gd->gd_dpl));
855         KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
856             "for vector %d has invalid selector %d", vector, gd->gd_selector));
857         KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
858             "IST %d", vector, gd->gd_ist));
859
860         func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
861         vmx_call_isr(func);
862 }
863
864 static int
865 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
866 {
867         int error, mask_ident, shadow_ident;
868         uint64_t mask_value;
869
870         if (which != 0 && which != 4)
871                 panic("vmx_setup_cr_shadow: unknown cr%d", which);
872
873         if (which == 0) {
874                 mask_ident = VMCS_CR0_MASK;
875                 mask_value = cr0_ones_mask | cr0_zeros_mask;
876                 shadow_ident = VMCS_CR0_SHADOW;
877         } else {
878                 mask_ident = VMCS_CR4_MASK;
879                 mask_value = cr4_ones_mask | cr4_zeros_mask;
880                 shadow_ident = VMCS_CR4_SHADOW;
881         }
882
883         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
884         if (error)
885                 return (error);
886
887         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
888         if (error)
889                 return (error);
890
891         return (0);
892 }
893 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init))
894 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init))
895
896 static void *
897 vmx_vminit(struct vm *vm, pmap_t pmap)
898 {
899         uint16_t vpid[VM_MAXCPU];
900         int i, error;
901         struct vmx *vmx;
902         struct vmcs *vmcs;
903         uint32_t exc_bitmap;
904
905         vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
906         if ((uintptr_t)vmx & PAGE_MASK) {
907                 panic("malloc of struct vmx not aligned on %d byte boundary",
908                       PAGE_SIZE);
909         }
910         vmx->vm = vm;
911
912         vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
913
914         /*
915          * Clean up EPTP-tagged guest physical and combined mappings
916          *
917          * VMX transitions are not required to invalidate any guest physical
918          * mappings. So, it may be possible for stale guest physical mappings
919          * to be present in the processor TLBs.
920          *
921          * Combined mappings for this EP4TA are also invalidated for all VPIDs.
922          */
923         ept_invalidate_mappings(vmx->eptp);
924
925         msr_bitmap_initialize(vmx->msr_bitmap);
926
927         /*
928          * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
929          * The guest FSBASE and GSBASE are saved and restored during
930          * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
931          * always restored from the vmcs host state area on vm-exit.
932          *
933          * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
934          * how they are saved/restored so can be directly accessed by the
935          * guest.
936          *
937          * MSR_EFER is saved and restored in the guest VMCS area on a
938          * VM exit and entry respectively. It is also restored from the
939          * host VMCS area on a VM exit.
940          *
941          * The TSC MSR is exposed read-only. Writes are disallowed as
942          * that will impact the host TSC.  If the guest does a write
943          * the "use TSC offsetting" execution control is enabled and the
944          * difference between the host TSC and the guest TSC is written
945          * into the TSC offset in the VMCS.
946          */
947         if (guest_msr_rw(vmx, MSR_GSBASE) ||
948             guest_msr_rw(vmx, MSR_FSBASE) ||
949             guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
950             guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
951             guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
952             guest_msr_rw(vmx, MSR_EFER) ||
953             guest_msr_ro(vmx, MSR_TSC))
954                 panic("vmx_vminit: error setting guest msr access");
955
956         vpid_alloc(vpid, VM_MAXCPU);
957
958         if (virtual_interrupt_delivery) {
959                 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
960                     APIC_ACCESS_ADDRESS);
961                 /* XXX this should really return an error to the caller */
962                 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
963         }
964
965         for (i = 0; i < VM_MAXCPU; i++) {
966                 vmcs = &vmx->vmcs[i];
967                 vmcs->identifier = vmx_revision();
968                 error = vmclear(vmcs);
969                 if (error != 0) {
970                         panic("vmx_vminit: vmclear error %d on vcpu %d\n",
971                               error, i);
972                 }
973
974                 vmx_msr_guest_init(vmx, i);
975
976                 error = vmcs_init(vmcs);
977                 KASSERT(error == 0, ("vmcs_init error %d", error));
978
979                 VMPTRLD(vmcs);
980                 error = 0;
981                 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
982                 error += vmwrite(VMCS_EPTP, vmx->eptp);
983                 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
984                 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
985                 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
986                 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
987                 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
988                 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
989                 error += vmwrite(VMCS_VPID, vpid[i]);
990
991                 /* exception bitmap */
992                 if (vcpu_trace_exceptions(vm, i))
993                         exc_bitmap = 0xffffffff;
994                 else
995                         exc_bitmap = 1 << IDT_MC;
996                 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
997
998                 vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
999                 error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
1000
1001                 if (virtual_interrupt_delivery) {
1002                         error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
1003                         error += vmwrite(VMCS_VIRTUAL_APIC,
1004                             vtophys(&vmx->apic_page[i]));
1005                         error += vmwrite(VMCS_EOI_EXIT0, 0);
1006                         error += vmwrite(VMCS_EOI_EXIT1, 0);
1007                         error += vmwrite(VMCS_EOI_EXIT2, 0);
1008                         error += vmwrite(VMCS_EOI_EXIT3, 0);
1009                 }
1010                 if (posted_interrupts) {
1011                         error += vmwrite(VMCS_PIR_VECTOR, pirvec);
1012                         error += vmwrite(VMCS_PIR_DESC,
1013                             vtophys(&vmx->pir_desc[i]));
1014                 }
1015                 VMCLEAR(vmcs);
1016                 KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
1017
1018                 vmx->cap[i].set = 0;
1019                 vmx->cap[i].proc_ctls = procbased_ctls;
1020                 vmx->cap[i].proc_ctls2 = procbased_ctls2;
1021
1022                 vmx->state[i].nextrip = ~0;
1023                 vmx->state[i].lastcpu = NOCPU;
1024                 vmx->state[i].vpid = vpid[i];
1025
1026                 /*
1027                  * Set up the CR0/4 shadows, and init the read shadow
1028                  * to the power-on register value from the Intel Sys Arch.
1029                  *  CR0 - 0x60000010
1030                  *  CR4 - 0
1031                  */
1032                 error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
1033                 if (error != 0)
1034                         panic("vmx_setup_cr0_shadow %d", error);
1035
1036                 error = vmx_setup_cr4_shadow(vmcs, 0);
1037                 if (error != 0)
1038                         panic("vmx_setup_cr4_shadow %d", error);
1039
1040                 vmx->ctx[i].pmap = pmap;
1041         }
1042
1043         return (vmx);
1044 }
1045
1046 static int
1047 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
1048 {
1049         int handled, func;
1050         
1051         func = vmxctx->guest_rax;
1052
1053         handled = x86_emulate_cpuid(vm, vcpu,
1054                                     (uint32_t*)(&vmxctx->guest_rax),
1055                                     (uint32_t*)(&vmxctx->guest_rbx),
1056                                     (uint32_t*)(&vmxctx->guest_rcx),
1057                                     (uint32_t*)(&vmxctx->guest_rdx));
1058         return (handled);
1059 }
1060
1061 static __inline void
1062 vmx_run_trace(struct vmx *vmx, int vcpu)
1063 {
1064 #ifdef KTR
1065         VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
1066 #endif
1067 }
1068
1069 static __inline void
1070 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
1071                int handled)
1072 {
1073 #ifdef KTR
1074         VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
1075                  handled ? "handled" : "unhandled",
1076                  exit_reason_to_str(exit_reason), rip);
1077 #endif
1078 }
1079
1080 static __inline void
1081 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
1082 {
1083 #ifdef KTR
1084         VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1085 #endif
1086 }
1087
1088 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1089 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1090
1091 /*
1092  * Invalidate guest mappings identified by its vpid from the TLB.
1093  */
1094 static __inline void
1095 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1096 {
1097         struct vmxstate *vmxstate;
1098         struct invvpid_desc invvpid_desc;
1099
1100         vmxstate = &vmx->state[vcpu];
1101         if (vmxstate->vpid == 0)
1102                 return;
1103
1104         if (!running) {
1105                 /*
1106                  * Set the 'lastcpu' to an invalid host cpu.
1107                  *
1108                  * This will invalidate TLB entries tagged with the vcpu's
1109                  * vpid the next time it runs via vmx_set_pcpu_defaults().
1110                  */
1111                 vmxstate->lastcpu = NOCPU;
1112                 return;
1113         }
1114
1115         KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1116             "critical section", __func__, vcpu));
1117
1118         /*
1119          * Invalidate all mappings tagged with 'vpid'
1120          *
1121          * We do this because this vcpu was executing on a different host
1122          * cpu when it last ran. We do not track whether it invalidated
1123          * mappings associated with its 'vpid' during that run. So we must
1124          * assume that the mappings associated with 'vpid' on 'curcpu' are
1125          * stale and invalidate them.
1126          *
1127          * Note that we incur this penalty only when the scheduler chooses to
1128          * move the thread associated with this vcpu between host cpus.
1129          *
1130          * Note also that this will invalidate mappings tagged with 'vpid'
1131          * for "all" EP4TAs.
1132          */
1133         if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1134                 invvpid_desc._res1 = 0;
1135                 invvpid_desc._res2 = 0;
1136                 invvpid_desc.vpid = vmxstate->vpid;
1137                 invvpid_desc.linear_addr = 0;
1138                 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1139                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1140         } else {
1141                 /*
1142                  * The invvpid can be skipped if an invept is going to
1143                  * be performed before entering the guest. The invept
1144                  * will invalidate combined mappings tagged with
1145                  * 'vmx->eptp' for all vpids.
1146                  */
1147                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1148         }
1149 }
1150
1151 static void
1152 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1153 {
1154         struct vmxstate *vmxstate;
1155
1156         vmxstate = &vmx->state[vcpu];
1157         if (vmxstate->lastcpu == curcpu)
1158                 return;
1159
1160         vmxstate->lastcpu = curcpu;
1161
1162         vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1163
1164         vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1165         vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1166         vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1167         vmx_invvpid(vmx, vcpu, pmap, 1);
1168 }
1169
1170 /*
1171  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1172  */
1173 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1174
1175 static void __inline
1176 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1177 {
1178
1179         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1180                 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1181                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1182                 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1183         }
1184 }
1185
1186 static void __inline
1187 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1188 {
1189
1190         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1191             ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1192         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1193         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1194         VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1195 }
1196
1197 static void __inline
1198 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1199 {
1200
1201         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1202                 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1203                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1204                 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1205         }
1206 }
1207
1208 static void __inline
1209 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1210 {
1211
1212         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1213             ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1214         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1215         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1216         VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1217 }
1218
1219 int
1220 vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset)
1221 {
1222         int error;
1223
1224         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1225                 vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET;
1226                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1227                 VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting");
1228         }
1229
1230         error = vmwrite(VMCS_TSC_OFFSET, offset);
1231
1232         return (error);
1233 }
1234
1235 #define NMI_BLOCKING    (VMCS_INTERRUPTIBILITY_NMI_BLOCKING |           \
1236                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1237 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING |           \
1238                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1239
1240 static void
1241 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1242 {
1243         uint32_t gi, info;
1244
1245         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1246         KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1247             "interruptibility-state %#x", gi));
1248
1249         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1250         KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1251             "VM-entry interruption information %#x", info));
1252
1253         /*
1254          * Inject the virtual NMI. The vector must be the NMI IDT entry
1255          * or the VMCS entry check will fail.
1256          */
1257         info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1258         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1259
1260         VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1261
1262         /* Clear the request */
1263         vm_nmi_clear(vmx->vm, vcpu);
1264 }
1265
1266 static void
1267 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
1268     uint64_t guestrip)
1269 {
1270         int vector, need_nmi_exiting, extint_pending;
1271         uint64_t rflags, entryinfo;
1272         uint32_t gi, info;
1273
1274         if (vmx->state[vcpu].nextrip != guestrip) {
1275                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1276                 if (gi & HWINTR_BLOCKING) {
1277                         VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
1278                             "cleared due to rip change: %#lx/%#lx",
1279                             vmx->state[vcpu].nextrip, guestrip);
1280                         gi &= ~HWINTR_BLOCKING;
1281                         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1282                 }
1283         }
1284
1285         if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1286                 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1287                     "intinfo is not valid: %#lx", __func__, entryinfo));
1288
1289                 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1290                 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1291                      "pending exception: %#lx/%#x", __func__, entryinfo, info));
1292
1293                 info = entryinfo;
1294                 vector = info & 0xff;
1295                 if (vector == IDT_BP || vector == IDT_OF) {
1296                         /*
1297                          * VT-x requires #BP and #OF to be injected as software
1298                          * exceptions.
1299                          */
1300                         info &= ~VMCS_INTR_T_MASK;
1301                         info |= VMCS_INTR_T_SWEXCEPTION;
1302                 }
1303
1304                 if (info & VMCS_INTR_DEL_ERRCODE)
1305                         vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1306
1307                 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1308         }
1309
1310         if (vm_nmi_pending(vmx->vm, vcpu)) {
1311                 /*
1312                  * If there are no conditions blocking NMI injection then
1313                  * inject it directly here otherwise enable "NMI window
1314                  * exiting" to inject it as soon as we can.
1315                  *
1316                  * We also check for STI_BLOCKING because some implementations
1317                  * don't allow NMI injection in this case. If we are running
1318                  * on a processor that doesn't have this restriction it will
1319                  * immediately exit and the NMI will be injected in the
1320                  * "NMI window exiting" handler.
1321                  */
1322                 need_nmi_exiting = 1;
1323                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1324                 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1325                         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1326                         if ((info & VMCS_INTR_VALID) == 0) {
1327                                 vmx_inject_nmi(vmx, vcpu);
1328                                 need_nmi_exiting = 0;
1329                         } else {
1330                                 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1331                                     "due to VM-entry intr info %#x", info);
1332                         }
1333                 } else {
1334                         VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1335                             "Guest Interruptibility-state %#x", gi);
1336                 }
1337
1338                 if (need_nmi_exiting)
1339                         vmx_set_nmi_window_exiting(vmx, vcpu);
1340         }
1341
1342         extint_pending = vm_extint_pending(vmx->vm, vcpu);
1343
1344         if (!extint_pending && virtual_interrupt_delivery) {
1345                 vmx_inject_pir(vlapic);
1346                 return;
1347         }
1348
1349         /*
1350          * If interrupt-window exiting is already in effect then don't bother
1351          * checking for pending interrupts. This is just an optimization and
1352          * not needed for correctness.
1353          */
1354         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1355                 VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1356                     "pending int_window_exiting");
1357                 return;
1358         }
1359
1360         if (!extint_pending) {
1361                 /* Ask the local apic for a vector to inject */
1362                 if (!vlapic_pending_intr(vlapic, &vector))
1363                         return;
1364
1365                 /*
1366                  * From the Intel SDM, Volume 3, Section "Maskable
1367                  * Hardware Interrupts":
1368                  * - maskable interrupt vectors [16,255] can be delivered
1369                  *   through the local APIC.
1370                 */
1371                 KASSERT(vector >= 16 && vector <= 255,
1372                     ("invalid vector %d from local APIC", vector));
1373         } else {
1374                 /* Ask the legacy pic for a vector to inject */
1375                 vatpic_pending_intr(vmx->vm, &vector);
1376
1377                 /*
1378                  * From the Intel SDM, Volume 3, Section "Maskable
1379                  * Hardware Interrupts":
1380                  * - maskable interrupt vectors [0,255] can be delivered
1381                  *   through the INTR pin.
1382                  */
1383                 KASSERT(vector >= 0 && vector <= 255,
1384                     ("invalid vector %d from INTR", vector));
1385         }
1386
1387         /* Check RFLAGS.IF and the interruptibility state of the guest */
1388         rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1389         if ((rflags & PSL_I) == 0) {
1390                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1391                     "rflags %#lx", vector, rflags);
1392                 goto cantinject;
1393         }
1394
1395         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1396         if (gi & HWINTR_BLOCKING) {
1397                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1398                     "Guest Interruptibility-state %#x", vector, gi);
1399                 goto cantinject;
1400         }
1401
1402         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1403         if (info & VMCS_INTR_VALID) {
1404                 /*
1405                  * This is expected and could happen for multiple reasons:
1406                  * - A vectoring VM-entry was aborted due to astpending
1407                  * - A VM-exit happened during event injection.
1408                  * - An exception was injected above.
1409                  * - An NMI was injected above or after "NMI window exiting"
1410                  */
1411                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1412                     "VM-entry intr info %#x", vector, info);
1413                 goto cantinject;
1414         }
1415
1416         /* Inject the interrupt */
1417         info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1418         info |= vector;
1419         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1420
1421         if (!extint_pending) {
1422                 /* Update the Local APIC ISR */
1423                 vlapic_intr_accepted(vlapic, vector);
1424         } else {
1425                 vm_extint_clear(vmx->vm, vcpu);
1426                 vatpic_intr_accepted(vmx->vm, vector);
1427
1428                 /*
1429                  * After we accepted the current ExtINT the PIC may
1430                  * have posted another one.  If that is the case, set
1431                  * the Interrupt Window Exiting execution control so
1432                  * we can inject that one too.
1433                  *
1434                  * Also, interrupt window exiting allows us to inject any
1435                  * pending APIC vector that was preempted by the ExtINT
1436                  * as soon as possible. This applies both for the software
1437                  * emulated vlapic and the hardware assisted virtual APIC.
1438                  */
1439                 vmx_set_int_window_exiting(vmx, vcpu);
1440         }
1441
1442         VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1443
1444         return;
1445
1446 cantinject:
1447         /*
1448          * Set the Interrupt Window Exiting execution control so we can inject
1449          * the interrupt as soon as blocking condition goes away.
1450          */
1451         vmx_set_int_window_exiting(vmx, vcpu);
1452 }
1453
1454 /*
1455  * If the Virtual NMIs execution control is '1' then the logical processor
1456  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1457  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1458  * virtual-NMI blocking.
1459  *
1460  * This unblocking occurs even if the IRET causes a fault. In this case the
1461  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1462  */
1463 static void
1464 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1465 {
1466         uint32_t gi;
1467
1468         VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1469         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1470         gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1471         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1472 }
1473
1474 static void
1475 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1476 {
1477         uint32_t gi;
1478
1479         VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1480         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1481         gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1482         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1483 }
1484
1485 static void
1486 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1487 {
1488         uint32_t gi;
1489
1490         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1491         KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1492             ("NMI blocking is not in effect %#x", gi));
1493 }
1494
1495 static int
1496 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1497 {
1498         struct vmxctx *vmxctx;
1499         uint64_t xcrval;
1500         const struct xsave_limits *limits;
1501
1502         vmxctx = &vmx->ctx[vcpu];
1503         limits = vmm_get_xsave_limits();
1504
1505         /*
1506          * Note that the processor raises a GP# fault on its own if
1507          * xsetbv is executed for CPL != 0, so we do not have to
1508          * emulate that fault here.
1509          */
1510
1511         /* Only xcr0 is supported. */
1512         if (vmxctx->guest_rcx != 0) {
1513                 vm_inject_gp(vmx->vm, vcpu);
1514                 return (HANDLED);
1515         }
1516
1517         /* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1518         if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1519                 vm_inject_ud(vmx->vm, vcpu);
1520                 return (HANDLED);
1521         }
1522
1523         xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1524         if ((xcrval & ~limits->xcr0_allowed) != 0) {
1525                 vm_inject_gp(vmx->vm, vcpu);
1526                 return (HANDLED);
1527         }
1528
1529         if (!(xcrval & XFEATURE_ENABLED_X87)) {
1530                 vm_inject_gp(vmx->vm, vcpu);
1531                 return (HANDLED);
1532         }
1533
1534         /* AVX (YMM_Hi128) requires SSE. */
1535         if (xcrval & XFEATURE_ENABLED_AVX &&
1536             (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1537                 vm_inject_gp(vmx->vm, vcpu);
1538                 return (HANDLED);
1539         }
1540
1541         /*
1542          * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1543          * ZMM_Hi256, and Hi16_ZMM.
1544          */
1545         if (xcrval & XFEATURE_AVX512 &&
1546             (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1547             (XFEATURE_AVX512 | XFEATURE_AVX)) {
1548                 vm_inject_gp(vmx->vm, vcpu);
1549                 return (HANDLED);
1550         }
1551
1552         /*
1553          * Intel MPX requires both bound register state flags to be
1554          * set.
1555          */
1556         if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1557             ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1558                 vm_inject_gp(vmx->vm, vcpu);
1559                 return (HANDLED);
1560         }
1561
1562         /*
1563          * This runs "inside" vmrun() with the guest's FPU state, so
1564          * modifying xcr0 directly modifies the guest's xcr0, not the
1565          * host's.
1566          */
1567         load_xcr(0, xcrval);
1568         return (HANDLED);
1569 }
1570
1571 static uint64_t
1572 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1573 {
1574         const struct vmxctx *vmxctx;
1575
1576         vmxctx = &vmx->ctx[vcpu];
1577
1578         switch (ident) {
1579         case 0:
1580                 return (vmxctx->guest_rax);
1581         case 1:
1582                 return (vmxctx->guest_rcx);
1583         case 2:
1584                 return (vmxctx->guest_rdx);
1585         case 3:
1586                 return (vmxctx->guest_rbx);
1587         case 4:
1588                 return (vmcs_read(VMCS_GUEST_RSP));
1589         case 5:
1590                 return (vmxctx->guest_rbp);
1591         case 6:
1592                 return (vmxctx->guest_rsi);
1593         case 7:
1594                 return (vmxctx->guest_rdi);
1595         case 8:
1596                 return (vmxctx->guest_r8);
1597         case 9:
1598                 return (vmxctx->guest_r9);
1599         case 10:
1600                 return (vmxctx->guest_r10);
1601         case 11:
1602                 return (vmxctx->guest_r11);
1603         case 12:
1604                 return (vmxctx->guest_r12);
1605         case 13:
1606                 return (vmxctx->guest_r13);
1607         case 14:
1608                 return (vmxctx->guest_r14);
1609         case 15:
1610                 return (vmxctx->guest_r15);
1611         default:
1612                 panic("invalid vmx register %d", ident);
1613         }
1614 }
1615
1616 static void
1617 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1618 {
1619         struct vmxctx *vmxctx;
1620
1621         vmxctx = &vmx->ctx[vcpu];
1622
1623         switch (ident) {
1624         case 0:
1625                 vmxctx->guest_rax = regval;
1626                 break;
1627         case 1:
1628                 vmxctx->guest_rcx = regval;
1629                 break;
1630         case 2:
1631                 vmxctx->guest_rdx = regval;
1632                 break;
1633         case 3:
1634                 vmxctx->guest_rbx = regval;
1635                 break;
1636         case 4:
1637                 vmcs_write(VMCS_GUEST_RSP, regval);
1638                 break;
1639         case 5:
1640                 vmxctx->guest_rbp = regval;
1641                 break;
1642         case 6:
1643                 vmxctx->guest_rsi = regval;
1644                 break;
1645         case 7:
1646                 vmxctx->guest_rdi = regval;
1647                 break;
1648         case 8:
1649                 vmxctx->guest_r8 = regval;
1650                 break;
1651         case 9:
1652                 vmxctx->guest_r9 = regval;
1653                 break;
1654         case 10:
1655                 vmxctx->guest_r10 = regval;
1656                 break;
1657         case 11:
1658                 vmxctx->guest_r11 = regval;
1659                 break;
1660         case 12:
1661                 vmxctx->guest_r12 = regval;
1662                 break;
1663         case 13:
1664                 vmxctx->guest_r13 = regval;
1665                 break;
1666         case 14:
1667                 vmxctx->guest_r14 = regval;
1668                 break;
1669         case 15:
1670                 vmxctx->guest_r15 = regval;
1671                 break;
1672         default:
1673                 panic("invalid vmx register %d", ident);
1674         }
1675 }
1676
1677 static int
1678 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1679 {
1680         uint64_t crval, regval;
1681
1682         /* We only handle mov to %cr0 at this time */
1683         if ((exitqual & 0xf0) != 0x00)
1684                 return (UNHANDLED);
1685
1686         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1687
1688         vmcs_write(VMCS_CR0_SHADOW, regval);
1689
1690         crval = regval | cr0_ones_mask;
1691         crval &= ~cr0_zeros_mask;
1692         vmcs_write(VMCS_GUEST_CR0, crval);
1693
1694         if (regval & CR0_PG) {
1695                 uint64_t efer, entry_ctls;
1696
1697                 /*
1698                  * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1699                  * the "IA-32e mode guest" bit in VM-entry control must be
1700                  * equal.
1701                  */
1702                 efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1703                 if (efer & EFER_LME) {
1704                         efer |= EFER_LMA;
1705                         vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1706                         entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1707                         entry_ctls |= VM_ENTRY_GUEST_LMA;
1708                         vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1709                 }
1710         }
1711
1712         return (HANDLED);
1713 }
1714
1715 static int
1716 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1717 {
1718         uint64_t crval, regval;
1719
1720         /* We only handle mov to %cr4 at this time */
1721         if ((exitqual & 0xf0) != 0x00)
1722                 return (UNHANDLED);
1723
1724         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1725
1726         vmcs_write(VMCS_CR4_SHADOW, regval);
1727
1728         crval = regval | cr4_ones_mask;
1729         crval &= ~cr4_zeros_mask;
1730         vmcs_write(VMCS_GUEST_CR4, crval);
1731
1732         return (HANDLED);
1733 }
1734
1735 static int
1736 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1737 {
1738         struct vlapic *vlapic;
1739         uint64_t cr8;
1740         int regnum;
1741
1742         /* We only handle mov %cr8 to/from a register at this time. */
1743         if ((exitqual & 0xe0) != 0x00) {
1744                 return (UNHANDLED);
1745         }
1746
1747         vlapic = vm_lapic(vmx->vm, vcpu);
1748         regnum = (exitqual >> 8) & 0xf;
1749         if (exitqual & 0x10) {
1750                 cr8 = vlapic_get_cr8(vlapic);
1751                 vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1752         } else {
1753                 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1754                 vlapic_set_cr8(vlapic, cr8);
1755         }
1756
1757         return (HANDLED);
1758 }
1759
1760 /*
1761  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1762  */
1763 static int
1764 vmx_cpl(void)
1765 {
1766         uint32_t ssar;
1767
1768         ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1769         return ((ssar >> 5) & 0x3);
1770 }
1771
1772 static enum vm_cpu_mode
1773 vmx_cpu_mode(void)
1774 {
1775         uint32_t csar;
1776
1777         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1778                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1779                 if (csar & 0x2000)
1780                         return (CPU_MODE_64BIT);        /* CS.L = 1 */
1781                 else
1782                         return (CPU_MODE_COMPATIBILITY);
1783         } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1784                 return (CPU_MODE_PROTECTED);
1785         } else {
1786                 return (CPU_MODE_REAL);
1787         }
1788 }
1789
1790 static enum vm_paging_mode
1791 vmx_paging_mode(void)
1792 {
1793
1794         if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1795                 return (PAGING_MODE_FLAT);
1796         if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1797                 return (PAGING_MODE_32);
1798         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1799                 return (PAGING_MODE_64);
1800         else
1801                 return (PAGING_MODE_PAE);
1802 }
1803
1804 static uint64_t
1805 inout_str_index(struct vmx *vmx, int vcpuid, int in)
1806 {
1807         uint64_t val;
1808         int error;
1809         enum vm_reg_name reg;
1810
1811         reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1812         error = vmx_getreg(vmx, vcpuid, reg, &val);
1813         KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1814         return (val);
1815 }
1816
1817 static uint64_t
1818 inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1819 {
1820         uint64_t val;
1821         int error;
1822
1823         if (rep) {
1824                 error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1825                 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1826         } else {
1827                 val = 1;
1828         }
1829         return (val);
1830 }
1831
1832 static int
1833 inout_str_addrsize(uint32_t inst_info)
1834 {
1835         uint32_t size;
1836
1837         size = (inst_info >> 7) & 0x7;
1838         switch (size) {
1839         case 0:
1840                 return (2);     /* 16 bit */
1841         case 1:
1842                 return (4);     /* 32 bit */
1843         case 2:
1844                 return (8);     /* 64 bit */
1845         default:
1846                 panic("%s: invalid size encoding %d", __func__, size);
1847         }
1848 }
1849
1850 static void
1851 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
1852     struct vm_inout_str *vis)
1853 {
1854         int error, s;
1855
1856         if (in) {
1857                 vis->seg_name = VM_REG_GUEST_ES;
1858         } else {
1859                 s = (inst_info >> 15) & 0x7;
1860                 vis->seg_name = vm_segment_name(s);
1861         }
1862
1863         error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
1864         KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
1865 }
1866
1867 static void
1868 vmx_paging_info(struct vm_guest_paging *paging)
1869 {
1870         paging->cr3 = vmcs_guest_cr3();
1871         paging->cpl = vmx_cpl();
1872         paging->cpu_mode = vmx_cpu_mode();
1873         paging->paging_mode = vmx_paging_mode();
1874 }
1875
1876 static void
1877 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
1878 {
1879         struct vm_guest_paging *paging;
1880         uint32_t csar;
1881
1882         paging = &vmexit->u.inst_emul.paging;
1883
1884         vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1885         vmexit->inst_length = 0;
1886         vmexit->u.inst_emul.gpa = gpa;
1887         vmexit->u.inst_emul.gla = gla;
1888         vmx_paging_info(paging);
1889         switch (paging->cpu_mode) {
1890         case CPU_MODE_REAL:
1891                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1892                 vmexit->u.inst_emul.cs_d = 0;
1893                 break;
1894         case CPU_MODE_PROTECTED:
1895         case CPU_MODE_COMPATIBILITY:
1896                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1897                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1898                 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
1899                 break;
1900         default:
1901                 vmexit->u.inst_emul.cs_base = 0;
1902                 vmexit->u.inst_emul.cs_d = 0;
1903                 break;
1904         }
1905         vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
1906 }
1907
1908 static int
1909 ept_fault_type(uint64_t ept_qual)
1910 {
1911         int fault_type;
1912
1913         if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1914                 fault_type = VM_PROT_WRITE;
1915         else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1916                 fault_type = VM_PROT_EXECUTE;
1917         else
1918                 fault_type= VM_PROT_READ;
1919
1920         return (fault_type);
1921 }
1922
1923 static boolean_t
1924 ept_emulation_fault(uint64_t ept_qual)
1925 {
1926         int read, write;
1927
1928         /* EPT fault on an instruction fetch doesn't make sense here */
1929         if (ept_qual & EPT_VIOLATION_INST_FETCH)
1930                 return (FALSE);
1931
1932         /* EPT fault must be a read fault or a write fault */
1933         read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1934         write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1935         if ((read | write) == 0)
1936                 return (FALSE);
1937
1938         /*
1939          * The EPT violation must have been caused by accessing a
1940          * guest-physical address that is a translation of a guest-linear
1941          * address.
1942          */
1943         if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1944             (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1945                 return (FALSE);
1946         }
1947
1948         return (TRUE);
1949 }
1950
1951 static __inline int
1952 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1953 {
1954         uint32_t proc_ctls2;
1955
1956         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1957         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1958 }
1959
1960 static __inline int
1961 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1962 {
1963         uint32_t proc_ctls2;
1964
1965         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1966         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1967 }
1968
1969 static int
1970 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1971     uint64_t qual)
1972 {
1973         int error, handled, offset;
1974         uint32_t *apic_regs, vector;
1975         bool retu;
1976
1977         handled = HANDLED;
1978         offset = APIC_WRITE_OFFSET(qual);
1979
1980         if (!apic_access_virtualization(vmx, vcpuid)) {
1981                 /*
1982                  * In general there should not be any APIC write VM-exits
1983                  * unless APIC-access virtualization is enabled.
1984                  *
1985                  * However self-IPI virtualization can legitimately trigger
1986                  * an APIC-write VM-exit so treat it specially.
1987                  */
1988                 if (x2apic_virtualization(vmx, vcpuid) &&
1989                     offset == APIC_OFFSET_SELF_IPI) {
1990                         apic_regs = (uint32_t *)(vlapic->apic_page);
1991                         vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
1992                         vlapic_self_ipi_handler(vlapic, vector);
1993                         return (HANDLED);
1994                 } else
1995                         return (UNHANDLED);
1996         }
1997
1998         switch (offset) {
1999         case APIC_OFFSET_ID:
2000                 vlapic_id_write_handler(vlapic);
2001                 break;
2002         case APIC_OFFSET_LDR:
2003                 vlapic_ldr_write_handler(vlapic);
2004                 break;
2005         case APIC_OFFSET_DFR:
2006                 vlapic_dfr_write_handler(vlapic);
2007                 break;
2008         case APIC_OFFSET_SVR:
2009                 vlapic_svr_write_handler(vlapic);
2010                 break;
2011         case APIC_OFFSET_ESR:
2012                 vlapic_esr_write_handler(vlapic);
2013                 break;
2014         case APIC_OFFSET_ICR_LOW:
2015                 retu = false;
2016                 error = vlapic_icrlo_write_handler(vlapic, &retu);
2017                 if (error != 0 || retu)
2018                         handled = UNHANDLED;
2019                 break;
2020         case APIC_OFFSET_CMCI_LVT:
2021         case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2022                 vlapic_lvt_write_handler(vlapic, offset);
2023                 break;
2024         case APIC_OFFSET_TIMER_ICR:
2025                 vlapic_icrtmr_write_handler(vlapic);
2026                 break;
2027         case APIC_OFFSET_TIMER_DCR:
2028                 vlapic_dcr_write_handler(vlapic);
2029                 break;
2030         default:
2031                 handled = UNHANDLED;
2032                 break;
2033         }
2034         return (handled);
2035 }
2036
2037 static bool
2038 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
2039 {
2040
2041         if (apic_access_virtualization(vmx, vcpuid) &&
2042             (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2043                 return (true);
2044         else
2045                 return (false);
2046 }
2047
2048 static int
2049 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2050 {
2051         uint64_t qual;
2052         int access_type, offset, allowed;
2053
2054         if (!apic_access_virtualization(vmx, vcpuid))
2055                 return (UNHANDLED);
2056
2057         qual = vmexit->u.vmx.exit_qualification;
2058         access_type = APIC_ACCESS_TYPE(qual);
2059         offset = APIC_ACCESS_OFFSET(qual);
2060
2061         allowed = 0;
2062         if (access_type == 0) {
2063                 /*
2064                  * Read data access to the following registers is expected.
2065                  */
2066                 switch (offset) {
2067                 case APIC_OFFSET_APR:
2068                 case APIC_OFFSET_PPR:
2069                 case APIC_OFFSET_RRR:
2070                 case APIC_OFFSET_CMCI_LVT:
2071                 case APIC_OFFSET_TIMER_CCR:
2072                         allowed = 1;
2073                         break;
2074                 default:
2075                         break;
2076                 }
2077         } else if (access_type == 1) {
2078                 /*
2079                  * Write data access to the following registers is expected.
2080                  */
2081                 switch (offset) {
2082                 case APIC_OFFSET_VER:
2083                 case APIC_OFFSET_APR:
2084                 case APIC_OFFSET_PPR:
2085                 case APIC_OFFSET_RRR:
2086                 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2087                 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2088                 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2089                 case APIC_OFFSET_CMCI_LVT:
2090                 case APIC_OFFSET_TIMER_CCR:
2091                         allowed = 1;
2092                         break;
2093                 default:
2094                         break;
2095                 }
2096         }
2097
2098         if (allowed) {
2099                 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2100                     VIE_INVALID_GLA);
2101         }
2102
2103         /*
2104          * Regardless of whether the APIC-access is allowed this handler
2105          * always returns UNHANDLED:
2106          * - if the access is allowed then it is handled by emulating the
2107          *   instruction that caused the VM-exit (outside the critical section)
2108          * - if the access is not allowed then it will be converted to an
2109          *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2110          */
2111         return (UNHANDLED);
2112 }
2113
2114 static enum task_switch_reason
2115 vmx_task_switch_reason(uint64_t qual)
2116 {
2117         int reason;
2118
2119         reason = (qual >> 30) & 0x3;
2120         switch (reason) {
2121         case 0:
2122                 return (TSR_CALL);
2123         case 1:
2124                 return (TSR_IRET);
2125         case 2:
2126                 return (TSR_JMP);
2127         case 3:
2128                 return (TSR_IDT_GATE);
2129         default:
2130                 panic("%s: invalid reason %d", __func__, reason);
2131         }
2132 }
2133
2134 static int
2135 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2136 {
2137         int error;
2138
2139         if (lapic_msr(num))
2140                 error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2141         else
2142                 error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2143
2144         return (error);
2145 }
2146
2147 static int
2148 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2149 {
2150         struct vmxctx *vmxctx;
2151         uint64_t result;
2152         uint32_t eax, edx;
2153         int error;
2154
2155         if (lapic_msr(num))
2156                 error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2157         else
2158                 error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2159
2160         if (error == 0) {
2161                 eax = result;
2162                 vmxctx = &vmx->ctx[vcpuid];
2163                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2164                 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2165
2166                 edx = result >> 32;
2167                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2168                 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2169         }
2170
2171         return (error);
2172 }
2173
2174 static int
2175 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2176 {
2177         int error, errcode, errcode_valid, handled, in;
2178         struct vmxctx *vmxctx;
2179         struct vlapic *vlapic;
2180         struct vm_inout_str *vis;
2181         struct vm_task_switch *ts;
2182         uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2183         uint32_t intr_type, intr_vec, reason;
2184         uint64_t exitintinfo, qual, gpa;
2185         bool retu;
2186
2187         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2188         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2189
2190         handled = UNHANDLED;
2191         vmxctx = &vmx->ctx[vcpu];
2192
2193         qual = vmexit->u.vmx.exit_qualification;
2194         reason = vmexit->u.vmx.exit_reason;
2195         vmexit->exitcode = VM_EXITCODE_BOGUS;
2196
2197         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2198         SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2199
2200         /*
2201          * VM-entry failures during or after loading guest state.
2202          *
2203          * These VM-exits are uncommon but must be handled specially
2204          * as most VM-exit fields are not populated as usual.
2205          */
2206         if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2207                 VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2208                 __asm __volatile("int $18");
2209                 return (1);
2210         }
2211
2212         /*
2213          * VM exits that can be triggered during event delivery need to
2214          * be handled specially by re-injecting the event if the IDT
2215          * vectoring information field's valid bit is set.
2216          *
2217          * See "Information for VM Exits During Event Delivery" in Intel SDM
2218          * for details.
2219          */
2220         idtvec_info = vmcs_idt_vectoring_info();
2221         if (idtvec_info & VMCS_IDT_VEC_VALID) {
2222                 idtvec_info &= ~(1 << 12); /* clear undefined bit */
2223                 exitintinfo = idtvec_info;
2224                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2225                         idtvec_err = vmcs_idt_vectoring_err();
2226                         exitintinfo |= (uint64_t)idtvec_err << 32;
2227                 }
2228                 error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2229                 KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2230                     __func__, error));
2231
2232                 /*
2233                  * If 'virtual NMIs' are being used and the VM-exit
2234                  * happened while injecting an NMI during the previous
2235                  * VM-entry, then clear "blocking by NMI" in the
2236                  * Guest Interruptibility-State so the NMI can be
2237                  * reinjected on the subsequent VM-entry.
2238                  *
2239                  * However, if the NMI was being delivered through a task
2240                  * gate, then the new task must start execution with NMIs
2241                  * blocked so don't clear NMI blocking in this case.
2242                  */
2243                 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2244                 if (intr_type == VMCS_INTR_T_NMI) {
2245                         if (reason != EXIT_REASON_TASK_SWITCH)
2246                                 vmx_clear_nmi_blocking(vmx, vcpu);
2247                         else
2248                                 vmx_assert_nmi_blocking(vmx, vcpu);
2249                 }
2250
2251                 /*
2252                  * Update VM-entry instruction length if the event being
2253                  * delivered was a software interrupt or software exception.
2254                  */
2255                 if (intr_type == VMCS_INTR_T_SWINTR ||
2256                     intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2257                     intr_type == VMCS_INTR_T_SWEXCEPTION) {
2258                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2259                 }
2260         }
2261
2262         switch (reason) {
2263         case EXIT_REASON_TASK_SWITCH:
2264                 ts = &vmexit->u.task_switch;
2265                 ts->tsssel = qual & 0xffff;
2266                 ts->reason = vmx_task_switch_reason(qual);
2267                 ts->ext = 0;
2268                 ts->errcode_valid = 0;
2269                 vmx_paging_info(&ts->paging);
2270                 /*
2271                  * If the task switch was due to a CALL, JMP, IRET, software
2272                  * interrupt (INT n) or software exception (INT3, INTO),
2273                  * then the saved %rip references the instruction that caused
2274                  * the task switch. The instruction length field in the VMCS
2275                  * is valid in this case.
2276                  *
2277                  * In all other cases (e.g., NMI, hardware exception) the
2278                  * saved %rip is one that would have been saved in the old TSS
2279                  * had the task switch completed normally so the instruction
2280                  * length field is not needed in this case and is explicitly
2281                  * set to 0.
2282                  */
2283                 if (ts->reason == TSR_IDT_GATE) {
2284                         KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2285                             ("invalid idtvec_info %#x for IDT task switch",
2286                             idtvec_info));
2287                         intr_type = idtvec_info & VMCS_INTR_T_MASK;
2288                         if (intr_type != VMCS_INTR_T_SWINTR &&
2289                             intr_type != VMCS_INTR_T_SWEXCEPTION &&
2290                             intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2291                                 /* Task switch triggered by external event */
2292                                 ts->ext = 1;
2293                                 vmexit->inst_length = 0;
2294                                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2295                                         ts->errcode_valid = 1;
2296                                         ts->errcode = vmcs_idt_vectoring_err();
2297                                 }
2298                         }
2299                 }
2300                 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2301                 SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2302                 VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2303                     "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2304                     ts->ext ? "external" : "internal",
2305                     ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2306                 break;
2307         case EXIT_REASON_CR_ACCESS:
2308                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2309                 SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2310                 switch (qual & 0xf) {
2311                 case 0:
2312                         handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2313                         break;
2314                 case 4:
2315                         handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2316                         break;
2317                 case 8:
2318                         handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2319                         break;
2320                 }
2321                 break;
2322         case EXIT_REASON_RDMSR:
2323                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2324                 retu = false;
2325                 ecx = vmxctx->guest_rcx;
2326                 VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2327                 SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx);
2328                 error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2329                 if (error) {
2330                         vmexit->exitcode = VM_EXITCODE_RDMSR;
2331                         vmexit->u.msr.code = ecx;
2332                 } else if (!retu) {
2333                         handled = HANDLED;
2334                 } else {
2335                         /* Return to userspace with a valid exitcode */
2336                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2337                             ("emulate_rdmsr retu with bogus exitcode"));
2338                 }
2339                 break;
2340         case EXIT_REASON_WRMSR:
2341                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2342                 retu = false;
2343                 eax = vmxctx->guest_rax;
2344                 ecx = vmxctx->guest_rcx;
2345                 edx = vmxctx->guest_rdx;
2346                 VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2347                     ecx, (uint64_t)edx << 32 | eax);
2348                 SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx,
2349                     (uint64_t)edx << 32 | eax);
2350                 error = emulate_wrmsr(vmx, vcpu, ecx,
2351                     (uint64_t)edx << 32 | eax, &retu);
2352                 if (error) {
2353                         vmexit->exitcode = VM_EXITCODE_WRMSR;
2354                         vmexit->u.msr.code = ecx;
2355                         vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2356                 } else if (!retu) {
2357                         handled = HANDLED;
2358                 } else {
2359                         /* Return to userspace with a valid exitcode */
2360                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2361                             ("emulate_wrmsr retu with bogus exitcode"));
2362                 }
2363                 break;
2364         case EXIT_REASON_HLT:
2365                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2366                 SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2367                 vmexit->exitcode = VM_EXITCODE_HLT;
2368                 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2369                 if (virtual_interrupt_delivery)
2370                         vmexit->u.hlt.intr_status =
2371                             vmcs_read(VMCS_GUEST_INTR_STATUS);
2372                 else
2373                         vmexit->u.hlt.intr_status = 0;
2374                 break;
2375         case EXIT_REASON_MTF:
2376                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2377                 SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2378                 vmexit->exitcode = VM_EXITCODE_MTRAP;
2379                 vmexit->inst_length = 0;
2380                 break;
2381         case EXIT_REASON_PAUSE:
2382                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2383                 SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2384                 vmexit->exitcode = VM_EXITCODE_PAUSE;
2385                 break;
2386         case EXIT_REASON_INTR_WINDOW:
2387                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2388                 SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2389                 vmx_clear_int_window_exiting(vmx, vcpu);
2390                 return (1);
2391         case EXIT_REASON_EXT_INTR:
2392                 /*
2393                  * External interrupts serve only to cause VM exits and allow
2394                  * the host interrupt handler to run.
2395                  *
2396                  * If this external interrupt triggers a virtual interrupt
2397                  * to a VM, then that state will be recorded by the
2398                  * host interrupt handler in the VM's softc. We will inject
2399                  * this virtual interrupt during the subsequent VM enter.
2400                  */
2401                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2402                 SDT_PROBE4(vmm, vmx, exit, interrupt,
2403                     vmx, vcpu, vmexit, intr_info);
2404
2405                 /*
2406                  * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2407                  * This appears to be a bug in VMware Fusion?
2408                  */
2409                 if (!(intr_info & VMCS_INTR_VALID))
2410                         return (1);
2411                 KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2412                     (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2413                     ("VM exit interruption info invalid: %#x", intr_info));
2414                 vmx_trigger_hostintr(intr_info & 0xff);
2415
2416                 /*
2417                  * This is special. We want to treat this as an 'handled'
2418                  * VM-exit but not increment the instruction pointer.
2419                  */
2420                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2421                 return (1);
2422         case EXIT_REASON_NMI_WINDOW:
2423                 SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2424                 /* Exit to allow the pending virtual NMI to be injected */
2425                 if (vm_nmi_pending(vmx->vm, vcpu))
2426                         vmx_inject_nmi(vmx, vcpu);
2427                 vmx_clear_nmi_window_exiting(vmx, vcpu);
2428                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2429                 return (1);
2430         case EXIT_REASON_INOUT:
2431                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2432                 vmexit->exitcode = VM_EXITCODE_INOUT;
2433                 vmexit->u.inout.bytes = (qual & 0x7) + 1;
2434                 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2435                 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2436                 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2437                 vmexit->u.inout.port = (uint16_t)(qual >> 16);
2438                 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2439                 if (vmexit->u.inout.string) {
2440                         inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2441                         vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2442                         vis = &vmexit->u.inout_str;
2443                         vmx_paging_info(&vis->paging);
2444                         vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2445                         vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2446                         vis->index = inout_str_index(vmx, vcpu, in);
2447                         vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2448                         vis->addrsize = inout_str_addrsize(inst_info);
2449                         inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2450                 }
2451                 SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2452                 break;
2453         case EXIT_REASON_CPUID:
2454                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2455                 SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2456                 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2457                 break;
2458         case EXIT_REASON_EXCEPTION:
2459                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2460                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2461                 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2462                     ("VM exit interruption info invalid: %#x", intr_info));
2463
2464                 intr_vec = intr_info & 0xff;
2465                 intr_type = intr_info & VMCS_INTR_T_MASK;
2466
2467                 /*
2468                  * If Virtual NMIs control is 1 and the VM-exit is due to a
2469                  * fault encountered during the execution of IRET then we must
2470                  * restore the state of "virtual-NMI blocking" before resuming
2471                  * the guest.
2472                  *
2473                  * See "Resuming Guest Software after Handling an Exception".
2474                  * See "Information for VM Exits Due to Vectored Events".
2475                  */
2476                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2477                     (intr_vec != IDT_DF) &&
2478                     (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2479                         vmx_restore_nmi_blocking(vmx, vcpu);
2480
2481                 /*
2482                  * The NMI has already been handled in vmx_exit_handle_nmi().
2483                  */
2484                 if (intr_type == VMCS_INTR_T_NMI)
2485                         return (1);
2486
2487                 /*
2488                  * Call the machine check handler by hand. Also don't reflect
2489                  * the machine check back into the guest.
2490                  */
2491                 if (intr_vec == IDT_MC) {
2492                         VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2493                         __asm __volatile("int $18");
2494                         return (1);
2495                 }
2496
2497                 if (intr_vec == IDT_PF) {
2498                         error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2499                         KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2500                             __func__, error));
2501                 }
2502
2503                 /*
2504                  * Software exceptions exhibit trap-like behavior. This in
2505                  * turn requires populating the VM-entry instruction length
2506                  * so that the %rip in the trap frame is past the INT3/INTO
2507                  * instruction.
2508                  */
2509                 if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2510                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2511
2512                 /* Reflect all other exceptions back into the guest */
2513                 errcode_valid = errcode = 0;
2514                 if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2515                         errcode_valid = 1;
2516                         errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2517                 }
2518                 VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2519                     "the guest", intr_vec, errcode);
2520                 SDT_PROBE5(vmm, vmx, exit, exception,
2521                     vmx, vcpu, vmexit, intr_vec, errcode);
2522                 error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2523                     errcode_valid, errcode, 0);
2524                 KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2525                     __func__, error));
2526                 return (1);
2527
2528         case EXIT_REASON_EPT_FAULT:
2529                 /*
2530                  * If 'gpa' lies within the address space allocated to
2531                  * memory then this must be a nested page fault otherwise
2532                  * this must be an instruction that accesses MMIO space.
2533                  */
2534                 gpa = vmcs_gpa();
2535                 if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2536                     apic_access_fault(vmx, vcpu, gpa)) {
2537                         vmexit->exitcode = VM_EXITCODE_PAGING;
2538                         vmexit->inst_length = 0;
2539                         vmexit->u.paging.gpa = gpa;
2540                         vmexit->u.paging.fault_type = ept_fault_type(qual);
2541                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2542                         SDT_PROBE5(vmm, vmx, exit, nestedfault,
2543                             vmx, vcpu, vmexit, gpa, qual);
2544                 } else if (ept_emulation_fault(qual)) {
2545                         vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2546                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2547                         SDT_PROBE4(vmm, vmx, exit, mmiofault,
2548                             vmx, vcpu, vmexit, gpa);
2549                 }
2550                 /*
2551                  * If Virtual NMIs control is 1 and the VM-exit is due to an
2552                  * EPT fault during the execution of IRET then we must restore
2553                  * the state of "virtual-NMI blocking" before resuming.
2554                  *
2555                  * See description of "NMI unblocking due to IRET" in
2556                  * "Exit Qualification for EPT Violations".
2557                  */
2558                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2559                     (qual & EXIT_QUAL_NMIUDTI) != 0)
2560                         vmx_restore_nmi_blocking(vmx, vcpu);
2561                 break;
2562         case EXIT_REASON_VIRTUALIZED_EOI:
2563                 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2564                 vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2565                 SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2566                 vmexit->inst_length = 0;        /* trap-like */
2567                 break;
2568         case EXIT_REASON_APIC_ACCESS:
2569                 SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2570                 handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2571                 break;
2572         case EXIT_REASON_APIC_WRITE:
2573                 /*
2574                  * APIC-write VM exit is trap-like so the %rip is already
2575                  * pointing to the next instruction.
2576                  */
2577                 vmexit->inst_length = 0;
2578                 vlapic = vm_lapic(vmx->vm, vcpu);
2579                 SDT_PROBE4(vmm, vmx, exit, apicwrite,
2580                     vmx, vcpu, vmexit, vlapic);
2581                 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2582                 break;
2583         case EXIT_REASON_XSETBV:
2584                 SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2585                 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2586                 break;
2587         case EXIT_REASON_MONITOR:
2588                 SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2589                 vmexit->exitcode = VM_EXITCODE_MONITOR;
2590                 break;
2591         case EXIT_REASON_MWAIT:
2592                 SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2593                 vmexit->exitcode = VM_EXITCODE_MWAIT;
2594                 break;
2595         default:
2596                 SDT_PROBE4(vmm, vmx, exit, unknown,
2597                     vmx, vcpu, vmexit, reason);
2598                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2599                 break;
2600         }
2601
2602         if (handled) {
2603                 /*
2604                  * It is possible that control is returned to userland
2605                  * even though we were able to handle the VM exit in the
2606                  * kernel.
2607                  *
2608                  * In such a case we want to make sure that the userland
2609                  * restarts guest execution at the instruction *after*
2610                  * the one we just processed. Therefore we update the
2611                  * guest rip in the VMCS and in 'vmexit'.
2612                  */
2613                 vmexit->rip += vmexit->inst_length;
2614                 vmexit->inst_length = 0;
2615                 vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2616         } else {
2617                 if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2618                         /*
2619                          * If this VM exit was not claimed by anybody then
2620                          * treat it as a generic VMX exit.
2621                          */
2622                         vmexit->exitcode = VM_EXITCODE_VMX;
2623                         vmexit->u.vmx.status = VM_SUCCESS;
2624                         vmexit->u.vmx.inst_type = 0;
2625                         vmexit->u.vmx.inst_error = 0;
2626                 } else {
2627                         /*
2628                          * The exitcode and collateral have been populated.
2629                          * The VM exit will be processed further in userland.
2630                          */
2631                 }
2632         }
2633
2634         SDT_PROBE4(vmm, vmx, exit, return,
2635             vmx, vcpu, vmexit, handled);
2636         return (handled);
2637 }
2638
2639 static __inline void
2640 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2641 {
2642
2643         KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2644             ("vmx_exit_inst_error: invalid inst_fail_status %d",
2645             vmxctx->inst_fail_status));
2646
2647         vmexit->inst_length = 0;
2648         vmexit->exitcode = VM_EXITCODE_VMX;
2649         vmexit->u.vmx.status = vmxctx->inst_fail_status;
2650         vmexit->u.vmx.inst_error = vmcs_instruction_error();
2651         vmexit->u.vmx.exit_reason = ~0;
2652         vmexit->u.vmx.exit_qualification = ~0;
2653
2654         switch (rc) {
2655         case VMX_VMRESUME_ERROR:
2656         case VMX_VMLAUNCH_ERROR:
2657         case VMX_INVEPT_ERROR:
2658                 vmexit->u.vmx.inst_type = rc;
2659                 break;
2660         default:
2661                 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2662         }
2663 }
2664
2665 /*
2666  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2667  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2668  * sufficient to simply vector to the NMI handler via a software interrupt.
2669  * However, this must be done before maskable interrupts are enabled
2670  * otherwise the "iret" issued by an interrupt handler will incorrectly
2671  * clear NMI blocking.
2672  */
2673 static __inline void
2674 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2675 {
2676         uint32_t intr_info;
2677
2678         KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2679
2680         if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2681                 return;
2682
2683         intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2684         KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2685             ("VM exit interruption info invalid: %#x", intr_info));
2686
2687         if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2688                 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2689                     "to NMI has invalid vector: %#x", intr_info));
2690                 VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2691                 __asm __volatile("int $2");
2692         }
2693 }
2694
2695 static __inline void
2696 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2697 {
2698         register_t rflags;
2699
2700         /* Save host control debug registers. */
2701         vmxctx->host_dr7 = rdr7();
2702         vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2703
2704         /*
2705          * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2706          * exceptions in the host based on the guest DRx values.  The
2707          * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2708          */
2709         load_dr7(0);
2710         wrmsr(MSR_DEBUGCTLMSR, 0);
2711
2712         /*
2713          * Disable single stepping the kernel to avoid corrupting the
2714          * guest DR6.  A debugger might still be able to corrupt the
2715          * guest DR6 by setting a breakpoint after this point and then
2716          * single stepping.
2717          */
2718         rflags = read_rflags();
2719         vmxctx->host_tf = rflags & PSL_T;
2720         write_rflags(rflags & ~PSL_T);
2721
2722         /* Save host debug registers. */
2723         vmxctx->host_dr0 = rdr0();
2724         vmxctx->host_dr1 = rdr1();
2725         vmxctx->host_dr2 = rdr2();
2726         vmxctx->host_dr3 = rdr3();
2727         vmxctx->host_dr6 = rdr6();
2728
2729         /* Restore guest debug registers. */
2730         load_dr0(vmxctx->guest_dr0);
2731         load_dr1(vmxctx->guest_dr1);
2732         load_dr2(vmxctx->guest_dr2);
2733         load_dr3(vmxctx->guest_dr3);
2734         load_dr6(vmxctx->guest_dr6);
2735 }
2736
2737 static __inline void
2738 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2739 {
2740
2741         /* Save guest debug registers. */
2742         vmxctx->guest_dr0 = rdr0();
2743         vmxctx->guest_dr1 = rdr1();
2744         vmxctx->guest_dr2 = rdr2();
2745         vmxctx->guest_dr3 = rdr3();
2746         vmxctx->guest_dr6 = rdr6();
2747
2748         /*
2749          * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2750          * PSL_T last.
2751          */
2752         load_dr0(vmxctx->host_dr0);
2753         load_dr1(vmxctx->host_dr1);
2754         load_dr2(vmxctx->host_dr2);
2755         load_dr3(vmxctx->host_dr3);
2756         load_dr6(vmxctx->host_dr6);
2757         wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2758         load_dr7(vmxctx->host_dr7);
2759         write_rflags(read_rflags() | vmxctx->host_tf);
2760 }
2761
2762 static int
2763 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
2764     struct vm_eventinfo *evinfo)
2765 {
2766         int rc, handled, launched;
2767         struct vmx *vmx;
2768         struct vm *vm;
2769         struct vmxctx *vmxctx;
2770         struct vmcs *vmcs;
2771         struct vm_exit *vmexit;
2772         struct vlapic *vlapic;
2773         uint32_t exit_reason;
2774
2775         vmx = arg;
2776         vm = vmx->vm;
2777         vmcs = &vmx->vmcs[vcpu];
2778         vmxctx = &vmx->ctx[vcpu];
2779         vlapic = vm_lapic(vm, vcpu);
2780         vmexit = vm_exitinfo(vm, vcpu);
2781         launched = 0;
2782
2783         KASSERT(vmxctx->pmap == pmap,
2784             ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2785
2786         vmx_msr_guest_enter(vmx, vcpu);
2787
2788         VMPTRLD(vmcs);
2789
2790         /*
2791          * XXX
2792          * We do this every time because we may setup the virtual machine
2793          * from a different process than the one that actually runs it.
2794          *
2795          * If the life of a virtual machine was spent entirely in the context
2796          * of a single process we could do this once in vmx_vminit().
2797          */
2798         vmcs_write(VMCS_HOST_CR3, rcr3());
2799
2800         vmcs_write(VMCS_GUEST_RIP, rip);
2801         vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2802         do {
2803                 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
2804                     "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
2805
2806                 handled = UNHANDLED;
2807                 /*
2808                  * Interrupts are disabled from this point on until the
2809                  * guest starts executing. This is done for the following
2810                  * reasons:
2811                  *
2812                  * If an AST is asserted on this thread after the check below,
2813                  * then the IPI_AST notification will not be lost, because it
2814                  * will cause a VM exit due to external interrupt as soon as
2815                  * the guest state is loaded.
2816                  *
2817                  * A posted interrupt after 'vmx_inject_interrupts()' will
2818                  * not be "lost" because it will be held pending in the host
2819                  * APIC because interrupts are disabled. The pending interrupt
2820                  * will be recognized as soon as the guest state is loaded.
2821                  *
2822                  * The same reasoning applies to the IPI generated by
2823                  * pmap_invalidate_ept().
2824                  */
2825                 disable_intr();
2826                 vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
2827
2828                 /*
2829                  * Check for vcpu suspension after injecting events because
2830                  * vmx_inject_interrupts() can suspend the vcpu due to a
2831                  * triple fault.
2832                  */
2833                 if (vcpu_suspended(evinfo)) {
2834                         enable_intr();
2835                         vm_exit_suspended(vmx->vm, vcpu, rip);
2836                         break;
2837                 }
2838
2839                 if (vcpu_rendezvous_pending(evinfo)) {
2840                         enable_intr();
2841                         vm_exit_rendezvous(vmx->vm, vcpu, rip);
2842                         break;
2843                 }
2844
2845                 if (vcpu_reqidle(evinfo)) {
2846                         enable_intr();
2847                         vm_exit_reqidle(vmx->vm, vcpu, rip);
2848                         break;
2849                 }
2850
2851                 if (vcpu_should_yield(vm, vcpu)) {
2852                         enable_intr();
2853                         vm_exit_astpending(vmx->vm, vcpu, rip);
2854                         vmx_astpending_trace(vmx, vcpu, rip);
2855                         handled = HANDLED;
2856                         break;
2857                 }
2858
2859                 if (vcpu_debugged(vm, vcpu)) {
2860                         enable_intr();
2861                         vm_exit_debug(vmx->vm, vcpu, rip);
2862                         break;
2863                 }
2864
2865                 vmx_run_trace(vmx, vcpu);
2866                 vmx_dr_enter_guest(vmxctx);
2867                 rc = vmx_enter_guest(vmxctx, vmx, launched);
2868                 vmx_dr_leave_guest(vmxctx);
2869
2870                 /* Collect some information for VM exit processing */
2871                 vmexit->rip = rip = vmcs_guest_rip();
2872                 vmexit->inst_length = vmexit_instruction_length();
2873                 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
2874                 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
2875
2876                 /* Update 'nextrip' */
2877                 vmx->state[vcpu].nextrip = rip;
2878
2879                 if (rc == VMX_GUEST_VMEXIT) {
2880                         vmx_exit_handle_nmi(vmx, vcpu, vmexit);
2881                         enable_intr();
2882                         handled = vmx_exit_process(vmx, vcpu, vmexit);
2883                 } else {
2884                         enable_intr();
2885                         vmx_exit_inst_error(vmxctx, rc, vmexit);
2886                 }
2887                 launched = 1;
2888                 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
2889                 rip = vmexit->rip;
2890         } while (handled);
2891
2892         /*
2893          * If a VM exit has been handled then the exitcode must be BOGUS
2894          * If a VM exit is not handled then the exitcode must not be BOGUS
2895          */
2896         if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
2897             (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
2898                 panic("Mismatch between handled (%d) and exitcode (%d)",
2899                       handled, vmexit->exitcode);
2900         }
2901
2902         if (!handled)
2903                 vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
2904
2905         VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
2906             vmexit->exitcode);
2907
2908         VMCLEAR(vmcs);
2909         vmx_msr_guest_exit(vmx, vcpu);
2910
2911         return (0);
2912 }
2913
2914 static void
2915 vmx_vmcleanup(void *arg)
2916 {
2917         int i;
2918         struct vmx *vmx = arg;
2919
2920         if (apic_access_virtualization(vmx, 0))
2921                 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2922
2923         for (i = 0; i < VM_MAXCPU; i++)
2924                 vpid_free(vmx->state[i].vpid);
2925
2926         free(vmx, M_VMX);
2927
2928         return;
2929 }
2930
2931 static register_t *
2932 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2933 {
2934
2935         switch (reg) {
2936         case VM_REG_GUEST_RAX:
2937                 return (&vmxctx->guest_rax);
2938         case VM_REG_GUEST_RBX:
2939                 return (&vmxctx->guest_rbx);
2940         case VM_REG_GUEST_RCX:
2941                 return (&vmxctx->guest_rcx);
2942         case VM_REG_GUEST_RDX:
2943                 return (&vmxctx->guest_rdx);
2944         case VM_REG_GUEST_RSI:
2945                 return (&vmxctx->guest_rsi);
2946         case VM_REG_GUEST_RDI:
2947                 return (&vmxctx->guest_rdi);
2948         case VM_REG_GUEST_RBP:
2949                 return (&vmxctx->guest_rbp);
2950         case VM_REG_GUEST_R8:
2951                 return (&vmxctx->guest_r8);
2952         case VM_REG_GUEST_R9:
2953                 return (&vmxctx->guest_r9);
2954         case VM_REG_GUEST_R10:
2955                 return (&vmxctx->guest_r10);
2956         case VM_REG_GUEST_R11:
2957                 return (&vmxctx->guest_r11);
2958         case VM_REG_GUEST_R12:
2959                 return (&vmxctx->guest_r12);
2960         case VM_REG_GUEST_R13:
2961                 return (&vmxctx->guest_r13);
2962         case VM_REG_GUEST_R14:
2963                 return (&vmxctx->guest_r14);
2964         case VM_REG_GUEST_R15:
2965                 return (&vmxctx->guest_r15);
2966         case VM_REG_GUEST_CR2:
2967                 return (&vmxctx->guest_cr2);
2968         case VM_REG_GUEST_DR0:
2969                 return (&vmxctx->guest_dr0);
2970         case VM_REG_GUEST_DR1:
2971                 return (&vmxctx->guest_dr1);
2972         case VM_REG_GUEST_DR2:
2973                 return (&vmxctx->guest_dr2);
2974         case VM_REG_GUEST_DR3:
2975                 return (&vmxctx->guest_dr3);
2976         case VM_REG_GUEST_DR6:
2977                 return (&vmxctx->guest_dr6);
2978         default:
2979                 break;
2980         }
2981         return (NULL);
2982 }
2983
2984 static int
2985 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
2986 {
2987         register_t *regp;
2988
2989         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2990                 *retval = *regp;
2991                 return (0);
2992         } else
2993                 return (EINVAL);
2994 }
2995
2996 static int
2997 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
2998 {
2999         register_t *regp;
3000
3001         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3002                 *regp = val;
3003                 return (0);
3004         } else
3005                 return (EINVAL);
3006 }
3007
3008 static int
3009 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
3010 {
3011         uint64_t gi;
3012         int error;
3013
3014         error = vmcs_getreg(&vmx->vmcs[vcpu], running, 
3015             VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
3016         *retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3017         return (error);
3018 }
3019
3020 static int
3021 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
3022 {
3023         struct vmcs *vmcs;
3024         uint64_t gi;
3025         int error, ident;
3026
3027         /*
3028          * Forcing the vcpu into an interrupt shadow is not supported.
3029          */
3030         if (val) {
3031                 error = EINVAL;
3032                 goto done;
3033         }
3034
3035         vmcs = &vmx->vmcs[vcpu];
3036         ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
3037         error = vmcs_getreg(vmcs, running, ident, &gi);
3038         if (error == 0) {
3039                 gi &= ~HWINTR_BLOCKING;
3040                 error = vmcs_setreg(vmcs, running, ident, gi);
3041         }
3042 done:
3043         VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
3044             error ? "failed" : "succeeded");
3045         return (error);
3046 }
3047
3048 static int
3049 vmx_shadow_reg(int reg)
3050 {
3051         int shreg;
3052
3053         shreg = -1;
3054
3055         switch (reg) {
3056         case VM_REG_GUEST_CR0:
3057                 shreg = VMCS_CR0_SHADOW;
3058                 break;
3059         case VM_REG_GUEST_CR4:
3060                 shreg = VMCS_CR4_SHADOW;
3061                 break;
3062         default:
3063                 break;
3064         }
3065
3066         return (shreg);
3067 }
3068
3069 static int
3070 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
3071 {
3072         int running, hostcpu;
3073         struct vmx *vmx = arg;
3074
3075         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3076         if (running && hostcpu != curcpu)
3077                 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
3078
3079         if (reg == VM_REG_GUEST_INTR_SHADOW)
3080                 return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
3081
3082         if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
3083                 return (0);
3084
3085         return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
3086 }
3087
3088 static int
3089 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3090 {
3091         int error, hostcpu, running, shadow;
3092         uint64_t ctls;
3093         pmap_t pmap;
3094         struct vmx *vmx = arg;
3095
3096         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3097         if (running && hostcpu != curcpu)
3098                 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
3099
3100         if (reg == VM_REG_GUEST_INTR_SHADOW)
3101                 return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
3102
3103         if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
3104                 return (0);
3105
3106         error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
3107
3108         if (error == 0) {
3109                 /*
3110                  * If the "load EFER" VM-entry control is 1 then the
3111                  * value of EFER.LMA must be identical to "IA-32e mode guest"
3112                  * bit in the VM-entry control.
3113                  */
3114                 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
3115                     (reg == VM_REG_GUEST_EFER)) {
3116                         vmcs_getreg(&vmx->vmcs[vcpu], running,
3117                                     VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
3118                         if (val & EFER_LMA)
3119                                 ctls |= VM_ENTRY_GUEST_LMA;
3120                         else
3121                                 ctls &= ~VM_ENTRY_GUEST_LMA;
3122                         vmcs_setreg(&vmx->vmcs[vcpu], running,
3123                                     VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
3124                 }
3125
3126                 shadow = vmx_shadow_reg(reg);
3127                 if (shadow > 0) {
3128                         /*
3129                          * Store the unmodified value in the shadow
3130                          */                     
3131                         error = vmcs_setreg(&vmx->vmcs[vcpu], running,
3132                                     VMCS_IDENT(shadow), val);
3133                 }
3134
3135                 if (reg == VM_REG_GUEST_CR3) {
3136                         /*
3137                          * Invalidate the guest vcpu's TLB mappings to emulate
3138                          * the behavior of updating %cr3.
3139                          *
3140                          * XXX the processor retains global mappings when %cr3
3141                          * is updated but vmx_invvpid() does not.
3142                          */
3143                         pmap = vmx->ctx[vcpu].pmap;
3144                         vmx_invvpid(vmx, vcpu, pmap, running);
3145                 }
3146         }
3147
3148         return (error);
3149 }
3150
3151 static int
3152 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3153 {
3154         int hostcpu, running;
3155         struct vmx *vmx = arg;
3156
3157         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3158         if (running && hostcpu != curcpu)
3159                 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3160
3161         return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
3162 }
3163
3164 static int
3165 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3166 {
3167         int hostcpu, running;
3168         struct vmx *vmx = arg;
3169
3170         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3171         if (running && hostcpu != curcpu)
3172                 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3173
3174         return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
3175 }
3176
3177 static int
3178 vmx_getcap(void *arg, int vcpu, int type, int *retval)
3179 {
3180         struct vmx *vmx = arg;
3181         int vcap;
3182         int ret;
3183
3184         ret = ENOENT;
3185
3186         vcap = vmx->cap[vcpu].set;
3187
3188         switch (type) {
3189         case VM_CAP_HALT_EXIT:
3190                 if (cap_halt_exit)
3191                         ret = 0;
3192                 break;
3193         case VM_CAP_PAUSE_EXIT:
3194                 if (cap_pause_exit)
3195                         ret = 0;
3196                 break;
3197         case VM_CAP_MTRAP_EXIT:
3198                 if (cap_monitor_trap)
3199                         ret = 0;
3200                 break;
3201         case VM_CAP_UNRESTRICTED_GUEST:
3202                 if (cap_unrestricted_guest)
3203                         ret = 0;
3204                 break;
3205         case VM_CAP_ENABLE_INVPCID:
3206                 if (cap_invpcid)
3207                         ret = 0;
3208                 break;
3209         default:
3210                 break;
3211         }
3212
3213         if (ret == 0)
3214                 *retval = (vcap & (1 << type)) ? 1 : 0;
3215
3216         return (ret);
3217 }
3218
3219 static int
3220 vmx_setcap(void *arg, int vcpu, int type, int val)
3221 {
3222         struct vmx *vmx = arg;
3223         struct vmcs *vmcs = &vmx->vmcs[vcpu];
3224         uint32_t baseval;
3225         uint32_t *pptr;
3226         int error;
3227         int flag;
3228         int reg;
3229         int retval;
3230
3231         retval = ENOENT;
3232         pptr = NULL;
3233
3234         switch (type) {
3235         case VM_CAP_HALT_EXIT:
3236                 if (cap_halt_exit) {
3237                         retval = 0;
3238                         pptr = &vmx->cap[vcpu].proc_ctls;
3239                         baseval = *pptr;
3240                         flag = PROCBASED_HLT_EXITING;
3241                         reg = VMCS_PRI_PROC_BASED_CTLS;
3242                 }
3243                 break;
3244         case VM_CAP_MTRAP_EXIT:
3245                 if (cap_monitor_trap) {
3246                         retval = 0;
3247                         pptr = &vmx->cap[vcpu].proc_ctls;
3248                         baseval = *pptr;
3249                         flag = PROCBASED_MTF;
3250                         reg = VMCS_PRI_PROC_BASED_CTLS;
3251                 }
3252                 break;
3253         case VM_CAP_PAUSE_EXIT:
3254                 if (cap_pause_exit) {
3255                         retval = 0;
3256                         pptr = &vmx->cap[vcpu].proc_ctls;
3257                         baseval = *pptr;
3258                         flag = PROCBASED_PAUSE_EXITING;
3259                         reg = VMCS_PRI_PROC_BASED_CTLS;
3260                 }
3261                 break;
3262         case VM_CAP_UNRESTRICTED_GUEST:
3263                 if (cap_unrestricted_guest) {
3264                         retval = 0;
3265                         pptr = &vmx->cap[vcpu].proc_ctls2;
3266                         baseval = *pptr;
3267                         flag = PROCBASED2_UNRESTRICTED_GUEST;
3268                         reg = VMCS_SEC_PROC_BASED_CTLS;
3269                 }
3270                 break;
3271         case VM_CAP_ENABLE_INVPCID:
3272                 if (cap_invpcid) {
3273                         retval = 0;
3274                         pptr = &vmx->cap[vcpu].proc_ctls2;
3275                         baseval = *pptr;
3276                         flag = PROCBASED2_ENABLE_INVPCID;
3277                         reg = VMCS_SEC_PROC_BASED_CTLS;
3278                 }
3279                 break;
3280         default:
3281                 break;
3282         }
3283
3284         if (retval == 0) {
3285                 if (val) {
3286                         baseval |= flag;
3287                 } else {
3288                         baseval &= ~flag;
3289                 }
3290                 VMPTRLD(vmcs);
3291                 error = vmwrite(reg, baseval);
3292                 VMCLEAR(vmcs);
3293
3294                 if (error) {
3295                         retval = error;
3296                 } else {
3297                         /*
3298                          * Update optional stored flags, and record
3299                          * setting
3300                          */
3301                         if (pptr != NULL) {
3302                                 *pptr = baseval;
3303                         }
3304
3305                         if (val) {
3306                                 vmx->cap[vcpu].set |= (1 << type);
3307                         } else {
3308                                 vmx->cap[vcpu].set &= ~(1 << type);
3309                         }
3310                 }
3311         }
3312
3313         return (retval);
3314 }
3315
3316 struct vlapic_vtx {
3317         struct vlapic   vlapic;
3318         struct pir_desc *pir_desc;
3319         struct vmx      *vmx;
3320 };
3321
3322 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)   \
3323 do {                                                                    \
3324         VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",     \
3325             level ? "level" : "edge", vector);                          \
3326         VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);  \
3327         VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);  \
3328         VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);  \
3329         VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);  \
3330         VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3331 } while (0)
3332
3333 /*
3334  * vlapic->ops handlers that utilize the APICv hardware assist described in
3335  * Chapter 29 of the Intel SDM.
3336  */
3337 static int
3338 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3339 {
3340         struct vlapic_vtx *vlapic_vtx;
3341         struct pir_desc *pir_desc;
3342         uint64_t mask;
3343         int idx, notify;
3344
3345         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3346         pir_desc = vlapic_vtx->pir_desc;
3347
3348         /*
3349          * Keep track of interrupt requests in the PIR descriptor. This is
3350          * because the virtual APIC page pointed to by the VMCS cannot be
3351          * modified if the vcpu is running.
3352          */
3353         idx = vector / 64;
3354         mask = 1UL << (vector % 64);
3355         atomic_set_long(&pir_desc->pir[idx], mask);
3356         notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
3357
3358         VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3359             level, "vmx_set_intr_ready");
3360         return (notify);
3361 }
3362
3363 static int
3364 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3365 {
3366         struct vlapic_vtx *vlapic_vtx;
3367         struct pir_desc *pir_desc;
3368         struct LAPIC *lapic;
3369         uint64_t pending, pirval;
3370         uint32_t ppr, vpr;
3371         int i;
3372
3373         /*
3374          * This function is only expected to be called from the 'HLT' exit
3375          * handler which does not care about the vector that is pending.
3376          */
3377         KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3378
3379         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3380         pir_desc = vlapic_vtx->pir_desc;
3381
3382         pending = atomic_load_acq_long(&pir_desc->pending);
3383         if (!pending) {
3384                 /*
3385                  * While a virtual interrupt may have already been
3386                  * processed the actual delivery maybe pending the
3387                  * interruptibility of the guest.  Recognize a pending
3388                  * interrupt by reevaluating virtual interrupts
3389                  * following Section 29.2.1 in the Intel SDM Volume 3.
3390                  */
3391                 struct vm_exit *vmexit;
3392                 uint8_t rvi, ppr;
3393
3394                 vmexit = vm_exitinfo(vlapic->vm, vlapic->vcpuid);
3395                 KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
3396                     ("vmx_pending_intr: exitcode not 'HLT'"));
3397                 rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
3398                 lapic = vlapic->apic_page;
3399                 ppr = lapic->ppr & APIC_TPR_INT;
3400                 if (rvi > ppr) {
3401                         return (1);
3402                 }
3403
3404                 return (0);
3405         }
3406
3407         /*
3408          * If there is an interrupt pending then it will be recognized only
3409          * if its priority is greater than the processor priority.
3410          *
3411          * Special case: if the processor priority is zero then any pending
3412          * interrupt will be recognized.
3413          */
3414         lapic = vlapic->apic_page;
3415         ppr = lapic->ppr & APIC_TPR_INT;
3416         if (ppr == 0)
3417                 return (1);
3418
3419         VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3420             lapic->ppr);
3421
3422         for (i = 3; i >= 0; i--) {
3423                 pirval = pir_desc->pir[i];
3424                 if (pirval != 0) {
3425                         vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
3426                         return (vpr > ppr);
3427                 }
3428         }
3429         return (0);
3430 }
3431
3432 static void
3433 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3434 {
3435
3436         panic("vmx_intr_accepted: not expected to be called");
3437 }
3438
3439 static void
3440 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3441 {
3442         struct vlapic_vtx *vlapic_vtx;
3443         struct vmx *vmx;
3444         struct vmcs *vmcs;
3445         uint64_t mask, val;
3446
3447         KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3448         KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3449             ("vmx_set_tmr: vcpu cannot be running"));
3450
3451         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3452         vmx = vlapic_vtx->vmx;
3453         vmcs = &vmx->vmcs[vlapic->vcpuid];
3454         mask = 1UL << (vector % 64);
3455
3456         VMPTRLD(vmcs);
3457         val = vmcs_read(VMCS_EOI_EXIT(vector));
3458         if (level)
3459                 val |= mask;
3460         else
3461                 val &= ~mask;
3462         vmcs_write(VMCS_EOI_EXIT(vector), val);
3463         VMCLEAR(vmcs);
3464 }
3465
3466 static void
3467 vmx_enable_x2apic_mode(struct vlapic *vlapic)
3468 {
3469         struct vmx *vmx;
3470         struct vmcs *vmcs;
3471         uint32_t proc_ctls2;
3472         int vcpuid, error;
3473
3474         vcpuid = vlapic->vcpuid;
3475         vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3476         vmcs = &vmx->vmcs[vcpuid];
3477
3478         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3479         KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3480             ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3481
3482         proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3483         proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3484         vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3485
3486         VMPTRLD(vmcs);
3487         vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3488         VMCLEAR(vmcs);
3489
3490         if (vlapic->vcpuid == 0) {
3491                 /*
3492                  * The nested page table mappings are shared by all vcpus
3493                  * so unmap the APIC access page just once.
3494                  */
3495                 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3496                 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3497                     __func__, error));
3498
3499                 /*
3500                  * The MSR bitmap is shared by all vcpus so modify it only
3501                  * once in the context of vcpu 0.
3502                  */
3503                 error = vmx_allow_x2apic_msrs(vmx);
3504                 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3505                     __func__, error));
3506         }
3507 }
3508
3509 static void
3510 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3511 {
3512
3513         ipi_cpu(hostcpu, pirvec);
3514 }
3515
3516 /*
3517  * Transfer the pending interrupts in the PIR descriptor to the IRR
3518  * in the virtual APIC page.
3519  */
3520 static void
3521 vmx_inject_pir(struct vlapic *vlapic)
3522 {
3523         struct vlapic_vtx *vlapic_vtx;
3524         struct pir_desc *pir_desc;
3525         struct LAPIC *lapic;
3526         uint64_t val, pirval;
3527         int rvi, pirbase = -1;
3528         uint16_t intr_status_old, intr_status_new;
3529
3530         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3531         pir_desc = vlapic_vtx->pir_desc;
3532         if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3533                 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3534                     "no posted interrupt pending");
3535                 return;
3536         }
3537
3538         pirval = 0;
3539         pirbase = -1;
3540         lapic = vlapic->apic_page;
3541
3542         val = atomic_readandclear_long(&pir_desc->pir[0]);
3543         if (val != 0) {
3544                 lapic->irr0 |= val;
3545                 lapic->irr1 |= val >> 32;
3546                 pirbase = 0;
3547                 pirval = val;
3548         }
3549
3550         val = atomic_readandclear_long(&pir_desc->pir[1]);
3551         if (val != 0) {
3552                 lapic->irr2 |= val;
3553                 lapic->irr3 |= val >> 32;
3554                 pirbase = 64;
3555                 pirval = val;
3556         }
3557
3558         val = atomic_readandclear_long(&pir_desc->pir[2]);
3559         if (val != 0) {
3560                 lapic->irr4 |= val;
3561                 lapic->irr5 |= val >> 32;
3562                 pirbase = 128;
3563                 pirval = val;
3564         }
3565
3566         val = atomic_readandclear_long(&pir_desc->pir[3]);
3567         if (val != 0) {
3568                 lapic->irr6 |= val;
3569                 lapic->irr7 |= val >> 32;
3570                 pirbase = 192;
3571                 pirval = val;
3572         }
3573
3574         VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3575
3576         /*
3577          * Update RVI so the processor can evaluate pending virtual
3578          * interrupts on VM-entry.
3579          *
3580          * It is possible for pirval to be 0 here, even though the
3581          * pending bit has been set. The scenario is:
3582          * CPU-Y is sending a posted interrupt to CPU-X, which
3583          * is running a guest and processing posted interrupts in h/w.
3584          * CPU-X will eventually exit and the state seen in s/w is
3585          * the pending bit set, but no PIR bits set.
3586          *
3587          *      CPU-X                      CPU-Y
3588          *   (vm running)                (host running)
3589          *   rx posted interrupt
3590          *   CLEAR pending bit
3591          *                               SET PIR bit
3592          *   READ/CLEAR PIR bits
3593          *                               SET pending bit
3594          *   (vm exit)
3595          *   pending bit set, PIR 0
3596          */
3597         if (pirval != 0) {
3598                 rvi = pirbase + flsl(pirval) - 1;
3599                 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3600                 intr_status_new = (intr_status_old & 0xFF00) | rvi;
3601                 if (intr_status_new > intr_status_old) {
3602                         vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3603                         VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3604                             "guest_intr_status changed from 0x%04x to 0x%04x",
3605                             intr_status_old, intr_status_new);
3606                 }
3607         }
3608 }
3609
3610 static struct vlapic *
3611 vmx_vlapic_init(void *arg, int vcpuid)
3612 {
3613         struct vmx *vmx;
3614         struct vlapic *vlapic;
3615         struct vlapic_vtx *vlapic_vtx;
3616         
3617         vmx = arg;
3618
3619         vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3620         vlapic->vm = vmx->vm;
3621         vlapic->vcpuid = vcpuid;
3622         vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3623
3624         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3625         vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3626         vlapic_vtx->vmx = vmx;
3627
3628         if (virtual_interrupt_delivery) {
3629                 vlapic->ops.set_intr_ready = vmx_set_intr_ready;
3630                 vlapic->ops.pending_intr = vmx_pending_intr;
3631                 vlapic->ops.intr_accepted = vmx_intr_accepted;
3632                 vlapic->ops.set_tmr = vmx_set_tmr;
3633                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode;
3634         }
3635
3636         if (posted_interrupts)
3637                 vlapic->ops.post_intr = vmx_post_intr;
3638
3639         vlapic_init(vlapic);
3640
3641         return (vlapic);
3642 }
3643
3644 static void
3645 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3646 {
3647
3648         vlapic_cleanup(vlapic);
3649         free(vlapic, M_VLAPIC);
3650 }
3651
3652 struct vmm_ops vmm_ops_intel = {
3653         vmx_init,
3654         vmx_cleanup,
3655         vmx_restore,
3656         vmx_vminit,
3657         vmx_run,
3658         vmx_vmcleanup,
3659         vmx_getreg,
3660         vmx_setreg,
3661         vmx_getdesc,
3662         vmx_setdesc,
3663         vmx_getcap,
3664         vmx_setcap,
3665         ept_vmspace_alloc,
3666         ept_vmspace_free,
3667         vmx_vlapic_init,
3668         vmx_vlapic_cleanup,
3669 };