]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/common/t4_hw.c
cxgbe(4): Stop but don't free netmap queues when netmap is switched off.
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / common / t4_hw.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_inet.h"
33
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41
42 #undef msleep
43 #define msleep(x) do { \
44         if (cold) \
45                 DELAY((x) * 1000); \
46         else \
47                 pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49
50 /**
51  *      t4_wait_op_done_val - wait until an operation is completed
52  *      @adapter: the adapter performing the operation
53  *      @reg: the register to check for completion
54  *      @mask: a single-bit field within @reg that indicates completion
55  *      @polarity: the value of the field when the operation is completed
56  *      @attempts: number of check iterations
57  *      @delay: delay in usecs between iterations
58  *      @valp: where to store the value of the register at completion time
59  *
60  *      Wait until an operation is completed by checking a bit in a register
61  *      up to @attempts times.  If @valp is not NULL the value of the register
62  *      at the time it indicated completion is stored there.  Returns 0 if the
63  *      operation completes and -EAGAIN otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66                                int polarity, int attempts, int delay, u32 *valp)
67 {
68         while (1) {
69                 u32 val = t4_read_reg(adapter, reg);
70
71                 if (!!(val & mask) == polarity) {
72                         if (valp)
73                                 *valp = val;
74                         return 0;
75                 }
76                 if (--attempts == 0)
77                         return -EAGAIN;
78                 if (delay)
79                         udelay(delay);
80         }
81 }
82
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84                                   int polarity, int attempts, int delay)
85 {
86         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87                                    delay, NULL);
88 }
89
90 /**
91  *      t4_set_reg_field - set a register field to a value
92  *      @adapter: the adapter to program
93  *      @addr: the register address
94  *      @mask: specifies the portion of the register to modify
95  *      @val: the new value for the register field
96  *
97  *      Sets a register field specified by the supplied mask to the
98  *      given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101                       u32 val)
102 {
103         u32 v = t4_read_reg(adapter, addr) & ~mask;
104
105         t4_write_reg(adapter, addr, v | val);
106         (void) t4_read_reg(adapter, addr);      /* flush */
107 }
108
109 /**
110  *      t4_read_indirect - read indirectly addressed registers
111  *      @adap: the adapter
112  *      @addr_reg: register holding the indirect address
113  *      @data_reg: register holding the value of the indirect register
114  *      @vals: where the read register values are stored
115  *      @nregs: how many indirect registers to read
116  *      @start_idx: index of first indirect register to read
117  *
118  *      Reads registers that are accessed indirectly through an address/data
119  *      register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122                              unsigned int data_reg, u32 *vals,
123                              unsigned int nregs, unsigned int start_idx)
124 {
125         while (nregs--) {
126                 t4_write_reg(adap, addr_reg, start_idx);
127                 *vals++ = t4_read_reg(adap, data_reg);
128                 start_idx++;
129         }
130 }
131
132 /**
133  *      t4_write_indirect - write indirectly addressed registers
134  *      @adap: the adapter
135  *      @addr_reg: register holding the indirect addresses
136  *      @data_reg: register holding the value for the indirect registers
137  *      @vals: values to write
138  *      @nregs: how many indirect registers to write
139  *      @start_idx: address of first indirect register to write
140  *
141  *      Writes a sequential block of registers that are accessed indirectly
142  *      through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145                        unsigned int data_reg, const u32 *vals,
146                        unsigned int nregs, unsigned int start_idx)
147 {
148         while (nregs--) {
149                 t4_write_reg(adap, addr_reg, start_idx++);
150                 t4_write_reg(adap, data_reg, *vals++);
151         }
152 }
153
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166         u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167         u32 val;
168
169         if (chip_id(adap) <= CHELSIO_T5)
170                 req |= F_ENABLE;
171         else
172                 req |= F_T6_ENABLE;
173
174         if (is_t4(adap))
175                 req |= F_LOCALCFG;
176
177         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178         val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179
180         /*
181          * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182          * Configuration Space read.  (None of the other fields matter when
183          * F_ENABLE is 0 so a simple register write is easier than a
184          * read-modify-write via t4_set_reg_field().)
185          */
186         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187
188         return val;
189 }
190
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201         static const char *const reason[] = {
202                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
203                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
204                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
205                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
206                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
208                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
209                 "Reserved",                     /* reserved */
210         };
211         u32 pcie_fw;
212
213         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214         if (pcie_fw & F_PCIE_FW_ERR) {
215                 adap->flags &= ~FW_OK;
216                 CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217                     reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218                 if (pcie_fw != 0xffffffff)
219                         t4_os_dump_devlog(adap);
220         }
221 }
222
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227                          u32 mbox_addr)
228 {
229         for ( ; nflit; nflit--, mbox_addr += 8)
230                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238         CH_ALERT(adap,
239                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240                   asrt->u.assert.filename_0_7,
241                   be32_to_cpu(asrt->u.assert.line),
242                   be32_to_cpu(asrt->u.assert.x),
243                   be32_to_cpu(asrt->u.assert.y));
244 }
245
246 struct port_tx_state {
247         uint64_t rx_pause;
248         uint64_t tx_frames;
249 };
250
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254         uint32_t rx_pause_reg, tx_frames_reg;
255
256         if (is_t4(sc)) {
257                 tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258                 rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259         } else {
260                 tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261                 rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262         }
263
264         tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265         tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271         int i;
272
273         for_each_port(sc, i)
274                 read_tx_state_one(sc, i, &tx_state[i]);
275 }
276
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280         uint32_t port_ctl_reg;
281         uint64_t tx_frames, rx_pause;
282         int i;
283
284         for_each_port(sc, i) {
285                 rx_pause = tx_state[i].rx_pause;
286                 tx_frames = tx_state[i].tx_frames;
287                 read_tx_state_one(sc, i, &tx_state[i]); /* update */
288
289                 if (is_t4(sc))
290                         port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291                 else
292                         port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293                 if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294                     rx_pause != tx_state[i].rx_pause &&
295                     tx_frames == tx_state[i].tx_frames) {
296                         t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297                         mdelay(1);
298                         t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299                 }
300         }
301 }
302
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *      @adap: the adapter
307  *      @mbox: index of the mailbox to use
308  *      @cmd: the command to write
309  *      @size: command length in bytes
310  *      @rpl: where to optionally store the reply
311  *      @sleep_ok: if true we may sleep while awaiting command completion
312  *      @timeout: time to wait for command to finish before timing out
313  *              (negative implies @sleep_ok=false)
314  *
315  *      Sends the given command to FW through the selected mailbox and waits
316  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *      store the FW's reply to the command.  The command and its optional
318  *      reply are of the same length.  Some FW commands like RESET and
319  *      INITIALIZE can take a considerable amount of time to execute.
320  *      @sleep_ok determines whether we may sleep while awaiting the response.
321  *      If sleeping is allowed we use progressive backoff otherwise we spin.
322  *      Note that passing in a negative @timeout is an alternate mechanism
323  *      for specifying @sleep_ok=false.  This is useful when a higher level
324  *      interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *      The return value is 0 on success or a negative errno on failure.  A
327  *      failure can happen either because we are not able to execute the
328  *      command or FW executes it but signals an error.  In the latter case
329  *      the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332                             int size, void *rpl, bool sleep_ok, int timeout)
333 {
334         /*
335          * We delay in small increments at first in an effort to maintain
336          * responsiveness for simple, fast executing commands but then back
337          * off to larger delays to a maximum retry delay.
338          */
339         static const int delay[] = {
340                 1, 1, 3, 5, 10, 10, 20, 50, 100
341         };
342         u32 v;
343         u64 res;
344         int i, ms, delay_idx, ret, next_tx_check;
345         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347         u32 ctl;
348         __be64 cmd_rpl[MBOX_LEN/8];
349         u32 pcie_fw;
350         struct port_tx_state tx_state[MAX_NPORTS];
351
352         if (adap->flags & CHK_MBOX_ACCESS)
353                 ASSERT_SYNCHRONIZED_OP(adap);
354
355         if (size <= 0 || (size & 15) || size > MBOX_LEN)
356                 return -EINVAL;
357
358         if (adap->flags & IS_VF) {
359                 if (is_t6(adap))
360                         data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361                 else
362                         data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363                 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364         }
365
366         /*
367          * If we have a negative timeout, that implies that we can't sleep.
368          */
369         if (timeout < 0) {
370                 sleep_ok = false;
371                 timeout = -timeout;
372         }
373
374         /*
375          * Attempt to gain access to the mailbox.
376          */
377         for (i = 0; i < 4; i++) {
378                 ctl = t4_read_reg(adap, ctl_reg);
379                 v = G_MBOWNER(ctl);
380                 if (v != X_MBOWNER_NONE)
381                         break;
382         }
383
384         /*
385          * If we were unable to gain access, report the error to our caller.
386          */
387         if (v != X_MBOWNER_PL) {
388                 t4_report_fw_error(adap);
389                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390                 return ret;
391         }
392
393         /*
394          * If we gain ownership of the mailbox and there's a "valid" message
395          * in it, this is likely an asynchronous error message from the
396          * firmware.  So we'll report that and then proceed on with attempting
397          * to issue our own command ... which may well fail if the error
398          * presaged the firmware crashing ...
399          */
400         if (ctl & F_MBMSGVALID) {
401                 CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402         }
403
404         /*
405          * Copy in the new mailbox command and send it on its way ...
406          */
407         memset(cmd_rpl, 0, sizeof(cmd_rpl));
408         memcpy(cmd_rpl, cmd, size);
409         CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410         for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411                 t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412
413         if (adap->flags & IS_VF) {
414                 /*
415                  * For the VFs, the Mailbox Data "registers" are
416                  * actually backed by T4's "MA" interface rather than
417                  * PL Registers (as is the case for the PFs).  Because
418                  * these are in different coherency domains, the write
419                  * to the VF's PL-register-backed Mailbox Control can
420                  * race in front of the writes to the MA-backed VF
421                  * Mailbox Data "registers".  So we need to do a
422                  * read-back on at least one byte of the VF Mailbox
423                  * Data registers before doing the write to the VF
424                  * Mailbox Control register.
425                  */
426                 t4_read_reg(adap, data_reg);
427         }
428
429         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430         read_tx_state(adap, &tx_state[0]);      /* also flushes the write_reg */
431         next_tx_check = 1000;
432         delay_idx = 0;
433         ms = delay[0];
434
435         /*
436          * Loop waiting for the reply; bail out if we time out or the firmware
437          * reports an error.
438          */
439         pcie_fw = 0;
440         for (i = 0; i < timeout; i += ms) {
441                 if (!(adap->flags & IS_VF)) {
442                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443                         if (pcie_fw & F_PCIE_FW_ERR)
444                                 break;
445                 }
446
447                 if (i >= next_tx_check) {
448                         check_tx_state(adap, &tx_state[0]);
449                         next_tx_check = i + 1000;
450                 }
451
452                 if (sleep_ok) {
453                         ms = delay[delay_idx];  /* last element may repeat */
454                         if (delay_idx < ARRAY_SIZE(delay) - 1)
455                                 delay_idx++;
456                         msleep(ms);
457                 } else {
458                         mdelay(ms);
459                 }
460
461                 v = t4_read_reg(adap, ctl_reg);
462                 if (v == X_CIM_PF_NOACCESS)
463                         continue;
464                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
465                         if (!(v & F_MBMSGVALID)) {
466                                 t4_write_reg(adap, ctl_reg,
467                                              V_MBOWNER(X_MBOWNER_NONE));
468                                 continue;
469                         }
470
471                         /*
472                          * Retrieve the command reply and release the mailbox.
473                          */
474                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475                         CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477
478                         res = be64_to_cpu(cmd_rpl[0]);
479                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480                                 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481                                 res = V_FW_CMD_RETVAL(EIO);
482                         } else if (rpl)
483                                 memcpy(rpl, cmd_rpl, size);
484                         return -G_FW_CMD_RETVAL((int)res);
485                 }
486         }
487
488         /*
489          * We timed out waiting for a reply to our mailbox command.  Report
490          * the error and also check to see if the firmware reported any
491          * errors ...
492          */
493         CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494             *(const u8 *)cmd, mbox, pcie_fw);
495         CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496         CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497
498         if (pcie_fw & F_PCIE_FW_ERR) {
499                 ret = -ENXIO;
500                 t4_report_fw_error(adap);
501         } else {
502                 ret = -ETIMEDOUT;
503                 t4_os_dump_devlog(adap);
504         }
505
506         t4_fatal_err(adap, true);
507         return ret;
508 }
509
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511                     void *rpl, bool sleep_ok)
512 {
513                 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514                                                sleep_ok, FW_CMD_MAX_TIMEOUT);
515
516 }
517
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520         u32 edc_ecc_err_addr_reg;
521         u32 edc_bist_status_rdata_reg;
522
523         if (is_t4(adap)) {
524                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525                 return 0;
526         }
527         if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529                 return 0;
530         }
531
532         edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533         edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534
535         CH_WARN(adap,
536                 "edc%d err addr 0x%x: 0x%x.\n",
537                 idx, edc_ecc_err_addr_reg,
538                 t4_read_reg(adap, edc_ecc_err_addr_reg));
539         CH_WARN(adap,
540                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541                 edc_bist_status_rdata_reg,
542                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551
552         return 0;
553 }
554
555 /**
556  *      t4_mc_read - read from MC through backdoor accesses
557  *      @adap: the adapter
558  *      @idx: which MC to access
559  *      @addr: address of first byte requested
560  *      @data: 64 bytes of data containing the requested address
561  *      @ecc: where to store the corresponding 64-bit ECC word
562  *
563  *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *      that covers the requested address @addr.  If @parity is not %NULL it
565  *      is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569         int i;
570         u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571         u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572
573         if (is_t4(adap)) {
574                 mc_bist_cmd_reg = A_MC_BIST_CMD;
575                 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576                 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577                 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578                 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579         } else {
580                 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581                 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582                 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583                 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584                                                   idx);
585                 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586                                                   idx);
587         }
588
589         if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590                 return -EBUSY;
591         t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592         t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593         t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594         t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595                      F_START_BIST | V_BIST_CMD_GAP(1));
596         i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597         if (i)
598                 return i;
599
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601
602         for (i = 15; i >= 0; i--)
603                 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604         if (ecc)
605                 *ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607         return 0;
608 }
609
610 /**
611  *      t4_edc_read - read from EDC through backdoor accesses
612  *      @adap: the adapter
613  *      @idx: which EDC to access
614  *      @addr: address of first byte requested
615  *      @data: 64 bytes of data containing the requested address
616  *      @ecc: where to store the corresponding 64-bit ECC word
617  *
618  *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *      that covers the requested address @addr.  If @parity is not %NULL it
620  *      is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624         int i;
625         u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626         u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627
628         if (is_t4(adap)) {
629                 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630                 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631                 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632                 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633                                                     idx);
634                 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635                                                     idx);
636         } else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643                 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644                 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645                 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646                 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647                                                     idx);
648                 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649                                                     idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652         }
653
654         if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655                 return -EBUSY;
656         t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657         t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658         t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659         t4_write_reg(adap, edc_bist_cmd_reg,
660                      V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661         i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662         if (i)
663                 return i;
664
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666
667         for (i = 15; i >= 0; i--)
668                 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669         if (ecc)
670                 *ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672         return 0;
673 }
674
675 /**
676  *      t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *      @adap: the adapter
678  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *      @addr: address within indicated memory type
680  *      @len: amount of memory to read
681  *      @buf: host memory buffer
682  *
683  *      Reads an [almost] arbitrary memory region in the firmware: the
684  *      firmware memory address, length and host buffer must be aligned on
685  *      32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *      the firmware's memory.  If this memory contains data structures which
687  *      contain multi-byte integers, it's the callers responsibility to
688  *      perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691                 __be32 *buf)
692 {
693         u32 pos, start, end, offset;
694         int ret;
695
696         /*
697          * Argument sanity checks ...
698          */
699         if ((addr & 0x3) || (len & 0x3))
700                 return -EINVAL;
701
702         /*
703          * The underlaying EDC/MC read routines read 64 bytes at a time so we
704          * need to round down the start and round up the end.  We'll start
705          * copying out of the first line at (addr - start) a word at a time.
706          */
707         start = rounddown2(addr, 64);
708         end = roundup2(addr + len, 64);
709         offset = (addr - start)/sizeof(__be32);
710
711         for (pos = start; pos < end; pos += 64, offset = 0) {
712                 __be32 data[16];
713
714                 /*
715                  * Read the chip's memory block and bail if there's an error.
716                  */
717                 if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718                         ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719                 else
720                         ret = t4_edc_read(adap, mtype, pos, data, NULL);
721                 if (ret)
722                         return ret;
723
724                 /*
725                  * Copy the data into the caller's memory buffer.
726                  */
727                 while (offset < 16 && len > 0) {
728                         *buf++ = data[offset++];
729                         len -= sizeof(__be32);
730                 }
731         }
732
733         return 0;
734 }
735
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744
745         /*
746          * If fw_attach != 0, construct and send the Firmware LDST Command to
747          * retrieve the specified PCI-E Configuration Space register.
748          */
749         if (drv_fw_attach != 0) {
750                 struct fw_ldst_cmd ldst_cmd;
751                 int ret;
752
753                 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754                 ldst_cmd.op_to_addrspace =
755                         cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756                                     F_FW_CMD_REQUEST |
757                                     F_FW_CMD_READ |
758                                     V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759                 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760                 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761                 ldst_cmd.u.pcie.ctrl_to_fn =
762                         (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763                 ldst_cmd.u.pcie.r = reg;
764
765                 /*
766                  * If the LDST Command succeeds, return the result, otherwise
767                  * fall through to reading it directly ourselves ...
768                  */
769                 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770                                  &ldst_cmd);
771                 if (ret == 0)
772                         return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773
774                 CH_WARN(adap, "Firmware failed to return "
775                         "Configuration Space register %d, err = %d\n",
776                         reg, -ret);
777         }
778
779         /*
780          * Read the desired Configuration Space register via the PCI-E
781          * Backdoor mechanism.
782          */
783         return t4_hw_pci_read_cfg4(adap, reg);
784 }
785
786 /**
787  *      t4_get_regs_len - return the size of the chips register set
788  *      @adapter: the adapter
789  *
790  *      Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794         unsigned int chip_version = chip_id(adapter);
795
796         switch (chip_version) {
797         case CHELSIO_T4:
798                 if (adapter->flags & IS_VF)
799                         return FW_T4VF_REGMAP_SIZE;
800                 return T4_REGMAP_SIZE;
801
802         case CHELSIO_T5:
803         case CHELSIO_T6:
804                 if (adapter->flags & IS_VF)
805                         return FW_T4VF_REGMAP_SIZE;
806                 return T5_REGMAP_SIZE;
807         }
808
809         CH_ERR(adapter,
810                 "Unsupported chip version %d\n", chip_version);
811         return 0;
812 }
813
814 /**
815  *      t4_get_regs - read chip registers into provided buffer
816  *      @adap: the adapter
817  *      @buf: register buffer
818  *      @buf_size: size (in bytes) of register buffer
819  *
820  *      If the provided register buffer isn't large enough for the chip's
821  *      full register range, the register dump will be truncated to the
822  *      register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826         static const unsigned int t4_reg_ranges[] = {
827                 0x1008, 0x1108,
828                 0x1180, 0x1184,
829                 0x1190, 0x1194,
830                 0x11a0, 0x11a4,
831                 0x11b0, 0x11b4,
832                 0x11fc, 0x123c,
833                 0x1300, 0x173c,
834                 0x1800, 0x18fc,
835                 0x3000, 0x30d8,
836                 0x30e0, 0x30e4,
837                 0x30ec, 0x5910,
838                 0x5920, 0x5924,
839                 0x5960, 0x5960,
840                 0x5968, 0x5968,
841                 0x5970, 0x5970,
842                 0x5978, 0x5978,
843                 0x5980, 0x5980,
844                 0x5988, 0x5988,
845                 0x5990, 0x5990,
846                 0x5998, 0x5998,
847                 0x59a0, 0x59d4,
848                 0x5a00, 0x5ae0,
849                 0x5ae8, 0x5ae8,
850                 0x5af0, 0x5af0,
851                 0x5af8, 0x5af8,
852                 0x6000, 0x6098,
853                 0x6100, 0x6150,
854                 0x6200, 0x6208,
855                 0x6240, 0x6248,
856                 0x6280, 0x62b0,
857                 0x62c0, 0x6338,
858                 0x6370, 0x638c,
859                 0x6400, 0x643c,
860                 0x6500, 0x6524,
861                 0x6a00, 0x6a04,
862                 0x6a14, 0x6a38,
863                 0x6a60, 0x6a70,
864                 0x6a78, 0x6a78,
865                 0x6b00, 0x6b0c,
866                 0x6b1c, 0x6b84,
867                 0x6bf0, 0x6bf8,
868                 0x6c00, 0x6c0c,
869                 0x6c1c, 0x6c84,
870                 0x6cf0, 0x6cf8,
871                 0x6d00, 0x6d0c,
872                 0x6d1c, 0x6d84,
873                 0x6df0, 0x6df8,
874                 0x6e00, 0x6e0c,
875                 0x6e1c, 0x6e84,
876                 0x6ef0, 0x6ef8,
877                 0x6f00, 0x6f0c,
878                 0x6f1c, 0x6f84,
879                 0x6ff0, 0x6ff8,
880                 0x7000, 0x700c,
881                 0x701c, 0x7084,
882                 0x70f0, 0x70f8,
883                 0x7100, 0x710c,
884                 0x711c, 0x7184,
885                 0x71f0, 0x71f8,
886                 0x7200, 0x720c,
887                 0x721c, 0x7284,
888                 0x72f0, 0x72f8,
889                 0x7300, 0x730c,
890                 0x731c, 0x7384,
891                 0x73f0, 0x73f8,
892                 0x7400, 0x7450,
893                 0x7500, 0x7530,
894                 0x7600, 0x760c,
895                 0x7614, 0x761c,
896                 0x7680, 0x76cc,
897                 0x7700, 0x7798,
898                 0x77c0, 0x77fc,
899                 0x7900, 0x79fc,
900                 0x7b00, 0x7b58,
901                 0x7b60, 0x7b84,
902                 0x7b8c, 0x7c38,
903                 0x7d00, 0x7d38,
904                 0x7d40, 0x7d80,
905                 0x7d8c, 0x7ddc,
906                 0x7de4, 0x7e04,
907                 0x7e10, 0x7e1c,
908                 0x7e24, 0x7e38,
909                 0x7e40, 0x7e44,
910                 0x7e4c, 0x7e78,
911                 0x7e80, 0x7ea4,
912                 0x7eac, 0x7edc,
913                 0x7ee8, 0x7efc,
914                 0x8dc0, 0x8e04,
915                 0x8e10, 0x8e1c,
916                 0x8e30, 0x8e78,
917                 0x8ea0, 0x8eb8,
918                 0x8ec0, 0x8f6c,
919                 0x8fc0, 0x9008,
920                 0x9010, 0x9058,
921                 0x9060, 0x9060,
922                 0x9068, 0x9074,
923                 0x90fc, 0x90fc,
924                 0x9400, 0x9408,
925                 0x9410, 0x9458,
926                 0x9600, 0x9600,
927                 0x9608, 0x9638,
928                 0x9640, 0x96bc,
929                 0x9800, 0x9808,
930                 0x9820, 0x983c,
931                 0x9850, 0x9864,
932                 0x9c00, 0x9c6c,
933                 0x9c80, 0x9cec,
934                 0x9d00, 0x9d6c,
935                 0x9d80, 0x9dec,
936                 0x9e00, 0x9e6c,
937                 0x9e80, 0x9eec,
938                 0x9f00, 0x9f6c,
939                 0x9f80, 0x9fec,
940                 0xd004, 0xd004,
941                 0xd010, 0xd03c,
942                 0xdfc0, 0xdfe0,
943                 0xe000, 0xea7c,
944                 0xf000, 0x11110,
945                 0x11118, 0x11190,
946                 0x19040, 0x1906c,
947                 0x19078, 0x19080,
948                 0x1908c, 0x190e4,
949                 0x190f0, 0x190f8,
950                 0x19100, 0x19110,
951                 0x19120, 0x19124,
952                 0x19150, 0x19194,
953                 0x1919c, 0x191b0,
954                 0x191d0, 0x191e8,
955                 0x19238, 0x1924c,
956                 0x193f8, 0x1943c,
957                 0x1944c, 0x19474,
958                 0x19490, 0x194e0,
959                 0x194f0, 0x194f8,
960                 0x19800, 0x19c08,
961                 0x19c10, 0x19c90,
962                 0x19ca0, 0x19ce4,
963                 0x19cf0, 0x19d40,
964                 0x19d50, 0x19d94,
965                 0x19da0, 0x19de8,
966                 0x19df0, 0x19e40,
967                 0x19e50, 0x19e90,
968                 0x19ea0, 0x19f4c,
969                 0x1a000, 0x1a004,
970                 0x1a010, 0x1a06c,
971                 0x1a0b0, 0x1a0e4,
972                 0x1a0ec, 0x1a0f4,
973                 0x1a100, 0x1a108,
974                 0x1a114, 0x1a120,
975                 0x1a128, 0x1a130,
976                 0x1a138, 0x1a138,
977                 0x1a190, 0x1a1c4,
978                 0x1a1fc, 0x1a1fc,
979                 0x1e040, 0x1e04c,
980                 0x1e284, 0x1e28c,
981                 0x1e2c0, 0x1e2c0,
982                 0x1e2e0, 0x1e2e0,
983                 0x1e300, 0x1e384,
984                 0x1e3c0, 0x1e3c8,
985                 0x1e440, 0x1e44c,
986                 0x1e684, 0x1e68c,
987                 0x1e6c0, 0x1e6c0,
988                 0x1e6e0, 0x1e6e0,
989                 0x1e700, 0x1e784,
990                 0x1e7c0, 0x1e7c8,
991                 0x1e840, 0x1e84c,
992                 0x1ea84, 0x1ea8c,
993                 0x1eac0, 0x1eac0,
994                 0x1eae0, 0x1eae0,
995                 0x1eb00, 0x1eb84,
996                 0x1ebc0, 0x1ebc8,
997                 0x1ec40, 0x1ec4c,
998                 0x1ee84, 0x1ee8c,
999                 0x1eec0, 0x1eec0,
1000                 0x1eee0, 0x1eee0,
1001                 0x1ef00, 0x1ef84,
1002                 0x1efc0, 0x1efc8,
1003                 0x1f040, 0x1f04c,
1004                 0x1f284, 0x1f28c,
1005                 0x1f2c0, 0x1f2c0,
1006                 0x1f2e0, 0x1f2e0,
1007                 0x1f300, 0x1f384,
1008                 0x1f3c0, 0x1f3c8,
1009                 0x1f440, 0x1f44c,
1010                 0x1f684, 0x1f68c,
1011                 0x1f6c0, 0x1f6c0,
1012                 0x1f6e0, 0x1f6e0,
1013                 0x1f700, 0x1f784,
1014                 0x1f7c0, 0x1f7c8,
1015                 0x1f840, 0x1f84c,
1016                 0x1fa84, 0x1fa8c,
1017                 0x1fac0, 0x1fac0,
1018                 0x1fae0, 0x1fae0,
1019                 0x1fb00, 0x1fb84,
1020                 0x1fbc0, 0x1fbc8,
1021                 0x1fc40, 0x1fc4c,
1022                 0x1fe84, 0x1fe8c,
1023                 0x1fec0, 0x1fec0,
1024                 0x1fee0, 0x1fee0,
1025                 0x1ff00, 0x1ff84,
1026                 0x1ffc0, 0x1ffc8,
1027                 0x20000, 0x2002c,
1028                 0x20100, 0x2013c,
1029                 0x20190, 0x201a0,
1030                 0x201a8, 0x201b8,
1031                 0x201c4, 0x201c8,
1032                 0x20200, 0x20318,
1033                 0x20400, 0x204b4,
1034                 0x204c0, 0x20528,
1035                 0x20540, 0x20614,
1036                 0x21000, 0x21040,
1037                 0x2104c, 0x21060,
1038                 0x210c0, 0x210ec,
1039                 0x21200, 0x21268,
1040                 0x21270, 0x21284,
1041                 0x212fc, 0x21388,
1042                 0x21400, 0x21404,
1043                 0x21500, 0x21500,
1044                 0x21510, 0x21518,
1045                 0x2152c, 0x21530,
1046                 0x2153c, 0x2153c,
1047                 0x21550, 0x21554,
1048                 0x21600, 0x21600,
1049                 0x21608, 0x2161c,
1050                 0x21624, 0x21628,
1051                 0x21630, 0x21634,
1052                 0x2163c, 0x2163c,
1053                 0x21700, 0x2171c,
1054                 0x21780, 0x2178c,
1055                 0x21800, 0x21818,
1056                 0x21820, 0x21828,
1057                 0x21830, 0x21848,
1058                 0x21850, 0x21854,
1059                 0x21860, 0x21868,
1060                 0x21870, 0x21870,
1061                 0x21878, 0x21898,
1062                 0x218a0, 0x218a8,
1063                 0x218b0, 0x218c8,
1064                 0x218d0, 0x218d4,
1065                 0x218e0, 0x218e8,
1066                 0x218f0, 0x218f0,
1067                 0x218f8, 0x21a18,
1068                 0x21a20, 0x21a28,
1069                 0x21a30, 0x21a48,
1070                 0x21a50, 0x21a54,
1071                 0x21a60, 0x21a68,
1072                 0x21a70, 0x21a70,
1073                 0x21a78, 0x21a98,
1074                 0x21aa0, 0x21aa8,
1075                 0x21ab0, 0x21ac8,
1076                 0x21ad0, 0x21ad4,
1077                 0x21ae0, 0x21ae8,
1078                 0x21af0, 0x21af0,
1079                 0x21af8, 0x21c18,
1080                 0x21c20, 0x21c20,
1081                 0x21c28, 0x21c30,
1082                 0x21c38, 0x21c38,
1083                 0x21c80, 0x21c98,
1084                 0x21ca0, 0x21ca8,
1085                 0x21cb0, 0x21cc8,
1086                 0x21cd0, 0x21cd4,
1087                 0x21ce0, 0x21ce8,
1088                 0x21cf0, 0x21cf0,
1089                 0x21cf8, 0x21d7c,
1090                 0x21e00, 0x21e04,
1091                 0x22000, 0x2202c,
1092                 0x22100, 0x2213c,
1093                 0x22190, 0x221a0,
1094                 0x221a8, 0x221b8,
1095                 0x221c4, 0x221c8,
1096                 0x22200, 0x22318,
1097                 0x22400, 0x224b4,
1098                 0x224c0, 0x22528,
1099                 0x22540, 0x22614,
1100                 0x23000, 0x23040,
1101                 0x2304c, 0x23060,
1102                 0x230c0, 0x230ec,
1103                 0x23200, 0x23268,
1104                 0x23270, 0x23284,
1105                 0x232fc, 0x23388,
1106                 0x23400, 0x23404,
1107                 0x23500, 0x23500,
1108                 0x23510, 0x23518,
1109                 0x2352c, 0x23530,
1110                 0x2353c, 0x2353c,
1111                 0x23550, 0x23554,
1112                 0x23600, 0x23600,
1113                 0x23608, 0x2361c,
1114                 0x23624, 0x23628,
1115                 0x23630, 0x23634,
1116                 0x2363c, 0x2363c,
1117                 0x23700, 0x2371c,
1118                 0x23780, 0x2378c,
1119                 0x23800, 0x23818,
1120                 0x23820, 0x23828,
1121                 0x23830, 0x23848,
1122                 0x23850, 0x23854,
1123                 0x23860, 0x23868,
1124                 0x23870, 0x23870,
1125                 0x23878, 0x23898,
1126                 0x238a0, 0x238a8,
1127                 0x238b0, 0x238c8,
1128                 0x238d0, 0x238d4,
1129                 0x238e0, 0x238e8,
1130                 0x238f0, 0x238f0,
1131                 0x238f8, 0x23a18,
1132                 0x23a20, 0x23a28,
1133                 0x23a30, 0x23a48,
1134                 0x23a50, 0x23a54,
1135                 0x23a60, 0x23a68,
1136                 0x23a70, 0x23a70,
1137                 0x23a78, 0x23a98,
1138                 0x23aa0, 0x23aa8,
1139                 0x23ab0, 0x23ac8,
1140                 0x23ad0, 0x23ad4,
1141                 0x23ae0, 0x23ae8,
1142                 0x23af0, 0x23af0,
1143                 0x23af8, 0x23c18,
1144                 0x23c20, 0x23c20,
1145                 0x23c28, 0x23c30,
1146                 0x23c38, 0x23c38,
1147                 0x23c80, 0x23c98,
1148                 0x23ca0, 0x23ca8,
1149                 0x23cb0, 0x23cc8,
1150                 0x23cd0, 0x23cd4,
1151                 0x23ce0, 0x23ce8,
1152                 0x23cf0, 0x23cf0,
1153                 0x23cf8, 0x23d7c,
1154                 0x23e00, 0x23e04,
1155                 0x24000, 0x2402c,
1156                 0x24100, 0x2413c,
1157                 0x24190, 0x241a0,
1158                 0x241a8, 0x241b8,
1159                 0x241c4, 0x241c8,
1160                 0x24200, 0x24318,
1161                 0x24400, 0x244b4,
1162                 0x244c0, 0x24528,
1163                 0x24540, 0x24614,
1164                 0x25000, 0x25040,
1165                 0x2504c, 0x25060,
1166                 0x250c0, 0x250ec,
1167                 0x25200, 0x25268,
1168                 0x25270, 0x25284,
1169                 0x252fc, 0x25388,
1170                 0x25400, 0x25404,
1171                 0x25500, 0x25500,
1172                 0x25510, 0x25518,
1173                 0x2552c, 0x25530,
1174                 0x2553c, 0x2553c,
1175                 0x25550, 0x25554,
1176                 0x25600, 0x25600,
1177                 0x25608, 0x2561c,
1178                 0x25624, 0x25628,
1179                 0x25630, 0x25634,
1180                 0x2563c, 0x2563c,
1181                 0x25700, 0x2571c,
1182                 0x25780, 0x2578c,
1183                 0x25800, 0x25818,
1184                 0x25820, 0x25828,
1185                 0x25830, 0x25848,
1186                 0x25850, 0x25854,
1187                 0x25860, 0x25868,
1188                 0x25870, 0x25870,
1189                 0x25878, 0x25898,
1190                 0x258a0, 0x258a8,
1191                 0x258b0, 0x258c8,
1192                 0x258d0, 0x258d4,
1193                 0x258e0, 0x258e8,
1194                 0x258f0, 0x258f0,
1195                 0x258f8, 0x25a18,
1196                 0x25a20, 0x25a28,
1197                 0x25a30, 0x25a48,
1198                 0x25a50, 0x25a54,
1199                 0x25a60, 0x25a68,
1200                 0x25a70, 0x25a70,
1201                 0x25a78, 0x25a98,
1202                 0x25aa0, 0x25aa8,
1203                 0x25ab0, 0x25ac8,
1204                 0x25ad0, 0x25ad4,
1205                 0x25ae0, 0x25ae8,
1206                 0x25af0, 0x25af0,
1207                 0x25af8, 0x25c18,
1208                 0x25c20, 0x25c20,
1209                 0x25c28, 0x25c30,
1210                 0x25c38, 0x25c38,
1211                 0x25c80, 0x25c98,
1212                 0x25ca0, 0x25ca8,
1213                 0x25cb0, 0x25cc8,
1214                 0x25cd0, 0x25cd4,
1215                 0x25ce0, 0x25ce8,
1216                 0x25cf0, 0x25cf0,
1217                 0x25cf8, 0x25d7c,
1218                 0x25e00, 0x25e04,
1219                 0x26000, 0x2602c,
1220                 0x26100, 0x2613c,
1221                 0x26190, 0x261a0,
1222                 0x261a8, 0x261b8,
1223                 0x261c4, 0x261c8,
1224                 0x26200, 0x26318,
1225                 0x26400, 0x264b4,
1226                 0x264c0, 0x26528,
1227                 0x26540, 0x26614,
1228                 0x27000, 0x27040,
1229                 0x2704c, 0x27060,
1230                 0x270c0, 0x270ec,
1231                 0x27200, 0x27268,
1232                 0x27270, 0x27284,
1233                 0x272fc, 0x27388,
1234                 0x27400, 0x27404,
1235                 0x27500, 0x27500,
1236                 0x27510, 0x27518,
1237                 0x2752c, 0x27530,
1238                 0x2753c, 0x2753c,
1239                 0x27550, 0x27554,
1240                 0x27600, 0x27600,
1241                 0x27608, 0x2761c,
1242                 0x27624, 0x27628,
1243                 0x27630, 0x27634,
1244                 0x2763c, 0x2763c,
1245                 0x27700, 0x2771c,
1246                 0x27780, 0x2778c,
1247                 0x27800, 0x27818,
1248                 0x27820, 0x27828,
1249                 0x27830, 0x27848,
1250                 0x27850, 0x27854,
1251                 0x27860, 0x27868,
1252                 0x27870, 0x27870,
1253                 0x27878, 0x27898,
1254                 0x278a0, 0x278a8,
1255                 0x278b0, 0x278c8,
1256                 0x278d0, 0x278d4,
1257                 0x278e0, 0x278e8,
1258                 0x278f0, 0x278f0,
1259                 0x278f8, 0x27a18,
1260                 0x27a20, 0x27a28,
1261                 0x27a30, 0x27a48,
1262                 0x27a50, 0x27a54,
1263                 0x27a60, 0x27a68,
1264                 0x27a70, 0x27a70,
1265                 0x27a78, 0x27a98,
1266                 0x27aa0, 0x27aa8,
1267                 0x27ab0, 0x27ac8,
1268                 0x27ad0, 0x27ad4,
1269                 0x27ae0, 0x27ae8,
1270                 0x27af0, 0x27af0,
1271                 0x27af8, 0x27c18,
1272                 0x27c20, 0x27c20,
1273                 0x27c28, 0x27c30,
1274                 0x27c38, 0x27c38,
1275                 0x27c80, 0x27c98,
1276                 0x27ca0, 0x27ca8,
1277                 0x27cb0, 0x27cc8,
1278                 0x27cd0, 0x27cd4,
1279                 0x27ce0, 0x27ce8,
1280                 0x27cf0, 0x27cf0,
1281                 0x27cf8, 0x27d7c,
1282                 0x27e00, 0x27e04,
1283         };
1284
1285         static const unsigned int t4vf_reg_ranges[] = {
1286                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287                 VF_MPS_REG(A_MPS_VF_CTL),
1288                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292                 FW_T4VF_MBDATA_BASE_ADDR,
1293                 FW_T4VF_MBDATA_BASE_ADDR +
1294                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295         };
1296
1297         static const unsigned int t5_reg_ranges[] = {
1298                 0x1008, 0x10c0,
1299                 0x10cc, 0x10f8,
1300                 0x1100, 0x1100,
1301                 0x110c, 0x1148,
1302                 0x1180, 0x1184,
1303                 0x1190, 0x1194,
1304                 0x11a0, 0x11a4,
1305                 0x11b0, 0x11b4,
1306                 0x11fc, 0x123c,
1307                 0x1280, 0x173c,
1308                 0x1800, 0x18fc,
1309                 0x3000, 0x3028,
1310                 0x3060, 0x30b0,
1311                 0x30b8, 0x30d8,
1312                 0x30e0, 0x30fc,
1313                 0x3140, 0x357c,
1314                 0x35a8, 0x35cc,
1315                 0x35ec, 0x35ec,
1316                 0x3600, 0x5624,
1317                 0x56cc, 0x56ec,
1318                 0x56f4, 0x5720,
1319                 0x5728, 0x575c,
1320                 0x580c, 0x5814,
1321                 0x5890, 0x589c,
1322                 0x58a4, 0x58ac,
1323                 0x58b8, 0x58bc,
1324                 0x5940, 0x59c8,
1325                 0x59d0, 0x59dc,
1326                 0x59fc, 0x5a18,
1327                 0x5a60, 0x5a70,
1328                 0x5a80, 0x5a9c,
1329                 0x5b94, 0x5bfc,
1330                 0x6000, 0x6020,
1331                 0x6028, 0x6040,
1332                 0x6058, 0x609c,
1333                 0x60a8, 0x614c,
1334                 0x7700, 0x7798,
1335                 0x77c0, 0x78fc,
1336                 0x7b00, 0x7b58,
1337                 0x7b60, 0x7b84,
1338                 0x7b8c, 0x7c54,
1339                 0x7d00, 0x7d38,
1340                 0x7d40, 0x7d80,
1341                 0x7d8c, 0x7ddc,
1342                 0x7de4, 0x7e04,
1343                 0x7e10, 0x7e1c,
1344                 0x7e24, 0x7e38,
1345                 0x7e40, 0x7e44,
1346                 0x7e4c, 0x7e78,
1347                 0x7e80, 0x7edc,
1348                 0x7ee8, 0x7efc,
1349                 0x8dc0, 0x8de0,
1350                 0x8df8, 0x8e04,
1351                 0x8e10, 0x8e84,
1352                 0x8ea0, 0x8f84,
1353                 0x8fc0, 0x9058,
1354                 0x9060, 0x9060,
1355                 0x9068, 0x90f8,
1356                 0x9400, 0x9408,
1357                 0x9410, 0x9470,
1358                 0x9600, 0x9600,
1359                 0x9608, 0x9638,
1360                 0x9640, 0x96f4,
1361                 0x9800, 0x9808,
1362                 0x9810, 0x9864,
1363                 0x9c00, 0x9c6c,
1364                 0x9c80, 0x9cec,
1365                 0x9d00, 0x9d6c,
1366                 0x9d80, 0x9dec,
1367                 0x9e00, 0x9e6c,
1368                 0x9e80, 0x9eec,
1369                 0x9f00, 0x9f6c,
1370                 0x9f80, 0xa020,
1371                 0xd000, 0xd004,
1372                 0xd010, 0xd03c,
1373                 0xdfc0, 0xdfe0,
1374                 0xe000, 0x1106c,
1375                 0x11074, 0x11088,
1376                 0x1109c, 0x1117c,
1377                 0x11190, 0x11204,
1378                 0x19040, 0x1906c,
1379                 0x19078, 0x19080,
1380                 0x1908c, 0x190e8,
1381                 0x190f0, 0x190f8,
1382                 0x19100, 0x19110,
1383                 0x19120, 0x19124,
1384                 0x19150, 0x19194,
1385                 0x1919c, 0x191b0,
1386                 0x191d0, 0x191e8,
1387                 0x19238, 0x19290,
1388                 0x193f8, 0x19428,
1389                 0x19430, 0x19444,
1390                 0x1944c, 0x1946c,
1391                 0x19474, 0x19474,
1392                 0x19490, 0x194cc,
1393                 0x194f0, 0x194f8,
1394                 0x19c00, 0x19c08,
1395                 0x19c10, 0x19c60,
1396                 0x19c94, 0x19ce4,
1397                 0x19cf0, 0x19d40,
1398                 0x19d50, 0x19d94,
1399                 0x19da0, 0x19de8,
1400                 0x19df0, 0x19e10,
1401                 0x19e50, 0x19e90,
1402                 0x19ea0, 0x19f24,
1403                 0x19f34, 0x19f34,
1404                 0x19f40, 0x19f50,
1405                 0x19f90, 0x19fb4,
1406                 0x19fc4, 0x19fe4,
1407                 0x1a000, 0x1a004,
1408                 0x1a010, 0x1a06c,
1409                 0x1a0b0, 0x1a0e4,
1410                 0x1a0ec, 0x1a0f8,
1411                 0x1a100, 0x1a108,
1412                 0x1a114, 0x1a130,
1413                 0x1a138, 0x1a1c4,
1414                 0x1a1fc, 0x1a1fc,
1415                 0x1e008, 0x1e00c,
1416                 0x1e040, 0x1e044,
1417                 0x1e04c, 0x1e04c,
1418                 0x1e284, 0x1e290,
1419                 0x1e2c0, 0x1e2c0,
1420                 0x1e2e0, 0x1e2e0,
1421                 0x1e300, 0x1e384,
1422                 0x1e3c0, 0x1e3c8,
1423                 0x1e408, 0x1e40c,
1424                 0x1e440, 0x1e444,
1425                 0x1e44c, 0x1e44c,
1426                 0x1e684, 0x1e690,
1427                 0x1e6c0, 0x1e6c0,
1428                 0x1e6e0, 0x1e6e0,
1429                 0x1e700, 0x1e784,
1430                 0x1e7c0, 0x1e7c8,
1431                 0x1e808, 0x1e80c,
1432                 0x1e840, 0x1e844,
1433                 0x1e84c, 0x1e84c,
1434                 0x1ea84, 0x1ea90,
1435                 0x1eac0, 0x1eac0,
1436                 0x1eae0, 0x1eae0,
1437                 0x1eb00, 0x1eb84,
1438                 0x1ebc0, 0x1ebc8,
1439                 0x1ec08, 0x1ec0c,
1440                 0x1ec40, 0x1ec44,
1441                 0x1ec4c, 0x1ec4c,
1442                 0x1ee84, 0x1ee90,
1443                 0x1eec0, 0x1eec0,
1444                 0x1eee0, 0x1eee0,
1445                 0x1ef00, 0x1ef84,
1446                 0x1efc0, 0x1efc8,
1447                 0x1f008, 0x1f00c,
1448                 0x1f040, 0x1f044,
1449                 0x1f04c, 0x1f04c,
1450                 0x1f284, 0x1f290,
1451                 0x1f2c0, 0x1f2c0,
1452                 0x1f2e0, 0x1f2e0,
1453                 0x1f300, 0x1f384,
1454                 0x1f3c0, 0x1f3c8,
1455                 0x1f408, 0x1f40c,
1456                 0x1f440, 0x1f444,
1457                 0x1f44c, 0x1f44c,
1458                 0x1f684, 0x1f690,
1459                 0x1f6c0, 0x1f6c0,
1460                 0x1f6e0, 0x1f6e0,
1461                 0x1f700, 0x1f784,
1462                 0x1f7c0, 0x1f7c8,
1463                 0x1f808, 0x1f80c,
1464                 0x1f840, 0x1f844,
1465                 0x1f84c, 0x1f84c,
1466                 0x1fa84, 0x1fa90,
1467                 0x1fac0, 0x1fac0,
1468                 0x1fae0, 0x1fae0,
1469                 0x1fb00, 0x1fb84,
1470                 0x1fbc0, 0x1fbc8,
1471                 0x1fc08, 0x1fc0c,
1472                 0x1fc40, 0x1fc44,
1473                 0x1fc4c, 0x1fc4c,
1474                 0x1fe84, 0x1fe90,
1475                 0x1fec0, 0x1fec0,
1476                 0x1fee0, 0x1fee0,
1477                 0x1ff00, 0x1ff84,
1478                 0x1ffc0, 0x1ffc8,
1479                 0x30000, 0x30030,
1480                 0x30100, 0x30144,
1481                 0x30190, 0x301a0,
1482                 0x301a8, 0x301b8,
1483                 0x301c4, 0x301c8,
1484                 0x301d0, 0x301d0,
1485                 0x30200, 0x30318,
1486                 0x30400, 0x304b4,
1487                 0x304c0, 0x3052c,
1488                 0x30540, 0x3061c,
1489                 0x30800, 0x30828,
1490                 0x30834, 0x30834,
1491                 0x308c0, 0x30908,
1492                 0x30910, 0x309ac,
1493                 0x30a00, 0x30a14,
1494                 0x30a1c, 0x30a2c,
1495                 0x30a44, 0x30a50,
1496                 0x30a74, 0x30a74,
1497                 0x30a7c, 0x30afc,
1498                 0x30b08, 0x30c24,
1499                 0x30d00, 0x30d00,
1500                 0x30d08, 0x30d14,
1501                 0x30d1c, 0x30d20,
1502                 0x30d3c, 0x30d3c,
1503                 0x30d48, 0x30d50,
1504                 0x31200, 0x3120c,
1505                 0x31220, 0x31220,
1506                 0x31240, 0x31240,
1507                 0x31600, 0x3160c,
1508                 0x31a00, 0x31a1c,
1509                 0x31e00, 0x31e20,
1510                 0x31e38, 0x31e3c,
1511                 0x31e80, 0x31e80,
1512                 0x31e88, 0x31ea8,
1513                 0x31eb0, 0x31eb4,
1514                 0x31ec8, 0x31ed4,
1515                 0x31fb8, 0x32004,
1516                 0x32200, 0x32200,
1517                 0x32208, 0x32240,
1518                 0x32248, 0x32280,
1519                 0x32288, 0x322c0,
1520                 0x322c8, 0x322fc,
1521                 0x32600, 0x32630,
1522                 0x32a00, 0x32abc,
1523                 0x32b00, 0x32b10,
1524                 0x32b20, 0x32b30,
1525                 0x32b40, 0x32b50,
1526                 0x32b60, 0x32b70,
1527                 0x33000, 0x33028,
1528                 0x33030, 0x33048,
1529                 0x33060, 0x33068,
1530                 0x33070, 0x3309c,
1531                 0x330f0, 0x33128,
1532                 0x33130, 0x33148,
1533                 0x33160, 0x33168,
1534                 0x33170, 0x3319c,
1535                 0x331f0, 0x33238,
1536                 0x33240, 0x33240,
1537                 0x33248, 0x33250,
1538                 0x3325c, 0x33264,
1539                 0x33270, 0x332b8,
1540                 0x332c0, 0x332e4,
1541                 0x332f8, 0x33338,
1542                 0x33340, 0x33340,
1543                 0x33348, 0x33350,
1544                 0x3335c, 0x33364,
1545                 0x33370, 0x333b8,
1546                 0x333c0, 0x333e4,
1547                 0x333f8, 0x33428,
1548                 0x33430, 0x33448,
1549                 0x33460, 0x33468,
1550                 0x33470, 0x3349c,
1551                 0x334f0, 0x33528,
1552                 0x33530, 0x33548,
1553                 0x33560, 0x33568,
1554                 0x33570, 0x3359c,
1555                 0x335f0, 0x33638,
1556                 0x33640, 0x33640,
1557                 0x33648, 0x33650,
1558                 0x3365c, 0x33664,
1559                 0x33670, 0x336b8,
1560                 0x336c0, 0x336e4,
1561                 0x336f8, 0x33738,
1562                 0x33740, 0x33740,
1563                 0x33748, 0x33750,
1564                 0x3375c, 0x33764,
1565                 0x33770, 0x337b8,
1566                 0x337c0, 0x337e4,
1567                 0x337f8, 0x337fc,
1568                 0x33814, 0x33814,
1569                 0x3382c, 0x3382c,
1570                 0x33880, 0x3388c,
1571                 0x338e8, 0x338ec,
1572                 0x33900, 0x33928,
1573                 0x33930, 0x33948,
1574                 0x33960, 0x33968,
1575                 0x33970, 0x3399c,
1576                 0x339f0, 0x33a38,
1577                 0x33a40, 0x33a40,
1578                 0x33a48, 0x33a50,
1579                 0x33a5c, 0x33a64,
1580                 0x33a70, 0x33ab8,
1581                 0x33ac0, 0x33ae4,
1582                 0x33af8, 0x33b10,
1583                 0x33b28, 0x33b28,
1584                 0x33b3c, 0x33b50,
1585                 0x33bf0, 0x33c10,
1586                 0x33c28, 0x33c28,
1587                 0x33c3c, 0x33c50,
1588                 0x33cf0, 0x33cfc,
1589                 0x34000, 0x34030,
1590                 0x34100, 0x34144,
1591                 0x34190, 0x341a0,
1592                 0x341a8, 0x341b8,
1593                 0x341c4, 0x341c8,
1594                 0x341d0, 0x341d0,
1595                 0x34200, 0x34318,
1596                 0x34400, 0x344b4,
1597                 0x344c0, 0x3452c,
1598                 0x34540, 0x3461c,
1599                 0x34800, 0x34828,
1600                 0x34834, 0x34834,
1601                 0x348c0, 0x34908,
1602                 0x34910, 0x349ac,
1603                 0x34a00, 0x34a14,
1604                 0x34a1c, 0x34a2c,
1605                 0x34a44, 0x34a50,
1606                 0x34a74, 0x34a74,
1607                 0x34a7c, 0x34afc,
1608                 0x34b08, 0x34c24,
1609                 0x34d00, 0x34d00,
1610                 0x34d08, 0x34d14,
1611                 0x34d1c, 0x34d20,
1612                 0x34d3c, 0x34d3c,
1613                 0x34d48, 0x34d50,
1614                 0x35200, 0x3520c,
1615                 0x35220, 0x35220,
1616                 0x35240, 0x35240,
1617                 0x35600, 0x3560c,
1618                 0x35a00, 0x35a1c,
1619                 0x35e00, 0x35e20,
1620                 0x35e38, 0x35e3c,
1621                 0x35e80, 0x35e80,
1622                 0x35e88, 0x35ea8,
1623                 0x35eb0, 0x35eb4,
1624                 0x35ec8, 0x35ed4,
1625                 0x35fb8, 0x36004,
1626                 0x36200, 0x36200,
1627                 0x36208, 0x36240,
1628                 0x36248, 0x36280,
1629                 0x36288, 0x362c0,
1630                 0x362c8, 0x362fc,
1631                 0x36600, 0x36630,
1632                 0x36a00, 0x36abc,
1633                 0x36b00, 0x36b10,
1634                 0x36b20, 0x36b30,
1635                 0x36b40, 0x36b50,
1636                 0x36b60, 0x36b70,
1637                 0x37000, 0x37028,
1638                 0x37030, 0x37048,
1639                 0x37060, 0x37068,
1640                 0x37070, 0x3709c,
1641                 0x370f0, 0x37128,
1642                 0x37130, 0x37148,
1643                 0x37160, 0x37168,
1644                 0x37170, 0x3719c,
1645                 0x371f0, 0x37238,
1646                 0x37240, 0x37240,
1647                 0x37248, 0x37250,
1648                 0x3725c, 0x37264,
1649                 0x37270, 0x372b8,
1650                 0x372c0, 0x372e4,
1651                 0x372f8, 0x37338,
1652                 0x37340, 0x37340,
1653                 0x37348, 0x37350,
1654                 0x3735c, 0x37364,
1655                 0x37370, 0x373b8,
1656                 0x373c0, 0x373e4,
1657                 0x373f8, 0x37428,
1658                 0x37430, 0x37448,
1659                 0x37460, 0x37468,
1660                 0x37470, 0x3749c,
1661                 0x374f0, 0x37528,
1662                 0x37530, 0x37548,
1663                 0x37560, 0x37568,
1664                 0x37570, 0x3759c,
1665                 0x375f0, 0x37638,
1666                 0x37640, 0x37640,
1667                 0x37648, 0x37650,
1668                 0x3765c, 0x37664,
1669                 0x37670, 0x376b8,
1670                 0x376c0, 0x376e4,
1671                 0x376f8, 0x37738,
1672                 0x37740, 0x37740,
1673                 0x37748, 0x37750,
1674                 0x3775c, 0x37764,
1675                 0x37770, 0x377b8,
1676                 0x377c0, 0x377e4,
1677                 0x377f8, 0x377fc,
1678                 0x37814, 0x37814,
1679                 0x3782c, 0x3782c,
1680                 0x37880, 0x3788c,
1681                 0x378e8, 0x378ec,
1682                 0x37900, 0x37928,
1683                 0x37930, 0x37948,
1684                 0x37960, 0x37968,
1685                 0x37970, 0x3799c,
1686                 0x379f0, 0x37a38,
1687                 0x37a40, 0x37a40,
1688                 0x37a48, 0x37a50,
1689                 0x37a5c, 0x37a64,
1690                 0x37a70, 0x37ab8,
1691                 0x37ac0, 0x37ae4,
1692                 0x37af8, 0x37b10,
1693                 0x37b28, 0x37b28,
1694                 0x37b3c, 0x37b50,
1695                 0x37bf0, 0x37c10,
1696                 0x37c28, 0x37c28,
1697                 0x37c3c, 0x37c50,
1698                 0x37cf0, 0x37cfc,
1699                 0x38000, 0x38030,
1700                 0x38100, 0x38144,
1701                 0x38190, 0x381a0,
1702                 0x381a8, 0x381b8,
1703                 0x381c4, 0x381c8,
1704                 0x381d0, 0x381d0,
1705                 0x38200, 0x38318,
1706                 0x38400, 0x384b4,
1707                 0x384c0, 0x3852c,
1708                 0x38540, 0x3861c,
1709                 0x38800, 0x38828,
1710                 0x38834, 0x38834,
1711                 0x388c0, 0x38908,
1712                 0x38910, 0x389ac,
1713                 0x38a00, 0x38a14,
1714                 0x38a1c, 0x38a2c,
1715                 0x38a44, 0x38a50,
1716                 0x38a74, 0x38a74,
1717                 0x38a7c, 0x38afc,
1718                 0x38b08, 0x38c24,
1719                 0x38d00, 0x38d00,
1720                 0x38d08, 0x38d14,
1721                 0x38d1c, 0x38d20,
1722                 0x38d3c, 0x38d3c,
1723                 0x38d48, 0x38d50,
1724                 0x39200, 0x3920c,
1725                 0x39220, 0x39220,
1726                 0x39240, 0x39240,
1727                 0x39600, 0x3960c,
1728                 0x39a00, 0x39a1c,
1729                 0x39e00, 0x39e20,
1730                 0x39e38, 0x39e3c,
1731                 0x39e80, 0x39e80,
1732                 0x39e88, 0x39ea8,
1733                 0x39eb0, 0x39eb4,
1734                 0x39ec8, 0x39ed4,
1735                 0x39fb8, 0x3a004,
1736                 0x3a200, 0x3a200,
1737                 0x3a208, 0x3a240,
1738                 0x3a248, 0x3a280,
1739                 0x3a288, 0x3a2c0,
1740                 0x3a2c8, 0x3a2fc,
1741                 0x3a600, 0x3a630,
1742                 0x3aa00, 0x3aabc,
1743                 0x3ab00, 0x3ab10,
1744                 0x3ab20, 0x3ab30,
1745                 0x3ab40, 0x3ab50,
1746                 0x3ab60, 0x3ab70,
1747                 0x3b000, 0x3b028,
1748                 0x3b030, 0x3b048,
1749                 0x3b060, 0x3b068,
1750                 0x3b070, 0x3b09c,
1751                 0x3b0f0, 0x3b128,
1752                 0x3b130, 0x3b148,
1753                 0x3b160, 0x3b168,
1754                 0x3b170, 0x3b19c,
1755                 0x3b1f0, 0x3b238,
1756                 0x3b240, 0x3b240,
1757                 0x3b248, 0x3b250,
1758                 0x3b25c, 0x3b264,
1759                 0x3b270, 0x3b2b8,
1760                 0x3b2c0, 0x3b2e4,
1761                 0x3b2f8, 0x3b338,
1762                 0x3b340, 0x3b340,
1763                 0x3b348, 0x3b350,
1764                 0x3b35c, 0x3b364,
1765                 0x3b370, 0x3b3b8,
1766                 0x3b3c0, 0x3b3e4,
1767                 0x3b3f8, 0x3b428,
1768                 0x3b430, 0x3b448,
1769                 0x3b460, 0x3b468,
1770                 0x3b470, 0x3b49c,
1771                 0x3b4f0, 0x3b528,
1772                 0x3b530, 0x3b548,
1773                 0x3b560, 0x3b568,
1774                 0x3b570, 0x3b59c,
1775                 0x3b5f0, 0x3b638,
1776                 0x3b640, 0x3b640,
1777                 0x3b648, 0x3b650,
1778                 0x3b65c, 0x3b664,
1779                 0x3b670, 0x3b6b8,
1780                 0x3b6c0, 0x3b6e4,
1781                 0x3b6f8, 0x3b738,
1782                 0x3b740, 0x3b740,
1783                 0x3b748, 0x3b750,
1784                 0x3b75c, 0x3b764,
1785                 0x3b770, 0x3b7b8,
1786                 0x3b7c0, 0x3b7e4,
1787                 0x3b7f8, 0x3b7fc,
1788                 0x3b814, 0x3b814,
1789                 0x3b82c, 0x3b82c,
1790                 0x3b880, 0x3b88c,
1791                 0x3b8e8, 0x3b8ec,
1792                 0x3b900, 0x3b928,
1793                 0x3b930, 0x3b948,
1794                 0x3b960, 0x3b968,
1795                 0x3b970, 0x3b99c,
1796                 0x3b9f0, 0x3ba38,
1797                 0x3ba40, 0x3ba40,
1798                 0x3ba48, 0x3ba50,
1799                 0x3ba5c, 0x3ba64,
1800                 0x3ba70, 0x3bab8,
1801                 0x3bac0, 0x3bae4,
1802                 0x3baf8, 0x3bb10,
1803                 0x3bb28, 0x3bb28,
1804                 0x3bb3c, 0x3bb50,
1805                 0x3bbf0, 0x3bc10,
1806                 0x3bc28, 0x3bc28,
1807                 0x3bc3c, 0x3bc50,
1808                 0x3bcf0, 0x3bcfc,
1809                 0x3c000, 0x3c030,
1810                 0x3c100, 0x3c144,
1811                 0x3c190, 0x3c1a0,
1812                 0x3c1a8, 0x3c1b8,
1813                 0x3c1c4, 0x3c1c8,
1814                 0x3c1d0, 0x3c1d0,
1815                 0x3c200, 0x3c318,
1816                 0x3c400, 0x3c4b4,
1817                 0x3c4c0, 0x3c52c,
1818                 0x3c540, 0x3c61c,
1819                 0x3c800, 0x3c828,
1820                 0x3c834, 0x3c834,
1821                 0x3c8c0, 0x3c908,
1822                 0x3c910, 0x3c9ac,
1823                 0x3ca00, 0x3ca14,
1824                 0x3ca1c, 0x3ca2c,
1825                 0x3ca44, 0x3ca50,
1826                 0x3ca74, 0x3ca74,
1827                 0x3ca7c, 0x3cafc,
1828                 0x3cb08, 0x3cc24,
1829                 0x3cd00, 0x3cd00,
1830                 0x3cd08, 0x3cd14,
1831                 0x3cd1c, 0x3cd20,
1832                 0x3cd3c, 0x3cd3c,
1833                 0x3cd48, 0x3cd50,
1834                 0x3d200, 0x3d20c,
1835                 0x3d220, 0x3d220,
1836                 0x3d240, 0x3d240,
1837                 0x3d600, 0x3d60c,
1838                 0x3da00, 0x3da1c,
1839                 0x3de00, 0x3de20,
1840                 0x3de38, 0x3de3c,
1841                 0x3de80, 0x3de80,
1842                 0x3de88, 0x3dea8,
1843                 0x3deb0, 0x3deb4,
1844                 0x3dec8, 0x3ded4,
1845                 0x3dfb8, 0x3e004,
1846                 0x3e200, 0x3e200,
1847                 0x3e208, 0x3e240,
1848                 0x3e248, 0x3e280,
1849                 0x3e288, 0x3e2c0,
1850                 0x3e2c8, 0x3e2fc,
1851                 0x3e600, 0x3e630,
1852                 0x3ea00, 0x3eabc,
1853                 0x3eb00, 0x3eb10,
1854                 0x3eb20, 0x3eb30,
1855                 0x3eb40, 0x3eb50,
1856                 0x3eb60, 0x3eb70,
1857                 0x3f000, 0x3f028,
1858                 0x3f030, 0x3f048,
1859                 0x3f060, 0x3f068,
1860                 0x3f070, 0x3f09c,
1861                 0x3f0f0, 0x3f128,
1862                 0x3f130, 0x3f148,
1863                 0x3f160, 0x3f168,
1864                 0x3f170, 0x3f19c,
1865                 0x3f1f0, 0x3f238,
1866                 0x3f240, 0x3f240,
1867                 0x3f248, 0x3f250,
1868                 0x3f25c, 0x3f264,
1869                 0x3f270, 0x3f2b8,
1870                 0x3f2c0, 0x3f2e4,
1871                 0x3f2f8, 0x3f338,
1872                 0x3f340, 0x3f340,
1873                 0x3f348, 0x3f350,
1874                 0x3f35c, 0x3f364,
1875                 0x3f370, 0x3f3b8,
1876                 0x3f3c0, 0x3f3e4,
1877                 0x3f3f8, 0x3f428,
1878                 0x3f430, 0x3f448,
1879                 0x3f460, 0x3f468,
1880                 0x3f470, 0x3f49c,
1881                 0x3f4f0, 0x3f528,
1882                 0x3f530, 0x3f548,
1883                 0x3f560, 0x3f568,
1884                 0x3f570, 0x3f59c,
1885                 0x3f5f0, 0x3f638,
1886                 0x3f640, 0x3f640,
1887                 0x3f648, 0x3f650,
1888                 0x3f65c, 0x3f664,
1889                 0x3f670, 0x3f6b8,
1890                 0x3f6c0, 0x3f6e4,
1891                 0x3f6f8, 0x3f738,
1892                 0x3f740, 0x3f740,
1893                 0x3f748, 0x3f750,
1894                 0x3f75c, 0x3f764,
1895                 0x3f770, 0x3f7b8,
1896                 0x3f7c0, 0x3f7e4,
1897                 0x3f7f8, 0x3f7fc,
1898                 0x3f814, 0x3f814,
1899                 0x3f82c, 0x3f82c,
1900                 0x3f880, 0x3f88c,
1901                 0x3f8e8, 0x3f8ec,
1902                 0x3f900, 0x3f928,
1903                 0x3f930, 0x3f948,
1904                 0x3f960, 0x3f968,
1905                 0x3f970, 0x3f99c,
1906                 0x3f9f0, 0x3fa38,
1907                 0x3fa40, 0x3fa40,
1908                 0x3fa48, 0x3fa50,
1909                 0x3fa5c, 0x3fa64,
1910                 0x3fa70, 0x3fab8,
1911                 0x3fac0, 0x3fae4,
1912                 0x3faf8, 0x3fb10,
1913                 0x3fb28, 0x3fb28,
1914                 0x3fb3c, 0x3fb50,
1915                 0x3fbf0, 0x3fc10,
1916                 0x3fc28, 0x3fc28,
1917                 0x3fc3c, 0x3fc50,
1918                 0x3fcf0, 0x3fcfc,
1919                 0x40000, 0x4000c,
1920                 0x40040, 0x40050,
1921                 0x40060, 0x40068,
1922                 0x4007c, 0x4008c,
1923                 0x40094, 0x400b0,
1924                 0x400c0, 0x40144,
1925                 0x40180, 0x4018c,
1926                 0x40200, 0x40254,
1927                 0x40260, 0x40264,
1928                 0x40270, 0x40288,
1929                 0x40290, 0x40298,
1930                 0x402ac, 0x402c8,
1931                 0x402d0, 0x402e0,
1932                 0x402f0, 0x402f0,
1933                 0x40300, 0x4033c,
1934                 0x403f8, 0x403fc,
1935                 0x41304, 0x413c4,
1936                 0x41400, 0x4140c,
1937                 0x41414, 0x4141c,
1938                 0x41480, 0x414d0,
1939                 0x44000, 0x44054,
1940                 0x4405c, 0x44078,
1941                 0x440c0, 0x44174,
1942                 0x44180, 0x441ac,
1943                 0x441b4, 0x441b8,
1944                 0x441c0, 0x44254,
1945                 0x4425c, 0x44278,
1946                 0x442c0, 0x44374,
1947                 0x44380, 0x443ac,
1948                 0x443b4, 0x443b8,
1949                 0x443c0, 0x44454,
1950                 0x4445c, 0x44478,
1951                 0x444c0, 0x44574,
1952                 0x44580, 0x445ac,
1953                 0x445b4, 0x445b8,
1954                 0x445c0, 0x44654,
1955                 0x4465c, 0x44678,
1956                 0x446c0, 0x44774,
1957                 0x44780, 0x447ac,
1958                 0x447b4, 0x447b8,
1959                 0x447c0, 0x44854,
1960                 0x4485c, 0x44878,
1961                 0x448c0, 0x44974,
1962                 0x44980, 0x449ac,
1963                 0x449b4, 0x449b8,
1964                 0x449c0, 0x449fc,
1965                 0x45000, 0x45004,
1966                 0x45010, 0x45030,
1967                 0x45040, 0x45060,
1968                 0x45068, 0x45068,
1969                 0x45080, 0x45084,
1970                 0x450a0, 0x450b0,
1971                 0x45200, 0x45204,
1972                 0x45210, 0x45230,
1973                 0x45240, 0x45260,
1974                 0x45268, 0x45268,
1975                 0x45280, 0x45284,
1976                 0x452a0, 0x452b0,
1977                 0x460c0, 0x460e4,
1978                 0x47000, 0x4703c,
1979                 0x47044, 0x4708c,
1980                 0x47200, 0x47250,
1981                 0x47400, 0x47408,
1982                 0x47414, 0x47420,
1983                 0x47600, 0x47618,
1984                 0x47800, 0x47814,
1985                 0x48000, 0x4800c,
1986                 0x48040, 0x48050,
1987                 0x48060, 0x48068,
1988                 0x4807c, 0x4808c,
1989                 0x48094, 0x480b0,
1990                 0x480c0, 0x48144,
1991                 0x48180, 0x4818c,
1992                 0x48200, 0x48254,
1993                 0x48260, 0x48264,
1994                 0x48270, 0x48288,
1995                 0x48290, 0x48298,
1996                 0x482ac, 0x482c8,
1997                 0x482d0, 0x482e0,
1998                 0x482f0, 0x482f0,
1999                 0x48300, 0x4833c,
2000                 0x483f8, 0x483fc,
2001                 0x49304, 0x493c4,
2002                 0x49400, 0x4940c,
2003                 0x49414, 0x4941c,
2004                 0x49480, 0x494d0,
2005                 0x4c000, 0x4c054,
2006                 0x4c05c, 0x4c078,
2007                 0x4c0c0, 0x4c174,
2008                 0x4c180, 0x4c1ac,
2009                 0x4c1b4, 0x4c1b8,
2010                 0x4c1c0, 0x4c254,
2011                 0x4c25c, 0x4c278,
2012                 0x4c2c0, 0x4c374,
2013                 0x4c380, 0x4c3ac,
2014                 0x4c3b4, 0x4c3b8,
2015                 0x4c3c0, 0x4c454,
2016                 0x4c45c, 0x4c478,
2017                 0x4c4c0, 0x4c574,
2018                 0x4c580, 0x4c5ac,
2019                 0x4c5b4, 0x4c5b8,
2020                 0x4c5c0, 0x4c654,
2021                 0x4c65c, 0x4c678,
2022                 0x4c6c0, 0x4c774,
2023                 0x4c780, 0x4c7ac,
2024                 0x4c7b4, 0x4c7b8,
2025                 0x4c7c0, 0x4c854,
2026                 0x4c85c, 0x4c878,
2027                 0x4c8c0, 0x4c974,
2028                 0x4c980, 0x4c9ac,
2029                 0x4c9b4, 0x4c9b8,
2030                 0x4c9c0, 0x4c9fc,
2031                 0x4d000, 0x4d004,
2032                 0x4d010, 0x4d030,
2033                 0x4d040, 0x4d060,
2034                 0x4d068, 0x4d068,
2035                 0x4d080, 0x4d084,
2036                 0x4d0a0, 0x4d0b0,
2037                 0x4d200, 0x4d204,
2038                 0x4d210, 0x4d230,
2039                 0x4d240, 0x4d260,
2040                 0x4d268, 0x4d268,
2041                 0x4d280, 0x4d284,
2042                 0x4d2a0, 0x4d2b0,
2043                 0x4e0c0, 0x4e0e4,
2044                 0x4f000, 0x4f03c,
2045                 0x4f044, 0x4f08c,
2046                 0x4f200, 0x4f250,
2047                 0x4f400, 0x4f408,
2048                 0x4f414, 0x4f420,
2049                 0x4f600, 0x4f618,
2050                 0x4f800, 0x4f814,
2051                 0x50000, 0x50084,
2052                 0x50090, 0x500cc,
2053                 0x50400, 0x50400,
2054                 0x50800, 0x50884,
2055                 0x50890, 0x508cc,
2056                 0x50c00, 0x50c00,
2057                 0x51000, 0x5101c,
2058                 0x51300, 0x51308,
2059         };
2060
2061         static const unsigned int t5vf_reg_ranges[] = {
2062                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2063                 VF_MPS_REG(A_MPS_VF_CTL),
2064                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2065                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2066                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2067                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2068                 FW_T4VF_MBDATA_BASE_ADDR,
2069                 FW_T4VF_MBDATA_BASE_ADDR +
2070                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2071         };
2072
2073         static const unsigned int t6_reg_ranges[] = {
2074                 0x1008, 0x101c,
2075                 0x1024, 0x10a8,
2076                 0x10b4, 0x10f8,
2077                 0x1100, 0x1114,
2078                 0x111c, 0x112c,
2079                 0x1138, 0x113c,
2080                 0x1144, 0x114c,
2081                 0x1180, 0x1184,
2082                 0x1190, 0x1194,
2083                 0x11a0, 0x11a4,
2084                 0x11b0, 0x11c4,
2085                 0x11fc, 0x1274,
2086                 0x1280, 0x133c,
2087                 0x1800, 0x18fc,
2088                 0x3000, 0x302c,
2089                 0x3060, 0x30b0,
2090                 0x30b8, 0x30d8,
2091                 0x30e0, 0x30fc,
2092                 0x3140, 0x357c,
2093                 0x35a8, 0x35cc,
2094                 0x35ec, 0x35ec,
2095                 0x3600, 0x5624,
2096                 0x56cc, 0x56ec,
2097                 0x56f4, 0x5720,
2098                 0x5728, 0x575c,
2099                 0x580c, 0x5814,
2100                 0x5890, 0x589c,
2101                 0x58a4, 0x58ac,
2102                 0x58b8, 0x58bc,
2103                 0x5940, 0x595c,
2104                 0x5980, 0x598c,
2105                 0x59b0, 0x59c8,
2106                 0x59d0, 0x59dc,
2107                 0x59fc, 0x5a18,
2108                 0x5a60, 0x5a6c,
2109                 0x5a80, 0x5a8c,
2110                 0x5a94, 0x5a9c,
2111                 0x5b94, 0x5bfc,
2112                 0x5c10, 0x5e48,
2113                 0x5e50, 0x5e94,
2114                 0x5ea0, 0x5eb0,
2115                 0x5ec0, 0x5ec0,
2116                 0x5ec8, 0x5ed0,
2117                 0x5ee0, 0x5ee0,
2118                 0x5ef0, 0x5ef0,
2119                 0x5f00, 0x5f00,
2120                 0x6000, 0x6020,
2121                 0x6028, 0x6040,
2122                 0x6058, 0x609c,
2123                 0x60a8, 0x619c,
2124                 0x7700, 0x7798,
2125                 0x77c0, 0x7880,
2126                 0x78cc, 0x78fc,
2127                 0x7b00, 0x7b58,
2128                 0x7b60, 0x7b84,
2129                 0x7b8c, 0x7c54,
2130                 0x7d00, 0x7d38,
2131                 0x7d40, 0x7d84,
2132                 0x7d8c, 0x7ddc,
2133                 0x7de4, 0x7e04,
2134                 0x7e10, 0x7e1c,
2135                 0x7e24, 0x7e38,
2136                 0x7e40, 0x7e44,
2137                 0x7e4c, 0x7e78,
2138                 0x7e80, 0x7edc,
2139                 0x7ee8, 0x7efc,
2140                 0x8dc0, 0x8de0,
2141                 0x8df8, 0x8e04,
2142                 0x8e10, 0x8e84,
2143                 0x8ea0, 0x8f88,
2144                 0x8fb8, 0x9058,
2145                 0x9060, 0x9060,
2146                 0x9068, 0x90f8,
2147                 0x9100, 0x9124,
2148                 0x9400, 0x9470,
2149                 0x9600, 0x9600,
2150                 0x9608, 0x9638,
2151                 0x9640, 0x9704,
2152                 0x9710, 0x971c,
2153                 0x9800, 0x9808,
2154                 0x9810, 0x9864,
2155                 0x9c00, 0x9c6c,
2156                 0x9c80, 0x9cec,
2157                 0x9d00, 0x9d6c,
2158                 0x9d80, 0x9dec,
2159                 0x9e00, 0x9e6c,
2160                 0x9e80, 0x9eec,
2161                 0x9f00, 0x9f6c,
2162                 0x9f80, 0xa020,
2163                 0xd000, 0xd03c,
2164                 0xd100, 0xd118,
2165                 0xd200, 0xd214,
2166                 0xd220, 0xd234,
2167                 0xd240, 0xd254,
2168                 0xd260, 0xd274,
2169                 0xd280, 0xd294,
2170                 0xd2a0, 0xd2b4,
2171                 0xd2c0, 0xd2d4,
2172                 0xd2e0, 0xd2f4,
2173                 0xd300, 0xd31c,
2174                 0xdfc0, 0xdfe0,
2175                 0xe000, 0xf008,
2176                 0xf010, 0xf018,
2177                 0xf020, 0xf028,
2178                 0x11000, 0x11014,
2179                 0x11048, 0x1106c,
2180                 0x11074, 0x11088,
2181                 0x11098, 0x11120,
2182                 0x1112c, 0x1117c,
2183                 0x11190, 0x112e0,
2184                 0x11300, 0x1130c,
2185                 0x12000, 0x1206c,
2186                 0x19040, 0x1906c,
2187                 0x19078, 0x19080,
2188                 0x1908c, 0x190e8,
2189                 0x190f0, 0x190f8,
2190                 0x19100, 0x19110,
2191                 0x19120, 0x19124,
2192                 0x19150, 0x19194,
2193                 0x1919c, 0x191b0,
2194                 0x191d0, 0x191e8,
2195                 0x19238, 0x19290,
2196                 0x192a4, 0x192b0,
2197                 0x19348, 0x1934c,
2198                 0x193f8, 0x19418,
2199                 0x19420, 0x19428,
2200                 0x19430, 0x19444,
2201                 0x1944c, 0x1946c,
2202                 0x19474, 0x19474,
2203                 0x19490, 0x194cc,
2204                 0x194f0, 0x194f8,
2205                 0x19c00, 0x19c48,
2206                 0x19c50, 0x19c80,
2207                 0x19c94, 0x19c98,
2208                 0x19ca0, 0x19cbc,
2209                 0x19ce4, 0x19ce4,
2210                 0x19cf0, 0x19cf8,
2211                 0x19d00, 0x19d28,
2212                 0x19d50, 0x19d78,
2213                 0x19d94, 0x19d98,
2214                 0x19da0, 0x19de0,
2215                 0x19df0, 0x19e10,
2216                 0x19e50, 0x19e6c,
2217                 0x19ea0, 0x19ebc,
2218                 0x19ec4, 0x19ef4,
2219                 0x19f04, 0x19f2c,
2220                 0x19f34, 0x19f34,
2221                 0x19f40, 0x19f50,
2222                 0x19f90, 0x19fac,
2223                 0x19fc4, 0x19fc8,
2224                 0x19fd0, 0x19fe4,
2225                 0x1a000, 0x1a004,
2226                 0x1a010, 0x1a06c,
2227                 0x1a0b0, 0x1a0e4,
2228                 0x1a0ec, 0x1a0f8,
2229                 0x1a100, 0x1a108,
2230                 0x1a114, 0x1a130,
2231                 0x1a138, 0x1a1c4,
2232                 0x1a1fc, 0x1a1fc,
2233                 0x1e008, 0x1e00c,
2234                 0x1e040, 0x1e044,
2235                 0x1e04c, 0x1e04c,
2236                 0x1e284, 0x1e290,
2237                 0x1e2c0, 0x1e2c0,
2238                 0x1e2e0, 0x1e2e0,
2239                 0x1e300, 0x1e384,
2240                 0x1e3c0, 0x1e3c8,
2241                 0x1e408, 0x1e40c,
2242                 0x1e440, 0x1e444,
2243                 0x1e44c, 0x1e44c,
2244                 0x1e684, 0x1e690,
2245                 0x1e6c0, 0x1e6c0,
2246                 0x1e6e0, 0x1e6e0,
2247                 0x1e700, 0x1e784,
2248                 0x1e7c0, 0x1e7c8,
2249                 0x1e808, 0x1e80c,
2250                 0x1e840, 0x1e844,
2251                 0x1e84c, 0x1e84c,
2252                 0x1ea84, 0x1ea90,
2253                 0x1eac0, 0x1eac0,
2254                 0x1eae0, 0x1eae0,
2255                 0x1eb00, 0x1eb84,
2256                 0x1ebc0, 0x1ebc8,
2257                 0x1ec08, 0x1ec0c,
2258                 0x1ec40, 0x1ec44,
2259                 0x1ec4c, 0x1ec4c,
2260                 0x1ee84, 0x1ee90,
2261                 0x1eec0, 0x1eec0,
2262                 0x1eee0, 0x1eee0,
2263                 0x1ef00, 0x1ef84,
2264                 0x1efc0, 0x1efc8,
2265                 0x1f008, 0x1f00c,
2266                 0x1f040, 0x1f044,
2267                 0x1f04c, 0x1f04c,
2268                 0x1f284, 0x1f290,
2269                 0x1f2c0, 0x1f2c0,
2270                 0x1f2e0, 0x1f2e0,
2271                 0x1f300, 0x1f384,
2272                 0x1f3c0, 0x1f3c8,
2273                 0x1f408, 0x1f40c,
2274                 0x1f440, 0x1f444,
2275                 0x1f44c, 0x1f44c,
2276                 0x1f684, 0x1f690,
2277                 0x1f6c0, 0x1f6c0,
2278                 0x1f6e0, 0x1f6e0,
2279                 0x1f700, 0x1f784,
2280                 0x1f7c0, 0x1f7c8,
2281                 0x1f808, 0x1f80c,
2282                 0x1f840, 0x1f844,
2283                 0x1f84c, 0x1f84c,
2284                 0x1fa84, 0x1fa90,
2285                 0x1fac0, 0x1fac0,
2286                 0x1fae0, 0x1fae0,
2287                 0x1fb00, 0x1fb84,
2288                 0x1fbc0, 0x1fbc8,
2289                 0x1fc08, 0x1fc0c,
2290                 0x1fc40, 0x1fc44,
2291                 0x1fc4c, 0x1fc4c,
2292                 0x1fe84, 0x1fe90,
2293                 0x1fec0, 0x1fec0,
2294                 0x1fee0, 0x1fee0,
2295                 0x1ff00, 0x1ff84,
2296                 0x1ffc0, 0x1ffc8,
2297                 0x30000, 0x30030,
2298                 0x30100, 0x30168,
2299                 0x30190, 0x301a0,
2300                 0x301a8, 0x301b8,
2301                 0x301c4, 0x301c8,
2302                 0x301d0, 0x301d0,
2303                 0x30200, 0x30320,
2304                 0x30400, 0x304b4,
2305                 0x304c0, 0x3052c,
2306                 0x30540, 0x3061c,
2307                 0x30800, 0x308a0,
2308                 0x308c0, 0x30908,
2309                 0x30910, 0x309b8,
2310                 0x30a00, 0x30a04,
2311                 0x30a0c, 0x30a14,
2312                 0x30a1c, 0x30a2c,
2313                 0x30a44, 0x30a50,
2314                 0x30a74, 0x30a74,
2315                 0x30a7c, 0x30afc,
2316                 0x30b08, 0x30c24,
2317                 0x30d00, 0x30d14,
2318                 0x30d1c, 0x30d3c,
2319                 0x30d44, 0x30d4c,
2320                 0x30d54, 0x30d74,
2321                 0x30d7c, 0x30d7c,
2322                 0x30de0, 0x30de0,
2323                 0x30e00, 0x30ed4,
2324                 0x30f00, 0x30fa4,
2325                 0x30fc0, 0x30fc4,
2326                 0x31000, 0x31004,
2327                 0x31080, 0x310fc,
2328                 0x31208, 0x31220,
2329                 0x3123c, 0x31254,
2330                 0x31300, 0x31300,
2331                 0x31308, 0x3131c,
2332                 0x31338, 0x3133c,
2333                 0x31380, 0x31380,
2334                 0x31388, 0x313a8,
2335                 0x313b4, 0x313b4,
2336                 0x31400, 0x31420,
2337                 0x31438, 0x3143c,
2338                 0x31480, 0x31480,
2339                 0x314a8, 0x314a8,
2340                 0x314b0, 0x314b4,
2341                 0x314c8, 0x314d4,
2342                 0x31a40, 0x31a4c,
2343                 0x31af0, 0x31b20,
2344                 0x31b38, 0x31b3c,
2345                 0x31b80, 0x31b80,
2346                 0x31ba8, 0x31ba8,
2347                 0x31bb0, 0x31bb4,
2348                 0x31bc8, 0x31bd4,
2349                 0x32140, 0x3218c,
2350                 0x321f0, 0x321f4,
2351                 0x32200, 0x32200,
2352                 0x32218, 0x32218,
2353                 0x32400, 0x32400,
2354                 0x32408, 0x3241c,
2355                 0x32618, 0x32620,
2356                 0x32664, 0x32664,
2357                 0x326a8, 0x326a8,
2358                 0x326ec, 0x326ec,
2359                 0x32a00, 0x32abc,
2360                 0x32b00, 0x32b18,
2361                 0x32b20, 0x32b38,
2362                 0x32b40, 0x32b58,
2363                 0x32b60, 0x32b78,
2364                 0x32c00, 0x32c00,
2365                 0x32c08, 0x32c3c,
2366                 0x33000, 0x3302c,
2367                 0x33034, 0x33050,
2368                 0x33058, 0x33058,
2369                 0x33060, 0x3308c,
2370                 0x3309c, 0x330ac,
2371                 0x330c0, 0x330c0,
2372                 0x330c8, 0x330d0,
2373                 0x330d8, 0x330e0,
2374                 0x330ec, 0x3312c,
2375                 0x33134, 0x33150,
2376                 0x33158, 0x33158,
2377                 0x33160, 0x3318c,
2378                 0x3319c, 0x331ac,
2379                 0x331c0, 0x331c0,
2380                 0x331c8, 0x331d0,
2381                 0x331d8, 0x331e0,
2382                 0x331ec, 0x33290,
2383                 0x33298, 0x332c4,
2384                 0x332e4, 0x33390,
2385                 0x33398, 0x333c4,
2386                 0x333e4, 0x3342c,
2387                 0x33434, 0x33450,
2388                 0x33458, 0x33458,
2389                 0x33460, 0x3348c,
2390                 0x3349c, 0x334ac,
2391                 0x334c0, 0x334c0,
2392                 0x334c8, 0x334d0,
2393                 0x334d8, 0x334e0,
2394                 0x334ec, 0x3352c,
2395                 0x33534, 0x33550,
2396                 0x33558, 0x33558,
2397                 0x33560, 0x3358c,
2398                 0x3359c, 0x335ac,
2399                 0x335c0, 0x335c0,
2400                 0x335c8, 0x335d0,
2401                 0x335d8, 0x335e0,
2402                 0x335ec, 0x33690,
2403                 0x33698, 0x336c4,
2404                 0x336e4, 0x33790,
2405                 0x33798, 0x337c4,
2406                 0x337e4, 0x337fc,
2407                 0x33814, 0x33814,
2408                 0x33854, 0x33868,
2409                 0x33880, 0x3388c,
2410                 0x338c0, 0x338d0,
2411                 0x338e8, 0x338ec,
2412                 0x33900, 0x3392c,
2413                 0x33934, 0x33950,
2414                 0x33958, 0x33958,
2415                 0x33960, 0x3398c,
2416                 0x3399c, 0x339ac,
2417                 0x339c0, 0x339c0,
2418                 0x339c8, 0x339d0,
2419                 0x339d8, 0x339e0,
2420                 0x339ec, 0x33a90,
2421                 0x33a98, 0x33ac4,
2422                 0x33ae4, 0x33b10,
2423                 0x33b24, 0x33b28,
2424                 0x33b38, 0x33b50,
2425                 0x33bf0, 0x33c10,
2426                 0x33c24, 0x33c28,
2427                 0x33c38, 0x33c50,
2428                 0x33cf0, 0x33cfc,
2429                 0x34000, 0x34030,
2430                 0x34100, 0x34168,
2431                 0x34190, 0x341a0,
2432                 0x341a8, 0x341b8,
2433                 0x341c4, 0x341c8,
2434                 0x341d0, 0x341d0,
2435                 0x34200, 0x34320,
2436                 0x34400, 0x344b4,
2437                 0x344c0, 0x3452c,
2438                 0x34540, 0x3461c,
2439                 0x34800, 0x348a0,
2440                 0x348c0, 0x34908,
2441                 0x34910, 0x349b8,
2442                 0x34a00, 0x34a04,
2443                 0x34a0c, 0x34a14,
2444                 0x34a1c, 0x34a2c,
2445                 0x34a44, 0x34a50,
2446                 0x34a74, 0x34a74,
2447                 0x34a7c, 0x34afc,
2448                 0x34b08, 0x34c24,
2449                 0x34d00, 0x34d14,
2450                 0x34d1c, 0x34d3c,
2451                 0x34d44, 0x34d4c,
2452                 0x34d54, 0x34d74,
2453                 0x34d7c, 0x34d7c,
2454                 0x34de0, 0x34de0,
2455                 0x34e00, 0x34ed4,
2456                 0x34f00, 0x34fa4,
2457                 0x34fc0, 0x34fc4,
2458                 0x35000, 0x35004,
2459                 0x35080, 0x350fc,
2460                 0x35208, 0x35220,
2461                 0x3523c, 0x35254,
2462                 0x35300, 0x35300,
2463                 0x35308, 0x3531c,
2464                 0x35338, 0x3533c,
2465                 0x35380, 0x35380,
2466                 0x35388, 0x353a8,
2467                 0x353b4, 0x353b4,
2468                 0x35400, 0x35420,
2469                 0x35438, 0x3543c,
2470                 0x35480, 0x35480,
2471                 0x354a8, 0x354a8,
2472                 0x354b0, 0x354b4,
2473                 0x354c8, 0x354d4,
2474                 0x35a40, 0x35a4c,
2475                 0x35af0, 0x35b20,
2476                 0x35b38, 0x35b3c,
2477                 0x35b80, 0x35b80,
2478                 0x35ba8, 0x35ba8,
2479                 0x35bb0, 0x35bb4,
2480                 0x35bc8, 0x35bd4,
2481                 0x36140, 0x3618c,
2482                 0x361f0, 0x361f4,
2483                 0x36200, 0x36200,
2484                 0x36218, 0x36218,
2485                 0x36400, 0x36400,
2486                 0x36408, 0x3641c,
2487                 0x36618, 0x36620,
2488                 0x36664, 0x36664,
2489                 0x366a8, 0x366a8,
2490                 0x366ec, 0x366ec,
2491                 0x36a00, 0x36abc,
2492                 0x36b00, 0x36b18,
2493                 0x36b20, 0x36b38,
2494                 0x36b40, 0x36b58,
2495                 0x36b60, 0x36b78,
2496                 0x36c00, 0x36c00,
2497                 0x36c08, 0x36c3c,
2498                 0x37000, 0x3702c,
2499                 0x37034, 0x37050,
2500                 0x37058, 0x37058,
2501                 0x37060, 0x3708c,
2502                 0x3709c, 0x370ac,
2503                 0x370c0, 0x370c0,
2504                 0x370c8, 0x370d0,
2505                 0x370d8, 0x370e0,
2506                 0x370ec, 0x3712c,
2507                 0x37134, 0x37150,
2508                 0x37158, 0x37158,
2509                 0x37160, 0x3718c,
2510                 0x3719c, 0x371ac,
2511                 0x371c0, 0x371c0,
2512                 0x371c8, 0x371d0,
2513                 0x371d8, 0x371e0,
2514                 0x371ec, 0x37290,
2515                 0x37298, 0x372c4,
2516                 0x372e4, 0x37390,
2517                 0x37398, 0x373c4,
2518                 0x373e4, 0x3742c,
2519                 0x37434, 0x37450,
2520                 0x37458, 0x37458,
2521                 0x37460, 0x3748c,
2522                 0x3749c, 0x374ac,
2523                 0x374c0, 0x374c0,
2524                 0x374c8, 0x374d0,
2525                 0x374d8, 0x374e0,
2526                 0x374ec, 0x3752c,
2527                 0x37534, 0x37550,
2528                 0x37558, 0x37558,
2529                 0x37560, 0x3758c,
2530                 0x3759c, 0x375ac,
2531                 0x375c0, 0x375c0,
2532                 0x375c8, 0x375d0,
2533                 0x375d8, 0x375e0,
2534                 0x375ec, 0x37690,
2535                 0x37698, 0x376c4,
2536                 0x376e4, 0x37790,
2537                 0x37798, 0x377c4,
2538                 0x377e4, 0x377fc,
2539                 0x37814, 0x37814,
2540                 0x37854, 0x37868,
2541                 0x37880, 0x3788c,
2542                 0x378c0, 0x378d0,
2543                 0x378e8, 0x378ec,
2544                 0x37900, 0x3792c,
2545                 0x37934, 0x37950,
2546                 0x37958, 0x37958,
2547                 0x37960, 0x3798c,
2548                 0x3799c, 0x379ac,
2549                 0x379c0, 0x379c0,
2550                 0x379c8, 0x379d0,
2551                 0x379d8, 0x379e0,
2552                 0x379ec, 0x37a90,
2553                 0x37a98, 0x37ac4,
2554                 0x37ae4, 0x37b10,
2555                 0x37b24, 0x37b28,
2556                 0x37b38, 0x37b50,
2557                 0x37bf0, 0x37c10,
2558                 0x37c24, 0x37c28,
2559                 0x37c38, 0x37c50,
2560                 0x37cf0, 0x37cfc,
2561                 0x40040, 0x40040,
2562                 0x40080, 0x40084,
2563                 0x40100, 0x40100,
2564                 0x40140, 0x401bc,
2565                 0x40200, 0x40214,
2566                 0x40228, 0x40228,
2567                 0x40240, 0x40258,
2568                 0x40280, 0x40280,
2569                 0x40304, 0x40304,
2570                 0x40330, 0x4033c,
2571                 0x41304, 0x413c8,
2572                 0x413d0, 0x413dc,
2573                 0x413f0, 0x413f0,
2574                 0x41400, 0x4140c,
2575                 0x41414, 0x4141c,
2576                 0x41480, 0x414d0,
2577                 0x44000, 0x4407c,
2578                 0x440c0, 0x441ac,
2579                 0x441b4, 0x4427c,
2580                 0x442c0, 0x443ac,
2581                 0x443b4, 0x4447c,
2582                 0x444c0, 0x445ac,
2583                 0x445b4, 0x4467c,
2584                 0x446c0, 0x447ac,
2585                 0x447b4, 0x4487c,
2586                 0x448c0, 0x449ac,
2587                 0x449b4, 0x44a7c,
2588                 0x44ac0, 0x44bac,
2589                 0x44bb4, 0x44c7c,
2590                 0x44cc0, 0x44dac,
2591                 0x44db4, 0x44e7c,
2592                 0x44ec0, 0x44fac,
2593                 0x44fb4, 0x4507c,
2594                 0x450c0, 0x451ac,
2595                 0x451b4, 0x451fc,
2596                 0x45800, 0x45804,
2597                 0x45810, 0x45830,
2598                 0x45840, 0x45860,
2599                 0x45868, 0x45868,
2600                 0x45880, 0x45884,
2601                 0x458a0, 0x458b0,
2602                 0x45a00, 0x45a04,
2603                 0x45a10, 0x45a30,
2604                 0x45a40, 0x45a60,
2605                 0x45a68, 0x45a68,
2606                 0x45a80, 0x45a84,
2607                 0x45aa0, 0x45ab0,
2608                 0x460c0, 0x460e4,
2609                 0x47000, 0x4703c,
2610                 0x47044, 0x4708c,
2611                 0x47200, 0x47250,
2612                 0x47400, 0x47408,
2613                 0x47414, 0x47420,
2614                 0x47600, 0x47618,
2615                 0x47800, 0x47814,
2616                 0x47820, 0x4782c,
2617                 0x50000, 0x50084,
2618                 0x50090, 0x500cc,
2619                 0x50300, 0x50384,
2620                 0x50400, 0x50400,
2621                 0x50800, 0x50884,
2622                 0x50890, 0x508cc,
2623                 0x50b00, 0x50b84,
2624                 0x50c00, 0x50c00,
2625                 0x51000, 0x51020,
2626                 0x51028, 0x510b0,
2627                 0x51300, 0x51324,
2628         };
2629
2630         static const unsigned int t6vf_reg_ranges[] = {
2631                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2632                 VF_MPS_REG(A_MPS_VF_CTL),
2633                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2634                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2635                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2636                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2637                 FW_T6VF_MBDATA_BASE_ADDR,
2638                 FW_T6VF_MBDATA_BASE_ADDR +
2639                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2640         };
2641
2642         u32 *buf_end = (u32 *)(buf + buf_size);
2643         const unsigned int *reg_ranges;
2644         int reg_ranges_size, range;
2645         unsigned int chip_version = chip_id(adap);
2646
2647         /*
2648          * Select the right set of register ranges to dump depending on the
2649          * adapter chip type.
2650          */
2651         switch (chip_version) {
2652         case CHELSIO_T4:
2653                 if (adap->flags & IS_VF) {
2654                         reg_ranges = t4vf_reg_ranges;
2655                         reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2656                 } else {
2657                         reg_ranges = t4_reg_ranges;
2658                         reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2659                 }
2660                 break;
2661
2662         case CHELSIO_T5:
2663                 if (adap->flags & IS_VF) {
2664                         reg_ranges = t5vf_reg_ranges;
2665                         reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2666                 } else {
2667                         reg_ranges = t5_reg_ranges;
2668                         reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2669                 }
2670                 break;
2671
2672         case CHELSIO_T6:
2673                 if (adap->flags & IS_VF) {
2674                         reg_ranges = t6vf_reg_ranges;
2675                         reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2676                 } else {
2677                         reg_ranges = t6_reg_ranges;
2678                         reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2679                 }
2680                 break;
2681
2682         default:
2683                 CH_ERR(adap,
2684                         "Unsupported chip version %d\n", chip_version);
2685                 return;
2686         }
2687
2688         /*
2689          * Clear the register buffer and insert the appropriate register
2690          * values selected by the above register ranges.
2691          */
2692         memset(buf, 0, buf_size);
2693         for (range = 0; range < reg_ranges_size; range += 2) {
2694                 unsigned int reg = reg_ranges[range];
2695                 unsigned int last_reg = reg_ranges[range + 1];
2696                 u32 *bufp = (u32 *)(buf + reg);
2697
2698                 /*
2699                  * Iterate across the register range filling in the register
2700                  * buffer but don't write past the end of the register buffer.
2701                  */
2702                 while (reg <= last_reg && bufp < buf_end) {
2703                         *bufp++ = t4_read_reg(adap, reg);
2704                         reg += sizeof(u32);
2705                 }
2706         }
2707 }
2708
2709 /*
2710  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2711  * header followed by one or more VPD-R sections, each with its own header.
2712  */
2713 struct t4_vpd_hdr {
2714         u8  id_tag;
2715         u8  id_len[2];
2716         u8  id_data[ID_LEN];
2717 };
2718
2719 struct t4_vpdr_hdr {
2720         u8  vpdr_tag;
2721         u8  vpdr_len[2];
2722 };
2723
2724 /*
2725  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2726  */
2727 #define EEPROM_DELAY            10              /* 10us per poll spin */
2728 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
2729
2730 #define EEPROM_STAT_ADDR        0x7bfc
2731 #define VPD_SIZE                0x800
2732 #define VPD_BASE                0x400
2733 #define VPD_BASE_OLD            0
2734 #define VPD_LEN                 1024
2735 #define VPD_INFO_FLD_HDR_SIZE   3
2736 #define CHELSIO_VPD_UNIQUE_ID   0x82
2737
2738 /*
2739  * Small utility function to wait till any outstanding VPD Access is complete.
2740  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2741  * VPD Access in flight.  This allows us to handle the problem of having a
2742  * previous VPD Access time out and prevent an attempt to inject a new VPD
2743  * Request before any in-flight VPD reguest has completed.
2744  */
2745 static int t4_seeprom_wait(struct adapter *adapter)
2746 {
2747         unsigned int base = adapter->params.pci.vpd_cap_addr;
2748         int max_poll;
2749
2750         /*
2751          * If no VPD Access is in flight, we can just return success right
2752          * away.
2753          */
2754         if (!adapter->vpd_busy)
2755                 return 0;
2756
2757         /*
2758          * Poll the VPD Capability Address/Flag register waiting for it
2759          * to indicate that the operation is complete.
2760          */
2761         max_poll = EEPROM_MAX_POLL;
2762         do {
2763                 u16 val;
2764
2765                 udelay(EEPROM_DELAY);
2766                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2767
2768                 /*
2769                  * If the operation is complete, mark the VPD as no longer
2770                  * busy and return success.
2771                  */
2772                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2773                         adapter->vpd_busy = 0;
2774                         return 0;
2775                 }
2776         } while (--max_poll);
2777
2778         /*
2779          * Failure!  Note that we leave the VPD Busy status set in order to
2780          * avoid pushing a new VPD Access request into the VPD Capability till
2781          * the current operation eventually succeeds.  It's a bug to issue a
2782          * new request when an existing request is in flight and will result
2783          * in corrupt hardware state.
2784          */
2785         return -ETIMEDOUT;
2786 }
2787
2788 /**
2789  *      t4_seeprom_read - read a serial EEPROM location
2790  *      @adapter: adapter to read
2791  *      @addr: EEPROM virtual address
2792  *      @data: where to store the read data
2793  *
2794  *      Read a 32-bit word from a location in serial EEPROM using the card's PCI
2795  *      VPD capability.  Note that this function must be called with a virtual
2796  *      address.
2797  */
2798 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2799 {
2800         unsigned int base = adapter->params.pci.vpd_cap_addr;
2801         int ret;
2802
2803         /*
2804          * VPD Accesses must alway be 4-byte aligned!
2805          */
2806         if (addr >= EEPROMVSIZE || (addr & 3))
2807                 return -EINVAL;
2808
2809         /*
2810          * Wait for any previous operation which may still be in flight to
2811          * complete.
2812          */
2813         ret = t4_seeprom_wait(adapter);
2814         if (ret) {
2815                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2816                 return ret;
2817         }
2818
2819         /*
2820          * Issue our new VPD Read request, mark the VPD as being busy and wait
2821          * for our request to complete.  If it doesn't complete, note the
2822          * error and return it to our caller.  Note that we do not reset the
2823          * VPD Busy status!
2824          */
2825         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2826         adapter->vpd_busy = 1;
2827         adapter->vpd_flag = PCI_VPD_ADDR_F;
2828         ret = t4_seeprom_wait(adapter);
2829         if (ret) {
2830                 CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2831                 return ret;
2832         }
2833
2834         /*
2835          * Grab the returned data, swizzle it into our endianness and
2836          * return success.
2837          */
2838         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2839         *data = le32_to_cpu(*data);
2840         return 0;
2841 }
2842
2843 /**
2844  *      t4_seeprom_write - write a serial EEPROM location
2845  *      @adapter: adapter to write
2846  *      @addr: virtual EEPROM address
2847  *      @data: value to write
2848  *
2849  *      Write a 32-bit word to a location in serial EEPROM using the card's PCI
2850  *      VPD capability.  Note that this function must be called with a virtual
2851  *      address.
2852  */
2853 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2854 {
2855         unsigned int base = adapter->params.pci.vpd_cap_addr;
2856         int ret;
2857         u32 stats_reg;
2858         int max_poll;
2859
2860         /*
2861          * VPD Accesses must alway be 4-byte aligned!
2862          */
2863         if (addr >= EEPROMVSIZE || (addr & 3))
2864                 return -EINVAL;
2865
2866         /*
2867          * Wait for any previous operation which may still be in flight to
2868          * complete.
2869          */
2870         ret = t4_seeprom_wait(adapter);
2871         if (ret) {
2872                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2873                 return ret;
2874         }
2875
2876         /*
2877          * Issue our new VPD Read request, mark the VPD as being busy and wait
2878          * for our request to complete.  If it doesn't complete, note the
2879          * error and return it to our caller.  Note that we do not reset the
2880          * VPD Busy status!
2881          */
2882         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2883                                  cpu_to_le32(data));
2884         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2885                                  (u16)addr | PCI_VPD_ADDR_F);
2886         adapter->vpd_busy = 1;
2887         adapter->vpd_flag = 0;
2888         ret = t4_seeprom_wait(adapter);
2889         if (ret) {
2890                 CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2891                 return ret;
2892         }
2893
2894         /*
2895          * Reset PCI_VPD_DATA register after a transaction and wait for our
2896          * request to complete. If it doesn't complete, return error.
2897          */
2898         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2899         max_poll = EEPROM_MAX_POLL;
2900         do {
2901                 udelay(EEPROM_DELAY);
2902                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2903         } while ((stats_reg & 0x1) && --max_poll);
2904         if (!max_poll)
2905                 return -ETIMEDOUT;
2906
2907         /* Return success! */
2908         return 0;
2909 }
2910
2911 /**
2912  *      t4_eeprom_ptov - translate a physical EEPROM address to virtual
2913  *      @phys_addr: the physical EEPROM address
2914  *      @fn: the PCI function number
2915  *      @sz: size of function-specific area
2916  *
2917  *      Translate a physical EEPROM address to virtual.  The first 1K is
2918  *      accessed through virtual addresses starting at 31K, the rest is
2919  *      accessed through virtual addresses starting at 0.
2920  *
2921  *      The mapping is as follows:
2922  *      [0..1K) -> [31K..32K)
2923  *      [1K..1K+A) -> [ES-A..ES)
2924  *      [1K+A..ES) -> [0..ES-A-1K)
2925  *
2926  *      where A = @fn * @sz, and ES = EEPROM size.
2927  */
2928 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2929 {
2930         fn *= sz;
2931         if (phys_addr < 1024)
2932                 return phys_addr + (31 << 10);
2933         if (phys_addr < 1024 + fn)
2934                 return EEPROMSIZE - fn + phys_addr - 1024;
2935         if (phys_addr < EEPROMSIZE)
2936                 return phys_addr - 1024 - fn;
2937         return -EINVAL;
2938 }
2939
2940 /**
2941  *      t4_seeprom_wp - enable/disable EEPROM write protection
2942  *      @adapter: the adapter
2943  *      @enable: whether to enable or disable write protection
2944  *
2945  *      Enables or disables write protection on the serial EEPROM.
2946  */
2947 int t4_seeprom_wp(struct adapter *adapter, int enable)
2948 {
2949         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2950 }
2951
2952 /**
2953  *      get_vpd_keyword_val - Locates an information field keyword in the VPD
2954  *      @vpd: Pointer to buffered vpd data structure
2955  *      @kw: The keyword to search for
2956  *      @region: VPD region to search (starting from 0)
2957  *
2958  *      Returns the value of the information field keyword or
2959  *      -ENOENT otherwise.
2960  */
2961 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2962 {
2963         int i, tag;
2964         unsigned int offset, len;
2965         const struct t4_vpdr_hdr *vpdr;
2966
2967         offset = sizeof(struct t4_vpd_hdr);
2968         vpdr = (const void *)(vpd + offset);
2969         tag = vpdr->vpdr_tag;
2970         len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2971         while (region--) {
2972                 offset += sizeof(struct t4_vpdr_hdr) + len;
2973                 vpdr = (const void *)(vpd + offset);
2974                 if (++tag != vpdr->vpdr_tag)
2975                         return -ENOENT;
2976                 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2977         }
2978         offset += sizeof(struct t4_vpdr_hdr);
2979
2980         if (offset + len > VPD_LEN) {
2981                 return -ENOENT;
2982         }
2983
2984         for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2985                 if (memcmp(vpd + i , kw , 2) == 0){
2986                         i += VPD_INFO_FLD_HDR_SIZE;
2987                         return i;
2988                 }
2989
2990                 i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2991         }
2992
2993         return -ENOENT;
2994 }
2995
2996
2997 /**
2998  *      get_vpd_params - read VPD parameters from VPD EEPROM
2999  *      @adapter: adapter to read
3000  *      @p: where to store the parameters
3001  *      @vpd: caller provided temporary space to read the VPD into
3002  *
3003  *      Reads card parameters stored in VPD EEPROM.
3004  */
3005 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3006     uint16_t device_id, u32 *buf)
3007 {
3008         int i, ret, addr;
3009         int ec, sn, pn, na, md;
3010         u8 csum;
3011         const u8 *vpd = (const u8 *)buf;
3012
3013         /*
3014          * Card information normally starts at VPD_BASE but early cards had
3015          * it at 0.
3016          */
3017         ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3018         if (ret)
3019                 return (ret);
3020
3021         /*
3022          * The VPD shall have a unique identifier specified by the PCI SIG.
3023          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3024          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3025          * is expected to automatically put this entry at the
3026          * beginning of the VPD.
3027          */
3028         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3029
3030         for (i = 0; i < VPD_LEN; i += 4) {
3031                 ret = t4_seeprom_read(adapter, addr + i, buf++);
3032                 if (ret)
3033                         return ret;
3034         }
3035
3036 #define FIND_VPD_KW(var,name) do { \
3037         var = get_vpd_keyword_val(vpd, name, 0); \
3038         if (var < 0) { \
3039                 CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3040                 return -EINVAL; \
3041         } \
3042 } while (0)
3043
3044         FIND_VPD_KW(i, "RV");
3045         for (csum = 0; i >= 0; i--)
3046                 csum += vpd[i];
3047
3048         if (csum) {
3049                 CH_ERR(adapter,
3050                         "corrupted VPD EEPROM, actual csum %u\n", csum);
3051                 return -EINVAL;
3052         }
3053
3054         FIND_VPD_KW(ec, "EC");
3055         FIND_VPD_KW(sn, "SN");
3056         FIND_VPD_KW(pn, "PN");
3057         FIND_VPD_KW(na, "NA");
3058 #undef FIND_VPD_KW
3059
3060         memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3061         strstrip(p->id);
3062         memcpy(p->ec, vpd + ec, EC_LEN);
3063         strstrip(p->ec);
3064         i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3065         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3066         strstrip(p->sn);
3067         i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3068         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3069         strstrip((char *)p->pn);
3070         i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3071         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3072         strstrip((char *)p->na);
3073
3074         if (device_id & 0x80)
3075                 return 0;       /* Custom card */
3076
3077         md = get_vpd_keyword_val(vpd, "VF", 1);
3078         if (md < 0) {
3079                 snprintf(p->md, sizeof(p->md), "unknown");
3080         } else {
3081                 i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3082                 memcpy(p->md, vpd + md, min(i, MD_LEN));
3083                 strstrip((char *)p->md);
3084         }
3085
3086         return 0;
3087 }
3088
3089 /* serial flash and firmware constants and flash config file constants */
3090 enum {
3091         SF_ATTEMPTS = 10,       /* max retries for SF operations */
3092
3093         /* flash command opcodes */
3094         SF_PROG_PAGE    = 2,    /* program 256B page */
3095         SF_WR_DISABLE   = 4,    /* disable writes */
3096         SF_RD_STATUS    = 5,    /* read status register */
3097         SF_WR_ENABLE    = 6,    /* enable writes */
3098         SF_RD_DATA_FAST = 0xb,  /* read flash */
3099         SF_RD_ID        = 0x9f, /* read ID */
3100         SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */
3101 };
3102
3103 /**
3104  *      sf1_read - read data from the serial flash
3105  *      @adapter: the adapter
3106  *      @byte_cnt: number of bytes to read
3107  *      @cont: whether another operation will be chained
3108  *      @lock: whether to lock SF for PL access only
3109  *      @valp: where to store the read data
3110  *
3111  *      Reads up to 4 bytes of data from the serial flash.  The location of
3112  *      the read needs to be specified prior to calling this by issuing the
3113  *      appropriate commands to the serial flash.
3114  */
3115 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3116                     int lock, u32 *valp)
3117 {
3118         int ret;
3119
3120         if (!byte_cnt || byte_cnt > 4)
3121                 return -EINVAL;
3122         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3123                 return -EBUSY;
3124         t4_write_reg(adapter, A_SF_OP,
3125                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3126         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3127         if (!ret)
3128                 *valp = t4_read_reg(adapter, A_SF_DATA);
3129         return ret;
3130 }
3131
3132 /**
3133  *      sf1_write - write data to the serial flash
3134  *      @adapter: the adapter
3135  *      @byte_cnt: number of bytes to write
3136  *      @cont: whether another operation will be chained
3137  *      @lock: whether to lock SF for PL access only
3138  *      @val: value to write
3139  *
3140  *      Writes up to 4 bytes of data to the serial flash.  The location of
3141  *      the write needs to be specified prior to calling this by issuing the
3142  *      appropriate commands to the serial flash.
3143  */
3144 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3145                      int lock, u32 val)
3146 {
3147         if (!byte_cnt || byte_cnt > 4)
3148                 return -EINVAL;
3149         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3150                 return -EBUSY;
3151         t4_write_reg(adapter, A_SF_DATA, val);
3152         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3153                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3154         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3155 }
3156
3157 /**
3158  *      flash_wait_op - wait for a flash operation to complete
3159  *      @adapter: the adapter
3160  *      @attempts: max number of polls of the status register
3161  *      @delay: delay between polls in ms
3162  *
3163  *      Wait for a flash operation to complete by polling the status register.
3164  */
3165 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3166 {
3167         int ret;
3168         u32 status;
3169
3170         while (1) {
3171                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3172                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3173                         return ret;
3174                 if (!(status & 1))
3175                         return 0;
3176                 if (--attempts == 0)
3177                         return -EAGAIN;
3178                 if (delay)
3179                         msleep(delay);
3180         }
3181 }
3182
3183 /**
3184  *      t4_read_flash - read words from serial flash
3185  *      @adapter: the adapter
3186  *      @addr: the start address for the read
3187  *      @nwords: how many 32-bit words to read
3188  *      @data: where to store the read data
3189  *      @byte_oriented: whether to store data as bytes or as words
3190  *
3191  *      Read the specified number of 32-bit words from the serial flash.
3192  *      If @byte_oriented is set the read data is stored as a byte array
3193  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3194  *      natural endianness.
3195  */
3196 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3197                   unsigned int nwords, u32 *data, int byte_oriented)
3198 {
3199         int ret;
3200
3201         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3202                 return -EINVAL;
3203
3204         addr = swab32(addr) | SF_RD_DATA_FAST;
3205
3206         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3207             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3208                 return ret;
3209
3210         for ( ; nwords; nwords--, data++) {
3211                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3212                 if (nwords == 1)
3213                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3214                 if (ret)
3215                         return ret;
3216                 if (byte_oriented)
3217                         *data = (__force __u32)(cpu_to_be32(*data));
3218         }
3219         return 0;
3220 }
3221
3222 /**
3223  *      t4_write_flash - write up to a page of data to the serial flash
3224  *      @adapter: the adapter
3225  *      @addr: the start address to write
3226  *      @n: length of data to write in bytes
3227  *      @data: the data to write
3228  *      @byte_oriented: whether to store data as bytes or as words
3229  *
3230  *      Writes up to a page of data (256 bytes) to the serial flash starting
3231  *      at the given address.  All the data must be written to the same page.
3232  *      If @byte_oriented is set the write data is stored as byte stream
3233  *      (i.e. matches what on disk), otherwise in big-endian.
3234  */
3235 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3236                           unsigned int n, const u8 *data, int byte_oriented)
3237 {
3238         int ret;
3239         u32 buf[SF_PAGE_SIZE / 4];
3240         unsigned int i, c, left, val, offset = addr & 0xff;
3241
3242         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3243                 return -EINVAL;
3244
3245         val = swab32(addr) | SF_PROG_PAGE;
3246
3247         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3248             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3249                 goto unlock;
3250
3251         for (left = n; left; left -= c) {
3252                 c = min(left, 4U);
3253                 for (val = 0, i = 0; i < c; ++i)
3254                         val = (val << 8) + *data++;
3255
3256                 if (!byte_oriented)
3257                         val = cpu_to_be32(val);
3258
3259                 ret = sf1_write(adapter, c, c != left, 1, val);
3260                 if (ret)
3261                         goto unlock;
3262         }
3263         ret = flash_wait_op(adapter, 8, 1);
3264         if (ret)
3265                 goto unlock;
3266
3267         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3268
3269         /* Read the page to verify the write succeeded */
3270         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3271                             byte_oriented);
3272         if (ret)
3273                 return ret;
3274
3275         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3276                 CH_ERR(adapter,
3277                         "failed to correctly write the flash page at %#x\n",
3278                         addr);
3279                 return -EIO;
3280         }
3281         return 0;
3282
3283 unlock:
3284         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3285         return ret;
3286 }
3287
3288 /**
3289  *      t4_get_fw_version - read the firmware version
3290  *      @adapter: the adapter
3291  *      @vers: where to place the version
3292  *
3293  *      Reads the FW version from flash.
3294  */
3295 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3296 {
3297         return t4_read_flash(adapter, FLASH_FW_START +
3298                              offsetof(struct fw_hdr, fw_ver), 1,
3299                              vers, 0);
3300 }
3301
3302 /**
3303  *      t4_get_fw_hdr - read the firmware header
3304  *      @adapter: the adapter
3305  *      @hdr: where to place the version
3306  *
3307  *      Reads the FW header from flash into caller provided buffer.
3308  */
3309 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3310 {
3311         return t4_read_flash(adapter, FLASH_FW_START,
3312             sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3313 }
3314
3315 /**
3316  *      t4_get_bs_version - read the firmware bootstrap version
3317  *      @adapter: the adapter
3318  *      @vers: where to place the version
3319  *
3320  *      Reads the FW Bootstrap version from flash.
3321  */
3322 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3323 {
3324         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3325                              offsetof(struct fw_hdr, fw_ver), 1,
3326                              vers, 0);
3327 }
3328
3329 /**
3330  *      t4_get_tp_version - read the TP microcode version
3331  *      @adapter: the adapter
3332  *      @vers: where to place the version
3333  *
3334  *      Reads the TP microcode version from flash.
3335  */
3336 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3337 {
3338         return t4_read_flash(adapter, FLASH_FW_START +
3339                              offsetof(struct fw_hdr, tp_microcode_ver),
3340                              1, vers, 0);
3341 }
3342
3343 /**
3344  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3345  *      @adapter: the adapter
3346  *      @vers: where to place the version
3347  *
3348  *      Reads the Expansion ROM header from FLASH and returns the version
3349  *      number (if present) through the @vers return value pointer.  We return
3350  *      this in the Firmware Version Format since it's convenient.  Return
3351  *      0 on success, -ENOENT if no Expansion ROM is present.
3352  */
3353 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3354 {
3355         struct exprom_header {
3356                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3357                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3358         } *hdr;
3359         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3360                                            sizeof(u32))];
3361         int ret;
3362
3363         ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3364                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3365                             0);
3366         if (ret)
3367                 return ret;
3368
3369         hdr = (struct exprom_header *)exprom_header_buf;
3370         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3371                 return -ENOENT;
3372
3373         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3374                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3375                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3376                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3377         return 0;
3378 }
3379
3380 /**
3381  *      t4_get_scfg_version - return the Serial Configuration version
3382  *      @adapter: the adapter
3383  *      @vers: where to place the version
3384  *
3385  *      Reads the Serial Configuration Version via the Firmware interface
3386  *      (thus this can only be called once we're ready to issue Firmware
3387  *      commands).  The format of the Serial Configuration version is
3388  *      adapter specific.  Returns 0 on success, an error on failure.
3389  *
3390  *      Note that early versions of the Firmware didn't include the ability
3391  *      to retrieve the Serial Configuration version, so we zero-out the
3392  *      return-value parameter in that case to avoid leaving it with
3393  *      garbage in it.
3394  *
3395  *      Also note that the Firmware will return its cached copy of the Serial
3396  *      Initialization Revision ID, not the actual Revision ID as written in
3397  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3398  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3399  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3400  *      been issued if the Host Driver will be performing a full adapter
3401  *      initialization.
3402  */
3403 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3404 {
3405         u32 scfgrev_param;
3406         int ret;
3407
3408         scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3409                          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3410         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3411                               1, &scfgrev_param, vers);
3412         if (ret)
3413                 *vers = 0;
3414         return ret;
3415 }
3416
3417 /**
3418  *      t4_get_vpd_version - return the VPD version
3419  *      @adapter: the adapter
3420  *      @vers: where to place the version
3421  *
3422  *      Reads the VPD via the Firmware interface (thus this can only be called
3423  *      once we're ready to issue Firmware commands).  The format of the
3424  *      VPD version is adapter specific.  Returns 0 on success, an error on
3425  *      failure.
3426  *
3427  *      Note that early versions of the Firmware didn't include the ability
3428  *      to retrieve the VPD version, so we zero-out the return-value parameter
3429  *      in that case to avoid leaving it with garbage in it.
3430  *
3431  *      Also note that the Firmware will return its cached copy of the VPD
3432  *      Revision ID, not the actual Revision ID as written in the Serial
3433  *      EEPROM.  This is only an issue if a new VPD has been written and the
3434  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3435  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3436  *      if the Host Driver will be performing a full adapter initialization.
3437  */
3438 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3439 {
3440         u32 vpdrev_param;
3441         int ret;
3442
3443         vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3444                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3445         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3446                               1, &vpdrev_param, vers);
3447         if (ret)
3448                 *vers = 0;
3449         return ret;
3450 }
3451
3452 /**
3453  *      t4_get_version_info - extract various chip/firmware version information
3454  *      @adapter: the adapter
3455  *
3456  *      Reads various chip/firmware version numbers and stores them into the
3457  *      adapter Adapter Parameters structure.  If any of the efforts fails
3458  *      the first failure will be returned, but all of the version numbers
3459  *      will be read.
3460  */
3461 int t4_get_version_info(struct adapter *adapter)
3462 {
3463         int ret = 0;
3464
3465         #define FIRST_RET(__getvinfo) \
3466         do { \
3467                 int __ret = __getvinfo; \
3468                 if (__ret && !ret) \
3469                         ret = __ret; \
3470         } while (0)
3471
3472         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3473         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3474         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3475         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3476         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3477         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3478
3479         #undef FIRST_RET
3480
3481         return ret;
3482 }
3483
3484 /**
3485  *      t4_flash_erase_sectors - erase a range of flash sectors
3486  *      @adapter: the adapter
3487  *      @start: the first sector to erase
3488  *      @end: the last sector to erase
3489  *
3490  *      Erases the sectors in the given inclusive range.
3491  */
3492 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3493 {
3494         int ret = 0;
3495
3496         if (end >= adapter->params.sf_nsec)
3497                 return -EINVAL;
3498
3499         while (start <= end) {
3500                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3501                     (ret = sf1_write(adapter, 4, 0, 1,
3502                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3503                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3504                         CH_ERR(adapter,
3505                                 "erase of flash sector %d failed, error %d\n",
3506                                 start, ret);
3507                         break;
3508                 }
3509                 start++;
3510         }
3511         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3512         return ret;
3513 }
3514
3515 /**
3516  *      t4_flash_cfg_addr - return the address of the flash configuration file
3517  *      @adapter: the adapter
3518  *
3519  *      Return the address within the flash where the Firmware Configuration
3520  *      File is stored, or an error if the device FLASH is too small to contain
3521  *      a Firmware Configuration File.
3522  */
3523 int t4_flash_cfg_addr(struct adapter *adapter)
3524 {
3525         /*
3526          * If the device FLASH isn't large enough to hold a Firmware
3527          * Configuration File, return an error.
3528          */
3529         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3530                 return -ENOSPC;
3531
3532         return FLASH_CFG_START;
3533 }
3534
3535 /*
3536  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3537  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3538  * and emit an error message for mismatched firmware to save our caller the
3539  * effort ...
3540  */
3541 static int t4_fw_matches_chip(struct adapter *adap,
3542                               const struct fw_hdr *hdr)
3543 {
3544         /*
3545          * The expression below will return FALSE for any unsupported adapter
3546          * which will keep us "honest" in the future ...
3547          */
3548         if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3549             (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3550             (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3551                 return 1;
3552
3553         CH_ERR(adap,
3554                 "FW image (%d) is not suitable for this adapter (%d)\n",
3555                 hdr->chip, chip_id(adap));
3556         return 0;
3557 }
3558
3559 /**
3560  *      t4_load_fw - download firmware
3561  *      @adap: the adapter
3562  *      @fw_data: the firmware image to write
3563  *      @size: image size
3564  *
3565  *      Write the supplied firmware image to the card's serial flash.
3566  */
3567 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3568 {
3569         u32 csum;
3570         int ret, addr;
3571         unsigned int i;
3572         u8 first_page[SF_PAGE_SIZE];
3573         const u32 *p = (const u32 *)fw_data;
3574         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3575         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3576         unsigned int fw_start_sec;
3577         unsigned int fw_start;
3578         unsigned int fw_size;
3579
3580         if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3581                 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3582                 fw_start = FLASH_FWBOOTSTRAP_START;
3583                 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3584         } else {
3585                 fw_start_sec = FLASH_FW_START_SEC;
3586                 fw_start = FLASH_FW_START;
3587                 fw_size = FLASH_FW_MAX_SIZE;
3588         }
3589
3590         if (!size) {
3591                 CH_ERR(adap, "FW image has no data\n");
3592                 return -EINVAL;
3593         }
3594         if (size & 511) {
3595                 CH_ERR(adap,
3596                         "FW image size not multiple of 512 bytes\n");
3597                 return -EINVAL;
3598         }
3599         if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3600                 CH_ERR(adap,
3601                         "FW image size differs from size in FW header\n");
3602                 return -EINVAL;
3603         }
3604         if (size > fw_size) {
3605                 CH_ERR(adap, "FW image too large, max is %u bytes\n",
3606                         fw_size);
3607                 return -EFBIG;
3608         }
3609         if (!t4_fw_matches_chip(adap, hdr))
3610                 return -EINVAL;
3611
3612         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3613                 csum += be32_to_cpu(p[i]);
3614
3615         if (csum != 0xffffffff) {
3616                 CH_ERR(adap,
3617                         "corrupted firmware image, checksum %#x\n", csum);
3618                 return -EINVAL;
3619         }
3620
3621         i = DIV_ROUND_UP(size, sf_sec_size);    /* # of sectors spanned */
3622         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3623         if (ret)
3624                 goto out;
3625
3626         /*
3627          * We write the correct version at the end so the driver can see a bad
3628          * version if the FW write fails.  Start by writing a copy of the
3629          * first page with a bad version.
3630          */
3631         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3632         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3633         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3634         if (ret)
3635                 goto out;
3636
3637         addr = fw_start;
3638         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3639                 addr += SF_PAGE_SIZE;
3640                 fw_data += SF_PAGE_SIZE;
3641                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3642                 if (ret)
3643                         goto out;
3644         }
3645
3646         ret = t4_write_flash(adap,
3647                              fw_start + offsetof(struct fw_hdr, fw_ver),
3648                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3649 out:
3650         if (ret)
3651                 CH_ERR(adap, "firmware download failed, error %d\n",
3652                         ret);
3653         return ret;
3654 }
3655
3656 /**
3657  *      t4_fwcache - firmware cache operation
3658  *      @adap: the adapter
3659  *      @op  : the operation (flush or flush and invalidate)
3660  */
3661 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3662 {
3663         struct fw_params_cmd c;
3664
3665         memset(&c, 0, sizeof(c));
3666         c.op_to_vfn =
3667             cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3668                             F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3669                                 V_FW_PARAMS_CMD_PFN(adap->pf) |
3670                                 V_FW_PARAMS_CMD_VFN(0));
3671         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3672         c.param[0].mnem =
3673             cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3674                             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3675         c.param[0].val = (__force __be32)op;
3676
3677         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3678 }
3679
3680 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3681                         unsigned int *pif_req_wrptr,
3682                         unsigned int *pif_rsp_wrptr)
3683 {
3684         int i, j;
3685         u32 cfg, val, req, rsp;
3686
3687         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3688         if (cfg & F_LADBGEN)
3689                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3690
3691         val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3692         req = G_POLADBGWRPTR(val);
3693         rsp = G_PILADBGWRPTR(val);
3694         if (pif_req_wrptr)
3695                 *pif_req_wrptr = req;
3696         if (pif_rsp_wrptr)
3697                 *pif_rsp_wrptr = rsp;
3698
3699         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3700                 for (j = 0; j < 6; j++) {
3701                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3702                                      V_PILADBGRDPTR(rsp));
3703                         *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3704                         *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3705                         req++;
3706                         rsp++;
3707                 }
3708                 req = (req + 2) & M_POLADBGRDPTR;
3709                 rsp = (rsp + 2) & M_PILADBGRDPTR;
3710         }
3711         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3712 }
3713
3714 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3715 {
3716         u32 cfg;
3717         int i, j, idx;
3718
3719         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3720         if (cfg & F_LADBGEN)
3721                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3722
3723         for (i = 0; i < CIM_MALA_SIZE; i++) {
3724                 for (j = 0; j < 5; j++) {
3725                         idx = 8 * i + j;
3726                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3727                                      V_PILADBGRDPTR(idx));
3728                         *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3729                         *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3730                 }
3731         }
3732         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3733 }
3734
3735 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3736 {
3737         unsigned int i, j;
3738
3739         for (i = 0; i < 8; i++) {
3740                 u32 *p = la_buf + i;
3741
3742                 t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3743                 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3744                 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3745                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3746                         *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3747         }
3748 }
3749
3750 /**
3751  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3752  *      @caps16: a 16-bit Port Capabilities value
3753  *
3754  *      Returns the equivalent 32-bit Port Capabilities value.
3755  */
3756 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3757 {
3758         uint32_t caps32 = 0;
3759
3760         #define CAP16_TO_CAP32(__cap) \
3761                 do { \
3762                         if (caps16 & FW_PORT_CAP_##__cap) \
3763                                 caps32 |= FW_PORT_CAP32_##__cap; \
3764                 } while (0)
3765
3766         CAP16_TO_CAP32(SPEED_100M);
3767         CAP16_TO_CAP32(SPEED_1G);
3768         CAP16_TO_CAP32(SPEED_25G);
3769         CAP16_TO_CAP32(SPEED_10G);
3770         CAP16_TO_CAP32(SPEED_40G);
3771         CAP16_TO_CAP32(SPEED_100G);
3772         CAP16_TO_CAP32(FC_RX);
3773         CAP16_TO_CAP32(FC_TX);
3774         CAP16_TO_CAP32(ANEG);
3775         CAP16_TO_CAP32(FORCE_PAUSE);
3776         CAP16_TO_CAP32(MDIAUTO);
3777         CAP16_TO_CAP32(MDISTRAIGHT);
3778         CAP16_TO_CAP32(FEC_RS);
3779         CAP16_TO_CAP32(FEC_BASER_RS);
3780         CAP16_TO_CAP32(802_3_PAUSE);
3781         CAP16_TO_CAP32(802_3_ASM_DIR);
3782
3783         #undef CAP16_TO_CAP32
3784
3785         return caps32;
3786 }
3787
3788 /**
3789  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3790  *      @caps32: a 32-bit Port Capabilities value
3791  *
3792  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
3793  *      not all 32-bit Port Capabilities can be represented in the 16-bit
3794  *      Port Capabilities and some fields/values may not make it.
3795  */
3796 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3797 {
3798         uint16_t caps16 = 0;
3799
3800         #define CAP32_TO_CAP16(__cap) \
3801                 do { \
3802                         if (caps32 & FW_PORT_CAP32_##__cap) \
3803                                 caps16 |= FW_PORT_CAP_##__cap; \
3804                 } while (0)
3805
3806         CAP32_TO_CAP16(SPEED_100M);
3807         CAP32_TO_CAP16(SPEED_1G);
3808         CAP32_TO_CAP16(SPEED_10G);
3809         CAP32_TO_CAP16(SPEED_25G);
3810         CAP32_TO_CAP16(SPEED_40G);
3811         CAP32_TO_CAP16(SPEED_100G);
3812         CAP32_TO_CAP16(FC_RX);
3813         CAP32_TO_CAP16(FC_TX);
3814         CAP32_TO_CAP16(802_3_PAUSE);
3815         CAP32_TO_CAP16(802_3_ASM_DIR);
3816         CAP32_TO_CAP16(ANEG);
3817         CAP32_TO_CAP16(FORCE_PAUSE);
3818         CAP32_TO_CAP16(MDIAUTO);
3819         CAP32_TO_CAP16(MDISTRAIGHT);
3820         CAP32_TO_CAP16(FEC_RS);
3821         CAP32_TO_CAP16(FEC_BASER_RS);
3822
3823         #undef CAP32_TO_CAP16
3824
3825         return caps16;
3826 }
3827
3828 static bool
3829 is_bt(struct port_info *pi)
3830 {
3831
3832         return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3833             pi->port_type == FW_PORT_TYPE_BT_XFI ||
3834             pi->port_type == FW_PORT_TYPE_BT_XAUI);
3835 }
3836
3837 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3838 {
3839         int8_t fec = 0;
3840
3841         if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3842                 return (unset_means_none ? FEC_NONE : 0);
3843
3844         if (caps & FW_PORT_CAP32_FEC_RS)
3845                 fec |= FEC_RS;
3846         if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3847                 fec |= FEC_BASER_RS;
3848         if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3849                 fec |= FEC_NONE;
3850
3851         return (fec);
3852 }
3853
3854 /*
3855  * Note that 0 is not translated to NO_FEC.
3856  */
3857 static uint32_t fec_to_fwcap(int8_t fec)
3858 {
3859         uint32_t caps = 0;
3860
3861         /* Only real FECs allowed. */
3862         MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3863
3864         if (fec & FEC_RS)
3865                 caps |= FW_PORT_CAP32_FEC_RS;
3866         if (fec & FEC_BASER_RS)
3867                 caps |= FW_PORT_CAP32_FEC_BASER_RS;
3868         if (fec & FEC_NONE)
3869                 caps |= FW_PORT_CAP32_FEC_NO_FEC;
3870
3871         return (caps);
3872 }
3873
3874 /**
3875  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3876  *      @phy: the PHY to setup
3877  *      @mac: the MAC to setup
3878  *      @lc: the requested link configuration
3879  *
3880  *      Set up a port's MAC and PHY according to a desired link configuration.
3881  *      - If the PHY can auto-negotiate first decide what to advertise, then
3882  *        enable/disable auto-negotiation as desired, and reset.
3883  *      - If the PHY does not auto-negotiate just reset it.
3884  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3885  *        otherwise do it later based on the outcome of auto-negotiation.
3886  */
3887 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3888                   struct link_config *lc)
3889 {
3890         struct fw_port_cmd c;
3891         unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3892         unsigned int aneg, fc, fec, speed, rcap;
3893
3894         fc = 0;
3895         if (lc->requested_fc & PAUSE_RX)
3896                 fc |= FW_PORT_CAP32_FC_RX;
3897         if (lc->requested_fc & PAUSE_TX)
3898                 fc |= FW_PORT_CAP32_FC_TX;
3899         if (!(lc->requested_fc & PAUSE_AUTONEG))
3900                 fc |= FW_PORT_CAP32_FORCE_PAUSE;
3901
3902         if (lc->requested_aneg == AUTONEG_DISABLE)
3903                 aneg = 0;
3904         else if (lc->requested_aneg == AUTONEG_ENABLE)
3905                 aneg = FW_PORT_CAP32_ANEG;
3906         else
3907                 aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3908
3909         if (aneg) {
3910                 speed = lc->pcaps &
3911                     V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3912         } else if (lc->requested_speed != 0)
3913                 speed = speed_to_fwcap(lc->requested_speed);
3914         else
3915                 speed = fwcap_top_speed(lc->pcaps);
3916
3917         fec = 0;
3918         if (fec_supported(speed)) {
3919                 if (lc->requested_fec == FEC_AUTO) {
3920                         if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) {
3921                                 if (speed & FW_PORT_CAP32_SPEED_100G) {
3922                                         fec |= FW_PORT_CAP32_FEC_RS;
3923                                         fec |= FW_PORT_CAP32_FEC_NO_FEC;
3924                                 } else {
3925                                         fec |= FW_PORT_CAP32_FEC_RS;
3926                                         fec |= FW_PORT_CAP32_FEC_BASER_RS;
3927                                         fec |= FW_PORT_CAP32_FEC_NO_FEC;
3928                                 }
3929                         } else {
3930                                 /* Set only 1b with old firmwares. */
3931                                 fec |= fec_to_fwcap(lc->fec_hint);
3932                         }
3933                 } else {
3934                         fec |= fec_to_fwcap(lc->requested_fec &
3935                             M_FW_PORT_CAP32_FEC);
3936                         if (lc->requested_fec & FEC_MODULE)
3937                                 fec |= fec_to_fwcap(lc->fec_hint);
3938                 }
3939
3940                 if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
3941                         fec |= FW_PORT_CAP32_FORCE_FEC;
3942                 else if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3943                         fec = 0;
3944         }
3945
3946         /* Force AN on for BT cards. */
3947         if (is_bt(adap->port[adap->chan_map[port]]))
3948                 aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3949
3950         rcap = aneg | speed | fc | fec;
3951         if ((rcap | lc->pcaps) != lc->pcaps) {
3952 #ifdef INVARIANTS
3953                 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3954                     lc->pcaps, rcap & (rcap ^ lc->pcaps));
3955 #endif
3956                 rcap &= lc->pcaps;
3957         }
3958         rcap |= mdi;
3959
3960         memset(&c, 0, sizeof(c));
3961         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3962                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3963                                      V_FW_PORT_CMD_PORTID(port));
3964         if (adap->params.port_caps32) {
3965                 c.action_to_len16 =
3966                     cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3967                         FW_LEN16(c));
3968                 c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3969         } else {
3970                 c.action_to_len16 =
3971                     cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3972                             FW_LEN16(c));
3973                 c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3974         }
3975
3976         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3977 }
3978
3979 /**
3980  *      t4_restart_aneg - restart autonegotiation
3981  *      @adap: the adapter
3982  *      @mbox: mbox to use for the FW command
3983  *      @port: the port id
3984  *
3985  *      Restarts autonegotiation for the selected port.
3986  */
3987 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3988 {
3989         struct fw_port_cmd c;
3990
3991         memset(&c, 0, sizeof(c));
3992         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3993                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3994                                      V_FW_PORT_CMD_PORTID(port));
3995         c.action_to_len16 =
3996                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3997                             FW_LEN16(c));
3998         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3999         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4000 }
4001
4002 struct intr_details {
4003         u32 mask;
4004         const char *msg;
4005 };
4006
4007 struct intr_action {
4008         u32 mask;
4009         int arg;
4010         bool (*action)(struct adapter *, int, bool);
4011 };
4012
4013 #define NONFATAL_IF_DISABLED 1
4014 struct intr_info {
4015         const char *name;       /* name of the INT_CAUSE register */
4016         int cause_reg;          /* INT_CAUSE register */
4017         int enable_reg;         /* INT_ENABLE register */
4018         u32 fatal;              /* bits that are fatal */
4019         int flags;              /* hints */
4020         const struct intr_details *details;
4021         const struct intr_action *actions;
4022 };
4023
4024 static inline char
4025 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4026 {
4027
4028         if (cause & fatal)
4029                 return ('!');
4030         if (cause & enable)
4031                 return ('*');
4032         return ('-');
4033 }
4034
4035 static void
4036 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4037 {
4038         u32 enable, fatal, leftover;
4039         const struct intr_details *details;
4040         char alert;
4041
4042         enable = t4_read_reg(adap, ii->enable_reg);
4043         if (ii->flags & NONFATAL_IF_DISABLED)
4044                 fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4045         else
4046                 fatal = ii->fatal;
4047         alert = intr_alert_char(cause, enable, fatal);
4048         CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4049             alert, ii->name, ii->cause_reg, cause, enable, fatal);
4050
4051         leftover = cause;
4052         for (details = ii->details; details && details->mask != 0; details++) {
4053                 u32 msgbits = details->mask & cause;
4054                 if (msgbits == 0)
4055                         continue;
4056                 alert = intr_alert_char(msgbits, enable, ii->fatal);
4057                 CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4058                     details->msg);
4059                 leftover &= ~msgbits;
4060         }
4061         if (leftover != 0 && leftover != cause)
4062                 CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4063 }
4064
4065 /*
4066  * Returns true for fatal error.
4067  */
4068 static bool
4069 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4070     u32 additional_cause, bool verbose)
4071 {
4072         u32 cause, fatal;
4073         bool rc;
4074         const struct intr_action *action;
4075
4076         /*
4077          * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4078          * bit special and we need to completely ignore the bits that are not in
4079          * PL_INT_ENABLE.
4080          */
4081         cause = t4_read_reg(adap, ii->cause_reg);
4082         if (ii->cause_reg == A_PL_INT_CAUSE)
4083                 cause &= t4_read_reg(adap, ii->enable_reg);
4084         if (verbose || cause != 0)
4085                 t4_show_intr_info(adap, ii, cause);
4086         fatal = cause & ii->fatal;
4087         if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4088                 fatal &= t4_read_reg(adap, ii->enable_reg);
4089         cause |= additional_cause;
4090         if (cause == 0)
4091                 return (false);
4092
4093         rc = fatal != 0;
4094         for (action = ii->actions; action && action->mask != 0; action++) {
4095                 if (!(action->mask & cause))
4096                         continue;
4097                 rc |= (action->action)(adap, action->arg, verbose);
4098         }
4099
4100         /* clear */
4101         t4_write_reg(adap, ii->cause_reg, cause);
4102         (void)t4_read_reg(adap, ii->cause_reg);
4103
4104         return (rc);
4105 }
4106
4107 /*
4108  * Interrupt handler for the PCIE module.
4109  */
4110 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4111 {
4112         static const struct intr_details sysbus_intr_details[] = {
4113                 { F_RNPP, "RXNP array parity error" },
4114                 { F_RPCP, "RXPC array parity error" },
4115                 { F_RCIP, "RXCIF array parity error" },
4116                 { F_RCCP, "Rx completions control array parity error" },
4117                 { F_RFTP, "RXFT array parity error" },
4118                 { 0 }
4119         };
4120         static const struct intr_info sysbus_intr_info = {
4121                 .name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4122                 .cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4123                 .enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4124                 .fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4125                 .flags = 0,
4126                 .details = sysbus_intr_details,
4127                 .actions = NULL,
4128         };
4129         static const struct intr_details pcie_port_intr_details[] = {
4130                 { F_TPCP, "TXPC array parity error" },
4131                 { F_TNPP, "TXNP array parity error" },
4132                 { F_TFTP, "TXFT array parity error" },
4133                 { F_TCAP, "TXCA array parity error" },
4134                 { F_TCIP, "TXCIF array parity error" },
4135                 { F_RCAP, "RXCA array parity error" },
4136                 { F_OTDD, "outbound request TLP discarded" },
4137                 { F_RDPE, "Rx data parity error" },
4138                 { F_TDUE, "Tx uncorrectable data error" },
4139                 { 0 }
4140         };
4141         static const struct intr_info pcie_port_intr_info = {
4142                 .name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4143                 .cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4144                 .enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4145                 .fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4146                     F_OTDD | F_RDPE | F_TDUE,
4147                 .flags = 0,
4148                 .details = pcie_port_intr_details,
4149                 .actions = NULL,
4150         };
4151         static const struct intr_details pcie_intr_details[] = {
4152                 { F_MSIADDRLPERR, "MSI AddrL parity error" },
4153                 { F_MSIADDRHPERR, "MSI AddrH parity error" },
4154                 { F_MSIDATAPERR, "MSI data parity error" },
4155                 { F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4156                 { F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4157                 { F_MSIXDATAPERR, "MSI-X data parity error" },
4158                 { F_MSIXDIPERR, "MSI-X DI parity error" },
4159                 { F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4160                 { F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4161                 { F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4162                 { F_CCNTPERR, "PCIe CMD channel count parity error" },
4163                 { F_CREQPERR, "PCIe CMD channel request parity error" },
4164                 { F_CRSPPERR, "PCIe CMD channel response parity error" },
4165                 { F_DCNTPERR, "PCIe DMA channel count parity error" },
4166                 { F_DREQPERR, "PCIe DMA channel request parity error" },
4167                 { F_DRSPPERR, "PCIe DMA channel response parity error" },
4168                 { F_HCNTPERR, "PCIe HMA channel count parity error" },
4169                 { F_HREQPERR, "PCIe HMA channel request parity error" },
4170                 { F_HRSPPERR, "PCIe HMA channel response parity error" },
4171                 { F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4172                 { F_FIDPERR, "PCIe FID parity error" },
4173                 { F_INTXCLRPERR, "PCIe INTx clear parity error" },
4174                 { F_MATAGPERR, "PCIe MA tag parity error" },
4175                 { F_PIOTAGPERR, "PCIe PIO tag parity error" },
4176                 { F_RXCPLPERR, "PCIe Rx completion parity error" },
4177                 { F_RXWRPERR, "PCIe Rx write parity error" },
4178                 { F_RPLPERR, "PCIe replay buffer parity error" },
4179                 { F_PCIESINT, "PCIe core secondary fault" },
4180                 { F_PCIEPINT, "PCIe core primary fault" },
4181                 { F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4182                 { 0 }
4183         };
4184         static const struct intr_details t5_pcie_intr_details[] = {
4185                 { F_IPGRPPERR, "Parity errors observed by IP" },
4186                 { F_NONFATALERR, "PCIe non-fatal error" },
4187                 { F_READRSPERR, "Outbound read error" },
4188                 { F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4189                 { F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4190                 { F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4191                 { F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4192                 { F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4193                 { F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4194                 { F_MAGRPPERR, "MA group FIFO parity error" },
4195                 { F_VFIDPERR, "VFID SRAM parity error" },
4196                 { F_FIDPERR, "FID SRAM parity error" },
4197                 { F_CFGSNPPERR, "config snoop FIFO parity error" },
4198                 { F_HRSPPERR, "HMA channel response data SRAM parity error" },
4199                 { F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4200                 { F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4201                 { F_DRSPPERR, "DMA channel response data SRAM parity error" },
4202                 { F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4203                 { F_CRSPPERR, "CMD channel response data SRAM parity error" },
4204                 { F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4205                 { F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4206                 { F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4207                 { F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4208                 { F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4209                 { F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4210                 { F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4211                 { F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4212                 { F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4213                 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4214                 { F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4215                 { F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4216                 { 0 }
4217         };
4218         struct intr_info pcie_intr_info = {
4219                 .name = "PCIE_INT_CAUSE",
4220                 .cause_reg = A_PCIE_INT_CAUSE,
4221                 .enable_reg = A_PCIE_INT_ENABLE,
4222                 .fatal = 0xffffffff,
4223                 .flags = NONFATAL_IF_DISABLED,
4224                 .details = NULL,
4225                 .actions = NULL,
4226         };
4227         bool fatal = false;
4228
4229         if (is_t4(adap)) {
4230                 fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4231                 fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4232
4233                 pcie_intr_info.details = pcie_intr_details;
4234         } else {
4235                 pcie_intr_info.details = t5_pcie_intr_details;
4236         }
4237         fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4238
4239         return (fatal);
4240 }
4241
4242 /*
4243  * TP interrupt handler.
4244  */
4245 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4246 {
4247         static const struct intr_details tp_intr_details[] = {
4248                 { 0x3fffffff, "TP parity error" },
4249                 { F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4250                 { 0 }
4251         };
4252         static const struct intr_info tp_intr_info = {
4253                 .name = "TP_INT_CAUSE",
4254                 .cause_reg = A_TP_INT_CAUSE,
4255                 .enable_reg = A_TP_INT_ENABLE,
4256                 .fatal = 0x7fffffff,
4257                 .flags = NONFATAL_IF_DISABLED,
4258                 .details = tp_intr_details,
4259                 .actions = NULL,
4260         };
4261
4262         return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4263 }
4264
4265 /*
4266  * SGE interrupt handler.
4267  */
4268 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4269 {
4270         static const struct intr_info sge_int1_info = {
4271                 .name = "SGE_INT_CAUSE1",
4272                 .cause_reg = A_SGE_INT_CAUSE1,
4273                 .enable_reg = A_SGE_INT_ENABLE1,
4274                 .fatal = 0xffffffff,
4275                 .flags = NONFATAL_IF_DISABLED,
4276                 .details = NULL,
4277                 .actions = NULL,
4278         };
4279         static const struct intr_info sge_int2_info = {
4280                 .name = "SGE_INT_CAUSE2",
4281                 .cause_reg = A_SGE_INT_CAUSE2,
4282                 .enable_reg = A_SGE_INT_ENABLE2,
4283                 .fatal = 0xffffffff,
4284                 .flags = NONFATAL_IF_DISABLED,
4285                 .details = NULL,
4286                 .actions = NULL,
4287         };
4288         static const struct intr_details sge_int3_details[] = {
4289                 { F_ERR_FLM_DBP,
4290                         "DBP pointer delivery for invalid context or QID" },
4291                 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4292                         "Invalid QID or header request by IDMA" },
4293                 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4294                 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4295                 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4296                 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4297                 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4298                 { F_ERR_TIMER_ABOVE_MAX_QID,
4299                         "SGE GTS with timer 0-5 for IQID > 1023" },
4300                 { F_ERR_CPL_EXCEED_IQE_SIZE,
4301                         "SGE received CPL exceeding IQE size" },
4302                 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4303                 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4304                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4305                 { F_ERR_DROPPED_DB, "SGE DB dropped" },
4306                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4307                   "SGE IQID > 1023 received CPL for FL" },
4308                 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4309                         F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4310                 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4311                 { F_ERR_ING_CTXT_PRIO,
4312                         "Ingress context manager priority user error" },
4313                 { F_ERR_EGR_CTXT_PRIO,
4314                         "Egress context manager priority user error" },
4315                 { F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4316                 { F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4317                 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4318                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4319                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4320                 { 0x0000000f, "SGE context access for invalid queue" },
4321                 { 0 }
4322         };
4323         static const struct intr_details t6_sge_int3_details[] = {
4324                 { F_ERR_FLM_DBP,
4325                         "DBP pointer delivery for invalid context or QID" },
4326                 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4327                         "Invalid QID or header request by IDMA" },
4328                 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4329                 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4330                 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4331                 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4332                 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4333                 { F_ERR_TIMER_ABOVE_MAX_QID,
4334                         "SGE GTS with timer 0-5 for IQID > 1023" },
4335                 { F_ERR_CPL_EXCEED_IQE_SIZE,
4336                         "SGE received CPL exceeding IQE size" },
4337                 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4338                 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4339                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4340                 { F_ERR_DROPPED_DB, "SGE DB dropped" },
4341                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4342                         "SGE IQID > 1023 received CPL for FL" },
4343                 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4344                         F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4345                 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4346                 { F_ERR_ING_CTXT_PRIO,
4347                         "Ingress context manager priority user error" },
4348                 { F_ERR_EGR_CTXT_PRIO,
4349                         "Egress context manager priority user error" },
4350                 { F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4351                 { F_FATAL_WRE_LEN,
4352                         "SGE WRE packet less than advertized length" },
4353                 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4354                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4355                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4356                 { 0x0000000f, "SGE context access for invalid queue" },
4357                 { 0 }
4358         };
4359         struct intr_info sge_int3_info = {
4360                 .name = "SGE_INT_CAUSE3",
4361                 .cause_reg = A_SGE_INT_CAUSE3,
4362                 .enable_reg = A_SGE_INT_ENABLE3,
4363                 .fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4364                 .flags = 0,
4365                 .details = NULL,
4366                 .actions = NULL,
4367         };
4368         static const struct intr_info sge_int4_info = {
4369                 .name = "SGE_INT_CAUSE4",
4370                 .cause_reg = A_SGE_INT_CAUSE4,
4371                 .enable_reg = A_SGE_INT_ENABLE4,
4372                 .fatal = 0,
4373                 .flags = 0,
4374                 .details = NULL,
4375                 .actions = NULL,
4376         };
4377         static const struct intr_info sge_int5_info = {
4378                 .name = "SGE_INT_CAUSE5",
4379                 .cause_reg = A_SGE_INT_CAUSE5,
4380                 .enable_reg = A_SGE_INT_ENABLE5,
4381                 .fatal = 0xffffffff,
4382                 .flags = NONFATAL_IF_DISABLED,
4383                 .details = NULL,
4384                 .actions = NULL,
4385         };
4386         static const struct intr_info sge_int6_info = {
4387                 .name = "SGE_INT_CAUSE6",
4388                 .cause_reg = A_SGE_INT_CAUSE6,
4389                 .enable_reg = A_SGE_INT_ENABLE6,
4390                 .fatal = 0,
4391                 .flags = 0,
4392                 .details = NULL,
4393                 .actions = NULL,
4394         };
4395
4396         bool fatal;
4397         u32 v;
4398
4399         if (chip_id(adap) <= CHELSIO_T5) {
4400                 sge_int3_info.details = sge_int3_details;
4401         } else {
4402                 sge_int3_info.details = t6_sge_int3_details;
4403         }
4404
4405         fatal = false;
4406         fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4407         fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4408         fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4409         fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4410         if (chip_id(adap) >= CHELSIO_T5)
4411                 fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4412         if (chip_id(adap) >= CHELSIO_T6)
4413                 fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4414
4415         v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4416         if (v & F_ERROR_QID_VALID) {
4417                 CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4418                 if (v & F_UNCAPTURED_ERROR)
4419                         CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4420                 t4_write_reg(adap, A_SGE_ERROR_STATS,
4421                     F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4422         }
4423
4424         return (fatal);
4425 }
4426
4427 /*
4428  * CIM interrupt handler.
4429  */
4430 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4431 {
4432         static const struct intr_action cim_host_intr_actions[] = {
4433                 { F_TIMER0INT, 0, t4_os_dump_cimla },
4434                 { 0 },
4435         };
4436         static const struct intr_details cim_host_intr_details[] = {
4437                 /* T6+ */
4438                 { F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4439
4440                 /* T5+ */
4441                 { F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4442                 { F_PLCIM_MSTRSPDATAPARERR,
4443                         "PL2CIM master response data parity error" },
4444                 { F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4445                 { F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4446                 { F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4447                 { F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4448                 { F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4449                 { F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4450
4451                 /* T4+ */
4452                 { F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4453                 { F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4454                 { F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4455                 { F_MBUPPARERR, "CIM mailbox uP parity error" },
4456                 { F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4457                 { F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4458                 { F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4459                 { F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4460                 { F_IBQSGEHIPARERR | F_IBQPCIEPARERR,   /* same bit */
4461                         "CIM IBQ PCIe/SGE_HI parity error" },
4462                 { F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4463                 { F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4464                 { F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4465                 { F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4466                 { F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4467                 { F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4468                 { F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4469                 { F_TIMER1INT, "CIM TIMER0 interrupt" },
4470                 { F_TIMER0INT, "CIM TIMER0 interrupt" },
4471                 { F_PREFDROPINT, "CIM control register prefetch drop" },
4472                 { 0}
4473         };
4474         static const struct intr_info cim_host_intr_info = {
4475                 .name = "CIM_HOST_INT_CAUSE",
4476                 .cause_reg = A_CIM_HOST_INT_CAUSE,
4477                 .enable_reg = A_CIM_HOST_INT_ENABLE,
4478                 .fatal = 0x007fffe6,
4479                 .flags = NONFATAL_IF_DISABLED,
4480                 .details = cim_host_intr_details,
4481                 .actions = cim_host_intr_actions,
4482         };
4483         static const struct intr_details cim_host_upacc_intr_details[] = {
4484                 { F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4485                 { F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4486                 { F_TIMEOUTINT, "CIM PIF timeout" },
4487                 { F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4488                 { F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4489                 { F_BLKWRPLINT, "CIM block write to PL space" },
4490                 { F_BLKRDPLINT, "CIM block read from PL space" },
4491                 { F_SGLWRPLINT,
4492                         "CIM single write to PL space with illegal BEs" },
4493                 { F_SGLRDPLINT,
4494                         "CIM single read from PL space with illegal BEs" },
4495                 { F_BLKWRCTLINT, "CIM block write to CTL space" },
4496                 { F_BLKRDCTLINT, "CIM block read from CTL space" },
4497                 { F_SGLWRCTLINT,
4498                         "CIM single write to CTL space with illegal BEs" },
4499                 { F_SGLRDCTLINT,
4500                         "CIM single read from CTL space with illegal BEs" },
4501                 { F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4502                 { F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4503                 { F_SGLWREEPROMINT,
4504                         "CIM single write to EEPROM space with illegal BEs" },
4505                 { F_SGLRDEEPROMINT,
4506                         "CIM single read from EEPROM space with illegal BEs" },
4507                 { F_BLKWRFLASHINT, "CIM block write to flash space" },
4508                 { F_BLKRDFLASHINT, "CIM block read from flash space" },
4509                 { F_SGLWRFLASHINT, "CIM single write to flash space" },
4510                 { F_SGLRDFLASHINT,
4511                         "CIM single read from flash space with illegal BEs" },
4512                 { F_BLKWRBOOTINT, "CIM block write to boot space" },
4513                 { F_BLKRDBOOTINT, "CIM block read from boot space" },
4514                 { F_SGLWRBOOTINT, "CIM single write to boot space" },
4515                 { F_SGLRDBOOTINT,
4516                         "CIM single read from boot space with illegal BEs" },
4517                 { F_ILLWRBEINT, "CIM illegal write BEs" },
4518                 { F_ILLRDBEINT, "CIM illegal read BEs" },
4519                 { F_ILLRDINT, "CIM illegal read" },
4520                 { F_ILLWRINT, "CIM illegal write" },
4521                 { F_ILLTRANSINT, "CIM illegal transaction" },
4522                 { F_RSVDSPACEINT, "CIM reserved space access" },
4523                 {0}
4524         };
4525         static const struct intr_info cim_host_upacc_intr_info = {
4526                 .name = "CIM_HOST_UPACC_INT_CAUSE",
4527                 .cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4528                 .enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4529                 .fatal = 0x3fffeeff,
4530                 .flags = NONFATAL_IF_DISABLED,
4531                 .details = cim_host_upacc_intr_details,
4532                 .actions = NULL,
4533         };
4534         static const struct intr_info cim_pf_host_intr_info = {
4535                 .name = "CIM_PF_HOST_INT_CAUSE",
4536                 .cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4537                 .enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4538                 .fatal = 0,
4539                 .flags = 0,
4540                 .details = NULL,
4541                 .actions = NULL,
4542         };
4543         u32 val, fw_err;
4544         bool fatal;
4545
4546         fw_err = t4_read_reg(adap, A_PCIE_FW);
4547         if (fw_err & F_PCIE_FW_ERR)
4548                 t4_report_fw_error(adap);
4549
4550         /*
4551          * When the Firmware detects an internal error which normally wouldn't
4552          * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4553          * to make sure the Host sees the Firmware Crash.  So if we have a
4554          * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4555          * interrupt.
4556          */
4557         val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4558         if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4559             G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4560                 t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4561         }
4562
4563         fatal = false;
4564         fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4565         fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4566         fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4567
4568         return (fatal);
4569 }
4570
4571 /*
4572  * ULP RX interrupt handler.
4573  */
4574 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4575 {
4576         static const struct intr_details ulprx_intr_details[] = {
4577                 /* T5+ */
4578                 { F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4579                 { F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4580
4581                 /* T4+ */
4582                 { F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4583                 { F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4584                 { 0x007fffff, "ULPRX parity error" },
4585                 { 0 }
4586         };
4587         static const struct intr_info ulprx_intr_info = {
4588                 .name = "ULP_RX_INT_CAUSE",
4589                 .cause_reg = A_ULP_RX_INT_CAUSE,
4590                 .enable_reg = A_ULP_RX_INT_ENABLE,
4591                 .fatal = 0x07ffffff,
4592                 .flags = NONFATAL_IF_DISABLED,
4593                 .details = ulprx_intr_details,
4594                 .actions = NULL,
4595         };
4596         static const struct intr_info ulprx_intr2_info = {
4597                 .name = "ULP_RX_INT_CAUSE_2",
4598                 .cause_reg = A_ULP_RX_INT_CAUSE_2,
4599                 .enable_reg = A_ULP_RX_INT_ENABLE_2,
4600                 .fatal = 0,
4601                 .flags = 0,
4602                 .details = NULL,
4603                 .actions = NULL,
4604         };
4605         bool fatal = false;
4606
4607         fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4608         fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4609
4610         return (fatal);
4611 }
4612
4613 /*
4614  * ULP TX interrupt handler.
4615  */
4616 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4617 {
4618         static const struct intr_details ulptx_intr_details[] = {
4619                 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4620                 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4621                 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4622                 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4623                 { 0x0fffffff, "ULPTX parity error" },
4624                 { 0 }
4625         };
4626         static const struct intr_info ulptx_intr_info = {
4627                 .name = "ULP_TX_INT_CAUSE",
4628                 .cause_reg = A_ULP_TX_INT_CAUSE,
4629                 .enable_reg = A_ULP_TX_INT_ENABLE,
4630                 .fatal = 0x0fffffff,
4631                 .flags = NONFATAL_IF_DISABLED,
4632                 .details = ulptx_intr_details,
4633                 .actions = NULL,
4634         };
4635         static const struct intr_info ulptx_intr2_info = {
4636                 .name = "ULP_TX_INT_CAUSE_2",
4637                 .cause_reg = A_ULP_TX_INT_CAUSE_2,
4638                 .enable_reg = A_ULP_TX_INT_ENABLE_2,
4639                 .fatal = 0xf0,
4640                 .flags = NONFATAL_IF_DISABLED,
4641                 .details = NULL,
4642                 .actions = NULL,
4643         };
4644         bool fatal = false;
4645
4646         fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4647         fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4648
4649         return (fatal);
4650 }
4651
4652 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4653 {
4654         int i;
4655         u32 data[17];
4656
4657         t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4658             ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4659         for (i = 0; i < ARRAY_SIZE(data); i++) {
4660                 CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4661                     A_PM_TX_DBG_STAT0 + i, data[i]);
4662         }
4663
4664         return (false);
4665 }
4666
4667 /*
4668  * PM TX interrupt handler.
4669  */
4670 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4671 {
4672         static const struct intr_action pmtx_intr_actions[] = {
4673                 { 0xffffffff, 0, pmtx_dump_dbg_stats },
4674                 { 0 },
4675         };
4676         static const struct intr_details pmtx_intr_details[] = {
4677                 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4678                 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4679                 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4680                 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4681                 { 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4682                 { 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4683                 { 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4684                 { 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4685                 { 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4686                 { 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4687                 { F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4688                 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4689                 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4690                 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4691                 { 0 }
4692         };
4693         static const struct intr_info pmtx_intr_info = {
4694                 .name = "PM_TX_INT_CAUSE",
4695                 .cause_reg = A_PM_TX_INT_CAUSE,
4696                 .enable_reg = A_PM_TX_INT_ENABLE,
4697                 .fatal = 0xffffffff,
4698                 .flags = 0,
4699                 .details = pmtx_intr_details,
4700                 .actions = pmtx_intr_actions,
4701         };
4702
4703         return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4704 }
4705
4706 /*
4707  * PM RX interrupt handler.
4708  */
4709 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4710 {
4711         static const struct intr_details pmrx_intr_details[] = {
4712                 /* T6+ */
4713                 { 0x18000000, "PMRX ospi overflow" },
4714                 { F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4715                 { F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4716                 { F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4717                 { F_SDC_ERR, "PMRX SDC error" },
4718
4719                 /* T4+ */
4720                 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4721                 { 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4722                 { 0x0003c000, "PMRX iespi Rx framing error" },
4723                 { 0x00003c00, "PMRX iespi Tx framing error" },
4724                 { 0x00000300, "PMRX ocspi Rx framing error" },
4725                 { 0x000000c0, "PMRX ocspi Tx framing error" },
4726                 { 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4727                 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4728                 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4729                 { F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4730                 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4731                 { 0 }
4732         };
4733         static const struct intr_info pmrx_intr_info = {
4734                 .name = "PM_RX_INT_CAUSE",
4735                 .cause_reg = A_PM_RX_INT_CAUSE,
4736                 .enable_reg = A_PM_RX_INT_ENABLE,
4737                 .fatal = 0x1fffffff,
4738                 .flags = NONFATAL_IF_DISABLED,
4739                 .details = pmrx_intr_details,
4740                 .actions = NULL,
4741         };
4742
4743         return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4744 }
4745
4746 /*
4747  * CPL switch interrupt handler.
4748  */
4749 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4750 {
4751         static const struct intr_details cplsw_intr_details[] = {
4752                 /* T5+ */
4753                 { F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4754                 { F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4755
4756                 /* T4+ */
4757                 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4758                 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4759                 { F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4760                 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4761                 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4762                 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4763                 { 0 }
4764         };
4765         static const struct intr_info cplsw_intr_info = {
4766                 .name = "CPL_INTR_CAUSE",
4767                 .cause_reg = A_CPL_INTR_CAUSE,
4768                 .enable_reg = A_CPL_INTR_ENABLE,
4769                 .fatal = 0xff,
4770                 .flags = NONFATAL_IF_DISABLED,
4771                 .details = cplsw_intr_details,
4772                 .actions = NULL,
4773         };
4774
4775         return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4776 }
4777
4778 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4779 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4780 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4781     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4782     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4783     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4784 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4785     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4786     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4787
4788 /*
4789  * LE interrupt handler.
4790  */
4791 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4792 {
4793         static const struct intr_details le_intr_details[] = {
4794                 { F_REQQPARERR, "LE request queue parity error" },
4795                 { F_UNKNOWNCMD, "LE unknown command" },
4796                 { F_ACTRGNFULL, "LE active region full" },
4797                 { F_PARITYERR, "LE parity error" },
4798                 { F_LIPMISS, "LE LIP miss" },
4799                 { F_LIP0, "LE 0 LIP error" },
4800                 { 0 }
4801         };
4802         static const struct intr_details t6_le_intr_details[] = {
4803                 { F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4804                 { F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4805                 { F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4806                 { F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4807                 { F_TOTCNTERR, "LE total active < TCAM count" },
4808                 { F_CMDPRSRINTERR, "LE internal error in parser" },
4809                 { F_CMDTIDERR, "Incorrect tid in LE command" },
4810                 { F_T6_ACTRGNFULL, "LE active region full" },
4811                 { F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4812                 { F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4813                 { F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4814                 { F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4815                 { F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4816                 { F_TCAMACCFAIL, "LE TCAM access failure" },
4817                 { F_T6_UNKNOWNCMD, "LE unknown command" },
4818                 { F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4819                 { F_T6_LIPMISS, "LE CLIP lookup miss" },
4820                 { T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4821                 { 0 }
4822         };
4823         struct intr_info le_intr_info = {
4824                 .name = "LE_DB_INT_CAUSE",
4825                 .cause_reg = A_LE_DB_INT_CAUSE,
4826                 .enable_reg = A_LE_DB_INT_ENABLE,
4827                 .fatal = 0,
4828                 .flags = NONFATAL_IF_DISABLED,
4829                 .details = NULL,
4830                 .actions = NULL,
4831         };
4832
4833         if (chip_id(adap) <= CHELSIO_T5) {
4834                 le_intr_info.details = le_intr_details;
4835                 le_intr_info.fatal = T5_LE_FATAL_MASK;
4836         } else {
4837                 le_intr_info.details = t6_le_intr_details;
4838                 le_intr_info.fatal = T6_LE_FATAL_MASK;
4839         }
4840
4841         return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4842 }
4843
4844 /*
4845  * MPS interrupt handler.
4846  */
4847 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4848 {
4849         static const struct intr_details mps_rx_perr_intr_details[] = {
4850                 { 0xffffffff, "MPS Rx parity error" },
4851                 { 0 }
4852         };
4853         static const struct intr_info mps_rx_perr_intr_info = {
4854                 .name = "MPS_RX_PERR_INT_CAUSE",
4855                 .cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4856                 .enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4857                 .fatal = 0xffffffff,
4858                 .flags = NONFATAL_IF_DISABLED,
4859                 .details = mps_rx_perr_intr_details,
4860                 .actions = NULL,
4861         };
4862         static const struct intr_details mps_tx_intr_details[] = {
4863                 { F_PORTERR, "MPS Tx destination port is disabled" },
4864                 { F_FRMERR, "MPS Tx framing error" },
4865                 { F_SECNTERR, "MPS Tx SOP/EOP error" },
4866                 { F_BUBBLE, "MPS Tx underflow" },
4867                 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4868                 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4869                 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4870                 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4871                 { 0 }
4872         };
4873         static const struct intr_info mps_tx_intr_info = {
4874                 .name = "MPS_TX_INT_CAUSE",
4875                 .cause_reg = A_MPS_TX_INT_CAUSE,
4876                 .enable_reg = A_MPS_TX_INT_ENABLE,
4877                 .fatal = 0x1ffff,
4878                 .flags = NONFATAL_IF_DISABLED,
4879                 .details = mps_tx_intr_details,
4880                 .actions = NULL,
4881         };
4882         static const struct intr_details mps_trc_intr_details[] = {
4883                 { F_MISCPERR, "MPS TRC misc parity error" },
4884                 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4885                 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4886                 { 0 }
4887         };
4888         static const struct intr_info mps_trc_intr_info = {
4889                 .name = "MPS_TRC_INT_CAUSE",
4890                 .cause_reg = A_MPS_TRC_INT_CAUSE,
4891                 .enable_reg = A_MPS_TRC_INT_ENABLE,
4892                 .fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4893                 .flags = 0,
4894                 .details = mps_trc_intr_details,
4895                 .actions = NULL,
4896         };
4897         static const struct intr_details mps_stat_sram_intr_details[] = {
4898                 { 0xffffffff, "MPS statistics SRAM parity error" },
4899                 { 0 }
4900         };
4901         static const struct intr_info mps_stat_sram_intr_info = {
4902                 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4903                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4904                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4905                 .fatal = 0x1fffffff,
4906                 .flags = NONFATAL_IF_DISABLED,
4907                 .details = mps_stat_sram_intr_details,
4908                 .actions = NULL,
4909         };
4910         static const struct intr_details mps_stat_tx_intr_details[] = {
4911                 { 0xffffff, "MPS statistics Tx FIFO parity error" },
4912                 { 0 }
4913         };
4914         static const struct intr_info mps_stat_tx_intr_info = {
4915                 .name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4916                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4917                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4918                 .fatal =  0xffffff,
4919                 .flags = NONFATAL_IF_DISABLED,
4920                 .details = mps_stat_tx_intr_details,
4921                 .actions = NULL,
4922         };
4923         static const struct intr_details mps_stat_rx_intr_details[] = {
4924                 { 0xffffff, "MPS statistics Rx FIFO parity error" },
4925                 { 0 }
4926         };
4927         static const struct intr_info mps_stat_rx_intr_info = {
4928                 .name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4929                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4930                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4931                 .fatal =  0xffffff,
4932                 .flags = 0,
4933                 .details = mps_stat_rx_intr_details,
4934                 .actions = NULL,
4935         };
4936         static const struct intr_details mps_cls_intr_details[] = {
4937                 { F_HASHSRAM, "MPS hash SRAM parity error" },
4938                 { F_MATCHTCAM, "MPS match TCAM parity error" },
4939                 { F_MATCHSRAM, "MPS match SRAM parity error" },
4940                 { 0 }
4941         };
4942         static const struct intr_info mps_cls_intr_info = {
4943                 .name = "MPS_CLS_INT_CAUSE",
4944                 .cause_reg = A_MPS_CLS_INT_CAUSE,
4945                 .enable_reg = A_MPS_CLS_INT_ENABLE,
4946                 .fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4947                 .flags = 0,
4948                 .details = mps_cls_intr_details,
4949                 .actions = NULL,
4950         };
4951         static const struct intr_details mps_stat_sram1_intr_details[] = {
4952                 { 0xff, "MPS statistics SRAM1 parity error" },
4953                 { 0 }
4954         };
4955         static const struct intr_info mps_stat_sram1_intr_info = {
4956                 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4957                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4958                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4959                 .fatal = 0xff,
4960                 .flags = 0,
4961                 .details = mps_stat_sram1_intr_details,
4962                 .actions = NULL,
4963         };
4964
4965         bool fatal;
4966
4967         fatal = false;
4968         fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4969         fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4970         fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4971         fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4972         fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4973         fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4974         fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4975         if (chip_id(adap) > CHELSIO_T4) {
4976                 fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4977                     verbose);
4978         }
4979
4980         t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4981         t4_read_reg(adap, A_MPS_INT_CAUSE);     /* flush */
4982
4983         return (fatal);
4984
4985 }
4986
4987 /*
4988  * EDC/MC interrupt handler.
4989  */
4990 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4991 {
4992         static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
4993         unsigned int count_reg, v;
4994         static const struct intr_details mem_intr_details[] = {
4995                 { F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
4996                 { F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
4997                 { F_PERR_INT_CAUSE, "FIFO parity error" },
4998                 { 0 }
4999         };
5000         struct intr_info ii = {
5001                 .fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5002                 .details = mem_intr_details,
5003                 .flags = 0,
5004                 .actions = NULL,
5005         };
5006         bool fatal;
5007
5008         switch (idx) {
5009         case MEM_EDC0:
5010                 ii.name = "EDC0_INT_CAUSE";
5011                 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5012                 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5013                 count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5014                 break;
5015         case MEM_EDC1:
5016                 ii.name = "EDC1_INT_CAUSE";
5017                 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5018                 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5019                 count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5020                 break;
5021         case MEM_MC0:
5022                 ii.name = "MC0_INT_CAUSE";
5023                 if (is_t4(adap)) {
5024                         ii.cause_reg = A_MC_INT_CAUSE;
5025                         ii.enable_reg = A_MC_INT_ENABLE;
5026                         count_reg = A_MC_ECC_STATUS;
5027                 } else {
5028                         ii.cause_reg = A_MC_P_INT_CAUSE;
5029                         ii.enable_reg = A_MC_P_INT_ENABLE;
5030                         count_reg = A_MC_P_ECC_STATUS;
5031                 }
5032                 break;
5033         case MEM_MC1:
5034                 ii.name = "MC1_INT_CAUSE";
5035                 ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5036                 ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5037                 count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5038                 break;
5039         }
5040
5041         fatal = t4_handle_intr(adap, &ii, 0, verbose);
5042
5043         v = t4_read_reg(adap, count_reg);
5044         if (v != 0) {
5045                 if (G_ECC_UECNT(v) != 0) {
5046                         CH_ALERT(adap,
5047                             "%s: %u uncorrectable ECC data error(s)\n",
5048                             name[idx], G_ECC_UECNT(v));
5049                 }
5050                 if (G_ECC_CECNT(v) != 0) {
5051                         if (idx <= MEM_EDC1)
5052                                 t4_edc_err_read(adap, idx);
5053                         CH_WARN_RATELIMIT(adap,
5054                             "%s: %u correctable ECC data error(s)\n",
5055                             name[idx], G_ECC_CECNT(v));
5056                 }
5057                 t4_write_reg(adap, count_reg, 0xffffffff);
5058         }
5059
5060         return (fatal);
5061 }
5062
5063 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5064 {
5065         u32 v;
5066
5067         v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5068         CH_ALERT(adap,
5069             "MA address wrap-around error by client %u to address %#x\n",
5070             G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5071         t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5072
5073         return (false);
5074 }
5075
5076
5077 /*
5078  * MA interrupt handler.
5079  */
5080 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5081 {
5082         static const struct intr_action ma_intr_actions[] = {
5083                 { F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5084                 { 0 },
5085         };
5086         static const struct intr_info ma_intr_info = {
5087                 .name = "MA_INT_CAUSE",
5088                 .cause_reg = A_MA_INT_CAUSE,
5089                 .enable_reg = A_MA_INT_ENABLE,
5090                 .fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5091                 .flags = NONFATAL_IF_DISABLED,
5092                 .details = NULL,
5093                 .actions = ma_intr_actions,
5094         };
5095         static const struct intr_info ma_perr_status1 = {
5096                 .name = "MA_PARITY_ERROR_STATUS1",
5097                 .cause_reg = A_MA_PARITY_ERROR_STATUS1,
5098                 .enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5099                 .fatal = 0xffffffff,
5100                 .flags = 0,
5101                 .details = NULL,
5102                 .actions = NULL,
5103         };
5104         static const struct intr_info ma_perr_status2 = {
5105                 .name = "MA_PARITY_ERROR_STATUS2",
5106                 .cause_reg = A_MA_PARITY_ERROR_STATUS2,
5107                 .enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5108                 .fatal = 0xffffffff,
5109                 .flags = 0,
5110                 .details = NULL,
5111                 .actions = NULL,
5112         };
5113         bool fatal;
5114
5115         fatal = false;
5116         fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5117         fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5118         if (chip_id(adap) > CHELSIO_T4)
5119                 fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5120
5121         return (fatal);
5122 }
5123
5124 /*
5125  * SMB interrupt handler.
5126  */
5127 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5128 {
5129         static const struct intr_details smb_intr_details[] = {
5130                 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5131                 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5132                 { F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5133                 { 0 }
5134         };
5135         static const struct intr_info smb_intr_info = {
5136                 .name = "SMB_INT_CAUSE",
5137                 .cause_reg = A_SMB_INT_CAUSE,
5138                 .enable_reg = A_SMB_INT_ENABLE,
5139                 .fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5140                 .flags = 0,
5141                 .details = smb_intr_details,
5142                 .actions = NULL,
5143         };
5144
5145         return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5146 }
5147
5148 /*
5149  * NC-SI interrupt handler.
5150  */
5151 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5152 {
5153         static const struct intr_details ncsi_intr_details[] = {
5154                 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5155                 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5156                 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5157                 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5158                 { 0 }
5159         };
5160         static const struct intr_info ncsi_intr_info = {
5161                 .name = "NCSI_INT_CAUSE",
5162                 .cause_reg = A_NCSI_INT_CAUSE,
5163                 .enable_reg = A_NCSI_INT_ENABLE,
5164                 .fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5165                     F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5166                 .flags = 0,
5167                 .details = ncsi_intr_details,
5168                 .actions = NULL,
5169         };
5170
5171         return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5172 }
5173
5174 /*
5175  * MAC interrupt handler.
5176  */
5177 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5178 {
5179         static const struct intr_details mac_intr_details[] = {
5180                 { F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5181                 { F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5182                 { 0 }
5183         };
5184         char name[32];
5185         struct intr_info ii;
5186         bool fatal = false;
5187
5188         if (is_t4(adap)) {
5189                 snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5190                 ii.name = &name[0];
5191                 ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5192                 ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5193                 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5194                 ii.flags = 0;
5195                 ii.details = mac_intr_details;
5196                 ii.actions = NULL;
5197         } else {
5198                 snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5199                 ii.name = &name[0];
5200                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5201                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5202                 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5203                 ii.flags = 0;
5204                 ii.details = mac_intr_details;
5205                 ii.actions = NULL;
5206         }
5207         fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5208
5209         if (chip_id(adap) >= CHELSIO_T5) {
5210                 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5211                 ii.name = &name[0];
5212                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5213                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5214                 ii.fatal = 0;
5215                 ii.flags = 0;
5216                 ii.details = NULL;
5217                 ii.actions = NULL;
5218                 fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5219         }
5220
5221         if (chip_id(adap) >= CHELSIO_T6) {
5222                 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5223                 ii.name = &name[0];
5224                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5225                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5226                 ii.fatal = 0;
5227                 ii.flags = 0;
5228                 ii.details = NULL;
5229                 ii.actions = NULL;
5230                 fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5231         }
5232
5233         return (fatal);
5234 }
5235
5236 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5237 {
5238         static const struct intr_details plpl_intr_details[] = {
5239                 { F_FATALPERR, "Fatal parity error" },
5240                 { F_PERRVFID, "VFID_MAP parity error" },
5241                 { 0 }
5242         };
5243         static const struct intr_info plpl_intr_info = {
5244                 .name = "PL_PL_INT_CAUSE",
5245                 .cause_reg = A_PL_PL_INT_CAUSE,
5246                 .enable_reg = A_PL_PL_INT_ENABLE,
5247                 .fatal = F_FATALPERR | F_PERRVFID,
5248                 .flags = NONFATAL_IF_DISABLED,
5249                 .details = plpl_intr_details,
5250                 .actions = NULL,
5251         };
5252
5253         return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5254 }
5255
5256 /**
5257  *      t4_slow_intr_handler - control path interrupt handler
5258  *      @adap: the adapter
5259  *      @verbose: increased verbosity, for debug
5260  *
5261  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
5262  *      The designation 'slow' is because it involves register reads, while
5263  *      data interrupts typically don't involve any MMIOs.
5264  */
5265 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5266 {
5267         static const struct intr_details pl_intr_details[] = {
5268                 { F_MC1, "MC1" },
5269                 { F_UART, "UART" },
5270                 { F_ULP_TX, "ULP TX" },
5271                 { F_SGE, "SGE" },
5272                 { F_HMA, "HMA" },
5273                 { F_CPL_SWITCH, "CPL Switch" },
5274                 { F_ULP_RX, "ULP RX" },
5275                 { F_PM_RX, "PM RX" },
5276                 { F_PM_TX, "PM TX" },
5277                 { F_MA, "MA" },
5278                 { F_TP, "TP" },
5279                 { F_LE, "LE" },
5280                 { F_EDC1, "EDC1" },
5281                 { F_EDC0, "EDC0" },
5282                 { F_MC, "MC0" },
5283                 { F_PCIE, "PCIE" },
5284                 { F_PMU, "PMU" },
5285                 { F_MAC3, "MAC3" },
5286                 { F_MAC2, "MAC2" },
5287                 { F_MAC1, "MAC1" },
5288                 { F_MAC0, "MAC0" },
5289                 { F_SMB, "SMB" },
5290                 { F_SF, "SF" },
5291                 { F_PL, "PL" },
5292                 { F_NCSI, "NC-SI" },
5293                 { F_MPS, "MPS" },
5294                 { F_MI, "MI" },
5295                 { F_DBG, "DBG" },
5296                 { F_I2CM, "I2CM" },
5297                 { F_CIM, "CIM" },
5298                 { 0 }
5299         };
5300         static const struct intr_info pl_perr_cause = {
5301                 .name = "PL_PERR_CAUSE",
5302                 .cause_reg = A_PL_PERR_CAUSE,
5303                 .enable_reg = A_PL_PERR_ENABLE,
5304                 .fatal = 0xffffffff,
5305                 .flags = 0,
5306                 .details = pl_intr_details,
5307                 .actions = NULL,
5308         };
5309         static const struct intr_action pl_intr_action[] = {
5310                 { F_MC1, MEM_MC1, mem_intr_handler },
5311                 { F_ULP_TX, -1, ulptx_intr_handler },
5312                 { F_SGE, -1, sge_intr_handler },
5313                 { F_CPL_SWITCH, -1, cplsw_intr_handler },
5314                 { F_ULP_RX, -1, ulprx_intr_handler },
5315                 { F_PM_RX, -1, pmrx_intr_handler},
5316                 { F_PM_TX, -1, pmtx_intr_handler},
5317                 { F_MA, -1, ma_intr_handler },
5318                 { F_TP, -1, tp_intr_handler },
5319                 { F_LE, -1, le_intr_handler },
5320                 { F_EDC1, MEM_EDC1, mem_intr_handler },
5321                 { F_EDC0, MEM_EDC0, mem_intr_handler },
5322                 { F_MC0, MEM_MC0, mem_intr_handler },
5323                 { F_PCIE, -1, pcie_intr_handler },
5324                 { F_MAC3, 3, mac_intr_handler},
5325                 { F_MAC2, 2, mac_intr_handler},
5326                 { F_MAC1, 1, mac_intr_handler},
5327                 { F_MAC0, 0, mac_intr_handler},
5328                 { F_SMB, -1, smb_intr_handler},
5329                 { F_PL, -1, plpl_intr_handler },
5330                 { F_NCSI, -1, ncsi_intr_handler},
5331                 { F_MPS, -1, mps_intr_handler },
5332                 { F_CIM, -1, cim_intr_handler },
5333                 { 0 }
5334         };
5335         static const struct intr_info pl_intr_info = {
5336                 .name = "PL_INT_CAUSE",
5337                 .cause_reg = A_PL_INT_CAUSE,
5338                 .enable_reg = A_PL_INT_ENABLE,
5339                 .fatal = 0,
5340                 .flags = 0,
5341                 .details = pl_intr_details,
5342                 .actions = pl_intr_action,
5343         };
5344         bool fatal;
5345         u32 perr;
5346
5347         perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5348         if (verbose || perr != 0) {
5349                 t4_show_intr_info(adap, &pl_perr_cause, perr);
5350                 if (perr != 0)
5351                         t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5352                 if (verbose)
5353                         perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5354         }
5355         fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5356         if (fatal)
5357                 t4_fatal_err(adap, false);
5358
5359         return (0);
5360 }
5361
5362 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5363
5364 /**
5365  *      t4_intr_enable - enable interrupts
5366  *      @adapter: the adapter whose interrupts should be enabled
5367  *
5368  *      Enable PF-specific interrupts for the calling function and the top-level
5369  *      interrupt concentrator for global interrupts.  Interrupts are already
5370  *      enabled at each module, here we just enable the roots of the interrupt
5371  *      hierarchies.
5372  *
5373  *      Note: this function should be called only when the driver manages
5374  *      non PF-specific interrupts from the various HW modules.  Only one PCI
5375  *      function at a time should be doing this.
5376  */
5377 void t4_intr_enable(struct adapter *adap)
5378 {
5379         u32 val = 0;
5380
5381         if (chip_id(adap) <= CHELSIO_T5)
5382                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5383         else
5384                 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5385         val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5386             F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5387             F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5388             F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5389             F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5390             F_EGRESS_SIZE_ERR;
5391         t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5392         t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5393         t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5394         t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5395 }
5396
5397 /**
5398  *      t4_intr_disable - disable interrupts
5399  *      @adap: the adapter whose interrupts should be disabled
5400  *
5401  *      Disable interrupts.  We only disable the top-level interrupt
5402  *      concentrators.  The caller must be a PCI function managing global
5403  *      interrupts.
5404  */
5405 void t4_intr_disable(struct adapter *adap)
5406 {
5407
5408         t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5409         t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5410 }
5411
5412 /**
5413  *      t4_intr_clear - clear all interrupts
5414  *      @adap: the adapter whose interrupts should be cleared
5415  *
5416  *      Clears all interrupts.  The caller must be a PCI function managing
5417  *      global interrupts.
5418  */
5419 void t4_intr_clear(struct adapter *adap)
5420 {
5421         static const u32 cause_reg[] = {
5422                 A_CIM_HOST_INT_CAUSE,
5423                 A_CIM_HOST_UPACC_INT_CAUSE,
5424                 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5425                 A_CPL_INTR_CAUSE,
5426                 EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5427                 A_LE_DB_INT_CAUSE,
5428                 A_MA_INT_WRAP_STATUS,
5429                 A_MA_PARITY_ERROR_STATUS1,
5430                 A_MA_INT_CAUSE,
5431                 A_MPS_CLS_INT_CAUSE,
5432                 A_MPS_RX_PERR_INT_CAUSE,
5433                 A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5434                 A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5435                 A_MPS_TRC_INT_CAUSE,
5436                 A_MPS_TX_INT_CAUSE,
5437                 A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5438                 A_NCSI_INT_CAUSE,
5439                 A_PCIE_INT_CAUSE,
5440                 A_PCIE_NONFAT_ERR,
5441                 A_PL_PL_INT_CAUSE,
5442                 A_PM_RX_INT_CAUSE,
5443                 A_PM_TX_INT_CAUSE,
5444                 A_SGE_INT_CAUSE1,
5445                 A_SGE_INT_CAUSE2,
5446                 A_SGE_INT_CAUSE3,
5447                 A_SGE_INT_CAUSE4,
5448                 A_SMB_INT_CAUSE,
5449                 A_TP_INT_CAUSE,
5450                 A_ULP_RX_INT_CAUSE,
5451                 A_ULP_RX_INT_CAUSE_2,
5452                 A_ULP_TX_INT_CAUSE,
5453                 A_ULP_TX_INT_CAUSE_2,
5454
5455                 MYPF_REG(A_PL_PF_INT_CAUSE),
5456         };
5457         int i;
5458         const int nchan = adap->chip_params->nchan;
5459
5460         for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5461                 t4_write_reg(adap, cause_reg[i], 0xffffffff);
5462
5463         if (is_t4(adap)) {
5464                 t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5465                     0xffffffff);
5466                 t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5467                     0xffffffff);
5468                 t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5469                 for (i = 0; i < nchan; i++) {
5470                         t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5471                             0xffffffff);
5472                 }
5473         }
5474         if (chip_id(adap) >= CHELSIO_T5) {
5475                 t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5476                 t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5477                 t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5478                 t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5479                 if (is_t5(adap)) {
5480                         t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5481                             0xffffffff);
5482                 }
5483                 for (i = 0; i < nchan; i++) {
5484                         t4_write_reg(adap, T5_PORT_REG(i,
5485                             A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5486                         if (chip_id(adap) > CHELSIO_T5) {
5487                                 t4_write_reg(adap, T5_PORT_REG(i,
5488                                     A_MAC_PORT_PERR_INT_CAUSE_100G),
5489                                     0xffffffff);
5490                         }
5491                         t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5492                             0xffffffff);
5493                 }
5494         }
5495         if (chip_id(adap) >= CHELSIO_T6) {
5496                 t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5497         }
5498
5499         t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5500         t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5501         t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5502         (void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5503 }
5504
5505 /**
5506  *      hash_mac_addr - return the hash value of a MAC address
5507  *      @addr: the 48-bit Ethernet MAC address
5508  *
5509  *      Hashes a MAC address according to the hash function used by HW inexact
5510  *      (hash) address matching.
5511  */
5512 static int hash_mac_addr(const u8 *addr)
5513 {
5514         u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5515         u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5516         a ^= b;
5517         a ^= (a >> 12);
5518         a ^= (a >> 6);
5519         return a & 0x3f;
5520 }
5521
5522 /**
5523  *      t4_config_rss_range - configure a portion of the RSS mapping table
5524  *      @adapter: the adapter
5525  *      @mbox: mbox to use for the FW command
5526  *      @viid: virtual interface whose RSS subtable is to be written
5527  *      @start: start entry in the table to write
5528  *      @n: how many table entries to write
5529  *      @rspq: values for the "response queue" (Ingress Queue) lookup table
5530  *      @nrspq: number of values in @rspq
5531  *
5532  *      Programs the selected part of the VI's RSS mapping table with the
5533  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5534  *      until the full table range is populated.
5535  *
5536  *      The caller must ensure the values in @rspq are in the range allowed for
5537  *      @viid.
5538  */
5539 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5540                         int start, int n, const u16 *rspq, unsigned int nrspq)
5541 {
5542         int ret;
5543         const u16 *rsp = rspq;
5544         const u16 *rsp_end = rspq + nrspq;
5545         struct fw_rss_ind_tbl_cmd cmd;
5546
5547         memset(&cmd, 0, sizeof(cmd));
5548         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5549                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5550                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
5551         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5552
5553         /*
5554          * Each firmware RSS command can accommodate up to 32 RSS Ingress
5555          * Queue Identifiers.  These Ingress Queue IDs are packed three to
5556          * a 32-bit word as 10-bit values with the upper remaining 2 bits
5557          * reserved.
5558          */
5559         while (n > 0) {
5560                 int nq = min(n, 32);
5561                 int nq_packed = 0;
5562                 __be32 *qp = &cmd.iq0_to_iq2;
5563
5564                 /*
5565                  * Set up the firmware RSS command header to send the next
5566                  * "nq" Ingress Queue IDs to the firmware.
5567                  */
5568                 cmd.niqid = cpu_to_be16(nq);
5569                 cmd.startidx = cpu_to_be16(start);
5570
5571                 /*
5572                  * "nq" more done for the start of the next loop.
5573                  */
5574                 start += nq;
5575                 n -= nq;
5576
5577                 /*
5578                  * While there are still Ingress Queue IDs to stuff into the
5579                  * current firmware RSS command, retrieve them from the
5580                  * Ingress Queue ID array and insert them into the command.
5581                  */
5582                 while (nq > 0) {
5583                         /*
5584                          * Grab up to the next 3 Ingress Queue IDs (wrapping
5585                          * around the Ingress Queue ID array if necessary) and
5586                          * insert them into the firmware RSS command at the
5587                          * current 3-tuple position within the commad.
5588                          */
5589                         u16 qbuf[3];
5590                         u16 *qbp = qbuf;
5591                         int nqbuf = min(3, nq);
5592
5593                         nq -= nqbuf;
5594                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
5595                         while (nqbuf && nq_packed < 32) {
5596                                 nqbuf--;
5597                                 nq_packed++;
5598                                 *qbp++ = *rsp++;
5599                                 if (rsp >= rsp_end)
5600                                         rsp = rspq;
5601                         }
5602                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5603                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5604                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5605                 }
5606
5607                 /*
5608                  * Send this portion of the RRS table update to the firmware;
5609                  * bail out on any errors.
5610                  */
5611                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5612                 if (ret)
5613                         return ret;
5614         }
5615         return 0;
5616 }
5617
5618 /**
5619  *      t4_config_glbl_rss - configure the global RSS mode
5620  *      @adapter: the adapter
5621  *      @mbox: mbox to use for the FW command
5622  *      @mode: global RSS mode
5623  *      @flags: mode-specific flags
5624  *
5625  *      Sets the global RSS mode.
5626  */
5627 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5628                        unsigned int flags)
5629 {
5630         struct fw_rss_glb_config_cmd c;
5631
5632         memset(&c, 0, sizeof(c));
5633         c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5634                                     F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5635         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5636         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5637                 c.u.manual.mode_pkd =
5638                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5639         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5640                 c.u.basicvirtual.mode_keymode =
5641                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5642                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5643         } else
5644                 return -EINVAL;
5645         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5646 }
5647
5648 /**
5649  *      t4_config_vi_rss - configure per VI RSS settings
5650  *      @adapter: the adapter
5651  *      @mbox: mbox to use for the FW command
5652  *      @viid: the VI id
5653  *      @flags: RSS flags
5654  *      @defq: id of the default RSS queue for the VI.
5655  *      @skeyidx: RSS secret key table index for non-global mode
5656  *      @skey: RSS vf_scramble key for VI.
5657  *
5658  *      Configures VI-specific RSS properties.
5659  */
5660 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5661                      unsigned int flags, unsigned int defq, unsigned int skeyidx,
5662                      unsigned int skey)
5663 {
5664         struct fw_rss_vi_config_cmd c;
5665
5666         memset(&c, 0, sizeof(c));
5667         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5668                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5669                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5670         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5671         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5672                                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5673         c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5674                                         V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5675         c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5676
5677         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5678 }
5679
5680 /* Read an RSS table row */
5681 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5682 {
5683         t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5684         return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5685                                    5, 0, val);
5686 }
5687
5688 /**
5689  *      t4_read_rss - read the contents of the RSS mapping table
5690  *      @adapter: the adapter
5691  *      @map: holds the contents of the RSS mapping table
5692  *
5693  *      Reads the contents of the RSS hash->queue mapping table.
5694  */
5695 int t4_read_rss(struct adapter *adapter, u16 *map)
5696 {
5697         u32 val;
5698         int i, ret;
5699         int rss_nentries = adapter->chip_params->rss_nentries;
5700
5701         for (i = 0; i < rss_nentries / 2; ++i) {
5702                 ret = rd_rss_row(adapter, i, &val);
5703                 if (ret)
5704                         return ret;
5705                 *map++ = G_LKPTBLQUEUE0(val);
5706                 *map++ = G_LKPTBLQUEUE1(val);
5707         }
5708         return 0;
5709 }
5710
5711 /**
5712  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5713  * @adap: the adapter
5714  * @cmd: TP fw ldst address space type
5715  * @vals: where the indirect register values are stored/written
5716  * @nregs: how many indirect registers to read/write
5717  * @start_idx: index of first indirect register to read/write
5718  * @rw: Read (1) or Write (0)
5719  * @sleep_ok: if true we may sleep while awaiting command completion
5720  *
5721  * Access TP indirect registers through LDST
5722  **/
5723 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5724                             unsigned int nregs, unsigned int start_index,
5725                             unsigned int rw, bool sleep_ok)
5726 {
5727         int ret = 0;
5728         unsigned int i;
5729         struct fw_ldst_cmd c;
5730
5731         for (i = 0; i < nregs; i++) {
5732                 memset(&c, 0, sizeof(c));
5733                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5734                                                 F_FW_CMD_REQUEST |
5735                                                 (rw ? F_FW_CMD_READ :
5736                                                       F_FW_CMD_WRITE) |
5737                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
5738                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5739
5740                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5741                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5742                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5743                                       sleep_ok);
5744                 if (ret)
5745                         return ret;
5746
5747                 if (rw)
5748                         vals[i] = be32_to_cpu(c.u.addrval.val);
5749         }
5750         return 0;
5751 }
5752
5753 /**
5754  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5755  * @adap: the adapter
5756  * @reg_addr: Address Register
5757  * @reg_data: Data register
5758  * @buff: where the indirect register values are stored/written
5759  * @nregs: how many indirect registers to read/write
5760  * @start_index: index of first indirect register to read/write
5761  * @rw: READ(1) or WRITE(0)
5762  * @sleep_ok: if true we may sleep while awaiting command completion
5763  *
5764  * Read/Write TP indirect registers through LDST if possible.
5765  * Else, use backdoor access
5766  **/
5767 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5768                               u32 *buff, u32 nregs, u32 start_index, int rw,
5769                               bool sleep_ok)
5770 {
5771         int rc = -EINVAL;
5772         int cmd;
5773
5774         switch (reg_addr) {
5775         case A_TP_PIO_ADDR:
5776                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5777                 break;
5778         case A_TP_TM_PIO_ADDR:
5779                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5780                 break;
5781         case A_TP_MIB_INDEX:
5782                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5783                 break;
5784         default:
5785                 goto indirect_access;
5786         }
5787
5788         if (t4_use_ldst(adap))
5789                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5790                                       sleep_ok);
5791
5792 indirect_access:
5793
5794         if (rc) {
5795                 if (rw)
5796                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5797                                          start_index);
5798                 else
5799                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5800                                           start_index);
5801         }
5802 }
5803
5804 /**
5805  * t4_tp_pio_read - Read TP PIO registers
5806  * @adap: the adapter
5807  * @buff: where the indirect register values are written
5808  * @nregs: how many indirect registers to read
5809  * @start_index: index of first indirect register to read
5810  * @sleep_ok: if true we may sleep while awaiting command completion
5811  *
5812  * Read TP PIO Registers
5813  **/
5814 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5815                     u32 start_index, bool sleep_ok)
5816 {
5817         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5818                           start_index, 1, sleep_ok);
5819 }
5820
5821 /**
5822  * t4_tp_pio_write - Write TP PIO registers
5823  * @adap: the adapter
5824  * @buff: where the indirect register values are stored
5825  * @nregs: how many indirect registers to write
5826  * @start_index: index of first indirect register to write
5827  * @sleep_ok: if true we may sleep while awaiting command completion
5828  *
5829  * Write TP PIO Registers
5830  **/
5831 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5832                      u32 start_index, bool sleep_ok)
5833 {
5834         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5835             __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5836 }
5837
5838 /**
5839  * t4_tp_tm_pio_read - Read TP TM PIO registers
5840  * @adap: the adapter
5841  * @buff: where the indirect register values are written
5842  * @nregs: how many indirect registers to read
5843  * @start_index: index of first indirect register to read
5844  * @sleep_ok: if true we may sleep while awaiting command completion
5845  *
5846  * Read TP TM PIO Registers
5847  **/
5848 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5849                        u32 start_index, bool sleep_ok)
5850 {
5851         t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5852                           nregs, start_index, 1, sleep_ok);
5853 }
5854
5855 /**
5856  * t4_tp_mib_read - Read TP MIB registers
5857  * @adap: the adapter
5858  * @buff: where the indirect register values are written
5859  * @nregs: how many indirect registers to read
5860  * @start_index: index of first indirect register to read
5861  * @sleep_ok: if true we may sleep while awaiting command completion
5862  *
5863  * Read TP MIB Registers
5864  **/
5865 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5866                     bool sleep_ok)
5867 {
5868         t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5869                           start_index, 1, sleep_ok);
5870 }
5871
5872 /**
5873  *      t4_read_rss_key - read the global RSS key
5874  *      @adap: the adapter
5875  *      @key: 10-entry array holding the 320-bit RSS key
5876  *      @sleep_ok: if true we may sleep while awaiting command completion
5877  *
5878  *      Reads the global 320-bit RSS key.
5879  */
5880 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5881 {
5882         t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5883 }
5884
5885 /**
5886  *      t4_write_rss_key - program one of the RSS keys
5887  *      @adap: the adapter
5888  *      @key: 10-entry array holding the 320-bit RSS key
5889  *      @idx: which RSS key to write
5890  *      @sleep_ok: if true we may sleep while awaiting command completion
5891  *
5892  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5893  *      0..15 the corresponding entry in the RSS key table is written,
5894  *      otherwise the global RSS key is written.
5895  */
5896 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5897                       bool sleep_ok)
5898 {
5899         u8 rss_key_addr_cnt = 16;
5900         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5901
5902         /*
5903          * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5904          * allows access to key addresses 16-63 by using KeyWrAddrX
5905          * as index[5:4](upper 2) into key table
5906          */
5907         if ((chip_id(adap) > CHELSIO_T5) &&
5908             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5909                 rss_key_addr_cnt = 32;
5910
5911         t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5912
5913         if (idx >= 0 && idx < rss_key_addr_cnt) {
5914                 if (rss_key_addr_cnt > 16)
5915                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5916                                      vrt | V_KEYWRADDRX(idx >> 4) |
5917                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
5918                 else
5919                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5920                                      vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5921         }
5922 }
5923
5924 /**
5925  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5926  *      @adapter: the adapter
5927  *      @index: the entry in the PF RSS table to read
5928  *      @valp: where to store the returned value
5929  *      @sleep_ok: if true we may sleep while awaiting command completion
5930  *
5931  *      Reads the PF RSS Configuration Table at the specified index and returns
5932  *      the value found there.
5933  */
5934 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5935                            u32 *valp, bool sleep_ok)
5936 {
5937         t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5938 }
5939
5940 /**
5941  *      t4_write_rss_pf_config - write PF RSS Configuration Table
5942  *      @adapter: the adapter
5943  *      @index: the entry in the VF RSS table to read
5944  *      @val: the value to store
5945  *      @sleep_ok: if true we may sleep while awaiting command completion
5946  *
5947  *      Writes the PF RSS Configuration Table at the specified index with the
5948  *      specified value.
5949  */
5950 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5951                             u32 val, bool sleep_ok)
5952 {
5953         t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5954                         sleep_ok);
5955 }
5956
5957 /**
5958  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5959  *      @adapter: the adapter
5960  *      @index: the entry in the VF RSS table to read
5961  *      @vfl: where to store the returned VFL
5962  *      @vfh: where to store the returned VFH
5963  *      @sleep_ok: if true we may sleep while awaiting command completion
5964  *
5965  *      Reads the VF RSS Configuration Table at the specified index and returns
5966  *      the (VFL, VFH) values found there.
5967  */
5968 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5969                            u32 *vfl, u32 *vfh, bool sleep_ok)
5970 {
5971         u32 vrt, mask, data;
5972
5973         if (chip_id(adapter) <= CHELSIO_T5) {
5974                 mask = V_VFWRADDR(M_VFWRADDR);
5975                 data = V_VFWRADDR(index);
5976         } else {
5977                  mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5978                  data = V_T6_VFWRADDR(index);
5979         }
5980         /*
5981          * Request that the index'th VF Table values be read into VFL/VFH.
5982          */
5983         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5984         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5985         vrt |= data | F_VFRDEN;
5986         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5987
5988         /*
5989          * Grab the VFL/VFH values ...
5990          */
5991         t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5992         t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5993 }
5994
5995 /**
5996  *      t4_write_rss_vf_config - write VF RSS Configuration Table
5997  *
5998  *      @adapter: the adapter
5999  *      @index: the entry in the VF RSS table to write
6000  *      @vfl: the VFL to store
6001  *      @vfh: the VFH to store
6002  *
6003  *      Writes the VF RSS Configuration Table at the specified index with the
6004  *      specified (VFL, VFH) values.
6005  */
6006 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6007                             u32 vfl, u32 vfh, bool sleep_ok)
6008 {
6009         u32 vrt, mask, data;
6010
6011         if (chip_id(adapter) <= CHELSIO_T5) {
6012                 mask = V_VFWRADDR(M_VFWRADDR);
6013                 data = V_VFWRADDR(index);
6014         } else {
6015                 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6016                 data = V_T6_VFWRADDR(index);
6017         }
6018
6019         /*
6020          * Load up VFL/VFH with the values to be written ...
6021          */
6022         t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6023         t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6024
6025         /*
6026          * Write the VFL/VFH into the VF Table at index'th location.
6027          */
6028         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6029         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6030         vrt |= data | F_VFRDEN;
6031         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6032 }
6033
6034 /**
6035  *      t4_read_rss_pf_map - read PF RSS Map
6036  *      @adapter: the adapter
6037  *      @sleep_ok: if true we may sleep while awaiting command completion
6038  *
6039  *      Reads the PF RSS Map register and returns its value.
6040  */
6041 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6042 {
6043         u32 pfmap;
6044
6045         t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6046
6047         return pfmap;
6048 }
6049
6050 /**
6051  *      t4_write_rss_pf_map - write PF RSS Map
6052  *      @adapter: the adapter
6053  *      @pfmap: PF RSS Map value
6054  *
6055  *      Writes the specified value to the PF RSS Map register.
6056  */
6057 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6058 {
6059         t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6060 }
6061
6062 /**
6063  *      t4_read_rss_pf_mask - read PF RSS Mask
6064  *      @adapter: the adapter
6065  *      @sleep_ok: if true we may sleep while awaiting command completion
6066  *
6067  *      Reads the PF RSS Mask register and returns its value.
6068  */
6069 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6070 {
6071         u32 pfmask;
6072
6073         t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6074
6075         return pfmask;
6076 }
6077
6078 /**
6079  *      t4_write_rss_pf_mask - write PF RSS Mask
6080  *      @adapter: the adapter
6081  *      @pfmask: PF RSS Mask value
6082  *
6083  *      Writes the specified value to the PF RSS Mask register.
6084  */
6085 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6086 {
6087         t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6088 }
6089
6090 /**
6091  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
6092  *      @adap: the adapter
6093  *      @v4: holds the TCP/IP counter values
6094  *      @v6: holds the TCP/IPv6 counter values
6095  *      @sleep_ok: if true we may sleep while awaiting command completion
6096  *
6097  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6098  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6099  */
6100 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6101                          struct tp_tcp_stats *v6, bool sleep_ok)
6102 {
6103         u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6104
6105 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6106 #define STAT(x)     val[STAT_IDX(x)]
6107 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6108
6109         if (v4) {
6110                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6111                                A_TP_MIB_TCP_OUT_RST, sleep_ok);
6112                 v4->tcp_out_rsts = STAT(OUT_RST);
6113                 v4->tcp_in_segs  = STAT64(IN_SEG);
6114                 v4->tcp_out_segs = STAT64(OUT_SEG);
6115                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
6116         }
6117         if (v6) {
6118                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6119                                A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6120                 v6->tcp_out_rsts = STAT(OUT_RST);
6121                 v6->tcp_in_segs  = STAT64(IN_SEG);
6122                 v6->tcp_out_segs = STAT64(OUT_SEG);
6123                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
6124         }
6125 #undef STAT64
6126 #undef STAT
6127 #undef STAT_IDX
6128 }
6129
6130 /**
6131  *      t4_tp_get_err_stats - read TP's error MIB counters
6132  *      @adap: the adapter
6133  *      @st: holds the counter values
6134  *      @sleep_ok: if true we may sleep while awaiting command completion
6135  *
6136  *      Returns the values of TP's error counters.
6137  */
6138 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6139                          bool sleep_ok)
6140 {
6141         int nchan = adap->chip_params->nchan;
6142
6143         t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6144                        sleep_ok);
6145
6146         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6147                        sleep_ok);
6148
6149         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6150                        sleep_ok);
6151
6152         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6153                        A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6154
6155         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6156                        A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6157
6158         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6159                        sleep_ok);
6160
6161         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6162                        A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6163
6164         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6165                        A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6166
6167         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6168                        sleep_ok);
6169 }
6170
6171 /**
6172  *      t4_tp_get_proxy_stats - read TP's proxy MIB counters
6173  *      @adap: the adapter
6174  *      @st: holds the counter values
6175  *
6176  *      Returns the values of TP's proxy counters.
6177  */
6178 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6179     bool sleep_ok)
6180 {
6181         int nchan = adap->chip_params->nchan;
6182
6183         t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6184 }
6185
6186 /**
6187  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
6188  *      @adap: the adapter
6189  *      @st: holds the counter values
6190  *      @sleep_ok: if true we may sleep while awaiting command completion
6191  *
6192  *      Returns the values of TP's CPL counters.
6193  */
6194 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6195                          bool sleep_ok)
6196 {
6197         int nchan = adap->chip_params->nchan;
6198
6199         t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6200
6201         t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6202 }
6203
6204 /**
6205  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6206  *      @adap: the adapter
6207  *      @st: holds the counter values
6208  *
6209  *      Returns the values of TP's RDMA counters.
6210  */
6211 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6212                           bool sleep_ok)
6213 {
6214         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6215                        sleep_ok);
6216 }
6217
6218 /**
6219  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6220  *      @adap: the adapter
6221  *      @idx: the port index
6222  *      @st: holds the counter values
6223  *      @sleep_ok: if true we may sleep while awaiting command completion
6224  *
6225  *      Returns the values of TP's FCoE counters for the selected port.
6226  */
6227 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6228                        struct tp_fcoe_stats *st, bool sleep_ok)
6229 {
6230         u32 val[2];
6231
6232         t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6233                        sleep_ok);
6234
6235         t4_tp_mib_read(adap, &st->frames_drop, 1,
6236                        A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6237
6238         t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6239                        sleep_ok);
6240
6241         st->octets_ddp = ((u64)val[0] << 32) | val[1];
6242 }
6243
6244 /**
6245  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6246  *      @adap: the adapter
6247  *      @st: holds the counter values
6248  *      @sleep_ok: if true we may sleep while awaiting command completion
6249  *
6250  *      Returns the values of TP's counters for non-TCP directly-placed packets.
6251  */
6252 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6253                       bool sleep_ok)
6254 {
6255         u32 val[4];
6256
6257         t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6258
6259         st->frames = val[0];
6260         st->drops = val[1];
6261         st->octets = ((u64)val[2] << 32) | val[3];
6262 }
6263
6264 /**
6265  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
6266  *      @adap: the adapter
6267  *      @mtus: where to store the MTU values
6268  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
6269  *
6270  *      Reads the HW path MTU table.
6271  */
6272 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6273 {
6274         u32 v;
6275         int i;
6276
6277         for (i = 0; i < NMTUS; ++i) {
6278                 t4_write_reg(adap, A_TP_MTU_TABLE,
6279                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
6280                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
6281                 mtus[i] = G_MTUVALUE(v);
6282                 if (mtu_log)
6283                         mtu_log[i] = G_MTUWIDTH(v);
6284         }
6285 }
6286
6287 /**
6288  *      t4_read_cong_tbl - reads the congestion control table
6289  *      @adap: the adapter
6290  *      @incr: where to store the alpha values
6291  *
6292  *      Reads the additive increments programmed into the HW congestion
6293  *      control table.
6294  */
6295 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6296 {
6297         unsigned int mtu, w;
6298
6299         for (mtu = 0; mtu < NMTUS; ++mtu)
6300                 for (w = 0; w < NCCTRL_WIN; ++w) {
6301                         t4_write_reg(adap, A_TP_CCTRL_TABLE,
6302                                      V_ROWINDEX(0xffff) | (mtu << 5) | w);
6303                         incr[mtu][w] = (u16)t4_read_reg(adap,
6304                                                 A_TP_CCTRL_TABLE) & 0x1fff;
6305                 }
6306 }
6307
6308 /**
6309  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6310  *      @adap: the adapter
6311  *      @addr: the indirect TP register address
6312  *      @mask: specifies the field within the register to modify
6313  *      @val: new value for the field
6314  *
6315  *      Sets a field of an indirect TP register to the given value.
6316  */
6317 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6318                             unsigned int mask, unsigned int val)
6319 {
6320         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6321         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6322         t4_write_reg(adap, A_TP_PIO_DATA, val);
6323 }
6324
6325 /**
6326  *      init_cong_ctrl - initialize congestion control parameters
6327  *      @a: the alpha values for congestion control
6328  *      @b: the beta values for congestion control
6329  *
6330  *      Initialize the congestion control parameters.
6331  */
6332 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6333 {
6334         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6335         a[9] = 2;
6336         a[10] = 3;
6337         a[11] = 4;
6338         a[12] = 5;
6339         a[13] = 6;
6340         a[14] = 7;
6341         a[15] = 8;
6342         a[16] = 9;
6343         a[17] = 10;
6344         a[18] = 14;
6345         a[19] = 17;
6346         a[20] = 21;
6347         a[21] = 25;
6348         a[22] = 30;
6349         a[23] = 35;
6350         a[24] = 45;
6351         a[25] = 60;
6352         a[26] = 80;
6353         a[27] = 100;
6354         a[28] = 200;
6355         a[29] = 300;
6356         a[30] = 400;
6357         a[31] = 500;
6358
6359         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6360         b[9] = b[10] = 1;
6361         b[11] = b[12] = 2;
6362         b[13] = b[14] = b[15] = b[16] = 3;
6363         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6364         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6365         b[28] = b[29] = 6;
6366         b[30] = b[31] = 7;
6367 }
6368
6369 /* The minimum additive increment value for the congestion control table */
6370 #define CC_MIN_INCR 2U
6371
6372 /**
6373  *      t4_load_mtus - write the MTU and congestion control HW tables
6374  *      @adap: the adapter
6375  *      @mtus: the values for the MTU table
6376  *      @alpha: the values for the congestion control alpha parameter
6377  *      @beta: the values for the congestion control beta parameter
6378  *
6379  *      Write the HW MTU table with the supplied MTUs and the high-speed
6380  *      congestion control table with the supplied alpha, beta, and MTUs.
6381  *      We write the two tables together because the additive increments
6382  *      depend on the MTUs.
6383  */
6384 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6385                   const unsigned short *alpha, const unsigned short *beta)
6386 {
6387         static const unsigned int avg_pkts[NCCTRL_WIN] = {
6388                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6389                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6390                 28672, 40960, 57344, 81920, 114688, 163840, 229376
6391         };
6392
6393         unsigned int i, w;
6394
6395         for (i = 0; i < NMTUS; ++i) {
6396                 unsigned int mtu = mtus[i];
6397                 unsigned int log2 = fls(mtu);
6398
6399                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
6400                         log2--;
6401                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6402                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6403
6404                 for (w = 0; w < NCCTRL_WIN; ++w) {
6405                         unsigned int inc;
6406
6407                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6408                                   CC_MIN_INCR);
6409
6410                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6411                                      (w << 16) | (beta[w] << 13) | inc);
6412                 }
6413         }
6414 }
6415
6416 /**
6417  *      t4_set_pace_tbl - set the pace table
6418  *      @adap: the adapter
6419  *      @pace_vals: the pace values in microseconds
6420  *      @start: index of the first entry in the HW pace table to set
6421  *      @n: how many entries to set
6422  *
6423  *      Sets (a subset of the) HW pace table.
6424  */
6425 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6426                      unsigned int start, unsigned int n)
6427 {
6428         unsigned int vals[NTX_SCHED], i;
6429         unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6430
6431         if (n > NTX_SCHED)
6432             return -ERANGE;
6433
6434         /* convert values from us to dack ticks, rounding to closest value */
6435         for (i = 0; i < n; i++, pace_vals++) {
6436                 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6437                 if (vals[i] > 0x7ff)
6438                         return -ERANGE;
6439                 if (*pace_vals && vals[i] == 0)
6440                         return -ERANGE;
6441         }
6442         for (i = 0; i < n; i++, start++)
6443                 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6444         return 0;
6445 }
6446
6447 /**
6448  *      t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6449  *      @adap: the adapter
6450  *      @kbps: target rate in Kbps
6451  *      @sched: the scheduler index
6452  *
6453  *      Configure a Tx HW scheduler for the target rate.
6454  */
6455 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6456 {
6457         unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6458         unsigned int clk = adap->params.vpd.cclk * 1000;
6459         unsigned int selected_cpt = 0, selected_bpt = 0;
6460
6461         if (kbps > 0) {
6462                 kbps *= 125;     /* -> bytes */
6463                 for (cpt = 1; cpt <= 255; cpt++) {
6464                         tps = clk / cpt;
6465                         bpt = (kbps + tps / 2) / tps;
6466                         if (bpt > 0 && bpt <= 255) {
6467                                 v = bpt * tps;
6468                                 delta = v >= kbps ? v - kbps : kbps - v;
6469                                 if (delta < mindelta) {
6470                                         mindelta = delta;
6471                                         selected_cpt = cpt;
6472                                         selected_bpt = bpt;
6473                                 }
6474                         } else if (selected_cpt)
6475                                 break;
6476                 }
6477                 if (!selected_cpt)
6478                         return -EINVAL;
6479         }
6480         t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6481                      A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6482         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6483         if (sched & 1)
6484                 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6485         else
6486                 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6487         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6488         return 0;
6489 }
6490
6491 /**
6492  *      t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6493  *      @adap: the adapter
6494  *      @sched: the scheduler index
6495  *      @ipg: the interpacket delay in tenths of nanoseconds
6496  *
6497  *      Set the interpacket delay for a HW packet rate scheduler.
6498  */
6499 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6500 {
6501         unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6502
6503         /* convert ipg to nearest number of core clocks */
6504         ipg *= core_ticks_per_usec(adap);
6505         ipg = (ipg + 5000) / 10000;
6506         if (ipg > M_TXTIMERSEPQ0)
6507                 return -EINVAL;
6508
6509         t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6510         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6511         if (sched & 1)
6512                 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6513         else
6514                 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6515         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6516         t4_read_reg(adap, A_TP_TM_PIO_DATA);
6517         return 0;
6518 }
6519
6520 /*
6521  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6522  * clocks.  The formula is
6523  *
6524  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6525  *
6526  * which is equivalent to
6527  *
6528  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6529  */
6530 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6531 {
6532         u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6533
6534         return v * 62 + v / 2;
6535 }
6536
6537 /**
6538  *      t4_get_chan_txrate - get the current per channel Tx rates
6539  *      @adap: the adapter
6540  *      @nic_rate: rates for NIC traffic
6541  *      @ofld_rate: rates for offloaded traffic
6542  *
6543  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
6544  *      for each channel.
6545  */
6546 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6547 {
6548         u32 v;
6549
6550         v = t4_read_reg(adap, A_TP_TX_TRATE);
6551         nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6552         nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6553         if (adap->chip_params->nchan > 2) {
6554                 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6555                 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6556         }
6557
6558         v = t4_read_reg(adap, A_TP_TX_ORATE);
6559         ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6560         ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6561         if (adap->chip_params->nchan > 2) {
6562                 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6563                 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6564         }
6565 }
6566
6567 /**
6568  *      t4_set_trace_filter - configure one of the tracing filters
6569  *      @adap: the adapter
6570  *      @tp: the desired trace filter parameters
6571  *      @idx: which filter to configure
6572  *      @enable: whether to enable or disable the filter
6573  *
6574  *      Configures one of the tracing filters available in HW.  If @tp is %NULL
6575  *      it indicates that the filter is already written in the register and it
6576  *      just needs to be enabled or disabled.
6577  */
6578 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6579     int idx, int enable)
6580 {
6581         int i, ofst = idx * 4;
6582         u32 data_reg, mask_reg, cfg;
6583         u32 multitrc = F_TRCMULTIFILTER;
6584         u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6585
6586         if (idx < 0 || idx >= NTRACE)
6587                 return -EINVAL;
6588
6589         if (tp == NULL || !enable) {
6590                 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6591                     enable ? en : 0);
6592                 return 0;
6593         }
6594
6595         /*
6596          * TODO - After T4 data book is updated, specify the exact
6597          * section below.
6598          *
6599          * See T4 data book - MPS section for a complete description
6600          * of the below if..else handling of A_MPS_TRC_CFG register
6601          * value.
6602          */
6603         cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6604         if (cfg & F_TRCMULTIFILTER) {
6605                 /*
6606                  * If multiple tracers are enabled, then maximum
6607                  * capture size is 2.5KB (FIFO size of a single channel)
6608                  * minus 2 flits for CPL_TRACE_PKT header.
6609                  */
6610                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6611                         return -EINVAL;
6612         } else {
6613                 /*
6614                  * If multiple tracers are disabled, to avoid deadlocks
6615                  * maximum packet capture size of 9600 bytes is recommended.
6616                  * Also in this mode, only trace0 can be enabled and running.
6617                  */
6618                 multitrc = 0;
6619                 if (tp->snap_len > 9600 || idx)
6620                         return -EINVAL;
6621         }
6622
6623         if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6624             tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6625             tp->min_len > M_TFMINPKTSIZE)
6626                 return -EINVAL;
6627
6628         /* stop the tracer we'll be changing */
6629         t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6630
6631         idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6632         data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6633         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6634
6635         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6636                 t4_write_reg(adap, data_reg, tp->data[i]);
6637                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6638         }
6639         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6640                      V_TFCAPTUREMAX(tp->snap_len) |
6641                      V_TFMINPKTSIZE(tp->min_len));
6642         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6643                      V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6644                      (is_t4(adap) ?
6645                      V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6646                      V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6647
6648         return 0;
6649 }
6650
6651 /**
6652  *      t4_get_trace_filter - query one of the tracing filters
6653  *      @adap: the adapter
6654  *      @tp: the current trace filter parameters
6655  *      @idx: which trace filter to query
6656  *      @enabled: non-zero if the filter is enabled
6657  *
6658  *      Returns the current settings of one of the HW tracing filters.
6659  */
6660 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6661                          int *enabled)
6662 {
6663         u32 ctla, ctlb;
6664         int i, ofst = idx * 4;
6665         u32 data_reg, mask_reg;
6666
6667         ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6668         ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6669
6670         if (is_t4(adap)) {
6671                 *enabled = !!(ctla & F_TFEN);
6672                 tp->port =  G_TFPORT(ctla);
6673                 tp->invert = !!(ctla & F_TFINVERTMATCH);
6674         } else {
6675                 *enabled = !!(ctla & F_T5_TFEN);
6676                 tp->port = G_T5_TFPORT(ctla);
6677                 tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6678         }
6679         tp->snap_len = G_TFCAPTUREMAX(ctlb);
6680         tp->min_len = G_TFMINPKTSIZE(ctlb);
6681         tp->skip_ofst = G_TFOFFSET(ctla);
6682         tp->skip_len = G_TFLENGTH(ctla);
6683
6684         ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6685         data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6686         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6687
6688         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6689                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6690                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6691         }
6692 }
6693
6694 /**
6695  *      t4_pmtx_get_stats - returns the HW stats from PMTX
6696  *      @adap: the adapter
6697  *      @cnt: where to store the count statistics
6698  *      @cycles: where to store the cycle statistics
6699  *
6700  *      Returns performance statistics from PMTX.
6701  */
6702 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6703 {
6704         int i;
6705         u32 data[2];
6706
6707         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6708                 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6709                 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6710                 if (is_t4(adap))
6711                         cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6712                 else {
6713                         t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6714                                          A_PM_TX_DBG_DATA, data, 2,
6715                                          A_PM_TX_DBG_STAT_MSB);
6716                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6717                 }
6718         }
6719 }
6720
6721 /**
6722  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6723  *      @adap: the adapter
6724  *      @cnt: where to store the count statistics
6725  *      @cycles: where to store the cycle statistics
6726  *
6727  *      Returns performance statistics from PMRX.
6728  */
6729 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6730 {
6731         int i;
6732         u32 data[2];
6733
6734         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6735                 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6736                 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6737                 if (is_t4(adap)) {
6738                         cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6739                 } else {
6740                         t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6741                                          A_PM_RX_DBG_DATA, data, 2,
6742                                          A_PM_RX_DBG_STAT_MSB);
6743                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6744                 }
6745         }
6746 }
6747
6748 /**
6749  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6750  *      @adap: the adapter
6751  *      @idx: the port index
6752  *
6753  *      Returns a bitmap indicating which MPS buffer groups are associated
6754  *      with the given port.  Bit i is set if buffer group i is used by the
6755  *      port.
6756  */
6757 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6758 {
6759         u32 n;
6760
6761         if (adap->params.mps_bg_map)
6762                 return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6763
6764         n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6765         if (n == 0)
6766                 return idx == 0 ? 0xf : 0;
6767         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6768                 return idx < 2 ? (3 << (2 * idx)) : 0;
6769         return 1 << idx;
6770 }
6771
6772 /*
6773  * TP RX e-channels associated with the port.
6774  */
6775 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6776 {
6777         u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6778         const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6779
6780         if (n == 0)
6781                 return idx == 0 ? all_chan : 0;
6782         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6783                 return idx < 2 ? (3 << (2 * idx)) : 0;
6784         return 1 << idx;
6785 }
6786
6787 /**
6788  *      t4_get_port_type_description - return Port Type string description
6789  *      @port_type: firmware Port Type enumeration
6790  */
6791 const char *t4_get_port_type_description(enum fw_port_type port_type)
6792 {
6793         static const char *const port_type_description[] = {
6794                 "Fiber_XFI",
6795                 "Fiber_XAUI",
6796                 "BT_SGMII",
6797                 "BT_XFI",
6798                 "BT_XAUI",
6799                 "KX4",
6800                 "CX4",
6801                 "KX",
6802                 "KR",
6803                 "SFP",
6804                 "BP_AP",
6805                 "BP4_AP",
6806                 "QSFP_10G",
6807                 "QSA",
6808                 "QSFP",
6809                 "BP40_BA",
6810                 "KR4_100G",
6811                 "CR4_QSFP",
6812                 "CR_QSFP",
6813                 "CR2_QSFP",
6814                 "SFP28",
6815                 "KR_SFP28",
6816         };
6817
6818         if (port_type < ARRAY_SIZE(port_type_description))
6819                 return port_type_description[port_type];
6820         return "UNKNOWN";
6821 }
6822
6823 /**
6824  *      t4_get_port_stats_offset - collect port stats relative to a previous
6825  *                                 snapshot
6826  *      @adap: The adapter
6827  *      @idx: The port
6828  *      @stats: Current stats to fill
6829  *      @offset: Previous stats snapshot
6830  */
6831 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6832                 struct port_stats *stats,
6833                 struct port_stats *offset)
6834 {
6835         u64 *s, *o;
6836         int i;
6837
6838         t4_get_port_stats(adap, idx, stats);
6839         for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6840                         i < (sizeof(struct port_stats)/sizeof(u64)) ;
6841                         i++, s++, o++)
6842                 *s -= *o;
6843 }
6844
6845 /**
6846  *      t4_get_port_stats - collect port statistics
6847  *      @adap: the adapter
6848  *      @idx: the port index
6849  *      @p: the stats structure to fill
6850  *
6851  *      Collect statistics related to the given port from HW.
6852  */
6853 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6854 {
6855         struct port_info *pi = adap->port[idx];
6856         u32 bgmap = pi->mps_bg_map;
6857         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6858
6859 #define GET_STAT(name) \
6860         t4_read_reg64(adap, \
6861         (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6862         T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6863 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6864
6865         p->tx_pause             = GET_STAT(TX_PORT_PAUSE);
6866         p->tx_octets            = GET_STAT(TX_PORT_BYTES);
6867         p->tx_frames            = GET_STAT(TX_PORT_FRAMES);
6868         p->tx_bcast_frames      = GET_STAT(TX_PORT_BCAST);
6869         p->tx_mcast_frames      = GET_STAT(TX_PORT_MCAST);
6870         p->tx_ucast_frames      = GET_STAT(TX_PORT_UCAST);
6871         p->tx_error_frames      = GET_STAT(TX_PORT_ERROR);
6872         p->tx_frames_64         = GET_STAT(TX_PORT_64B);
6873         p->tx_frames_65_127     = GET_STAT(TX_PORT_65B_127B);
6874         p->tx_frames_128_255    = GET_STAT(TX_PORT_128B_255B);
6875         p->tx_frames_256_511    = GET_STAT(TX_PORT_256B_511B);
6876         p->tx_frames_512_1023   = GET_STAT(TX_PORT_512B_1023B);
6877         p->tx_frames_1024_1518  = GET_STAT(TX_PORT_1024B_1518B);
6878         p->tx_frames_1519_max   = GET_STAT(TX_PORT_1519B_MAX);
6879         p->tx_drop              = GET_STAT(TX_PORT_DROP);
6880         p->tx_ppp0              = GET_STAT(TX_PORT_PPP0);
6881         p->tx_ppp1              = GET_STAT(TX_PORT_PPP1);
6882         p->tx_ppp2              = GET_STAT(TX_PORT_PPP2);
6883         p->tx_ppp3              = GET_STAT(TX_PORT_PPP3);
6884         p->tx_ppp4              = GET_STAT(TX_PORT_PPP4);
6885         p->tx_ppp5              = GET_STAT(TX_PORT_PPP5);
6886         p->tx_ppp6              = GET_STAT(TX_PORT_PPP6);
6887         p->tx_ppp7              = GET_STAT(TX_PORT_PPP7);
6888
6889         if (chip_id(adap) >= CHELSIO_T5) {
6890                 if (stat_ctl & F_COUNTPAUSESTATTX) {
6891                         p->tx_frames -= p->tx_pause;
6892                         p->tx_octets -= p->tx_pause * 64;
6893                 }
6894                 if (stat_ctl & F_COUNTPAUSEMCTX)
6895                         p->tx_mcast_frames -= p->tx_pause;
6896         }
6897
6898         p->rx_pause             = GET_STAT(RX_PORT_PAUSE);
6899         p->rx_octets            = GET_STAT(RX_PORT_BYTES);
6900         p->rx_frames            = GET_STAT(RX_PORT_FRAMES);
6901         p->rx_bcast_frames      = GET_STAT(RX_PORT_BCAST);
6902         p->rx_mcast_frames      = GET_STAT(RX_PORT_MCAST);
6903         p->rx_ucast_frames      = GET_STAT(RX_PORT_UCAST);
6904         p->rx_too_long          = GET_STAT(RX_PORT_MTU_ERROR);
6905         p->rx_jabber            = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6906         p->rx_len_err           = GET_STAT(RX_PORT_LEN_ERROR);
6907         p->rx_symbol_err        = GET_STAT(RX_PORT_SYM_ERROR);
6908         p->rx_runt              = GET_STAT(RX_PORT_LESS_64B);
6909         p->rx_frames_64         = GET_STAT(RX_PORT_64B);
6910         p->rx_frames_65_127     = GET_STAT(RX_PORT_65B_127B);
6911         p->rx_frames_128_255    = GET_STAT(RX_PORT_128B_255B);
6912         p->rx_frames_256_511    = GET_STAT(RX_PORT_256B_511B);
6913         p->rx_frames_512_1023   = GET_STAT(RX_PORT_512B_1023B);
6914         p->rx_frames_1024_1518  = GET_STAT(RX_PORT_1024B_1518B);
6915         p->rx_frames_1519_max   = GET_STAT(RX_PORT_1519B_MAX);
6916         p->rx_ppp0              = GET_STAT(RX_PORT_PPP0);
6917         p->rx_ppp1              = GET_STAT(RX_PORT_PPP1);
6918         p->rx_ppp2              = GET_STAT(RX_PORT_PPP2);
6919         p->rx_ppp3              = GET_STAT(RX_PORT_PPP3);
6920         p->rx_ppp4              = GET_STAT(RX_PORT_PPP4);
6921         p->rx_ppp5              = GET_STAT(RX_PORT_PPP5);
6922         p->rx_ppp6              = GET_STAT(RX_PORT_PPP6);
6923         p->rx_ppp7              = GET_STAT(RX_PORT_PPP7);
6924
6925         if (pi->fcs_reg != -1)
6926                 p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base;
6927
6928         if (chip_id(adap) >= CHELSIO_T5) {
6929                 if (stat_ctl & F_COUNTPAUSESTATRX) {
6930                         p->rx_frames -= p->rx_pause;
6931                         p->rx_octets -= p->rx_pause * 64;
6932                 }
6933                 if (stat_ctl & F_COUNTPAUSEMCRX)
6934                         p->rx_mcast_frames -= p->rx_pause;
6935         }
6936
6937         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6938         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6939         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6940         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6941         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6942         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6943         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6944         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6945
6946 #undef GET_STAT
6947 #undef GET_STAT_COM
6948 }
6949
6950 /**
6951  *      t4_get_lb_stats - collect loopback port statistics
6952  *      @adap: the adapter
6953  *      @idx: the loopback port index
6954  *      @p: the stats structure to fill
6955  *
6956  *      Return HW statistics for the given loopback port.
6957  */
6958 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6959 {
6960
6961 #define GET_STAT(name) \
6962         t4_read_reg64(adap, \
6963         (is_t4(adap) ? \
6964         PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6965         T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6966 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6967
6968         p->octets       = GET_STAT(BYTES);
6969         p->frames       = GET_STAT(FRAMES);
6970         p->bcast_frames = GET_STAT(BCAST);
6971         p->mcast_frames = GET_STAT(MCAST);
6972         p->ucast_frames = GET_STAT(UCAST);
6973         p->error_frames = GET_STAT(ERROR);
6974
6975         p->frames_64            = GET_STAT(64B);
6976         p->frames_65_127        = GET_STAT(65B_127B);
6977         p->frames_128_255       = GET_STAT(128B_255B);
6978         p->frames_256_511       = GET_STAT(256B_511B);
6979         p->frames_512_1023      = GET_STAT(512B_1023B);
6980         p->frames_1024_1518     = GET_STAT(1024B_1518B);
6981         p->frames_1519_max      = GET_STAT(1519B_MAX);
6982         p->drop                 = GET_STAT(DROP_FRAMES);
6983
6984         if (idx < adap->params.nports) {
6985                 u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
6986
6987                 p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6988                 p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6989                 p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6990                 p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6991                 p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6992                 p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6993                 p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6994                 p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6995         }
6996
6997 #undef GET_STAT
6998 #undef GET_STAT_COM
6999 }
7000
7001 /**
7002  *      t4_wol_magic_enable - enable/disable magic packet WoL
7003  *      @adap: the adapter
7004  *      @port: the physical port index
7005  *      @addr: MAC address expected in magic packets, %NULL to disable
7006  *
7007  *      Enables/disables magic packet wake-on-LAN for the selected port.
7008  */
7009 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7010                          const u8 *addr)
7011 {
7012         u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7013
7014         if (is_t4(adap)) {
7015                 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7016                 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7017                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7018         } else {
7019                 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7020                 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7021                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7022         }
7023
7024         if (addr) {
7025                 t4_write_reg(adap, mag_id_reg_l,
7026                              (addr[2] << 24) | (addr[3] << 16) |
7027                              (addr[4] << 8) | addr[5]);
7028                 t4_write_reg(adap, mag_id_reg_h,
7029                              (addr[0] << 8) | addr[1]);
7030         }
7031         t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7032                          V_MAGICEN(addr != NULL));
7033 }
7034
7035 /**
7036  *      t4_wol_pat_enable - enable/disable pattern-based WoL
7037  *      @adap: the adapter
7038  *      @port: the physical port index
7039  *      @map: bitmap of which HW pattern filters to set
7040  *      @mask0: byte mask for bytes 0-63 of a packet
7041  *      @mask1: byte mask for bytes 64-127 of a packet
7042  *      @crc: Ethernet CRC for selected bytes
7043  *      @enable: enable/disable switch
7044  *
7045  *      Sets the pattern filters indicated in @map to mask out the bytes
7046  *      specified in @mask0/@mask1 in received packets and compare the CRC of
7047  *      the resulting packet against @crc.  If @enable is %true pattern-based
7048  *      WoL is enabled, otherwise disabled.
7049  */
7050 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7051                       u64 mask0, u64 mask1, unsigned int crc, bool enable)
7052 {
7053         int i;
7054         u32 port_cfg_reg;
7055
7056         if (is_t4(adap))
7057                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7058         else
7059                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7060
7061         if (!enable) {
7062                 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7063                 return 0;
7064         }
7065         if (map > 0xff)
7066                 return -EINVAL;
7067
7068 #define EPIO_REG(name) \
7069         (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7070         T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7071
7072         t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7073         t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7074         t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7075
7076         for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7077                 if (!(map & 1))
7078                         continue;
7079
7080                 /* write byte masks */
7081                 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7082                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7083                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7084                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7085                         return -ETIMEDOUT;
7086
7087                 /* write CRC */
7088                 t4_write_reg(adap, EPIO_REG(DATA0), crc);
7089                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7090                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7091                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7092                         return -ETIMEDOUT;
7093         }
7094 #undef EPIO_REG
7095
7096         t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7097         return 0;
7098 }
7099
7100 /*     t4_mk_filtdelwr - create a delete filter WR
7101  *     @ftid: the filter ID
7102  *     @wr: the filter work request to populate
7103  *     @qid: ingress queue to receive the delete notification
7104  *
7105  *     Creates a filter work request to delete the supplied filter.  If @qid is
7106  *     negative the delete notification is suppressed.
7107  */
7108 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7109 {
7110         memset(wr, 0, sizeof(*wr));
7111         wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7112         wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7113         wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7114                                     V_FW_FILTER_WR_NOREPLY(qid < 0));
7115         wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7116         if (qid >= 0)
7117                 wr->rx_chan_rx_rpl_iq =
7118                                 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7119 }
7120
7121 #define INIT_CMD(var, cmd, rd_wr) do { \
7122         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7123                                         F_FW_CMD_REQUEST | \
7124                                         F_FW_CMD_##rd_wr); \
7125         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7126 } while (0)
7127
7128 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7129                           u32 addr, u32 val)
7130 {
7131         u32 ldst_addrspace;
7132         struct fw_ldst_cmd c;
7133
7134         memset(&c, 0, sizeof(c));
7135         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7136         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7137                                         F_FW_CMD_REQUEST |
7138                                         F_FW_CMD_WRITE |
7139                                         ldst_addrspace);
7140         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7141         c.u.addrval.addr = cpu_to_be32(addr);
7142         c.u.addrval.val = cpu_to_be32(val);
7143
7144         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7145 }
7146
7147 /**
7148  *      t4_mdio_rd - read a PHY register through MDIO
7149  *      @adap: the adapter
7150  *      @mbox: mailbox to use for the FW command
7151  *      @phy_addr: the PHY address
7152  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
7153  *      @reg: the register to read
7154  *      @valp: where to store the value
7155  *
7156  *      Issues a FW command through the given mailbox to read a PHY register.
7157  */
7158 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7159                unsigned int mmd, unsigned int reg, unsigned int *valp)
7160 {
7161         int ret;
7162         u32 ldst_addrspace;
7163         struct fw_ldst_cmd c;
7164
7165         memset(&c, 0, sizeof(c));
7166         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7167         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7168                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
7169                                         ldst_addrspace);
7170         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7171         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7172                                          V_FW_LDST_CMD_MMD(mmd));
7173         c.u.mdio.raddr = cpu_to_be16(reg);
7174
7175         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7176         if (ret == 0)
7177                 *valp = be16_to_cpu(c.u.mdio.rval);
7178         return ret;
7179 }
7180
7181 /**
7182  *      t4_mdio_wr - write a PHY register through MDIO
7183  *      @adap: the adapter
7184  *      @mbox: mailbox to use for the FW command
7185  *      @phy_addr: the PHY address
7186  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
7187  *      @reg: the register to write
7188  *      @valp: value to write
7189  *
7190  *      Issues a FW command through the given mailbox to write a PHY register.
7191  */
7192 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7193                unsigned int mmd, unsigned int reg, unsigned int val)
7194 {
7195         u32 ldst_addrspace;
7196         struct fw_ldst_cmd c;
7197
7198         memset(&c, 0, sizeof(c));
7199         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7200         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7201                                         F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7202                                         ldst_addrspace);
7203         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7204         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7205                                          V_FW_LDST_CMD_MMD(mmd));
7206         c.u.mdio.raddr = cpu_to_be16(reg);
7207         c.u.mdio.rval = cpu_to_be16(val);
7208
7209         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7210 }
7211
7212 /**
7213  *
7214  *      t4_sge_decode_idma_state - decode the idma state
7215  *      @adap: the adapter
7216  *      @state: the state idma is stuck in
7217  */
7218 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7219 {
7220         static const char * const t4_decode[] = {
7221                 "IDMA_IDLE",
7222                 "IDMA_PUSH_MORE_CPL_FIFO",
7223                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7224                 "Not used",
7225                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7226                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7227                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7228                 "IDMA_SEND_FIFO_TO_IMSG",
7229                 "IDMA_FL_REQ_DATA_FL_PREP",
7230                 "IDMA_FL_REQ_DATA_FL",
7231                 "IDMA_FL_DROP",
7232                 "IDMA_FL_H_REQ_HEADER_FL",
7233                 "IDMA_FL_H_SEND_PCIEHDR",
7234                 "IDMA_FL_H_PUSH_CPL_FIFO",
7235                 "IDMA_FL_H_SEND_CPL",
7236                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7237                 "IDMA_FL_H_SEND_IP_HDR",
7238                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7239                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7240                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7241                 "IDMA_FL_D_SEND_PCIEHDR",
7242                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7243                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7244                 "IDMA_FL_SEND_PCIEHDR",
7245                 "IDMA_FL_PUSH_CPL_FIFO",
7246                 "IDMA_FL_SEND_CPL",
7247                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7248                 "IDMA_FL_SEND_PAYLOAD",
7249                 "IDMA_FL_REQ_NEXT_DATA_FL",
7250                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7251                 "IDMA_FL_SEND_PADDING",
7252                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7253                 "IDMA_FL_SEND_FIFO_TO_IMSG",
7254                 "IDMA_FL_REQ_DATAFL_DONE",
7255                 "IDMA_FL_REQ_HEADERFL_DONE",
7256         };
7257         static const char * const t5_decode[] = {
7258                 "IDMA_IDLE",
7259                 "IDMA_ALMOST_IDLE",
7260                 "IDMA_PUSH_MORE_CPL_FIFO",
7261                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7262                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7263                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7264                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7265                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7266                 "IDMA_SEND_FIFO_TO_IMSG",
7267                 "IDMA_FL_REQ_DATA_FL",
7268                 "IDMA_FL_DROP",
7269                 "IDMA_FL_DROP_SEND_INC",
7270                 "IDMA_FL_H_REQ_HEADER_FL",
7271                 "IDMA_FL_H_SEND_PCIEHDR",
7272                 "IDMA_FL_H_PUSH_CPL_FIFO",
7273                 "IDMA_FL_H_SEND_CPL",
7274                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7275                 "IDMA_FL_H_SEND_IP_HDR",
7276                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7277                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7278                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7279                 "IDMA_FL_D_SEND_PCIEHDR",
7280                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7281                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7282                 "IDMA_FL_SEND_PCIEHDR",
7283                 "IDMA_FL_PUSH_CPL_FIFO",
7284                 "IDMA_FL_SEND_CPL",
7285                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7286                 "IDMA_FL_SEND_PAYLOAD",
7287                 "IDMA_FL_REQ_NEXT_DATA_FL",
7288                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7289                 "IDMA_FL_SEND_PADDING",
7290                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7291         };
7292         static const char * const t6_decode[] = {
7293                 "IDMA_IDLE",
7294                 "IDMA_PUSH_MORE_CPL_FIFO",
7295                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7296                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7297                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7298                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7299                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7300                 "IDMA_FL_REQ_DATA_FL",
7301                 "IDMA_FL_DROP",
7302                 "IDMA_FL_DROP_SEND_INC",
7303                 "IDMA_FL_H_REQ_HEADER_FL",
7304                 "IDMA_FL_H_SEND_PCIEHDR",
7305                 "IDMA_FL_H_PUSH_CPL_FIFO",
7306                 "IDMA_FL_H_SEND_CPL",
7307                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7308                 "IDMA_FL_H_SEND_IP_HDR",
7309                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7310                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7311                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7312                 "IDMA_FL_D_SEND_PCIEHDR",
7313                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7314                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7315                 "IDMA_FL_SEND_PCIEHDR",
7316                 "IDMA_FL_PUSH_CPL_FIFO",
7317                 "IDMA_FL_SEND_CPL",
7318                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7319                 "IDMA_FL_SEND_PAYLOAD",
7320                 "IDMA_FL_REQ_NEXT_DATA_FL",
7321                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7322                 "IDMA_FL_SEND_PADDING",
7323                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7324         };
7325         static const u32 sge_regs[] = {
7326                 A_SGE_DEBUG_DATA_LOW_INDEX_2,
7327                 A_SGE_DEBUG_DATA_LOW_INDEX_3,
7328                 A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7329         };
7330         const char * const *sge_idma_decode;
7331         int sge_idma_decode_nstates;
7332         int i;
7333         unsigned int chip_version = chip_id(adapter);
7334
7335         /* Select the right set of decode strings to dump depending on the
7336          * adapter chip type.
7337          */
7338         switch (chip_version) {
7339         case CHELSIO_T4:
7340                 sge_idma_decode = (const char * const *)t4_decode;
7341                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7342                 break;
7343
7344         case CHELSIO_T5:
7345                 sge_idma_decode = (const char * const *)t5_decode;
7346                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7347                 break;
7348
7349         case CHELSIO_T6:
7350                 sge_idma_decode = (const char * const *)t6_decode;
7351                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7352                 break;
7353
7354         default:
7355                 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version);
7356                 return;
7357         }
7358
7359         if (state < sge_idma_decode_nstates)
7360                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7361         else
7362                 CH_WARN(adapter, "idma state %d unknown\n", state);
7363
7364         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7365                 CH_WARN(adapter, "SGE register %#x value %#x\n",
7366                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7367 }
7368
7369 /**
7370  *      t4_sge_ctxt_flush - flush the SGE context cache
7371  *      @adap: the adapter
7372  *      @mbox: mailbox to use for the FW command
7373  *
7374  *      Issues a FW command through the given mailbox to flush the
7375  *      SGE context cache.
7376  */
7377 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7378 {
7379         int ret;
7380         u32 ldst_addrspace;
7381         struct fw_ldst_cmd c;
7382
7383         memset(&c, 0, sizeof(c));
7384         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7385                                                  FW_LDST_ADDRSPC_SGE_EGRC :
7386                                                  FW_LDST_ADDRSPC_SGE_INGC);
7387         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7388                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
7389                                         ldst_addrspace);
7390         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7391         c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7392
7393         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7394         return ret;
7395 }
7396
7397 /**
7398  *      t4_fw_hello - establish communication with FW
7399  *      @adap: the adapter
7400  *      @mbox: mailbox to use for the FW command
7401  *      @evt_mbox: mailbox to receive async FW events
7402  *      @master: specifies the caller's willingness to be the device master
7403  *      @state: returns the current device state (if non-NULL)
7404  *
7405  *      Issues a command to establish communication with FW.  Returns either
7406  *      an error (negative integer) or the mailbox of the Master PF.
7407  */
7408 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7409                 enum dev_master master, enum dev_state *state)
7410 {
7411         int ret;
7412         struct fw_hello_cmd c;
7413         u32 v;
7414         unsigned int master_mbox;
7415         int retries = FW_CMD_HELLO_RETRIES;
7416
7417 retry:
7418         memset(&c, 0, sizeof(c));
7419         INIT_CMD(c, HELLO, WRITE);
7420         c.err_to_clearinit = cpu_to_be32(
7421                 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7422                 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7423                 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7424                                         mbox : M_FW_HELLO_CMD_MBMASTER) |
7425                 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7426                 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7427                 F_FW_HELLO_CMD_CLEARINIT);
7428
7429         /*
7430          * Issue the HELLO command to the firmware.  If it's not successful
7431          * but indicates that we got a "busy" or "timeout" condition, retry
7432          * the HELLO until we exhaust our retry limit.  If we do exceed our
7433          * retry limit, check to see if the firmware left us any error
7434          * information and report that if so ...
7435          */
7436         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7437         if (ret != FW_SUCCESS) {
7438                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7439                         goto retry;
7440                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7441                         t4_report_fw_error(adap);
7442                 return ret;
7443         }
7444
7445         v = be32_to_cpu(c.err_to_clearinit);
7446         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7447         if (state) {
7448                 if (v & F_FW_HELLO_CMD_ERR)
7449                         *state = DEV_STATE_ERR;
7450                 else if (v & F_FW_HELLO_CMD_INIT)
7451                         *state = DEV_STATE_INIT;
7452                 else
7453                         *state = DEV_STATE_UNINIT;
7454         }
7455
7456         /*
7457          * If we're not the Master PF then we need to wait around for the
7458          * Master PF Driver to finish setting up the adapter.
7459          *
7460          * Note that we also do this wait if we're a non-Master-capable PF and
7461          * there is no current Master PF; a Master PF may show up momentarily
7462          * and we wouldn't want to fail pointlessly.  (This can happen when an
7463          * OS loads lots of different drivers rapidly at the same time).  In
7464          * this case, the Master PF returned by the firmware will be
7465          * M_PCIE_FW_MASTER so the test below will work ...
7466          */
7467         if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7468             master_mbox != mbox) {
7469                 int waiting = FW_CMD_HELLO_TIMEOUT;
7470
7471                 /*
7472                  * Wait for the firmware to either indicate an error or
7473                  * initialized state.  If we see either of these we bail out
7474                  * and report the issue to the caller.  If we exhaust the
7475                  * "hello timeout" and we haven't exhausted our retries, try
7476                  * again.  Otherwise bail with a timeout error.
7477                  */
7478                 for (;;) {
7479                         u32 pcie_fw;
7480
7481                         msleep(50);
7482                         waiting -= 50;
7483
7484                         /*
7485                          * If neither Error nor Initialialized are indicated
7486                          * by the firmware keep waiting till we exhaust our
7487                          * timeout ... and then retry if we haven't exhausted
7488                          * our retries ...
7489                          */
7490                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7491                         if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7492                                 if (waiting <= 0) {
7493                                         if (retries-- > 0)
7494                                                 goto retry;
7495
7496                                         return -ETIMEDOUT;
7497                                 }
7498                                 continue;
7499                         }
7500
7501                         /*
7502                          * We either have an Error or Initialized condition
7503                          * report errors preferentially.
7504                          */
7505                         if (state) {
7506                                 if (pcie_fw & F_PCIE_FW_ERR)
7507                                         *state = DEV_STATE_ERR;
7508                                 else if (pcie_fw & F_PCIE_FW_INIT)
7509                                         *state = DEV_STATE_INIT;
7510                         }
7511
7512                         /*
7513                          * If we arrived before a Master PF was selected and
7514                          * there's not a valid Master PF, grab its identity
7515                          * for our caller.
7516                          */
7517                         if (master_mbox == M_PCIE_FW_MASTER &&
7518                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
7519                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7520                         break;
7521                 }
7522         }
7523
7524         return master_mbox;
7525 }
7526
7527 /**
7528  *      t4_fw_bye - end communication with FW
7529  *      @adap: the adapter
7530  *      @mbox: mailbox to use for the FW command
7531  *
7532  *      Issues a command to terminate communication with FW.
7533  */
7534 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7535 {
7536         struct fw_bye_cmd c;
7537
7538         memset(&c, 0, sizeof(c));
7539         INIT_CMD(c, BYE, WRITE);
7540         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7541 }
7542
7543 /**
7544  *      t4_fw_reset - issue a reset to FW
7545  *      @adap: the adapter
7546  *      @mbox: mailbox to use for the FW command
7547  *      @reset: specifies the type of reset to perform
7548  *
7549  *      Issues a reset command of the specified type to FW.
7550  */
7551 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7552 {
7553         struct fw_reset_cmd c;
7554
7555         memset(&c, 0, sizeof(c));
7556         INIT_CMD(c, RESET, WRITE);
7557         c.val = cpu_to_be32(reset);
7558         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7559 }
7560
7561 /**
7562  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7563  *      @adap: the adapter
7564  *      @mbox: mailbox to use for the FW RESET command (if desired)
7565  *      @force: force uP into RESET even if FW RESET command fails
7566  *
7567  *      Issues a RESET command to firmware (if desired) with a HALT indication
7568  *      and then puts the microprocessor into RESET state.  The RESET command
7569  *      will only be issued if a legitimate mailbox is provided (mbox <=
7570  *      M_PCIE_FW_MASTER).
7571  *
7572  *      This is generally used in order for the host to safely manipulate the
7573  *      adapter without fear of conflicting with whatever the firmware might
7574  *      be doing.  The only way out of this state is to RESTART the firmware
7575  *      ...
7576  */
7577 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7578 {
7579         int ret = 0;
7580
7581         /*
7582          * If a legitimate mailbox is provided, issue a RESET command
7583          * with a HALT indication.
7584          */
7585         if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7586                 struct fw_reset_cmd c;
7587
7588                 memset(&c, 0, sizeof(c));
7589                 INIT_CMD(c, RESET, WRITE);
7590                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7591                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7592                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7593         }
7594
7595         /*
7596          * Normally we won't complete the operation if the firmware RESET
7597          * command fails but if our caller insists we'll go ahead and put the
7598          * uP into RESET.  This can be useful if the firmware is hung or even
7599          * missing ...  We'll have to take the risk of putting the uP into
7600          * RESET without the cooperation of firmware in that case.
7601          *
7602          * We also force the firmware's HALT flag to be on in case we bypassed
7603          * the firmware RESET command above or we're dealing with old firmware
7604          * which doesn't have the HALT capability.  This will serve as a flag
7605          * for the incoming firmware to know that it's coming out of a HALT
7606          * rather than a RESET ... if it's new enough to understand that ...
7607          */
7608         if (ret == 0 || force) {
7609                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7610                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7611                                  F_PCIE_FW_HALT);
7612         }
7613
7614         /*
7615          * And we always return the result of the firmware RESET command
7616          * even when we force the uP into RESET ...
7617          */
7618         return ret;
7619 }
7620
7621 /**
7622  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7623  *      @adap: the adapter
7624  *
7625  *      Restart firmware previously halted by t4_fw_halt().  On successful
7626  *      return the previous PF Master remains as the new PF Master and there
7627  *      is no need to issue a new HELLO command, etc.
7628  */
7629 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7630 {
7631         int ms;
7632
7633         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7634         for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7635                 if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7636                         return FW_SUCCESS;
7637                 msleep(100);
7638                 ms += 100;
7639         }
7640
7641         return -ETIMEDOUT;
7642 }
7643
7644 /**
7645  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7646  *      @adap: the adapter
7647  *      @mbox: mailbox to use for the FW RESET command (if desired)
7648  *      @fw_data: the firmware image to write
7649  *      @size: image size
7650  *      @force: force upgrade even if firmware doesn't cooperate
7651  *
7652  *      Perform all of the steps necessary for upgrading an adapter's
7653  *      firmware image.  Normally this requires the cooperation of the
7654  *      existing firmware in order to halt all existing activities
7655  *      but if an invalid mailbox token is passed in we skip that step
7656  *      (though we'll still put the adapter microprocessor into RESET in
7657  *      that case).
7658  *
7659  *      On successful return the new firmware will have been loaded and
7660  *      the adapter will have been fully RESET losing all previous setup
7661  *      state.  On unsuccessful return the adapter may be completely hosed ...
7662  *      positive errno indicates that the adapter is ~probably~ intact, a
7663  *      negative errno indicates that things are looking bad ...
7664  */
7665 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7666                   const u8 *fw_data, unsigned int size, int force)
7667 {
7668         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7669         unsigned int bootstrap =
7670             be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7671         int ret;
7672
7673         if (!t4_fw_matches_chip(adap, fw_hdr))
7674                 return -EINVAL;
7675
7676         if (!bootstrap) {
7677                 ret = t4_fw_halt(adap, mbox, force);
7678                 if (ret < 0 && !force)
7679                         return ret;
7680         }
7681
7682         ret = t4_load_fw(adap, fw_data, size);
7683         if (ret < 0 || bootstrap)
7684                 return ret;
7685
7686         return t4_fw_restart(adap, mbox);
7687 }
7688
7689 /**
7690  *      t4_fw_initialize - ask FW to initialize the device
7691  *      @adap: the adapter
7692  *      @mbox: mailbox to use for the FW command
7693  *
7694  *      Issues a command to FW to partially initialize the device.  This
7695  *      performs initialization that generally doesn't depend on user input.
7696  */
7697 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7698 {
7699         struct fw_initialize_cmd c;
7700
7701         memset(&c, 0, sizeof(c));
7702         INIT_CMD(c, INITIALIZE, WRITE);
7703         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7704 }
7705
7706 /**
7707  *      t4_query_params_rw - query FW or device parameters
7708  *      @adap: the adapter
7709  *      @mbox: mailbox to use for the FW command
7710  *      @pf: the PF
7711  *      @vf: the VF
7712  *      @nparams: the number of parameters
7713  *      @params: the parameter names
7714  *      @val: the parameter values
7715  *      @rw: Write and read flag
7716  *
7717  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7718  *      queried at once.
7719  */
7720 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7721                        unsigned int vf, unsigned int nparams, const u32 *params,
7722                        u32 *val, int rw)
7723 {
7724         int i, ret;
7725         struct fw_params_cmd c;
7726         __be32 *p = &c.param[0].mnem;
7727
7728         if (nparams > 7)
7729                 return -EINVAL;
7730
7731         memset(&c, 0, sizeof(c));
7732         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7733                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
7734                                   V_FW_PARAMS_CMD_PFN(pf) |
7735                                   V_FW_PARAMS_CMD_VFN(vf));
7736         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7737
7738         for (i = 0; i < nparams; i++) {
7739                 *p++ = cpu_to_be32(*params++);
7740                 if (rw)
7741                         *p = cpu_to_be32(*(val + i));
7742                 p++;
7743         }
7744
7745         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7746         if (ret == 0)
7747                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7748                         *val++ = be32_to_cpu(*p);
7749         return ret;
7750 }
7751
7752 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7753                     unsigned int vf, unsigned int nparams, const u32 *params,
7754                     u32 *val)
7755 {
7756         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7757 }
7758
7759 /**
7760  *      t4_set_params_timeout - sets FW or device parameters
7761  *      @adap: the adapter
7762  *      @mbox: mailbox to use for the FW command
7763  *      @pf: the PF
7764  *      @vf: the VF
7765  *      @nparams: the number of parameters
7766  *      @params: the parameter names
7767  *      @val: the parameter values
7768  *      @timeout: the timeout time
7769  *
7770  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7771  *      specified at once.
7772  */
7773 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7774                           unsigned int pf, unsigned int vf,
7775                           unsigned int nparams, const u32 *params,
7776                           const u32 *val, int timeout)
7777 {
7778         struct fw_params_cmd c;
7779         __be32 *p = &c.param[0].mnem;
7780
7781         if (nparams > 7)
7782                 return -EINVAL;
7783
7784         memset(&c, 0, sizeof(c));
7785         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7786                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7787                                   V_FW_PARAMS_CMD_PFN(pf) |
7788                                   V_FW_PARAMS_CMD_VFN(vf));
7789         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7790
7791         while (nparams--) {
7792                 *p++ = cpu_to_be32(*params++);
7793                 *p++ = cpu_to_be32(*val++);
7794         }
7795
7796         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7797 }
7798
7799 /**
7800  *      t4_set_params - sets FW or device parameters
7801  *      @adap: the adapter
7802  *      @mbox: mailbox to use for the FW command
7803  *      @pf: the PF
7804  *      @vf: the VF
7805  *      @nparams: the number of parameters
7806  *      @params: the parameter names
7807  *      @val: the parameter values
7808  *
7809  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7810  *      specified at once.
7811  */
7812 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7813                   unsigned int vf, unsigned int nparams, const u32 *params,
7814                   const u32 *val)
7815 {
7816         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7817                                      FW_CMD_MAX_TIMEOUT);
7818 }
7819
7820 /**
7821  *      t4_cfg_pfvf - configure PF/VF resource limits
7822  *      @adap: the adapter
7823  *      @mbox: mailbox to use for the FW command
7824  *      @pf: the PF being configured
7825  *      @vf: the VF being configured
7826  *      @txq: the max number of egress queues
7827  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7828  *      @rxqi: the max number of interrupt-capable ingress queues
7829  *      @rxq: the max number of interruptless ingress queues
7830  *      @tc: the PCI traffic class
7831  *      @vi: the max number of virtual interfaces
7832  *      @cmask: the channel access rights mask for the PF/VF
7833  *      @pmask: the port access rights mask for the PF/VF
7834  *      @nexact: the maximum number of exact MPS filters
7835  *      @rcaps: read capabilities
7836  *      @wxcaps: write/execute capabilities
7837  *
7838  *      Configures resource limits and capabilities for a physical or virtual
7839  *      function.
7840  */
7841 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7842                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7843                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7844                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7845                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7846 {
7847         struct fw_pfvf_cmd c;
7848
7849         memset(&c, 0, sizeof(c));
7850         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7851                                   F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7852                                   V_FW_PFVF_CMD_VFN(vf));
7853         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7854         c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7855                                      V_FW_PFVF_CMD_NIQ(rxq));
7856         c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7857                                     V_FW_PFVF_CMD_PMASK(pmask) |
7858                                     V_FW_PFVF_CMD_NEQ(txq));
7859         c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7860                                       V_FW_PFVF_CMD_NVI(vi) |
7861                                       V_FW_PFVF_CMD_NEXACTF(nexact));
7862         c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7863                                      V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7864                                      V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7865         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7866 }
7867
7868 /**
7869  *      t4_alloc_vi_func - allocate a virtual interface
7870  *      @adap: the adapter
7871  *      @mbox: mailbox to use for the FW command
7872  *      @port: physical port associated with the VI
7873  *      @pf: the PF owning the VI
7874  *      @vf: the VF owning the VI
7875  *      @nmac: number of MAC addresses needed (1 to 5)
7876  *      @mac: the MAC addresses of the VI
7877  *      @rss_size: size of RSS table slice associated with this VI
7878  *      @portfunc: which Port Application Function MAC Address is desired
7879  *      @idstype: Intrusion Detection Type
7880  *
7881  *      Allocates a virtual interface for the given physical port.  If @mac is
7882  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7883  *      If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7884  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7885  *      stored consecutively so the space needed is @nmac * 6 bytes.
7886  *      Returns a negative error number or the non-negative VI id.
7887  */
7888 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7889                      unsigned int port, unsigned int pf, unsigned int vf,
7890                      unsigned int nmac, u8 *mac, u16 *rss_size,
7891                      uint8_t *vfvld, uint16_t *vin,
7892                      unsigned int portfunc, unsigned int idstype)
7893 {
7894         int ret;
7895         struct fw_vi_cmd c;
7896
7897         memset(&c, 0, sizeof(c));
7898         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7899                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7900                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7901         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7902         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7903                                      V_FW_VI_CMD_FUNC(portfunc));
7904         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7905         c.nmac = nmac - 1;
7906         if(!rss_size)
7907                 c.norss_rsssize = F_FW_VI_CMD_NORSS;
7908
7909         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7910         if (ret)
7911                 return ret;
7912         ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7913
7914         if (mac) {
7915                 memcpy(mac, c.mac, sizeof(c.mac));
7916                 switch (nmac) {
7917                 case 5:
7918                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7919                 case 4:
7920                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7921                 case 3:
7922                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7923                 case 2:
7924                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7925                 }
7926         }
7927         if (rss_size)
7928                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7929         if (vfvld) {
7930                 *vfvld = adap->params.viid_smt_extn_support ?
7931                     G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
7932                     G_FW_VIID_VIVLD(ret);
7933         }
7934         if (vin) {
7935                 *vin = adap->params.viid_smt_extn_support ?
7936                     G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
7937                     G_FW_VIID_VIN(ret);
7938         }
7939
7940         return ret;
7941 }
7942
7943 /**
7944  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7945  *      @adap: the adapter
7946  *      @mbox: mailbox to use for the FW command
7947  *      @port: physical port associated with the VI
7948  *      @pf: the PF owning the VI
7949  *      @vf: the VF owning the VI
7950  *      @nmac: number of MAC addresses needed (1 to 5)
7951  *      @mac: the MAC addresses of the VI
7952  *      @rss_size: size of RSS table slice associated with this VI
7953  *
7954  *      backwards compatible and convieniance routine to allocate a Virtual
7955  *      Interface with a Ethernet Port Application Function and Intrustion
7956  *      Detection System disabled.
7957  */
7958 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7959                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7960                 u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
7961 {
7962         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7963                                 vfvld, vin, FW_VI_FUNC_ETH, 0);
7964 }
7965
7966 /**
7967  *      t4_free_vi - free a virtual interface
7968  *      @adap: the adapter
7969  *      @mbox: mailbox to use for the FW command
7970  *      @pf: the PF owning the VI
7971  *      @vf: the VF owning the VI
7972  *      @viid: virtual interface identifiler
7973  *
7974  *      Free a previously allocated virtual interface.
7975  */
7976 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7977                unsigned int vf, unsigned int viid)
7978 {
7979         struct fw_vi_cmd c;
7980
7981         memset(&c, 0, sizeof(c));
7982         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7983                                   F_FW_CMD_REQUEST |
7984                                   F_FW_CMD_EXEC |
7985                                   V_FW_VI_CMD_PFN(pf) |
7986                                   V_FW_VI_CMD_VFN(vf));
7987         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7988         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7989
7990         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7991 }
7992
7993 /**
7994  *      t4_set_rxmode - set Rx properties of a virtual interface
7995  *      @adap: the adapter
7996  *      @mbox: mailbox to use for the FW command
7997  *      @viid: the VI id
7998  *      @mtu: the new MTU or -1
7999  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
8000  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
8001  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8002  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8003  *      @sleep_ok: if true we may sleep while awaiting command completion
8004  *
8005  *      Sets Rx properties of a virtual interface.
8006  */
8007 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8008                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
8009                   bool sleep_ok)
8010 {
8011         struct fw_vi_rxmode_cmd c;
8012
8013         /* convert to FW values */
8014         if (mtu < 0)
8015                 mtu = M_FW_VI_RXMODE_CMD_MTU;
8016         if (promisc < 0)
8017                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8018         if (all_multi < 0)
8019                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8020         if (bcast < 0)
8021                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8022         if (vlanex < 0)
8023                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8024
8025         memset(&c, 0, sizeof(c));
8026         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8027                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8028                                    V_FW_VI_RXMODE_CMD_VIID(viid));
8029         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8030         c.mtu_to_vlanexen =
8031                 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8032                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8033                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8034                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8035                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8036         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8037 }
8038
8039 /**
8040  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8041  *      @adap: the adapter
8042  *      @viid: the VI id
8043  *      @mac: the MAC address
8044  *      @mask: the mask
8045  *      @vni: the VNI id for the tunnel protocol
8046  *      @vni_mask: mask for the VNI id
8047  *      @dip_hit: to enable DIP match for the MPS entry
8048  *      @lookup_type: MAC address for inner (1) or outer (0) header
8049  *      @sleep_ok: call is allowed to sleep
8050  *
8051  *      Allocates an MPS entry with specified MAC address and VNI value.
8052  *
8053  *      Returns a negative error number or the allocated index for this mac.
8054  */
8055 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8056                             const u8 *addr, const u8 *mask, unsigned int vni,
8057                             unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8058                             bool sleep_ok)
8059 {
8060         struct fw_vi_mac_cmd c;
8061         struct fw_vi_mac_vni *p = c.u.exact_vni;
8062         int ret = 0;
8063         u32 val;
8064
8065         memset(&c, 0, sizeof(c));
8066         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8067                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8068                                    V_FW_VI_MAC_CMD_VIID(viid));
8069         val = V_FW_CMD_LEN16(1) |
8070               V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8071         c.freemacs_to_len16 = cpu_to_be32(val);
8072         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8073                                       V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8074         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8075         memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8076
8077         p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8078                                             V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8079                                             V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8080         p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8081
8082         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8083         if (ret == 0)
8084                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8085         return ret;
8086 }
8087
8088 /**
8089  *      t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8090  *      @adap: the adapter
8091  *      @viid: the VI id
8092  *      @mac: the MAC address
8093  *      @mask: the mask
8094  *      @idx: index at which to add this entry
8095  *      @port_id: the port index
8096  *      @lookup_type: MAC address for inner (1) or outer (0) header
8097  *      @sleep_ok: call is allowed to sleep
8098  *
8099  *      Adds the mac entry at the specified index using raw mac interface.
8100  *
8101  *      Returns a negative error number or the allocated index for this mac.
8102  */
8103 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8104                           const u8 *addr, const u8 *mask, unsigned int idx,
8105                           u8 lookup_type, u8 port_id, bool sleep_ok)
8106 {
8107         int ret = 0;
8108         struct fw_vi_mac_cmd c;
8109         struct fw_vi_mac_raw *p = &c.u.raw;
8110         u32 val;
8111
8112         memset(&c, 0, sizeof(c));
8113         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8114                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8115                                    V_FW_VI_MAC_CMD_VIID(viid));
8116         val = V_FW_CMD_LEN16(1) |
8117               V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8118         c.freemacs_to_len16 = cpu_to_be32(val);
8119
8120         /* Specify that this is an inner mac address */
8121         p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8122
8123         /* Lookup Type. Outer header: 0, Inner header: 1 */
8124         p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8125                                    V_DATAPORTNUM(port_id));
8126         /* Lookup mask and port mask */
8127         p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8128                                     V_DATAPORTNUM(M_DATAPORTNUM));
8129
8130         /* Copy the address and the mask */
8131         memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8132         memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8133
8134         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8135         if (ret == 0) {
8136                 ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8137                 if (ret != idx)
8138                         ret = -ENOMEM;
8139         }
8140
8141         return ret;
8142 }
8143
8144 /**
8145  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8146  *      @adap: the adapter
8147  *      @mbox: mailbox to use for the FW command
8148  *      @viid: the VI id
8149  *      @free: if true any existing filters for this VI id are first removed
8150  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
8151  *      @addr: the MAC address(es)
8152  *      @idx: where to store the index of each allocated filter
8153  *      @hash: pointer to hash address filter bitmap
8154  *      @sleep_ok: call is allowed to sleep
8155  *
8156  *      Allocates an exact-match filter for each of the supplied addresses and
8157  *      sets it to the corresponding address.  If @idx is not %NULL it should
8158  *      have at least @naddr entries, each of which will be set to the index of
8159  *      the filter allocated for the corresponding MAC address.  If a filter
8160  *      could not be allocated for an address its index is set to 0xffff.
8161  *      If @hash is not %NULL addresses that fail to allocate an exact filter
8162  *      are hashed and update the hash filter bitmap pointed at by @hash.
8163  *
8164  *      Returns a negative error number or the number of filters allocated.
8165  */
8166 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8167                       unsigned int viid, bool free, unsigned int naddr,
8168                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8169 {
8170         int offset, ret = 0;
8171         struct fw_vi_mac_cmd c;
8172         unsigned int nfilters = 0;
8173         unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8174         unsigned int rem = naddr;
8175
8176         if (naddr > max_naddr)
8177                 return -EINVAL;
8178
8179         for (offset = 0; offset < naddr ; /**/) {
8180                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8181                                          ? rem
8182                                          : ARRAY_SIZE(c.u.exact));
8183                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8184                                                      u.exact[fw_naddr]), 16);
8185                 struct fw_vi_mac_exact *p;
8186                 int i;
8187
8188                 memset(&c, 0, sizeof(c));
8189                 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8190                                            F_FW_CMD_REQUEST |
8191                                            F_FW_CMD_WRITE |
8192                                            V_FW_CMD_EXEC(free) |
8193                                            V_FW_VI_MAC_CMD_VIID(viid));
8194                 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8195                                                   V_FW_CMD_LEN16(len16));
8196
8197                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8198                         p->valid_to_idx =
8199                                 cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8200                                             V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8201                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8202                 }
8203
8204                 /*
8205                  * It's okay if we run out of space in our MAC address arena.
8206                  * Some of the addresses we submit may get stored so we need
8207                  * to run through the reply to see what the results were ...
8208                  */
8209                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8210                 if (ret && ret != -FW_ENOMEM)
8211                         break;
8212
8213                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8214                         u16 index = G_FW_VI_MAC_CMD_IDX(
8215                                                 be16_to_cpu(p->valid_to_idx));
8216
8217                         if (idx)
8218                                 idx[offset+i] = (index >=  max_naddr
8219                                                  ? 0xffff
8220                                                  : index);
8221                         if (index < max_naddr)
8222                                 nfilters++;
8223                         else if (hash)
8224                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8225                 }
8226
8227                 free = false;
8228                 offset += fw_naddr;
8229                 rem -= fw_naddr;
8230         }
8231
8232         if (ret == 0 || ret == -FW_ENOMEM)
8233                 ret = nfilters;
8234         return ret;
8235 }
8236
8237 /**
8238  *      t4_free_encap_mac_filt - frees MPS entry at given index
8239  *      @adap: the adapter
8240  *      @viid: the VI id
8241  *      @idx: index of MPS entry to be freed
8242  *      @sleep_ok: call is allowed to sleep
8243  *
8244  *      Frees the MPS entry at supplied index
8245  *
8246  *      Returns a negative error number or zero on success
8247  */
8248 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8249                            int idx, bool sleep_ok)
8250 {
8251         struct fw_vi_mac_exact *p;
8252         struct fw_vi_mac_cmd c;
8253         u8 addr[] = {0,0,0,0,0,0};
8254         int ret = 0;
8255         u32 exact;
8256
8257         memset(&c, 0, sizeof(c));
8258         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8259                                    F_FW_CMD_REQUEST |
8260                                    F_FW_CMD_WRITE |
8261                                    V_FW_CMD_EXEC(0) |
8262                                    V_FW_VI_MAC_CMD_VIID(viid));
8263         exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8264         c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8265                                           exact |
8266                                           V_FW_CMD_LEN16(1));
8267         p = c.u.exact;
8268         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8269                                       V_FW_VI_MAC_CMD_IDX(idx));
8270         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8271
8272         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8273         return ret;
8274 }
8275
8276 /**
8277  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8278  *      @adap: the adapter
8279  *      @viid: the VI id
8280  *      @addr: the MAC address
8281  *      @mask: the mask
8282  *      @idx: index of the entry in mps tcam
8283  *      @lookup_type: MAC address for inner (1) or outer (0) header
8284  *      @port_id: the port index
8285  *      @sleep_ok: call is allowed to sleep
8286  *
8287  *      Removes the mac entry at the specified index using raw mac interface.
8288  *
8289  *      Returns a negative error number on failure.
8290  */
8291 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8292                          const u8 *addr, const u8 *mask, unsigned int idx,
8293                          u8 lookup_type, u8 port_id, bool sleep_ok)
8294 {
8295         struct fw_vi_mac_cmd c;
8296         struct fw_vi_mac_raw *p = &c.u.raw;
8297         u32 raw;
8298
8299         memset(&c, 0, sizeof(c));
8300         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8301                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8302                                    V_FW_CMD_EXEC(0) |
8303                                    V_FW_VI_MAC_CMD_VIID(viid));
8304         raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8305         c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8306                                           raw |
8307                                           V_FW_CMD_LEN16(1));
8308
8309         p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8310                                      FW_VI_MAC_ID_BASED_FREE);
8311
8312         /* Lookup Type. Outer header: 0, Inner header: 1 */
8313         p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8314                                    V_DATAPORTNUM(port_id));
8315         /* Lookup mask and port mask */
8316         p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8317                                     V_DATAPORTNUM(M_DATAPORTNUM));
8318
8319         /* Copy the address and the mask */
8320         memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8321         memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8322
8323         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8324 }
8325
8326 /**
8327  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
8328  *      @adap: the adapter
8329  *      @mbox: mailbox to use for the FW command
8330  *      @viid: the VI id
8331  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
8332  *      @addr: the MAC address(es)
8333  *      @sleep_ok: call is allowed to sleep
8334  *
8335  *      Frees the exact-match filter for each of the supplied addresses
8336  *
8337  *      Returns a negative error number or the number of filters freed.
8338  */
8339 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8340                       unsigned int viid, unsigned int naddr,
8341                       const u8 **addr, bool sleep_ok)
8342 {
8343         int offset, ret = 0;
8344         struct fw_vi_mac_cmd c;
8345         unsigned int nfilters = 0;
8346         unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8347         unsigned int rem = naddr;
8348
8349         if (naddr > max_naddr)
8350                 return -EINVAL;
8351
8352         for (offset = 0; offset < (int)naddr ; /**/) {
8353                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8354                                          ? rem
8355                                          : ARRAY_SIZE(c.u.exact));
8356                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8357                                                      u.exact[fw_naddr]), 16);
8358                 struct fw_vi_mac_exact *p;
8359                 int i;
8360
8361                 memset(&c, 0, sizeof(c));
8362                 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8363                                      F_FW_CMD_REQUEST |
8364                                      F_FW_CMD_WRITE |
8365                                      V_FW_CMD_EXEC(0) |
8366                                      V_FW_VI_MAC_CMD_VIID(viid));
8367                 c.freemacs_to_len16 =
8368                                 cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8369                                             V_FW_CMD_LEN16(len16));
8370
8371                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8372                         p->valid_to_idx = cpu_to_be16(
8373                                 F_FW_VI_MAC_CMD_VALID |
8374                                 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8375                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8376                 }
8377
8378                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8379                 if (ret)
8380                         break;
8381
8382                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8383                         u16 index = G_FW_VI_MAC_CMD_IDX(
8384                                                 be16_to_cpu(p->valid_to_idx));
8385
8386                         if (index < max_naddr)
8387                                 nfilters++;
8388                 }
8389
8390                 offset += fw_naddr;
8391                 rem -= fw_naddr;
8392         }
8393
8394         if (ret == 0)
8395                 ret = nfilters;
8396         return ret;
8397 }
8398
8399 /**
8400  *      t4_change_mac - modifies the exact-match filter for a MAC address
8401  *      @adap: the adapter
8402  *      @mbox: mailbox to use for the FW command
8403  *      @viid: the VI id
8404  *      @idx: index of existing filter for old value of MAC address, or -1
8405  *      @addr: the new MAC address value
8406  *      @persist: whether a new MAC allocation should be persistent
8407  *      @smt_idx: add MAC to SMT and return its index, or NULL
8408  *
8409  *      Modifies an exact-match filter and sets it to the new MAC address if
8410  *      @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8411  *      latter case the address is added persistently if @persist is %true.
8412  *
8413  *      Note that in general it is not possible to modify the value of a given
8414  *      filter so the generic way to modify an address filter is to free the one
8415  *      being used by the old address value and allocate a new filter for the
8416  *      new address value.
8417  *
8418  *      Returns a negative error number or the index of the filter with the new
8419  *      MAC value.  Note that this index may differ from @idx.
8420  */
8421 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8422                   int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8423 {
8424         int ret, mode;
8425         struct fw_vi_mac_cmd c;
8426         struct fw_vi_mac_exact *p = c.u.exact;
8427         unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8428
8429         if (idx < 0)            /* new allocation */
8430                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8431         mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8432
8433         memset(&c, 0, sizeof(c));
8434         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8435                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8436                                    V_FW_VI_MAC_CMD_VIID(viid));
8437         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8438         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8439                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8440                                       V_FW_VI_MAC_CMD_IDX(idx));
8441         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8442
8443         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8444         if (ret == 0) {
8445                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8446                 if (ret >= max_mac_addr)
8447                         ret = -ENOMEM;
8448                 if (smt_idx) {
8449                         if (adap->params.viid_smt_extn_support)
8450                                 *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8451                         else {
8452                                 if (chip_id(adap) <= CHELSIO_T5)
8453                                         *smt_idx = (viid & M_FW_VIID_VIN) << 1;
8454                                 else
8455                                         *smt_idx = viid & M_FW_VIID_VIN;
8456                         }
8457                 }
8458         }
8459         return ret;
8460 }
8461
8462 /**
8463  *      t4_set_addr_hash - program the MAC inexact-match hash filter
8464  *      @adap: the adapter
8465  *      @mbox: mailbox to use for the FW command
8466  *      @viid: the VI id
8467  *      @ucast: whether the hash filter should also match unicast addresses
8468  *      @vec: the value to be written to the hash filter
8469  *      @sleep_ok: call is allowed to sleep
8470  *
8471  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8472  */
8473 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8474                      bool ucast, u64 vec, bool sleep_ok)
8475 {
8476         struct fw_vi_mac_cmd c;
8477         u32 val;
8478
8479         memset(&c, 0, sizeof(c));
8480         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8481                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8482                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8483         val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8484               V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8485         c.freemacs_to_len16 = cpu_to_be32(val);
8486         c.u.hash.hashvec = cpu_to_be64(vec);
8487         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8488 }
8489
8490 /**
8491  *      t4_enable_vi_params - enable/disable a virtual interface
8492  *      @adap: the adapter
8493  *      @mbox: mailbox to use for the FW command
8494  *      @viid: the VI id
8495  *      @rx_en: 1=enable Rx, 0=disable Rx
8496  *      @tx_en: 1=enable Tx, 0=disable Tx
8497  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8498  *
8499  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8500  *      only makes sense when enabling a Virtual Interface ...
8501  */
8502 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8503                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8504 {
8505         struct fw_vi_enable_cmd c;
8506
8507         memset(&c, 0, sizeof(c));
8508         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8509                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8510                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8511         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8512                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8513                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8514                                      FW_LEN16(c));
8515         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8516 }
8517
8518 /**
8519  *      t4_enable_vi - enable/disable a virtual interface
8520  *      @adap: the adapter
8521  *      @mbox: mailbox to use for the FW command
8522  *      @viid: the VI id
8523  *      @rx_en: 1=enable Rx, 0=disable Rx
8524  *      @tx_en: 1=enable Tx, 0=disable Tx
8525  *
8526  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8527  *      only makes sense when enabling a Virtual Interface ...
8528  */
8529 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8530                  bool rx_en, bool tx_en)
8531 {
8532         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8533 }
8534
8535 /**
8536  *      t4_identify_port - identify a VI's port by blinking its LED
8537  *      @adap: the adapter
8538  *      @mbox: mailbox to use for the FW command
8539  *      @viid: the VI id
8540  *      @nblinks: how many times to blink LED at 2.5 Hz
8541  *
8542  *      Identifies a VI's port by blinking its LED.
8543  */
8544 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8545                      unsigned int nblinks)
8546 {
8547         struct fw_vi_enable_cmd c;
8548
8549         memset(&c, 0, sizeof(c));
8550         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8551                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8552                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8553         c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8554         c.blinkdur = cpu_to_be16(nblinks);
8555         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8556 }
8557
8558 /**
8559  *      t4_iq_stop - stop an ingress queue and its FLs
8560  *      @adap: the adapter
8561  *      @mbox: mailbox to use for the FW command
8562  *      @pf: the PF owning the queues
8563  *      @vf: the VF owning the queues
8564  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8565  *      @iqid: ingress queue id
8566  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8567  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8568  *
8569  *      Stops an ingress queue and its associated FLs, if any.  This causes
8570  *      any current or future data/messages destined for these queues to be
8571  *      tossed.
8572  */
8573 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8574                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8575                unsigned int fl0id, unsigned int fl1id)
8576 {
8577         struct fw_iq_cmd c;
8578
8579         memset(&c, 0, sizeof(c));
8580         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8581                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8582                                   V_FW_IQ_CMD_VFN(vf));
8583         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8584         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8585         c.iqid = cpu_to_be16(iqid);
8586         c.fl0id = cpu_to_be16(fl0id);
8587         c.fl1id = cpu_to_be16(fl1id);
8588         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8589 }
8590
8591 /**
8592  *      t4_iq_free - free an ingress queue and its FLs
8593  *      @adap: the adapter
8594  *      @mbox: mailbox to use for the FW command
8595  *      @pf: the PF owning the queues
8596  *      @vf: the VF owning the queues
8597  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8598  *      @iqid: ingress queue id
8599  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8600  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8601  *
8602  *      Frees an ingress queue and its associated FLs, if any.
8603  */
8604 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8605                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8606                unsigned int fl0id, unsigned int fl1id)
8607 {
8608         struct fw_iq_cmd c;
8609
8610         memset(&c, 0, sizeof(c));
8611         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8612                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8613                                   V_FW_IQ_CMD_VFN(vf));
8614         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8615         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8616         c.iqid = cpu_to_be16(iqid);
8617         c.fl0id = cpu_to_be16(fl0id);
8618         c.fl1id = cpu_to_be16(fl1id);
8619         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8620 }
8621
8622 /**
8623  *      t4_eth_eq_stop - stop an Ethernet egress queue
8624  *      @adap: the adapter
8625  *      @mbox: mailbox to use for the FW command
8626  *      @pf: the PF owning the queues
8627  *      @vf: the VF owning the queues
8628  *      @eqid: egress queue id
8629  *
8630  *      Stops an Ethernet egress queue.  The queue can be reinitialized or
8631  *      freed but is not otherwise functional after this call.
8632  */
8633 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8634                    unsigned int vf, unsigned int eqid)
8635 {
8636         struct fw_eq_eth_cmd c;
8637
8638         memset(&c, 0, sizeof(c));
8639         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8640                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8641                                   V_FW_EQ_ETH_CMD_PFN(pf) |
8642                                   V_FW_EQ_ETH_CMD_VFN(vf));
8643         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
8644         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8645         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8646 }
8647
8648 /**
8649  *      t4_eth_eq_free - free an Ethernet egress queue
8650  *      @adap: the adapter
8651  *      @mbox: mailbox to use for the FW command
8652  *      @pf: the PF owning the queue
8653  *      @vf: the VF owning the queue
8654  *      @eqid: egress queue id
8655  *
8656  *      Frees an Ethernet egress queue.
8657  */
8658 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8659                    unsigned int vf, unsigned int eqid)
8660 {
8661         struct fw_eq_eth_cmd c;
8662
8663         memset(&c, 0, sizeof(c));
8664         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8665                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8666                                   V_FW_EQ_ETH_CMD_PFN(pf) |
8667                                   V_FW_EQ_ETH_CMD_VFN(vf));
8668         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8669         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8670         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8671 }
8672
8673 /**
8674  *      t4_ctrl_eq_free - free a control egress queue
8675  *      @adap: the adapter
8676  *      @mbox: mailbox to use for the FW command
8677  *      @pf: the PF owning the queue
8678  *      @vf: the VF owning the queue
8679  *      @eqid: egress queue id
8680  *
8681  *      Frees a control egress queue.
8682  */
8683 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8684                     unsigned int vf, unsigned int eqid)
8685 {
8686         struct fw_eq_ctrl_cmd c;
8687
8688         memset(&c, 0, sizeof(c));
8689         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8690                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8691                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
8692                                   V_FW_EQ_CTRL_CMD_VFN(vf));
8693         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8694         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8695         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8696 }
8697
8698 /**
8699  *      t4_ofld_eq_free - free an offload egress queue
8700  *      @adap: the adapter
8701  *      @mbox: mailbox to use for the FW command
8702  *      @pf: the PF owning the queue
8703  *      @vf: the VF owning the queue
8704  *      @eqid: egress queue id
8705  *
8706  *      Frees a control egress queue.
8707  */
8708 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8709                     unsigned int vf, unsigned int eqid)
8710 {
8711         struct fw_eq_ofld_cmd c;
8712
8713         memset(&c, 0, sizeof(c));
8714         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8715                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8716                                   V_FW_EQ_OFLD_CMD_PFN(pf) |
8717                                   V_FW_EQ_OFLD_CMD_VFN(vf));
8718         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8719         c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8720         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8721 }
8722
8723 /**
8724  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8725  *      @link_down_rc: Link Down Reason Code
8726  *
8727  *      Returns a string representation of the Link Down Reason Code.
8728  */
8729 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8730 {
8731         static const char *reason[] = {
8732                 "Link Down",
8733                 "Remote Fault",
8734                 "Auto-negotiation Failure",
8735                 "Reserved3",
8736                 "Insufficient Airflow",
8737                 "Unable To Determine Reason",
8738                 "No RX Signal Detected",
8739                 "Reserved7",
8740         };
8741
8742         if (link_down_rc >= ARRAY_SIZE(reason))
8743                 return "Bad Reason Code";
8744
8745         return reason[link_down_rc];
8746 }
8747
8748 /*
8749  * Return the highest speed set in the port capabilities, in Mb/s.
8750  */
8751 unsigned int fwcap_to_speed(uint32_t caps)
8752 {
8753         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8754                 do { \
8755                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8756                                 return __speed; \
8757                 } while (0)
8758
8759         TEST_SPEED_RETURN(400G, 400000);
8760         TEST_SPEED_RETURN(200G, 200000);
8761         TEST_SPEED_RETURN(100G, 100000);
8762         TEST_SPEED_RETURN(50G,   50000);
8763         TEST_SPEED_RETURN(40G,   40000);
8764         TEST_SPEED_RETURN(25G,   25000);
8765         TEST_SPEED_RETURN(10G,   10000);
8766         TEST_SPEED_RETURN(1G,     1000);
8767         TEST_SPEED_RETURN(100M,    100);
8768
8769         #undef TEST_SPEED_RETURN
8770
8771         return 0;
8772 }
8773
8774 /*
8775  * Return the port capabilities bit for the given speed, which is in Mb/s.
8776  */
8777 uint32_t speed_to_fwcap(unsigned int speed)
8778 {
8779         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8780                 do { \
8781                         if (speed == __speed) \
8782                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8783                 } while (0)
8784
8785         TEST_SPEED_RETURN(400G, 400000);
8786         TEST_SPEED_RETURN(200G, 200000);
8787         TEST_SPEED_RETURN(100G, 100000);
8788         TEST_SPEED_RETURN(50G,   50000);
8789         TEST_SPEED_RETURN(40G,   40000);
8790         TEST_SPEED_RETURN(25G,   25000);
8791         TEST_SPEED_RETURN(10G,   10000);
8792         TEST_SPEED_RETURN(1G,     1000);
8793         TEST_SPEED_RETURN(100M,    100);
8794
8795         #undef TEST_SPEED_RETURN
8796
8797         return 0;
8798 }
8799
8800 /*
8801  * Return the port capabilities bit for the highest speed in the capabilities.
8802  */
8803 uint32_t fwcap_top_speed(uint32_t caps)
8804 {
8805         #define TEST_SPEED_RETURN(__caps_speed) \
8806                 do { \
8807                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8808                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8809                 } while (0)
8810
8811         TEST_SPEED_RETURN(400G);
8812         TEST_SPEED_RETURN(200G);
8813         TEST_SPEED_RETURN(100G);
8814         TEST_SPEED_RETURN(50G);
8815         TEST_SPEED_RETURN(40G);
8816         TEST_SPEED_RETURN(25G);
8817         TEST_SPEED_RETURN(10G);
8818         TEST_SPEED_RETURN(1G);
8819         TEST_SPEED_RETURN(100M);
8820
8821         #undef TEST_SPEED_RETURN
8822
8823         return 0;
8824 }
8825
8826 /**
8827  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8828  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8829  *
8830  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8831  *      32-bit Port Capabilities value.
8832  */
8833 static uint32_t lstatus_to_fwcap(u32 lstatus)
8834 {
8835         uint32_t linkattr = 0;
8836
8837         /*
8838          * Unfortunately the format of the Link Status in the old
8839          * 16-bit Port Information message isn't the same as the
8840          * 16-bit Port Capabilities bitfield used everywhere else ...
8841          */
8842         if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8843                 linkattr |= FW_PORT_CAP32_FC_RX;
8844         if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8845                 linkattr |= FW_PORT_CAP32_FC_TX;
8846         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8847                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8848         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8849                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8850         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8851                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8852         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8853                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8854         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8855                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8856         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8857                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8858
8859         return linkattr;
8860 }
8861
8862 /*
8863  * Updates all fields owned by the common code in port_info and link_config
8864  * based on information provided by the firmware.  Does not touch any
8865  * requested_* field.
8866  */
8867 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8868     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8869 {
8870         struct link_config old_lc, *lc = &pi->link_cfg;
8871         unsigned char fc;
8872         u32 stat, linkattr;
8873         int old_ptype, old_mtype;
8874
8875         old_ptype = pi->port_type;
8876         old_mtype = pi->mod_type;
8877         old_lc = *lc;
8878         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8879                 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8880
8881                 pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8882                 pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8883                 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8884                     G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8885
8886                 lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8887                 lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8888                 lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8889                 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8890                 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8891
8892                 linkattr = lstatus_to_fwcap(stat);
8893         } else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8894                 stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8895
8896                 pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8897                 pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8898                 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8899                     G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8900
8901                 lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8902                 lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8903                 lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8904                 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8905                 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8906
8907                 linkattr = be32_to_cpu(p->u.info32.linkattr32);
8908         } else {
8909                 CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8910                 return;
8911         }
8912
8913         lc->speed = fwcap_to_speed(linkattr);
8914         lc->fec = fwcap_to_fec(linkattr, true);
8915
8916         fc = 0;
8917         if (linkattr & FW_PORT_CAP32_FC_RX)
8918                 fc |= PAUSE_RX;
8919         if (linkattr & FW_PORT_CAP32_FC_TX)
8920                 fc |= PAUSE_TX;
8921         lc->fc = fc;
8922
8923         if (mod_changed != NULL)
8924                 *mod_changed = false;
8925         if (link_changed != NULL)
8926                 *link_changed = false;
8927         if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8928             old_lc.pcaps != lc->pcaps) {
8929                 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
8930                         lc->fec_hint = fwcap_to_fec(lc->acaps, true);
8931                 if (mod_changed != NULL)
8932                         *mod_changed = true;
8933         }
8934         if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8935             old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8936                 if (link_changed != NULL)
8937                         *link_changed = true;
8938         }
8939 }
8940
8941 /**
8942  *      t4_update_port_info - retrieve and update port information if changed
8943  *      @pi: the port_info
8944  *
8945  *      We issue a Get Port Information Command to the Firmware and, if
8946  *      successful, we check to see if anything is different from what we
8947  *      last recorded and update things accordingly.
8948  */
8949  int t4_update_port_info(struct port_info *pi)
8950  {
8951         struct adapter *sc = pi->adapter;
8952         struct fw_port_cmd cmd;
8953         enum fw_port_action action;
8954         int ret;
8955
8956         memset(&cmd, 0, sizeof(cmd));
8957         cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8958             F_FW_CMD_REQUEST | F_FW_CMD_READ |
8959             V_FW_PORT_CMD_PORTID(pi->tx_chan));
8960         action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8961             FW_PORT_ACTION_GET_PORT_INFO;
8962         cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8963             FW_LEN16(cmd));
8964         ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8965         if (ret)
8966                 return ret;
8967
8968         handle_port_info(pi, &cmd, action, NULL, NULL);
8969         return 0;
8970 }
8971
8972 /**
8973  *      t4_handle_fw_rpl - process a FW reply message
8974  *      @adap: the adapter
8975  *      @rpl: start of the FW message
8976  *
8977  *      Processes a FW message, such as link state change messages.
8978  */
8979 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8980 {
8981         u8 opcode = *(const u8 *)rpl;
8982         const struct fw_port_cmd *p = (const void *)rpl;
8983         enum fw_port_action action =
8984             G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8985         bool mod_changed, link_changed;
8986
8987         if (opcode == FW_PORT_CMD &&
8988             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8989             action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8990                 /* link/module state change message */
8991                 int i;
8992                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8993                 struct port_info *pi = NULL;
8994                 struct link_config *lc;
8995
8996                 for_each_port(adap, i) {
8997                         pi = adap2pinfo(adap, i);
8998                         if (pi->tx_chan == chan)
8999                                 break;
9000                 }
9001
9002                 lc = &pi->link_cfg;
9003                 PORT_LOCK(pi);
9004                 handle_port_info(pi, p, action, &mod_changed, &link_changed);
9005                 PORT_UNLOCK(pi);
9006                 if (mod_changed)
9007                         t4_os_portmod_changed(pi);
9008                 if (link_changed) {
9009                         PORT_LOCK(pi);
9010                         t4_os_link_changed(pi);
9011                         PORT_UNLOCK(pi);
9012                 }
9013         } else {
9014                 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
9015                 return -EINVAL;
9016         }
9017         return 0;
9018 }
9019
9020 /**
9021  *      get_pci_mode - determine a card's PCI mode
9022  *      @adapter: the adapter
9023  *      @p: where to store the PCI settings
9024  *
9025  *      Determines a card's PCI mode and associated parameters, such as speed
9026  *      and width.
9027  */
9028 static void get_pci_mode(struct adapter *adapter,
9029                                    struct pci_params *p)
9030 {
9031         u16 val;
9032         u32 pcie_cap;
9033
9034         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9035         if (pcie_cap) {
9036                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9037                 p->speed = val & PCI_EXP_LNKSTA_CLS;
9038                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9039         }
9040 }
9041
9042 struct flash_desc {
9043         u32 vendor_and_model_id;
9044         u32 size_mb;
9045 };
9046
9047 int t4_get_flash_params(struct adapter *adapter)
9048 {
9049         /*
9050          * Table for non-standard supported Flash parts.  Note, all Flash
9051          * parts must have 64KB sectors.
9052          */
9053         static struct flash_desc supported_flash[] = {
9054                 { 0x00150201, 4 << 20 },        /* Spansion 4MB S25FL032P */
9055         };
9056
9057         int ret;
9058         u32 flashid = 0;
9059         unsigned int part, manufacturer;
9060         unsigned int density, size = 0;
9061
9062
9063         /*
9064          * Issue a Read ID Command to the Flash part.  We decode supported
9065          * Flash parts and their sizes from this.  There's a newer Query
9066          * Command which can retrieve detailed geometry information but many
9067          * Flash parts don't support it.
9068          */
9069         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9070         if (!ret)
9071                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
9072         t4_write_reg(adapter, A_SF_OP, 0);      /* unlock SF */
9073         if (ret < 0)
9074                 return ret;
9075
9076         /*
9077          * Check to see if it's one of our non-standard supported Flash parts.
9078          */
9079         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9080                 if (supported_flash[part].vendor_and_model_id == flashid) {
9081                         adapter->params.sf_size =
9082                                 supported_flash[part].size_mb;
9083                         adapter->params.sf_nsec =
9084                                 adapter->params.sf_size / SF_SEC_SIZE;
9085                         goto found;
9086                 }
9087
9088         /*
9089          * Decode Flash part size.  The code below looks repetative with
9090          * common encodings, but that's not guaranteed in the JEDEC
9091          * specification for the Read JADEC ID command.  The only thing that
9092          * we're guaranteed by the JADEC specification is where the
9093          * Manufacturer ID is in the returned result.  After that each
9094          * Manufacturer ~could~ encode things completely differently.
9095          * Note, all Flash parts must have 64KB sectors.
9096          */
9097         manufacturer = flashid & 0xff;
9098         switch (manufacturer) {
9099         case 0x20: /* Micron/Numonix */
9100                 /*
9101                  * This Density -> Size decoding table is taken from Micron
9102                  * Data Sheets.
9103                  */
9104                 density = (flashid >> 16) & 0xff;
9105                 switch (density) {
9106                 case 0x14: size = 1 << 20; break; /*   1MB */
9107                 case 0x15: size = 1 << 21; break; /*   2MB */
9108                 case 0x16: size = 1 << 22; break; /*   4MB */
9109                 case 0x17: size = 1 << 23; break; /*   8MB */
9110                 case 0x18: size = 1 << 24; break; /*  16MB */
9111                 case 0x19: size = 1 << 25; break; /*  32MB */
9112                 case 0x20: size = 1 << 26; break; /*  64MB */
9113                 case 0x21: size = 1 << 27; break; /* 128MB */
9114                 case 0x22: size = 1 << 28; break; /* 256MB */
9115                 }
9116                 break;
9117
9118         case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9119                 /*
9120                  * This Density -> Size decoding table is taken from ISSI
9121                  * Data Sheets.
9122                  */
9123                 density = (flashid >> 16) & 0xff;
9124                 switch (density) {
9125                 case 0x16: size = 1 << 25; break; /*  32MB */
9126                 case 0x17: size = 1 << 26; break; /*  64MB */
9127                 }
9128                 break;
9129
9130         case 0xc2: /* Macronix */
9131                 /*
9132                  * This Density -> Size decoding table is taken from Macronix
9133                  * Data Sheets.
9134                  */
9135                 density = (flashid >> 16) & 0xff;
9136                 switch (density) {
9137                 case 0x17: size = 1 << 23; break; /*   8MB */
9138                 case 0x18: size = 1 << 24; break; /*  16MB */
9139                 }
9140                 break;
9141
9142         case 0xef: /* Winbond */
9143                 /*
9144                  * This Density -> Size decoding table is taken from Winbond
9145                  * Data Sheets.
9146                  */
9147                 density = (flashid >> 16) & 0xff;
9148                 switch (density) {
9149                 case 0x17: size = 1 << 23; break; /*   8MB */
9150                 case 0x18: size = 1 << 24; break; /*  16MB */
9151                 }
9152                 break;
9153         }
9154
9155         /* If we didn't recognize the FLASH part, that's no real issue: the
9156          * Hardware/Software contract says that Hardware will _*ALWAYS*_
9157          * use a FLASH part which is at least 4MB in size and has 64KB
9158          * sectors.  The unrecognized FLASH part is likely to be much larger
9159          * than 4MB, but that's all we really need.
9160          */
9161         if (size == 0) {
9162                 CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9163                 size = 1 << 22;
9164         }
9165
9166         /*
9167          * Store decoded Flash size and fall through into vetting code.
9168          */
9169         adapter->params.sf_size = size;
9170         adapter->params.sf_nsec = size / SF_SEC_SIZE;
9171
9172  found:
9173         /*
9174          * We should ~probably~ reject adapters with FLASHes which are too
9175          * small but we have some legacy FPGAs with small FLASHes that we'd
9176          * still like to use.  So instead we emit a scary message ...
9177          */
9178         if (adapter->params.sf_size < FLASH_MIN_SIZE)
9179                 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9180                         flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9181
9182         return 0;
9183 }
9184
9185 static void set_pcie_completion_timeout(struct adapter *adapter,
9186                                                   u8 range)
9187 {
9188         u16 val;
9189         u32 pcie_cap;
9190
9191         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9192         if (pcie_cap) {
9193                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9194                 val &= 0xfff0;
9195                 val |= range ;
9196                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9197         }
9198 }
9199
9200 const struct chip_params *t4_get_chip_params(int chipid)
9201 {
9202         static const struct chip_params chip_params[] = {
9203                 {
9204                         /* T4 */
9205                         .nchan = NCHAN,
9206                         .pm_stats_cnt = PM_NSTATS,
9207                         .cng_ch_bits_log = 2,
9208                         .nsched_cls = 15,
9209                         .cim_num_obq = CIM_NUM_OBQ,
9210                         .mps_rplc_size = 128,
9211                         .vfcount = 128,
9212                         .sge_fl_db = F_DBPRIO,
9213                         .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9214                         .rss_nentries = RSS_NENTRIES,
9215                 },
9216                 {
9217                         /* T5 */
9218                         .nchan = NCHAN,
9219                         .pm_stats_cnt = PM_NSTATS,
9220                         .cng_ch_bits_log = 2,
9221                         .nsched_cls = 16,
9222                         .cim_num_obq = CIM_NUM_OBQ_T5,
9223                         .mps_rplc_size = 128,
9224                         .vfcount = 128,
9225                         .sge_fl_db = F_DBPRIO | F_DBTYPE,
9226                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9227                         .rss_nentries = RSS_NENTRIES,
9228                 },
9229                 {
9230                         /* T6 */
9231                         .nchan = T6_NCHAN,
9232                         .pm_stats_cnt = T6_PM_NSTATS,
9233                         .cng_ch_bits_log = 3,
9234                         .nsched_cls = 16,
9235                         .cim_num_obq = CIM_NUM_OBQ_T5,
9236                         .mps_rplc_size = 256,
9237                         .vfcount = 256,
9238                         .sge_fl_db = 0,
9239                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9240                         .rss_nentries = T6_RSS_NENTRIES,
9241                 },
9242         };
9243
9244         chipid -= CHELSIO_T4;
9245         if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9246                 return NULL;
9247
9248         return &chip_params[chipid];
9249 }
9250
9251 /**
9252  *      t4_prep_adapter - prepare SW and HW for operation
9253  *      @adapter: the adapter
9254  *      @buf: temporary space of at least VPD_LEN size provided by the caller.
9255  *
9256  *      Initialize adapter SW state for the various HW modules, set initial
9257  *      values for some adapter tunables, take PHYs out of reset, and
9258  *      initialize the MDIO interface.
9259  */
9260 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9261 {
9262         int ret;
9263         uint16_t device_id;
9264         uint32_t pl_rev;
9265
9266         get_pci_mode(adapter, &adapter->params.pci);
9267
9268         pl_rev = t4_read_reg(adapter, A_PL_REV);
9269         adapter->params.chipid = G_CHIPID(pl_rev);
9270         adapter->params.rev = G_REV(pl_rev);
9271         if (adapter->params.chipid == 0) {
9272                 /* T4 did not have chipid in PL_REV (T5 onwards do) */
9273                 adapter->params.chipid = CHELSIO_T4;
9274
9275                 /* T4A1 chip is not supported */
9276                 if (adapter->params.rev == 1) {
9277                         CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9278                         return -EINVAL;
9279                 }
9280         }
9281
9282         adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9283         if (adapter->chip_params == NULL)
9284                 return -EINVAL;
9285
9286         adapter->params.pci.vpd_cap_addr =
9287             t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9288
9289         ret = t4_get_flash_params(adapter);
9290         if (ret < 0)
9291                 return ret;
9292
9293         /* Cards with real ASICs have the chipid in the PCIe device id */
9294         t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9295         if (device_id >> 12 == chip_id(adapter))
9296                 adapter->params.cim_la_size = CIMLA_SIZE;
9297         else {
9298                 /* FPGA */
9299                 adapter->params.fpga = 1;
9300                 adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9301         }
9302
9303         ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9304         if (ret < 0)
9305                 return ret;
9306
9307         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9308
9309         /*
9310          * Default port and clock for debugging in case we can't reach FW.
9311          */
9312         adapter->params.nports = 1;
9313         adapter->params.portvec = 1;
9314         adapter->params.vpd.cclk = 50000;
9315
9316         /* Set pci completion timeout value to 4 seconds. */
9317         set_pcie_completion_timeout(adapter, 0xd);
9318         return 0;
9319 }
9320
9321 /**
9322  *      t4_shutdown_adapter - shut down adapter, host & wire
9323  *      @adapter: the adapter
9324  *
9325  *      Perform an emergency shutdown of the adapter and stop it from
9326  *      continuing any further communication on the ports or DMA to the
9327  *      host.  This is typically used when the adapter and/or firmware
9328  *      have crashed and we want to prevent any further accidental
9329  *      communication with the rest of the world.  This will also force
9330  *      the port Link Status to go down -- if register writes work --
9331  *      which should help our peers figure out that we're down.
9332  */
9333 int t4_shutdown_adapter(struct adapter *adapter)
9334 {
9335         int port;
9336
9337         t4_intr_disable(adapter);
9338         t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
9339         for_each_port(adapter, port) {
9340                 u32 a_port_cfg = is_t4(adapter) ?
9341                                  PORT_REG(port, A_XGMAC_PORT_CFG) :
9342                                  T5_PORT_REG(port, A_MAC_PORT_CFG);
9343
9344                 t4_write_reg(adapter, a_port_cfg,
9345                              t4_read_reg(adapter, a_port_cfg)
9346                              & ~V_SIGNAL_DET(1));
9347         }
9348         t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9349
9350         return 0;
9351 }
9352
9353 /**
9354  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9355  *      @adapter: the adapter
9356  *      @qid: the Queue ID
9357  *      @qtype: the Ingress or Egress type for @qid
9358  *      @user: true if this request is for a user mode queue
9359  *      @pbar2_qoffset: BAR2 Queue Offset
9360  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9361  *
9362  *      Returns the BAR2 SGE Queue Registers information associated with the
9363  *      indicated Absolute Queue ID.  These are passed back in return value
9364  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9365  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9366  *
9367  *      This may return an error which indicates that BAR2 SGE Queue
9368  *      registers aren't available.  If an error is not returned, then the
9369  *      following values are returned:
9370  *
9371  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9372  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9373  *
9374  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9375  *      require the "Inferred Queue ID" ability may be used.  E.g. the
9376  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9377  *      then these "Inferred Queue ID" register may not be used.
9378  */
9379 int t4_bar2_sge_qregs(struct adapter *adapter,
9380                       unsigned int qid,
9381                       enum t4_bar2_qtype qtype,
9382                       int user,
9383                       u64 *pbar2_qoffset,
9384                       unsigned int *pbar2_qid)
9385 {
9386         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9387         u64 bar2_page_offset, bar2_qoffset;
9388         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9389
9390         /* T4 doesn't support BAR2 SGE Queue registers for kernel
9391          * mode queues.
9392          */
9393         if (!user && is_t4(adapter))
9394                 return -EINVAL;
9395
9396         /* Get our SGE Page Size parameters.
9397          */
9398         page_shift = adapter->params.sge.page_shift;
9399         page_size = 1 << page_shift;
9400
9401         /* Get the right Queues per Page parameters for our Queue.
9402          */
9403         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9404                      ? adapter->params.sge.eq_s_qpp
9405                      : adapter->params.sge.iq_s_qpp);
9406         qpp_mask = (1 << qpp_shift) - 1;
9407
9408         /* Calculate the basics of the BAR2 SGE Queue register area:
9409          *  o The BAR2 page the Queue registers will be in.
9410          *  o The BAR2 Queue ID.
9411          *  o The BAR2 Queue ID Offset into the BAR2 page.
9412          */
9413         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9414         bar2_qid = qid & qpp_mask;
9415         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9416
9417         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9418          * hardware will infer the Absolute Queue ID simply from the writes to
9419          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9420          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9421          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9422          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9423          * from the BAR2 Page and BAR2 Queue ID.
9424          *
9425          * One important censequence of this is that some BAR2 SGE registers
9426          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9427          * there.  But other registers synthesize the SGE Queue ID purely
9428          * from the writes to the registers -- the Write Combined Doorbell
9429          * Buffer is a good example.  These BAR2 SGE Registers are only
9430          * available for those BAR2 SGE Register areas where the SGE Absolute
9431          * Queue ID can be inferred from simple writes.
9432          */
9433         bar2_qoffset = bar2_page_offset;
9434         bar2_qinferred = (bar2_qid_offset < page_size);
9435         if (bar2_qinferred) {
9436                 bar2_qoffset += bar2_qid_offset;
9437                 bar2_qid = 0;
9438         }
9439
9440         *pbar2_qoffset = bar2_qoffset;
9441         *pbar2_qid = bar2_qid;
9442         return 0;
9443 }
9444
9445 /**
9446  *      t4_init_devlog_params - initialize adapter->params.devlog
9447  *      @adap: the adapter
9448  *      @fw_attach: whether we can talk to the firmware
9449  *
9450  *      Initialize various fields of the adapter's Firmware Device Log
9451  *      Parameters structure.
9452  */
9453 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9454 {
9455         struct devlog_params *dparams = &adap->params.devlog;
9456         u32 pf_dparams;
9457         unsigned int devlog_meminfo;
9458         struct fw_devlog_cmd devlog_cmd;
9459         int ret;
9460
9461         /* If we're dealing with newer firmware, the Device Log Paramerters
9462          * are stored in a designated register which allows us to access the
9463          * Device Log even if we can't talk to the firmware.
9464          */
9465         pf_dparams =
9466                 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9467         if (pf_dparams) {
9468                 unsigned int nentries, nentries128;
9469
9470                 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9471                 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9472
9473                 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9474                 nentries = (nentries128 + 1) * 128;
9475                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9476
9477                 return 0;
9478         }
9479
9480         /*
9481          * For any failing returns ...
9482          */
9483         memset(dparams, 0, sizeof *dparams);
9484
9485         /*
9486          * If we can't talk to the firmware, there's really nothing we can do
9487          * at this point.
9488          */
9489         if (!fw_attach)
9490                 return -ENXIO;
9491
9492         /* Otherwise, ask the firmware for it's Device Log Parameters.
9493          */
9494         memset(&devlog_cmd, 0, sizeof devlog_cmd);
9495         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9496                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
9497         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9498         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9499                          &devlog_cmd);
9500         if (ret)
9501                 return ret;
9502
9503         devlog_meminfo =
9504                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9505         dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9506         dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9507         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9508
9509         return 0;
9510 }
9511
9512 /**
9513  *      t4_init_sge_params - initialize adap->params.sge
9514  *      @adapter: the adapter
9515  *
9516  *      Initialize various fields of the adapter's SGE Parameters structure.
9517  */
9518 int t4_init_sge_params(struct adapter *adapter)
9519 {
9520         u32 r;
9521         struct sge_params *sp = &adapter->params.sge;
9522         unsigned i, tscale = 1;
9523
9524         r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9525         sp->counter_val[0] = G_THRESHOLD_0(r);
9526         sp->counter_val[1] = G_THRESHOLD_1(r);
9527         sp->counter_val[2] = G_THRESHOLD_2(r);
9528         sp->counter_val[3] = G_THRESHOLD_3(r);
9529
9530         if (chip_id(adapter) >= CHELSIO_T6) {
9531                 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9532                 tscale = G_TSCALE(r);
9533                 if (tscale == 0)
9534                         tscale = 1;
9535                 else
9536                         tscale += 2;
9537         }
9538
9539         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9540         sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9541         sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9542         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9543         sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9544         sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9545         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9546         sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9547         sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9548
9549         r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9550         sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9551         if (is_t4(adapter))
9552                 sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9553         else if (is_t5(adapter))
9554                 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9555         else
9556                 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9557
9558         /* egress queues: log2 of # of doorbells per BAR2 page */
9559         r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9560         r >>= S_QUEUESPERPAGEPF0 +
9561             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9562         sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9563
9564         /* ingress queues: log2 of # of doorbells per BAR2 page */
9565         r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9566         r >>= S_QUEUESPERPAGEPF0 +
9567             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9568         sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9569
9570         r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9571         r >>= S_HOSTPAGESIZEPF0 +
9572             (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9573         sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9574
9575         r = t4_read_reg(adapter, A_SGE_CONTROL);
9576         sp->sge_control = r;
9577         sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9578         sp->fl_pktshift = G_PKTSHIFT(r);
9579         if (chip_id(adapter) <= CHELSIO_T5) {
9580                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9581                     X_INGPADBOUNDARY_SHIFT);
9582         } else {
9583                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9584                     X_T6_INGPADBOUNDARY_SHIFT);
9585         }
9586         if (is_t4(adapter))
9587                 sp->pack_boundary = sp->pad_boundary;
9588         else {
9589                 r = t4_read_reg(adapter, A_SGE_CONTROL2);
9590                 if (G_INGPACKBOUNDARY(r) == 0)
9591                         sp->pack_boundary = 16;
9592                 else
9593                         sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9594         }
9595         for (i = 0; i < SGE_FLBUF_SIZES; i++)
9596                 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9597                     A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9598
9599         return 0;
9600 }
9601
9602 /*
9603  * Read and cache the adapter's compressed filter mode and ingress config.
9604  */
9605 static void read_filter_mode_and_ingress_config(struct adapter *adap,
9606     bool sleep_ok)
9607 {
9608         uint32_t v;
9609         struct tp_params *tpp = &adap->params.tp;
9610
9611         t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
9612             sleep_ok);
9613         t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
9614             sleep_ok);
9615
9616         /*
9617          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9618          * shift positions of several elements of the Compressed Filter Tuple
9619          * for this adapter which we need frequently ...
9620          */
9621         tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9622         tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9623         tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9624         tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9625         tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9626         tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9627         tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9628         tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9629         tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9630         tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9631
9632         if (chip_id(adap) > CHELSIO_T4) {
9633                 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9634                 adap->params.tp.hash_filter_mask = v;
9635                 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9636                 adap->params.tp.hash_filter_mask |= (u64)v << 32;
9637         }
9638 }
9639
9640 /**
9641  *      t4_init_tp_params - initialize adap->params.tp
9642  *      @adap: the adapter
9643  *
9644  *      Initialize various fields of the adapter's TP Parameters structure.
9645  */
9646 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9647 {
9648         int chan;
9649         u32 tx_len, rx_len, r, v;
9650         struct tp_params *tpp = &adap->params.tp;
9651
9652         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9653         tpp->tre = G_TIMERRESOLUTION(v);
9654         tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9655
9656         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9657         for (chan = 0; chan < MAX_NCHAN; chan++)
9658                 tpp->tx_modq[chan] = chan;
9659
9660         read_filter_mode_and_ingress_config(adap, sleep_ok);
9661
9662         if (chip_id(adap) > CHELSIO_T5) {
9663                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9664                 tpp->rx_pkt_encap = v & F_CRXPKTENC;
9665         } else
9666                 tpp->rx_pkt_encap = false;
9667
9668         rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9669         tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9670
9671         r = t4_read_reg(adap, A_TP_PARA_REG2);
9672         rx_len = min(rx_len, G_MAXRXDATA(r));
9673         tx_len = min(tx_len, G_MAXRXDATA(r));
9674
9675         r = t4_read_reg(adap, A_TP_PARA_REG7);
9676         v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9677         rx_len = min(rx_len, v);
9678         tx_len = min(tx_len, v);
9679
9680         tpp->max_tx_pdu = tx_len;
9681         tpp->max_rx_pdu = rx_len;
9682
9683         return 0;
9684 }
9685
9686 /**
9687  *      t4_filter_field_shift - calculate filter field shift
9688  *      @adap: the adapter
9689  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9690  *
9691  *      Return the shift position of a filter field within the Compressed
9692  *      Filter Tuple.  The filter field is specified via its selection bit
9693  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9694  */
9695 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9696 {
9697         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9698         unsigned int sel;
9699         int field_shift;
9700
9701         if ((filter_mode & filter_sel) == 0)
9702                 return -1;
9703
9704         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9705                 switch (filter_mode & sel) {
9706                 case F_FCOE:
9707                         field_shift += W_FT_FCOE;
9708                         break;
9709                 case F_PORT:
9710                         field_shift += W_FT_PORT;
9711                         break;
9712                 case F_VNIC_ID:
9713                         field_shift += W_FT_VNIC_ID;
9714                         break;
9715                 case F_VLAN:
9716                         field_shift += W_FT_VLAN;
9717                         break;
9718                 case F_TOS:
9719                         field_shift += W_FT_TOS;
9720                         break;
9721                 case F_PROTOCOL:
9722                         field_shift += W_FT_PROTOCOL;
9723                         break;
9724                 case F_ETHERTYPE:
9725                         field_shift += W_FT_ETHERTYPE;
9726                         break;
9727                 case F_MACMATCH:
9728                         field_shift += W_FT_MACMATCH;
9729                         break;
9730                 case F_MPSHITTYPE:
9731                         field_shift += W_FT_MPSHITTYPE;
9732                         break;
9733                 case F_FRAGMENTATION:
9734                         field_shift += W_FT_FRAGMENTATION;
9735                         break;
9736                 }
9737         }
9738         return field_shift;
9739 }
9740
9741 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9742 {
9743         u8 addr[6];
9744         int ret, i, j;
9745         struct port_info *p = adap2pinfo(adap, port_id);
9746         u32 param, val;
9747         struct vi_info *vi = &p->vi[0];
9748
9749         for (i = 0, j = -1; i <= p->port_id; i++) {
9750                 do {
9751                         j++;
9752                 } while ((adap->params.portvec & (1 << j)) == 0);
9753         }
9754
9755         p->tx_chan = j;
9756         p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9757         p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9758         p->lport = j;
9759
9760         if (!(adap->flags & IS_VF) ||
9761             adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9762                 t4_update_port_info(p);
9763         }
9764
9765         ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9766             &vi->vfvld, &vi->vin);
9767         if (ret < 0)
9768                 return ret;
9769
9770         vi->viid = ret;
9771         t4_os_set_hw_addr(p, addr);
9772
9773         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9774             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9775             V_FW_PARAMS_PARAM_YZ(vi->viid);
9776         ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9777         if (ret)
9778                 vi->rss_base = 0xffff;
9779         else {
9780                 /* MPASS((val >> 16) == rss_size); */
9781                 vi->rss_base = val & 0xffff;
9782         }
9783
9784         return 0;
9785 }
9786
9787 /**
9788  *      t4_read_cimq_cfg - read CIM queue configuration
9789  *      @adap: the adapter
9790  *      @base: holds the queue base addresses in bytes
9791  *      @size: holds the queue sizes in bytes
9792  *      @thres: holds the queue full thresholds in bytes
9793  *
9794  *      Returns the current configuration of the CIM queues, starting with
9795  *      the IBQs, then the OBQs.
9796  */
9797 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9798 {
9799         unsigned int i, v;
9800         int cim_num_obq = adap->chip_params->cim_num_obq;
9801
9802         for (i = 0; i < CIM_NUM_IBQ; i++) {
9803                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9804                              V_QUENUMSELECT(i));
9805                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9806                 /* value is in 256-byte units */
9807                 *base++ = G_CIMQBASE(v) * 256;
9808                 *size++ = G_CIMQSIZE(v) * 256;
9809                 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9810         }
9811         for (i = 0; i < cim_num_obq; i++) {
9812                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9813                              V_QUENUMSELECT(i));
9814                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9815                 /* value is in 256-byte units */
9816                 *base++ = G_CIMQBASE(v) * 256;
9817                 *size++ = G_CIMQSIZE(v) * 256;
9818         }
9819 }
9820
9821 /**
9822  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9823  *      @adap: the adapter
9824  *      @qid: the queue index
9825  *      @data: where to store the queue contents
9826  *      @n: capacity of @data in 32-bit words
9827  *
9828  *      Reads the contents of the selected CIM queue starting at address 0 up
9829  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9830  *      error and the number of 32-bit words actually read on success.
9831  */
9832 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9833 {
9834         int i, err, attempts;
9835         unsigned int addr;
9836         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9837
9838         if (qid > 5 || (n & 3))
9839                 return -EINVAL;
9840
9841         addr = qid * nwords;
9842         if (n > nwords)
9843                 n = nwords;
9844
9845         /* It might take 3-10ms before the IBQ debug read access is allowed.
9846          * Wait for 1 Sec with a delay of 1 usec.
9847          */
9848         attempts = 1000000;
9849
9850         for (i = 0; i < n; i++, addr++) {
9851                 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9852                              F_IBQDBGEN);
9853                 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9854                                       attempts, 1);
9855                 if (err)
9856                         return err;
9857                 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9858         }
9859         t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9860         return i;
9861 }
9862
9863 /**
9864  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9865  *      @adap: the adapter
9866  *      @qid: the queue index
9867  *      @data: where to store the queue contents
9868  *      @n: capacity of @data in 32-bit words
9869  *
9870  *      Reads the contents of the selected CIM queue starting at address 0 up
9871  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9872  *      error and the number of 32-bit words actually read on success.
9873  */
9874 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9875 {
9876         int i, err;
9877         unsigned int addr, v, nwords;
9878         int cim_num_obq = adap->chip_params->cim_num_obq;
9879
9880         if ((qid > (cim_num_obq - 1)) || (n & 3))
9881                 return -EINVAL;
9882
9883         t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9884                      V_QUENUMSELECT(qid));
9885         v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9886
9887         addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9888         nwords = G_CIMQSIZE(v) * 64;  /* same */
9889         if (n > nwords)
9890                 n = nwords;
9891
9892         for (i = 0; i < n; i++, addr++) {
9893                 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9894                              F_OBQDBGEN);
9895                 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
9896                                       2, 1);
9897                 if (err)
9898                         return err;
9899                 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
9900         }
9901         t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
9902         return i;
9903 }
9904
9905 enum {
9906         CIM_QCTL_BASE     = 0,
9907         CIM_CTL_BASE      = 0x2000,
9908         CIM_PBT_ADDR_BASE = 0x2800,
9909         CIM_PBT_LRF_BASE  = 0x3000,
9910         CIM_PBT_DATA_BASE = 0x3800
9911 };
9912
9913 /**
9914  *      t4_cim_read - read a block from CIM internal address space
9915  *      @adap: the adapter
9916  *      @addr: the start address within the CIM address space
9917  *      @n: number of words to read
9918  *      @valp: where to store the result
9919  *
9920  *      Reads a block of 4-byte words from the CIM intenal address space.
9921  */
9922 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9923                 unsigned int *valp)
9924 {
9925         int ret = 0;
9926
9927         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9928                 return -EBUSY;
9929
9930         for ( ; !ret && n--; addr += 4) {
9931                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9932                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9933                                       0, 5, 2);
9934                 if (!ret)
9935                         *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9936         }
9937         return ret;
9938 }
9939
9940 /**
9941  *      t4_cim_write - write a block into CIM internal address space
9942  *      @adap: the adapter
9943  *      @addr: the start address within the CIM address space
9944  *      @n: number of words to write
9945  *      @valp: set of values to write
9946  *
9947  *      Writes a block of 4-byte words into the CIM intenal address space.
9948  */
9949 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9950                  const unsigned int *valp)
9951 {
9952         int ret = 0;
9953
9954         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9955                 return -EBUSY;
9956
9957         for ( ; !ret && n--; addr += 4) {
9958                 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9959                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9960                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9961                                       0, 5, 2);
9962         }
9963         return ret;
9964 }
9965
9966 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9967                          unsigned int val)
9968 {
9969         return t4_cim_write(adap, addr, 1, &val);
9970 }
9971
9972 /**
9973  *      t4_cim_ctl_read - read a block from CIM control region
9974  *      @adap: the adapter
9975  *      @addr: the start address within the CIM control region
9976  *      @n: number of words to read
9977  *      @valp: where to store the result
9978  *
9979  *      Reads a block of 4-byte words from the CIM control region.
9980  */
9981 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9982                     unsigned int *valp)
9983 {
9984         return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9985 }
9986
9987 /**
9988  *      t4_cim_read_la - read CIM LA capture buffer
9989  *      @adap: the adapter
9990  *      @la_buf: where to store the LA data
9991  *      @wrptr: the HW write pointer within the capture buffer
9992  *
9993  *      Reads the contents of the CIM LA buffer with the most recent entry at
9994  *      the end of the returned data and with the entry at @wrptr first.
9995  *      We try to leave the LA in the running state we find it in.
9996  */
9997 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9998 {
9999         int i, ret;
10000         unsigned int cfg, val, idx;
10001
10002         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
10003         if (ret)
10004                 return ret;
10005
10006         if (cfg & F_UPDBGLAEN) {        /* LA is running, freeze it */
10007                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
10008                 if (ret)
10009                         return ret;
10010         }
10011
10012         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10013         if (ret)
10014                 goto restart;
10015
10016         idx = G_UPDBGLAWRPTR(val);
10017         if (wrptr)
10018                 *wrptr = idx;
10019
10020         for (i = 0; i < adap->params.cim_la_size; i++) {
10021                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10022                                     V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
10023                 if (ret)
10024                         break;
10025                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10026                 if (ret)
10027                         break;
10028                 if (val & F_UPDBGLARDEN) {
10029                         ret = -ETIMEDOUT;
10030                         break;
10031                 }
10032                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10033                 if (ret)
10034                         break;
10035
10036                 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10037                  * identify the 32-bit portion of the full 312-bit data
10038                  */
10039                 if (is_t6(adap) && (idx & 0xf) >= 9)
10040                         idx = (idx & 0xff0) + 0x10;
10041                 else
10042                         idx++;
10043                 /* address can't exceed 0xfff */
10044                 idx &= M_UPDBGLARDPTR;
10045         }
10046 restart:
10047         if (cfg & F_UPDBGLAEN) {
10048                 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10049                                       cfg & ~F_UPDBGLARDEN);
10050                 if (!ret)
10051                         ret = r;
10052         }
10053         return ret;
10054 }
10055
10056 /**
10057  *      t4_tp_read_la - read TP LA capture buffer
10058  *      @adap: the adapter
10059  *      @la_buf: where to store the LA data
10060  *      @wrptr: the HW write pointer within the capture buffer
10061  *
10062  *      Reads the contents of the TP LA buffer with the most recent entry at
10063  *      the end of the returned data and with the entry at @wrptr first.
10064  *      We leave the LA in the running state we find it in.
10065  */
10066 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10067 {
10068         bool last_incomplete;
10069         unsigned int i, cfg, val, idx;
10070
10071         cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10072         if (cfg & F_DBGLAENABLE)                        /* freeze LA */
10073                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10074                              adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10075
10076         val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10077         idx = G_DBGLAWPTR(val);
10078         last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10079         if (last_incomplete)
10080                 idx = (idx + 1) & M_DBGLARPTR;
10081         if (wrptr)
10082                 *wrptr = idx;
10083
10084         val &= 0xffff;
10085         val &= ~V_DBGLARPTR(M_DBGLARPTR);
10086         val |= adap->params.tp.la_mask;
10087
10088         for (i = 0; i < TPLA_SIZE; i++) {
10089                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10090                 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10091                 idx = (idx + 1) & M_DBGLARPTR;
10092         }
10093
10094         /* Wipe out last entry if it isn't valid */
10095         if (last_incomplete)
10096                 la_buf[TPLA_SIZE - 1] = ~0ULL;
10097
10098         if (cfg & F_DBGLAENABLE)                /* restore running state */
10099                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10100                              cfg | adap->params.tp.la_mask);
10101 }
10102
10103 /*
10104  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10105  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10106  * state for more than the Warning Threshold then we'll issue a warning about
10107  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10108  * appears to be hung every Warning Repeat second till the situation clears.
10109  * If the situation clears, we'll note that as well.
10110  */
10111 #define SGE_IDMA_WARN_THRESH 1
10112 #define SGE_IDMA_WARN_REPEAT 300
10113
10114 /**
10115  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10116  *      @adapter: the adapter
10117  *      @idma: the adapter IDMA Monitor state
10118  *
10119  *      Initialize the state of an SGE Ingress DMA Monitor.
10120  */
10121 void t4_idma_monitor_init(struct adapter *adapter,
10122                           struct sge_idma_monitor_state *idma)
10123 {
10124         /* Initialize the state variables for detecting an SGE Ingress DMA
10125          * hang.  The SGE has internal counters which count up on each clock
10126          * tick whenever the SGE finds its Ingress DMA State Engines in the
10127          * same state they were on the previous clock tick.  The clock used is
10128          * the Core Clock so we have a limit on the maximum "time" they can
10129          * record; typically a very small number of seconds.  For instance,
10130          * with a 600MHz Core Clock, we can only count up to a bit more than
10131          * 7s.  So we'll synthesize a larger counter in order to not run the
10132          * risk of having the "timers" overflow and give us the flexibility to
10133          * maintain a Hung SGE State Machine of our own which operates across
10134          * a longer time frame.
10135          */
10136         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10137         idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10138 }
10139
10140 /**
10141  *      t4_idma_monitor - monitor SGE Ingress DMA state
10142  *      @adapter: the adapter
10143  *      @idma: the adapter IDMA Monitor state
10144  *      @hz: number of ticks/second
10145  *      @ticks: number of ticks since the last IDMA Monitor call
10146  */
10147 void t4_idma_monitor(struct adapter *adapter,
10148                      struct sge_idma_monitor_state *idma,
10149                      int hz, int ticks)
10150 {
10151         int i, idma_same_state_cnt[2];
10152
10153          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10154           * are counters inside the SGE which count up on each clock when the
10155           * SGE finds its Ingress DMA State Engines in the same states they
10156           * were in the previous clock.  The counters will peg out at
10157           * 0xffffffff without wrapping around so once they pass the 1s
10158           * threshold they'll stay above that till the IDMA state changes.
10159           */
10160         t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10161         idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10162         idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10163
10164         for (i = 0; i < 2; i++) {
10165                 u32 debug0, debug11;
10166
10167                 /* If the Ingress DMA Same State Counter ("timer") is less
10168                  * than 1s, then we can reset our synthesized Stall Timer and
10169                  * continue.  If we have previously emitted warnings about a
10170                  * potential stalled Ingress Queue, issue a note indicating
10171                  * that the Ingress Queue has resumed forward progress.
10172                  */
10173                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10174                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10175                                 CH_WARN(adapter, "SGE idma%d, queue %u, "
10176                                         "resumed after %d seconds\n",
10177                                         i, idma->idma_qid[i],
10178                                         idma->idma_stalled[i]/hz);
10179                         idma->idma_stalled[i] = 0;
10180                         continue;
10181                 }
10182
10183                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10184                  * domain.  The first time we get here it'll be because we
10185                  * passed the 1s Threshold; each additional time it'll be
10186                  * because the RX Timer Callback is being fired on its regular
10187                  * schedule.
10188                  *
10189                  * If the stall is below our Potential Hung Ingress Queue
10190                  * Warning Threshold, continue.
10191                  */
10192                 if (idma->idma_stalled[i] == 0) {
10193                         idma->idma_stalled[i] = hz;
10194                         idma->idma_warn[i] = 0;
10195                 } else {
10196                         idma->idma_stalled[i] += ticks;
10197                         idma->idma_warn[i] -= ticks;
10198                 }
10199
10200                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10201                         continue;
10202
10203                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10204                  */
10205                 if (idma->idma_warn[i] > 0)
10206                         continue;
10207                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10208
10209                 /* Read and save the SGE IDMA State and Queue ID information.
10210                  * We do this every time in case it changes across time ...
10211                  * can't be too careful ...
10212                  */
10213                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10214                 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10215                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10216
10217                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10218                 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10219                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10220
10221                 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10222                         " state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10223                         i, idma->idma_qid[i], idma->idma_state[i],
10224                         idma->idma_stalled[i]/hz,
10225                         debug0, debug11);
10226                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10227         }
10228 }
10229
10230 /**
10231  *     t4_set_vf_mac - Set MAC address for the specified VF
10232  *     @adapter: The adapter
10233  *     @pf: the PF used to instantiate the VFs
10234  *     @vf: one of the VFs instantiated by the specified PF
10235  *     @naddr: the number of MAC addresses
10236  *     @addr: the MAC address(es) to be set to the specified VF
10237  */
10238 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
10239                   unsigned int naddr, u8 *addr)
10240 {
10241         struct fw_acl_mac_cmd cmd;
10242
10243         memset(&cmd, 0, sizeof(cmd));
10244         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
10245                                     F_FW_CMD_REQUEST |
10246                                     F_FW_CMD_WRITE |
10247                                     V_FW_ACL_MAC_CMD_PFN(pf) |
10248                                     V_FW_ACL_MAC_CMD_VFN(vf));
10249
10250         /* Note: Do not enable the ACL */
10251         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10252         cmd.nmac = naddr;
10253
10254         switch (pf) {
10255         case 3:
10256                 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10257                 break;
10258         case 2:
10259                 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10260                 break;
10261         case 1:
10262                 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10263                 break;
10264         case 0:
10265                 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10266                 break;
10267         }
10268
10269         return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10270 }
10271
10272 /**
10273  *      t4_read_pace_tbl - read the pace table
10274  *      @adap: the adapter
10275  *      @pace_vals: holds the returned values
10276  *
10277  *      Returns the values of TP's pace table in microseconds.
10278  */
10279 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10280 {
10281         unsigned int i, v;
10282
10283         for (i = 0; i < NTX_SCHED; i++) {
10284                 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10285                 v = t4_read_reg(adap, A_TP_PACE_TABLE);
10286                 pace_vals[i] = dack_ticks_to_usec(adap, v);
10287         }
10288 }
10289
10290 /**
10291  *      t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10292  *      @adap: the adapter
10293  *      @sched: the scheduler index
10294  *      @kbps: the byte rate in Kbps
10295  *      @ipg: the interpacket delay in tenths of nanoseconds
10296  *
10297  *      Return the current configuration of a HW Tx scheduler.
10298  */
10299 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10300                      unsigned int *ipg, bool sleep_ok)
10301 {
10302         unsigned int v, addr, bpt, cpt;
10303
10304         if (kbps) {
10305                 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10306                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10307                 if (sched & 1)
10308                         v >>= 16;
10309                 bpt = (v >> 8) & 0xff;
10310                 cpt = v & 0xff;
10311                 if (!cpt)
10312                         *kbps = 0;      /* scheduler disabled */
10313                 else {
10314                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10315                         *kbps = (v * bpt) / 125;
10316                 }
10317         }
10318         if (ipg) {
10319                 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10320                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10321                 if (sched & 1)
10322                         v >>= 16;
10323                 v &= 0xffff;
10324                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
10325         }
10326 }
10327
10328 /**
10329  *      t4_load_cfg - download config file
10330  *      @adap: the adapter
10331  *      @cfg_data: the cfg text file to write
10332  *      @size: text file size
10333  *
10334  *      Write the supplied config text file to the card's serial flash.
10335  */
10336 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10337 {
10338         int ret, i, n, cfg_addr;
10339         unsigned int addr;
10340         unsigned int flash_cfg_start_sec;
10341         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10342
10343         cfg_addr = t4_flash_cfg_addr(adap);
10344         if (cfg_addr < 0)
10345                 return cfg_addr;
10346
10347         addr = cfg_addr;
10348         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10349
10350         if (size > FLASH_CFG_MAX_SIZE) {
10351                 CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10352                        FLASH_CFG_MAX_SIZE);
10353                 return -EFBIG;
10354         }
10355
10356         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
10357                          sf_sec_size);
10358         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10359                                      flash_cfg_start_sec + i - 1);
10360         /*
10361          * If size == 0 then we're simply erasing the FLASH sectors associated
10362          * with the on-adapter Firmware Configuration File.
10363          */
10364         if (ret || size == 0)
10365                 goto out;
10366
10367         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10368         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10369                 if ( (size - i) <  SF_PAGE_SIZE)
10370                         n = size - i;
10371                 else
10372                         n = SF_PAGE_SIZE;
10373                 ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10374                 if (ret)
10375                         goto out;
10376
10377                 addr += SF_PAGE_SIZE;
10378                 cfg_data += SF_PAGE_SIZE;
10379         }
10380
10381 out:
10382         if (ret)
10383                 CH_ERR(adap, "config file %s failed %d\n",
10384                        (size == 0 ? "clear" : "download"), ret);
10385         return ret;
10386 }
10387
10388 /**
10389  *      t5_fw_init_extern_mem - initialize the external memory
10390  *      @adap: the adapter
10391  *
10392  *      Initializes the external memory on T5.
10393  */
10394 int t5_fw_init_extern_mem(struct adapter *adap)
10395 {
10396         u32 params[1], val[1];
10397         int ret;
10398
10399         if (!is_t5(adap))
10400                 return 0;
10401
10402         val[0] = 0xff; /* Initialize all MCs */
10403         params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10404                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10405         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10406                         FW_CMD_MAX_TIMEOUT);
10407
10408         return ret;
10409 }
10410
10411 /* BIOS boot headers */
10412 typedef struct pci_expansion_rom_header {
10413         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
10414         u8      reserved[22]; /* Reserved per processor Architecture data */
10415         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
10416 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10417
10418 /* Legacy PCI Expansion ROM Header */
10419 typedef struct legacy_pci_expansion_rom_header {
10420         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
10421         u8      size512; /* Current Image Size in units of 512 bytes */
10422         u8      initentry_point[4];
10423         u8      cksum; /* Checksum computed on the entire Image */
10424         u8      reserved[16]; /* Reserved */
10425         u8      pcir_offset[2]; /* Offset to PCI Data Struture */
10426 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10427
10428 /* EFI PCI Expansion ROM Header */
10429 typedef struct efi_pci_expansion_rom_header {
10430         u8      signature[2]; // ROM signature. The value 0xaa55
10431         u8      initialization_size[2]; /* Units 512. Includes this header */
10432         u8      efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10433         u8      efi_subsystem[2]; /* Subsystem value for EFI image header */
10434         u8      efi_machine_type[2]; /* Machine type from EFI image header */
10435         u8      compression_type[2]; /* Compression type. */
10436                 /*
10437                  * Compression type definition
10438                  * 0x0: uncompressed
10439                  * 0x1: Compressed
10440                  * 0x2-0xFFFF: Reserved
10441                  */
10442         u8      reserved[8]; /* Reserved */
10443         u8      efi_image_header_offset[2]; /* Offset to EFI Image */
10444         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
10445 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10446
10447 /* PCI Data Structure Format */
10448 typedef struct pcir_data_structure { /* PCI Data Structure */
10449         u8      signature[4]; /* Signature. The string "PCIR" */
10450         u8      vendor_id[2]; /* Vendor Identification */
10451         u8      device_id[2]; /* Device Identification */
10452         u8      vital_product[2]; /* Pointer to Vital Product Data */
10453         u8      length[2]; /* PCIR Data Structure Length */
10454         u8      revision; /* PCIR Data Structure Revision */
10455         u8      class_code[3]; /* Class Code */
10456         u8      image_length[2]; /* Image Length. Multiple of 512B */
10457         u8      code_revision[2]; /* Revision Level of Code/Data */
10458         u8      code_type; /* Code Type. */
10459                 /*
10460                  * PCI Expansion ROM Code Types
10461                  * 0x00: Intel IA-32, PC-AT compatible. Legacy
10462                  * 0x01: Open Firmware standard for PCI. FCODE
10463                  * 0x02: Hewlett-Packard PA RISC. HP reserved
10464                  * 0x03: EFI Image. EFI
10465                  * 0x04-0xFF: Reserved.
10466                  */
10467         u8      indicator; /* Indicator. Identifies the last image in the ROM */
10468         u8      reserved[2]; /* Reserved */
10469 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10470
10471 /* BOOT constants */
10472 enum {
10473         BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10474         BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10475         BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10476         BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10477         BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10478         VENDOR_ID = 0x1425, /* Vendor ID */
10479         PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10480 };
10481
10482 /*
10483  *      modify_device_id - Modifies the device ID of the Boot BIOS image
10484  *      @adatper: the device ID to write.
10485  *      @boot_data: the boot image to modify.
10486  *
10487  *      Write the supplied device ID to the boot BIOS image.
10488  */
10489 static void modify_device_id(int device_id, u8 *boot_data)
10490 {
10491         legacy_pci_exp_rom_header_t *header;
10492         pcir_data_t *pcir_header;
10493         u32 cur_header = 0;
10494
10495         /*
10496          * Loop through all chained images and change the device ID's
10497          */
10498         while (1) {
10499                 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10500                 pcir_header = (pcir_data_t *) &boot_data[cur_header +
10501                               le16_to_cpu(*(u16*)header->pcir_offset)];
10502
10503                 /*
10504                  * Only modify the Device ID if code type is Legacy or HP.
10505                  * 0x00: Okay to modify
10506                  * 0x01: FCODE. Do not be modify
10507                  * 0x03: Okay to modify
10508                  * 0x04-0xFF: Do not modify
10509                  */
10510                 if (pcir_header->code_type == 0x00) {
10511                         u8 csum = 0;
10512                         int i;
10513
10514                         /*
10515                          * Modify Device ID to match current adatper
10516                          */
10517                         *(u16*) pcir_header->device_id = device_id;
10518
10519                         /*
10520                          * Set checksum temporarily to 0.
10521                          * We will recalculate it later.
10522                          */
10523                         header->cksum = 0x0;
10524
10525                         /*
10526                          * Calculate and update checksum
10527                          */
10528                         for (i = 0; i < (header->size512 * 512); i++)
10529                                 csum += (u8)boot_data[cur_header + i];
10530
10531                         /*
10532                          * Invert summed value to create the checksum
10533                          * Writing new checksum value directly to the boot data
10534                          */
10535                         boot_data[cur_header + 7] = -csum;
10536
10537                 } else if (pcir_header->code_type == 0x03) {
10538
10539                         /*
10540                          * Modify Device ID to match current adatper
10541                          */
10542                         *(u16*) pcir_header->device_id = device_id;
10543
10544                 }
10545
10546
10547                 /*
10548                  * Check indicator element to identify if this is the last
10549                  * image in the ROM.
10550                  */
10551                 if (pcir_header->indicator & 0x80)
10552                         break;
10553
10554                 /*
10555                  * Move header pointer up to the next image in the ROM.
10556                  */
10557                 cur_header += header->size512 * 512;
10558         }
10559 }
10560
10561 /*
10562  *      t4_load_boot - download boot flash
10563  *      @adapter: the adapter
10564  *      @boot_data: the boot image to write
10565  *      @boot_addr: offset in flash to write boot_data
10566  *      @size: image size
10567  *
10568  *      Write the supplied boot image to the card's serial flash.
10569  *      The boot image has the following sections: a 28-byte header and the
10570  *      boot image.
10571  */
10572 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10573                  unsigned int boot_addr, unsigned int size)
10574 {
10575         pci_exp_rom_header_t *header;
10576         int pcir_offset ;
10577         pcir_data_t *pcir_header;
10578         int ret, addr;
10579         uint16_t device_id;
10580         unsigned int i;
10581         unsigned int boot_sector = (boot_addr * 1024 );
10582         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10583
10584         /*
10585          * Make sure the boot image does not encroach on the firmware region
10586          */
10587         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10588                 CH_ERR(adap, "boot image encroaching on firmware region\n");
10589                 return -EFBIG;
10590         }
10591
10592         /*
10593          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10594          * and Boot configuration data sections. These 3 boot sections span
10595          * sectors 0 to 7 in flash and live right before the FW image location.
10596          */
10597         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10598                         sf_sec_size);
10599         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10600                                      (boot_sector >> 16) + i - 1);
10601
10602         /*
10603          * If size == 0 then we're simply erasing the FLASH sectors associated
10604          * with the on-adapter option ROM file
10605          */
10606         if (ret || (size == 0))
10607                 goto out;
10608
10609         /* Get boot header */
10610         header = (pci_exp_rom_header_t *)boot_data;
10611         pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10612         /* PCIR Data Structure */
10613         pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10614
10615         /*
10616          * Perform some primitive sanity testing to avoid accidentally
10617          * writing garbage over the boot sectors.  We ought to check for
10618          * more but it's not worth it for now ...
10619          */
10620         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10621                 CH_ERR(adap, "boot image too small/large\n");
10622                 return -EFBIG;
10623         }
10624
10625 #ifndef CHELSIO_T4_DIAGS
10626         /*
10627          * Check BOOT ROM header signature
10628          */
10629         if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10630                 CH_ERR(adap, "Boot image missing signature\n");
10631                 return -EINVAL;
10632         }
10633
10634         /*
10635          * Check PCI header signature
10636          */
10637         if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10638                 CH_ERR(adap, "PCI header missing signature\n");
10639                 return -EINVAL;
10640         }
10641
10642         /*
10643          * Check Vendor ID matches Chelsio ID
10644          */
10645         if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10646                 CH_ERR(adap, "Vendor ID missing signature\n");
10647                 return -EINVAL;
10648         }
10649 #endif
10650
10651         /*
10652          * Retrieve adapter's device ID
10653          */
10654         t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10655         /* Want to deal with PF 0 so I strip off PF 4 indicator */
10656         device_id = device_id & 0xf0ff;
10657
10658         /*
10659          * Check PCIE Device ID
10660          */
10661         if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10662                 /*
10663                  * Change the device ID in the Boot BIOS image to match
10664                  * the Device ID of the current adapter.
10665                  */
10666                 modify_device_id(device_id, boot_data);
10667         }
10668
10669         /*
10670          * Skip over the first SF_PAGE_SIZE worth of data and write it after
10671          * we finish copying the rest of the boot image. This will ensure
10672          * that the BIOS boot header will only be written if the boot image
10673          * was written in full.
10674          */
10675         addr = boot_sector;
10676         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10677                 addr += SF_PAGE_SIZE;
10678                 boot_data += SF_PAGE_SIZE;
10679                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10680                 if (ret)
10681                         goto out;
10682         }
10683
10684         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10685                              (const u8 *)header, 0);
10686
10687 out:
10688         if (ret)
10689                 CH_ERR(adap, "boot image download failed, error %d\n", ret);
10690         return ret;
10691 }
10692
10693 /*
10694  *      t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10695  *      @adapter: the adapter
10696  *
10697  *      Return the address within the flash where the OptionROM Configuration
10698  *      is stored, or an error if the device FLASH is too small to contain
10699  *      a OptionROM Configuration.
10700  */
10701 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10702 {
10703         /*
10704          * If the device FLASH isn't large enough to hold a Firmware
10705          * Configuration File, return an error.
10706          */
10707         if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10708                 return -ENOSPC;
10709
10710         return FLASH_BOOTCFG_START;
10711 }
10712
10713 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10714 {
10715         int ret, i, n, cfg_addr;
10716         unsigned int addr;
10717         unsigned int flash_cfg_start_sec;
10718         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10719
10720         cfg_addr = t4_flash_bootcfg_addr(adap);
10721         if (cfg_addr < 0)
10722                 return cfg_addr;
10723
10724         addr = cfg_addr;
10725         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10726
10727         if (size > FLASH_BOOTCFG_MAX_SIZE) {
10728                 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10729                         FLASH_BOOTCFG_MAX_SIZE);
10730                 return -EFBIG;
10731         }
10732
10733         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10734                          sf_sec_size);
10735         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10736                                         flash_cfg_start_sec + i - 1);
10737
10738         /*
10739          * If size == 0 then we're simply erasing the FLASH sectors associated
10740          * with the on-adapter OptionROM Configuration File.
10741          */
10742         if (ret || size == 0)
10743                 goto out;
10744
10745         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10746         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10747                 if ( (size - i) <  SF_PAGE_SIZE)
10748                         n = size - i;
10749                 else
10750                         n = SF_PAGE_SIZE;
10751                 ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10752                 if (ret)
10753                         goto out;
10754
10755                 addr += SF_PAGE_SIZE;
10756                 cfg_data += SF_PAGE_SIZE;
10757         }
10758
10759 out:
10760         if (ret)
10761                 CH_ERR(adap, "boot config data %s failed %d\n",
10762                                 (size == 0 ? "clear" : "download"), ret);
10763         return ret;
10764 }
10765
10766 /**
10767  *      t4_set_filter_mode - configure the optional components of filter tuples
10768  *      @adap: the adapter
10769  *      @mode_map: a bitmap selcting which optional filter components to enable
10770  *      @sleep_ok: if true we may sleep while awaiting command completion
10771  *
10772  *      Sets the filter mode by selecting the optional components to enable
10773  *      in filter tuples.  Returns 0 on success and a negative error if the
10774  *      requested mode needs more bits than are available for optional
10775  *      components.
10776  */
10777 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
10778                        bool sleep_ok)
10779 {
10780         static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
10781
10782         int i, nbits = 0;
10783
10784         for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
10785                 if (mode_map & (1 << i))
10786                         nbits += width[i];
10787         if (nbits > FILTER_OPT_LEN)
10788                 return -EINVAL;
10789         t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
10790         read_filter_mode_and_ingress_config(adap, sleep_ok);
10791
10792         return 0;
10793 }
10794
10795 /**
10796  *      t4_clr_port_stats - clear port statistics
10797  *      @adap: the adapter
10798  *      @idx: the port index
10799  *
10800  *      Clear HW statistics for the given port.
10801  */
10802 void t4_clr_port_stats(struct adapter *adap, int idx)
10803 {
10804         unsigned int i;
10805         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10806         u32 port_base_addr;
10807
10808         if (is_t4(adap))
10809                 port_base_addr = PORT_BASE(idx);
10810         else
10811                 port_base_addr = T5_PORT_BASE(idx);
10812
10813         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10814                         i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10815                 t4_write_reg(adap, port_base_addr + i, 0);
10816         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10817                         i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10818                 t4_write_reg(adap, port_base_addr + i, 0);
10819         for (i = 0; i < 4; i++)
10820                 if (bgmap & (1 << i)) {
10821                         t4_write_reg(adap,
10822                         A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10823                         t4_write_reg(adap,
10824                         A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10825                 }
10826 }
10827
10828 /**
10829  *      t4_i2c_io - read/write I2C data from adapter
10830  *      @adap: the adapter
10831  *      @port: Port number if per-port device; <0 if not
10832  *      @devid: per-port device ID or absolute device ID
10833  *      @offset: byte offset into device I2C space
10834  *      @len: byte length of I2C space data
10835  *      @buf: buffer in which to return I2C data for read
10836  *            buffer which holds the I2C data for write
10837  *      @write: if true, do a write; else do a read
10838  *      Reads/Writes the I2C data from/to the indicated device and location.
10839  */
10840 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
10841               int port, unsigned int devid,
10842               unsigned int offset, unsigned int len,
10843               u8 *buf, bool write)
10844 {
10845         struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10846         unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10847         int ret = 0;
10848
10849         if (len > I2C_PAGE_SIZE)
10850                 return -EINVAL;
10851
10852         /* Dont allow reads that spans multiple pages */
10853         if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10854                 return -EINVAL;
10855
10856         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10857         ldst_cmd.op_to_addrspace =
10858                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10859                             F_FW_CMD_REQUEST |
10860                             (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
10861                             V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
10862         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10863         ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10864         ldst_cmd.u.i2c.did = devid;
10865
10866         while (len > 0) {
10867                 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10868
10869                 ldst_cmd.u.i2c.boffset = offset;
10870                 ldst_cmd.u.i2c.blen = i2c_len;
10871
10872                 if (write)
10873                         memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
10874
10875                 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10876                                  write ? NULL : &ldst_rpl);
10877                 if (ret)
10878                         break;
10879
10880                 if (!write)
10881                         memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10882                 offset += i2c_len;
10883                 buf += i2c_len;
10884                 len -= i2c_len;
10885         }
10886
10887         return ret;
10888 }
10889
10890 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
10891               int port, unsigned int devid,
10892               unsigned int offset, unsigned int len,
10893               u8 *buf)
10894 {
10895         return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
10896 }
10897
10898 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
10899               int port, unsigned int devid,
10900               unsigned int offset, unsigned int len,
10901               u8 *buf)
10902 {
10903         return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
10904 }
10905
10906 /**
10907  *      t4_sge_ctxt_rd - read an SGE context through FW
10908  *      @adap: the adapter
10909  *      @mbox: mailbox to use for the FW command
10910  *      @cid: the context id
10911  *      @ctype: the context type
10912  *      @data: where to store the context data
10913  *
10914  *      Issues a FW command through the given mailbox to read an SGE context.
10915  */
10916 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10917                    enum ctxt_type ctype, u32 *data)
10918 {
10919         int ret;
10920         struct fw_ldst_cmd c;
10921
10922         if (ctype == CTXT_EGRESS)
10923                 ret = FW_LDST_ADDRSPC_SGE_EGRC;
10924         else if (ctype == CTXT_INGRESS)
10925                 ret = FW_LDST_ADDRSPC_SGE_INGC;
10926         else if (ctype == CTXT_FLM)
10927                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10928         else
10929                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10930
10931         memset(&c, 0, sizeof(c));
10932         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10933                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
10934                                         V_FW_LDST_CMD_ADDRSPACE(ret));
10935         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10936         c.u.idctxt.physid = cpu_to_be32(cid);
10937
10938         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10939         if (ret == 0) {
10940                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10941                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10942                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10943                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10944                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10945                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10946         }
10947         return ret;
10948 }
10949
10950 /**
10951  *      t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10952  *      @adap: the adapter
10953  *      @cid: the context id
10954  *      @ctype: the context type
10955  *      @data: where to store the context data
10956  *
10957  *      Reads an SGE context directly, bypassing FW.  This is only for
10958  *      debugging when FW is unavailable.
10959  */
10960 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10961                       u32 *data)
10962 {
10963         int i, ret;
10964
10965         t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
10966         ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
10967         if (!ret)
10968                 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
10969                         *data++ = t4_read_reg(adap, i);
10970         return ret;
10971 }
10972
10973 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
10974     int sleep_ok)
10975 {
10976         struct fw_sched_cmd cmd;
10977
10978         memset(&cmd, 0, sizeof(cmd));
10979         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10980                                       F_FW_CMD_REQUEST |
10981                                       F_FW_CMD_WRITE);
10982         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10983
10984         cmd.u.config.sc = FW_SCHED_SC_CONFIG;
10985         cmd.u.config.type = type;
10986         cmd.u.config.minmaxen = minmaxen;
10987
10988         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10989                                NULL, sleep_ok);
10990 }
10991
10992 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10993                     int rateunit, int ratemode, int channel, int cl,
10994                     int minrate, int maxrate, int weight, int pktsize,
10995                     int burstsize, int sleep_ok)
10996 {
10997         struct fw_sched_cmd cmd;
10998
10999         memset(&cmd, 0, sizeof(cmd));
11000         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11001                                       F_FW_CMD_REQUEST |
11002                                       F_FW_CMD_WRITE);
11003         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11004
11005         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11006         cmd.u.params.type = type;
11007         cmd.u.params.level = level;
11008         cmd.u.params.mode = mode;
11009         cmd.u.params.ch = channel;
11010         cmd.u.params.cl = cl;
11011         cmd.u.params.unit = rateunit;
11012         cmd.u.params.rate = ratemode;
11013         cmd.u.params.min = cpu_to_be32(minrate);
11014         cmd.u.params.max = cpu_to_be32(maxrate);
11015         cmd.u.params.weight = cpu_to_be16(weight);
11016         cmd.u.params.pktsize = cpu_to_be16(pktsize);
11017         cmd.u.params.burstsize = cpu_to_be16(burstsize);
11018
11019         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11020                                NULL, sleep_ok);
11021 }
11022
11023 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
11024     unsigned int maxrate, int sleep_ok)
11025 {
11026         struct fw_sched_cmd cmd;
11027
11028         memset(&cmd, 0, sizeof(cmd));
11029         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11030                                       F_FW_CMD_REQUEST |
11031                                       F_FW_CMD_WRITE);
11032         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11033
11034         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11035         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11036         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
11037         cmd.u.params.ch = channel;
11038         cmd.u.params.rate = ratemode;           /* REL or ABS */
11039         cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
11040
11041         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11042                                NULL, sleep_ok);
11043 }
11044
11045 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
11046     int weight, int sleep_ok)
11047 {
11048         struct fw_sched_cmd cmd;
11049
11050         if (weight < 0 || weight > 100)
11051                 return -EINVAL;
11052
11053         memset(&cmd, 0, sizeof(cmd));
11054         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11055                                       F_FW_CMD_REQUEST |
11056                                       F_FW_CMD_WRITE);
11057         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11058
11059         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11060         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11061         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
11062         cmd.u.params.ch = channel;
11063         cmd.u.params.cl = cl;
11064         cmd.u.params.weight = cpu_to_be16(weight);
11065
11066         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11067                                NULL, sleep_ok);
11068 }
11069
11070 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11071     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11072 {
11073         struct fw_sched_cmd cmd;
11074
11075         memset(&cmd, 0, sizeof(cmd));
11076         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11077                                       F_FW_CMD_REQUEST |
11078                                       F_FW_CMD_WRITE);
11079         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11080
11081         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11082         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11083         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11084         cmd.u.params.mode = mode;
11085         cmd.u.params.ch = channel;
11086         cmd.u.params.cl = cl;
11087         cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11088         cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11089         cmd.u.params.max = cpu_to_be32(maxrate);
11090         cmd.u.params.pktsize = cpu_to_be16(pktsize);
11091
11092         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11093                                NULL, sleep_ok);
11094 }
11095
11096 /*
11097  *      t4_config_watchdog - configure (enable/disable) a watchdog timer
11098  *      @adapter: the adapter
11099  *      @mbox: mailbox to use for the FW command
11100  *      @pf: the PF owning the queue
11101  *      @vf: the VF owning the queue
11102  *      @timeout: watchdog timeout in ms
11103  *      @action: watchdog timer / action
11104  *
11105  *      There are separate watchdog timers for each possible watchdog
11106  *      action.  Configure one of the watchdog timers by setting a non-zero
11107  *      timeout.  Disable a watchdog timer by using a timeout of zero.
11108  */
11109 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11110                        unsigned int pf, unsigned int vf,
11111                        unsigned int timeout, unsigned int action)
11112 {
11113         struct fw_watchdog_cmd wdog;
11114         unsigned int ticks;
11115
11116         /*
11117          * The watchdog command expects a timeout in units of 10ms so we need
11118          * to convert it here (via rounding) and force a minimum of one 10ms
11119          * "tick" if the timeout is non-zero but the conversion results in 0
11120          * ticks.
11121          */
11122         ticks = (timeout + 5)/10;
11123         if (timeout && !ticks)
11124                 ticks = 1;
11125
11126         memset(&wdog, 0, sizeof wdog);
11127         wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11128                                      F_FW_CMD_REQUEST |
11129                                      F_FW_CMD_WRITE |
11130                                      V_FW_PARAMS_CMD_PFN(pf) |
11131                                      V_FW_PARAMS_CMD_VFN(vf));
11132         wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11133         wdog.timeout = cpu_to_be32(ticks);
11134         wdog.action = cpu_to_be32(action);
11135
11136         return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11137 }
11138
11139 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11140 {
11141         struct fw_devlog_cmd devlog_cmd;
11142         int ret;
11143
11144         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11145         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11146                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
11147         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11148         ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11149                          sizeof(devlog_cmd), &devlog_cmd);
11150         if (ret)
11151                 return ret;
11152
11153         *level = devlog_cmd.level;
11154         return 0;
11155 }
11156
11157 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11158 {
11159         struct fw_devlog_cmd devlog_cmd;
11160
11161         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11162         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11163                                              F_FW_CMD_REQUEST |
11164                                              F_FW_CMD_WRITE);
11165         devlog_cmd.level = level;
11166         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11167         return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11168                           sizeof(devlog_cmd), &devlog_cmd);
11169 }
11170
11171 int t4_configure_add_smac(struct adapter *adap)
11172 {
11173         unsigned int param, val;
11174         int ret = 0;
11175
11176         adap->params.smac_add_support = 0;
11177         param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11178                   V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11179         /* Query FW to check if FW supports adding source mac address
11180          * to TCAM feature or not.
11181          * If FW returns 1, driver can use this feature and driver need to send
11182          * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11183          * enable adding smac to TCAM.
11184          */
11185         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11186         if (ret)
11187                 return ret;
11188
11189         if (val == 1) {
11190                 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11191                                     &param, &val);
11192                 if (!ret)
11193                         /* Firmware allows adding explicit TCAM entries.
11194                          * Save this internally.
11195                          */
11196                         adap->params.smac_add_support = 1;
11197         }
11198
11199         return ret;
11200 }
11201
11202 int t4_configure_ringbb(struct adapter *adap)
11203 {
11204         unsigned int param, val;
11205         int ret = 0;
11206
11207         param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11208                   V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11209         /* Query FW to check if FW supports ring switch feature or not.
11210          * If FW returns 1, driver can use this feature and driver need to send
11211          * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11212          * enable the ring backbone configuration.
11213          */
11214         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11215         if (ret < 0) {
11216                 CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11217                         ret);
11218                 goto out;
11219         }
11220
11221         if (val != 1) {
11222                 CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11223                 goto out;
11224         }
11225
11226         ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11227         if (ret < 0) {
11228                 CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11229                         ret);
11230                 goto out;
11231         }
11232
11233 out:
11234         return ret;
11235 }
11236
11237 /*
11238  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
11239  *      @adapter: the adapter
11240  *      @mbox: mailbox to use for the FW command
11241  *      @vf: one of the VFs instantiated by the specified PF
11242  *      @vlan: The vlanid to be set
11243  *
11244  */
11245 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11246                     u16 vlan)
11247 {
11248         struct fw_acl_vlan_cmd vlan_cmd;
11249         unsigned int enable;
11250
11251         enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11252         memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11253         vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11254                                          F_FW_CMD_REQUEST |
11255                                          F_FW_CMD_WRITE |
11256                                          F_FW_CMD_EXEC |
11257                                          V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11258                                          V_FW_ACL_VLAN_CMD_VFN(vf));
11259         vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11260         /* Drop all packets that donot match vlan id */
11261         vlan_cmd.dropnovlan_fm = (enable
11262                                   ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11263                                      F_FW_ACL_VLAN_CMD_FM)
11264                                   : 0);
11265         if (enable != 0) {
11266                 vlan_cmd.nvlan = 1;
11267                 vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11268         }
11269
11270         return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11271 }
11272
11273 /**
11274  *      t4_del_mac - Removes the exact-match filter for a MAC address
11275  *      @adap: the adapter
11276  *      @mbox: mailbox to use for the FW command
11277  *      @viid: the VI id
11278  *      @addr: the MAC address value
11279  *      @smac: if true, delete from only the smac region of MPS
11280  *
11281  *      Modifies an exact-match filter and sets it to the new MAC address if
11282  *      @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11283  *      latter case the address is added persistently if @persist is %true.
11284  *
11285  *      Returns a negative error number or the index of the filter with the new
11286  *      MAC value.  Note that this index may differ from @idx.
11287  */
11288 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11289                const u8 *addr, bool smac)
11290 {
11291         int ret;
11292         struct fw_vi_mac_cmd c;
11293         struct fw_vi_mac_exact *p = c.u.exact;
11294         unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11295
11296         memset(&c, 0, sizeof(c));
11297         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11298                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11299                                    V_FW_VI_MAC_CMD_VIID(viid));
11300         c.freemacs_to_len16 = cpu_to_be32(
11301                                         V_FW_CMD_LEN16(1) |
11302                                         (smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11303
11304         memcpy(p->macaddr, addr, sizeof(p->macaddr));
11305         p->valid_to_idx = cpu_to_be16(
11306                                 F_FW_VI_MAC_CMD_VALID |
11307                                 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11308
11309         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11310         if (ret == 0) {
11311                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11312                 if (ret < max_mac_addr)
11313                         return -ENOMEM;
11314         }
11315
11316         return ret;
11317 }
11318
11319 /**
11320  *      t4_add_mac - Adds an exact-match filter for a MAC address
11321  *      @adap: the adapter
11322  *      @mbox: mailbox to use for the FW command
11323  *      @viid: the VI id
11324  *      @idx: index of existing filter for old value of MAC address, or -1
11325  *      @addr: the new MAC address value
11326  *      @persist: whether a new MAC allocation should be persistent
11327  *      @add_smt: if true also add the address to the HW SMT
11328  *      @smac: if true, update only the smac region of MPS
11329  *
11330  *      Modifies an exact-match filter and sets it to the new MAC address if
11331  *      @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11332  *      latter case the address is added persistently if @persist is %true.
11333  *
11334  *      Returns a negative error number or the index of the filter with the new
11335  *      MAC value.  Note that this index may differ from @idx.
11336  */
11337 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11338                int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11339 {
11340         int ret, mode;
11341         struct fw_vi_mac_cmd c;
11342         struct fw_vi_mac_exact *p = c.u.exact;
11343         unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11344
11345         if (idx < 0)            /* new allocation */
11346                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11347         mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11348
11349         memset(&c, 0, sizeof(c));
11350         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11351                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11352                                    V_FW_VI_MAC_CMD_VIID(viid));
11353         c.freemacs_to_len16 = cpu_to_be32(
11354                                 V_FW_CMD_LEN16(1) |
11355                                 (smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11356         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11357                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11358                                       V_FW_VI_MAC_CMD_IDX(idx));
11359         memcpy(p->macaddr, addr, sizeof(p->macaddr));
11360
11361         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11362         if (ret == 0) {
11363                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11364                 if (ret >= max_mac_addr)
11365                         return -ENOMEM;
11366                 if (smt_idx) {
11367                         /* Does fw supports returning smt_idx? */
11368                         if (adap->params.viid_smt_extn_support)
11369                                 *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11370                         else {
11371                                 /* In T4/T5, SMT contains 256 SMAC entries
11372                                  * organized in 128 rows of 2 entries each.
11373                                  * In T6, SMT contains 256 SMAC entries in
11374                                  * 256 rows.
11375                                  */
11376                                 if (chip_id(adap) <= CHELSIO_T5)
11377                                         *smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11378                                 else
11379                                         *smt_idx = (viid & M_FW_VIID_VIN);
11380                         }
11381                 }
11382         }
11383
11384         return ret;
11385 }