]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/if_em.c
Fix whitespace in r368698
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / if_em.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82547
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54         /* Intel(R) PRO/1000 Network Connection - Legacy em*/
55         PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56         PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57         PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58         PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59         PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60
61         PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62         PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63         PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64         PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65         PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66         PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67         PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68
69         PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70
71         PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72         PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73
74         PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75         PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76         PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77         PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78
79         PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80         PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81         PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82         PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83         PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84
85         PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86         PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87         PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88         PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89         PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90         PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91         PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94
95         PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96         PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97         PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98
99         /* Intel(R) PRO/1000 Network Connection - em */
100         PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101         PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108         PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109         PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110         PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111         PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112         PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113         PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114         PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115         PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116         PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124         PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128         PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134         PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137         PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138         PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139         PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150         PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151         PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157         PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159         PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164         PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) PRO/1000 Network Connection"),
178         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) PRO/1000 Network Connection"),
179         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) PRO/1000 Network Connection"),
180         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) PRO/1000 Network Connection"),
181         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) PRO/1000 Network Connection"),
182         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) PRO/1000 Network Connection"),
183         /* required last entry */
184         PVID_END
185 };
186
187 static pci_vendor_info_t igb_vendor_info_array[] =
188 {
189         /* Intel(R) PRO/1000 Network Connection - igb */
190         PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191         PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192         PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193         PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194         PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195         PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196         PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197         PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198         PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201         PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202         PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203         PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204         PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205         PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206         PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207         PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211         PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212         PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213         PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214         PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215         PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216         PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217         PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218         PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219         PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220         PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221         PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222         PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223         PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
224         PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
225         PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
226         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
227         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
228         PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
229         /* required last entry */
230         PVID_END
231 };
232
233 /*********************************************************************
234  *  Function prototypes
235  *********************************************************************/
236 static void     *em_register(device_t dev);
237 static void     *igb_register(device_t dev);
238 static int      em_if_attach_pre(if_ctx_t ctx);
239 static int      em_if_attach_post(if_ctx_t ctx);
240 static int      em_if_detach(if_ctx_t ctx);
241 static int      em_if_shutdown(if_ctx_t ctx);
242 static int      em_if_suspend(if_ctx_t ctx);
243 static int      em_if_resume(if_ctx_t ctx);
244
245 static int      em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
246 static int      em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
247 static void     em_if_queues_free(if_ctx_t ctx);
248
249 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
250 static void     em_if_init(if_ctx_t ctx);
251 static void     em_if_stop(if_ctx_t ctx);
252 static void     em_if_media_status(if_ctx_t, struct ifmediareq *);
253 static int      em_if_media_change(if_ctx_t ctx);
254 static int      em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
255 static void     em_if_timer(if_ctx_t ctx, uint16_t qid);
256 static void     em_if_vlan_register(if_ctx_t ctx, u16 vtag);
257 static void     em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
258 static void     em_if_watchdog_reset(if_ctx_t ctx);
259 static bool     em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event);
260
261 static void     em_identify_hardware(if_ctx_t ctx);
262 static int      em_allocate_pci_resources(if_ctx_t ctx);
263 static void     em_free_pci_resources(if_ctx_t ctx);
264 static void     em_reset(if_ctx_t ctx);
265 static int      em_setup_interface(if_ctx_t ctx);
266 static int      em_setup_msix(if_ctx_t ctx);
267
268 static void     em_initialize_transmit_unit(if_ctx_t ctx);
269 static void     em_initialize_receive_unit(if_ctx_t ctx);
270
271 static void     em_if_intr_enable(if_ctx_t ctx);
272 static void     em_if_intr_disable(if_ctx_t ctx);
273 static void     igb_if_intr_enable(if_ctx_t ctx);
274 static void     igb_if_intr_disable(if_ctx_t ctx);
275 static int      em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
276 static int      em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
277 static int      igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
278 static int      igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
279 static void     em_if_multi_set(if_ctx_t ctx);
280 static void     em_if_update_admin_status(if_ctx_t ctx);
281 static void     em_if_debug(if_ctx_t ctx);
282 static void     em_update_stats_counters(struct adapter *);
283 static void     em_add_hw_stats(struct adapter *adapter);
284 static int      em_if_set_promisc(if_ctx_t ctx, int flags);
285 static void     em_setup_vlan_hw_support(struct adapter *);
286 static int      em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
287 static void     em_print_nvm_info(struct adapter *);
288 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
289 static int      em_get_rs(SYSCTL_HANDLER_ARGS);
290 static void     em_print_debug_info(struct adapter *);
291 static int      em_is_valid_ether_addr(u8 *);
292 static int      em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
293 static void     em_add_int_delay_sysctl(struct adapter *, const char *,
294                     const char *, struct em_int_delay_info *, int, int);
295 /* Management and WOL Support */
296 static void     em_init_manageability(struct adapter *);
297 static void     em_release_manageability(struct adapter *);
298 static void     em_get_hw_control(struct adapter *);
299 static void     em_release_hw_control(struct adapter *);
300 static void     em_get_wakeup(if_ctx_t ctx);
301 static void     em_enable_wakeup(if_ctx_t ctx);
302 static int      em_enable_phy_wakeup(struct adapter *);
303 static void     em_disable_aspm(struct adapter *);
304
305 int             em_intr(void *arg);
306 static void     em_disable_promisc(if_ctx_t ctx);
307
308 /* MSI-X handlers */
309 static int      em_if_msix_intr_assign(if_ctx_t, int);
310 static int      em_msix_link(void *);
311 static void     em_handle_link(void *context);
312
313 static void     em_enable_vectors_82574(if_ctx_t);
314
315 static int      em_set_flowcntl(SYSCTL_HANDLER_ARGS);
316 static int      em_sysctl_eee(SYSCTL_HANDLER_ARGS);
317 static void     em_if_led_func(if_ctx_t ctx, int onoff);
318
319 static int      em_get_regs(SYSCTL_HANDLER_ARGS);
320
321 static void     lem_smartspeed(struct adapter *adapter);
322 static void     igb_configure_queues(struct adapter *adapter);
323
324
325 /*********************************************************************
326  *  FreeBSD Device Interface Entry Points
327  *********************************************************************/
328 static device_method_t em_methods[] = {
329         /* Device interface */
330         DEVMETHOD(device_register, em_register),
331         DEVMETHOD(device_probe, iflib_device_probe),
332         DEVMETHOD(device_attach, iflib_device_attach),
333         DEVMETHOD(device_detach, iflib_device_detach),
334         DEVMETHOD(device_shutdown, iflib_device_shutdown),
335         DEVMETHOD(device_suspend, iflib_device_suspend),
336         DEVMETHOD(device_resume, iflib_device_resume),
337         DEVMETHOD_END
338 };
339
340 static device_method_t igb_methods[] = {
341         /* Device interface */
342         DEVMETHOD(device_register, igb_register),
343         DEVMETHOD(device_probe, iflib_device_probe),
344         DEVMETHOD(device_attach, iflib_device_attach),
345         DEVMETHOD(device_detach, iflib_device_detach),
346         DEVMETHOD(device_shutdown, iflib_device_shutdown),
347         DEVMETHOD(device_suspend, iflib_device_suspend),
348         DEVMETHOD(device_resume, iflib_device_resume),
349         DEVMETHOD_END
350 };
351
352
353 static driver_t em_driver = {
354         "em", em_methods, sizeof(struct adapter),
355 };
356
357 static devclass_t em_devclass;
358 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
359
360 MODULE_DEPEND(em, pci, 1, 1, 1);
361 MODULE_DEPEND(em, ether, 1, 1, 1);
362 MODULE_DEPEND(em, iflib, 1, 1, 1);
363
364 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
365
366 static driver_t igb_driver = {
367         "igb", igb_methods, sizeof(struct adapter),
368 };
369
370 static devclass_t igb_devclass;
371 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
372
373 MODULE_DEPEND(igb, pci, 1, 1, 1);
374 MODULE_DEPEND(igb, ether, 1, 1, 1);
375 MODULE_DEPEND(igb, iflib, 1, 1, 1);
376
377 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
378
379 static device_method_t em_if_methods[] = {
380         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
381         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
382         DEVMETHOD(ifdi_detach, em_if_detach),
383         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
384         DEVMETHOD(ifdi_suspend, em_if_suspend),
385         DEVMETHOD(ifdi_resume, em_if_resume),
386         DEVMETHOD(ifdi_init, em_if_init),
387         DEVMETHOD(ifdi_stop, em_if_stop),
388         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
389         DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
390         DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
391         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
392         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
393         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
394         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
395         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
396         DEVMETHOD(ifdi_media_status, em_if_media_status),
397         DEVMETHOD(ifdi_media_change, em_if_media_change),
398         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
399         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
400         DEVMETHOD(ifdi_timer, em_if_timer),
401         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
402         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
403         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
404         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
405         DEVMETHOD(ifdi_led_func, em_if_led_func),
406         DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
407         DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
408         DEVMETHOD(ifdi_debug, em_if_debug),
409         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
410         DEVMETHOD_END
411 };
412
413 static driver_t em_if_driver = {
414         "em_if", em_if_methods, sizeof(struct adapter)
415 };
416
417 static device_method_t igb_if_methods[] = {
418         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
419         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
420         DEVMETHOD(ifdi_detach, em_if_detach),
421         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
422         DEVMETHOD(ifdi_suspend, em_if_suspend),
423         DEVMETHOD(ifdi_resume, em_if_resume),
424         DEVMETHOD(ifdi_init, em_if_init),
425         DEVMETHOD(ifdi_stop, em_if_stop),
426         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
427         DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
428         DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
429         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
430         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
431         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
432         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
433         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
434         DEVMETHOD(ifdi_media_status, em_if_media_status),
435         DEVMETHOD(ifdi_media_change, em_if_media_change),
436         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
437         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
438         DEVMETHOD(ifdi_timer, em_if_timer),
439         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
440         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
441         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
442         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
443         DEVMETHOD(ifdi_led_func, em_if_led_func),
444         DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
445         DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
446         DEVMETHOD(ifdi_debug, em_if_debug),
447         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
448         DEVMETHOD_END
449 };
450
451 static driver_t igb_if_driver = {
452         "igb_if", igb_if_methods, sizeof(struct adapter)
453 };
454
455 /*********************************************************************
456  *  Tunable default values.
457  *********************************************************************/
458
459 #define EM_TICKS_TO_USECS(ticks)        ((1024 * (ticks) + 500) / 1000)
460 #define EM_USECS_TO_TICKS(usecs)        ((1000 * (usecs) + 512) / 1024)
461
462 #define MAX_INTS_PER_SEC        8000
463 #define DEFAULT_ITR             (1000000000/(MAX_INTS_PER_SEC * 256))
464
465 /* Allow common code without TSO */
466 #ifndef CSUM_TSO
467 #define CSUM_TSO        0
468 #endif
469
470 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
471     "EM driver parameters");
472
473 static int em_disable_crc_stripping = 0;
474 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
475     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
476
477 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
478 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
479 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
480     0, "Default transmit interrupt delay in usecs");
481 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
482     0, "Default receive interrupt delay in usecs");
483
484 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
485 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
486 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
487     &em_tx_abs_int_delay_dflt, 0,
488     "Default transmit interrupt delay limit in usecs");
489 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
490     &em_rx_abs_int_delay_dflt, 0,
491     "Default receive interrupt delay limit in usecs");
492
493 static int em_smart_pwr_down = FALSE;
494 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
495     0, "Set to true to leave smart power down enabled on newer adapters");
496
497 /* Controls whether promiscuous also shows bad packets */
498 static int em_debug_sbp = TRUE;
499 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
500     "Show bad packets in promiscuous mode");
501
502 /* How many packets rxeof tries to clean at a time */
503 static int em_rx_process_limit = 100;
504 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
505     &em_rx_process_limit, 0,
506     "Maximum number of received packets to process "
507     "at a time, -1 means unlimited");
508
509 /* Energy efficient ethernet - default to OFF */
510 static int eee_setting = 1;
511 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
512     "Enable Energy Efficient Ethernet");
513
514 /*
515 ** Tuneable Interrupt rate
516 */
517 static int em_max_interrupt_rate = 8000;
518 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
519     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
520
521
522
523 /* Global used in WOL setup with multiport cards */
524 static int global_quad_port_a = 0;
525
526 extern struct if_txrx igb_txrx;
527 extern struct if_txrx em_txrx;
528 extern struct if_txrx lem_txrx;
529
530 static struct if_shared_ctx em_sctx_init = {
531         .isc_magic = IFLIB_MAGIC,
532         .isc_q_align = PAGE_SIZE,
533         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
534         .isc_tx_maxsegsize = PAGE_SIZE,
535         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
536         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
537         .isc_rx_maxsize = MJUM9BYTES,
538         .isc_rx_nsegments = 1,
539         .isc_rx_maxsegsize = MJUM9BYTES,
540         .isc_nfl = 1,
541         .isc_nrxqs = 1,
542         .isc_ntxqs = 1,
543         .isc_admin_intrcnt = 1,
544         .isc_vendor_info = em_vendor_info_array,
545         .isc_driver_version = em_driver_version,
546         .isc_driver = &em_if_driver,
547         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
548
549         .isc_nrxd_min = {EM_MIN_RXD},
550         .isc_ntxd_min = {EM_MIN_TXD},
551         .isc_nrxd_max = {EM_MAX_RXD},
552         .isc_ntxd_max = {EM_MAX_TXD},
553         .isc_nrxd_default = {EM_DEFAULT_RXD},
554         .isc_ntxd_default = {EM_DEFAULT_TXD},
555 };
556
557 if_shared_ctx_t em_sctx = &em_sctx_init;
558
559 static struct if_shared_ctx igb_sctx_init = {
560         .isc_magic = IFLIB_MAGIC,
561         .isc_q_align = PAGE_SIZE,
562         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
563         .isc_tx_maxsegsize = PAGE_SIZE,
564         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
565         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
566         .isc_rx_maxsize = MJUM9BYTES,
567         .isc_rx_nsegments = 1,
568         .isc_rx_maxsegsize = MJUM9BYTES,
569         .isc_nfl = 1,
570         .isc_nrxqs = 1,
571         .isc_ntxqs = 1,
572         .isc_admin_intrcnt = 1,
573         .isc_vendor_info = igb_vendor_info_array,
574         .isc_driver_version = em_driver_version,
575         .isc_driver = &igb_if_driver,
576         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
577
578         .isc_nrxd_min = {EM_MIN_RXD},
579         .isc_ntxd_min = {EM_MIN_TXD},
580         .isc_nrxd_max = {IGB_MAX_RXD},
581         .isc_ntxd_max = {IGB_MAX_TXD},
582         .isc_nrxd_default = {EM_DEFAULT_RXD},
583         .isc_ntxd_default = {EM_DEFAULT_TXD},
584 };
585
586 if_shared_ctx_t igb_sctx = &igb_sctx_init;
587
588 /*****************************************************************
589  *
590  * Dump Registers
591  *
592  ****************************************************************/
593 #define IGB_REGS_LEN 739
594
595 static int em_get_regs(SYSCTL_HANDLER_ARGS)
596 {
597         struct adapter *adapter = (struct adapter *)arg1;
598         struct e1000_hw *hw = &adapter->hw;
599         struct sbuf *sb;
600         u32 *regs_buff;
601         int rc;
602
603         regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
604         memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
605
606         rc = sysctl_wire_old_buffer(req, 0);
607         MPASS(rc == 0);
608         if (rc != 0) {
609                 free(regs_buff, M_DEVBUF);
610                 return (rc);
611         }
612
613         sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
614         MPASS(sb != NULL);
615         if (sb == NULL) {
616                 free(regs_buff, M_DEVBUF);
617                 return (ENOMEM);
618         }
619
620         /* General Registers */
621         regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
622         regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
623         regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
624         regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
625         regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
626         regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
627         regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
628         regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
629         regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
630         regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
631         regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
632         regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
633         regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
634         regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
635         regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
636         regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
637         regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
638         regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
639         regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
640         regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
641         regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
642         regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
643
644         sbuf_printf(sb, "General Registers\n");
645         sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
646         sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
647         sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
648
649         sbuf_printf(sb, "Interrupt Registers\n");
650         sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
651
652         sbuf_printf(sb, "RX Registers\n");
653         sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
654         sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
655         sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
656         sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
657         sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
658         sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
659         sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
660
661         sbuf_printf(sb, "TX Registers\n");
662         sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
663         sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
664         sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
665         sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
666         sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
667         sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
668         sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
669         sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
670         sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
671         sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
672         sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
673
674         free(regs_buff, M_DEVBUF);
675
676 #ifdef DUMP_DESCS
677         {
678                 if_softc_ctx_t scctx = adapter->shared;
679                 struct rx_ring *rxr = &rx_que->rxr;
680                 struct tx_ring *txr = &tx_que->txr;
681                 int ntxd = scctx->isc_ntxd[0];
682                 int nrxd = scctx->isc_nrxd[0];
683                 int j;
684
685         for (j = 0; j < nrxd; j++) {
686                 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
687                 u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
688                 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
689         }
690
691         for (j = 0; j < min(ntxd, 256); j++) {
692                 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
693
694                 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
695                             j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
696                             buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
697
698         }
699         }
700 #endif
701
702         rc = sbuf_finish(sb);
703         sbuf_delete(sb);
704         return(rc);
705 }
706
707 static void *
708 em_register(device_t dev)
709 {
710         return (em_sctx);
711 }
712
713 static void *
714 igb_register(device_t dev)
715 {
716         return (igb_sctx);
717 }
718
719 static int
720 em_set_num_queues(if_ctx_t ctx)
721 {
722         struct adapter *adapter = iflib_get_softc(ctx);
723         int maxqueues;
724
725         /* Sanity check based on HW */
726         switch (adapter->hw.mac.type) {
727         case e1000_82576:
728         case e1000_82580:
729         case e1000_i350:
730         case e1000_i354:
731                 maxqueues = 8;
732                 break;
733         case e1000_i210:
734         case e1000_82575:
735                 maxqueues = 4;
736                 break;
737         case e1000_i211:
738         case e1000_82574:
739                 maxqueues = 2;
740                 break;
741         default:
742                 maxqueues = 1;
743                 break;
744         }
745
746         return (maxqueues);
747 }
748
749 #define LEM_CAPS                                                        \
750     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
751     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
752
753 #define EM_CAPS                                                         \
754     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
755     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
756     IFCAP_LRO | IFCAP_VLAN_HWTSO
757
758 #define IGB_CAPS                                                        \
759     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
760     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
761     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
762     IFCAP_TSO6
763
764 /*********************************************************************
765  *  Device initialization routine
766  *
767  *  The attach entry point is called when the driver is being loaded.
768  *  This routine identifies the type of hardware, allocates all resources
769  *  and initializes the hardware.
770  *
771  *  return 0 on success, positive on failure
772  *********************************************************************/
773 static int
774 em_if_attach_pre(if_ctx_t ctx)
775 {
776         struct adapter *adapter;
777         if_softc_ctx_t scctx;
778         device_t dev;
779         struct e1000_hw *hw;
780         int error = 0;
781
782         INIT_DEBUGOUT("em_if_attach_pre: begin");
783         dev = iflib_get_dev(ctx);
784         adapter = iflib_get_softc(ctx);
785
786         adapter->ctx = adapter->osdep.ctx = ctx;
787         adapter->dev = adapter->osdep.dev = dev;
788         scctx = adapter->shared = iflib_get_softc_ctx(ctx);
789         adapter->media = iflib_get_media(ctx);
790         hw = &adapter->hw;
791
792         adapter->tx_process_limit = scctx->isc_ntxd[0];
793
794         /* SYSCTL stuff */
795         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
796             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
797             OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
798             adapter, 0, em_sysctl_nvm_info, "I", "NVM Information");
799
800         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
801             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
802             OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
803             adapter, 0, em_sysctl_debug_info, "I", "Debug Information");
804
805         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
806             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
807             OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
808             adapter, 0, em_set_flowcntl, "I", "Flow Control");
809
810         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
811             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
812             OID_AUTO, "reg_dump",
813             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0,
814             em_get_regs, "A", "Dump Registers");
815
816         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
817             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
818             OID_AUTO, "rs_dump",
819             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0,
820             em_get_rs, "I", "Dump RS indexes");
821
822         /* Determine hardware and mac info */
823         em_identify_hardware(ctx);
824
825         scctx->isc_tx_nsegments = EM_MAX_SCATTER;
826         scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
827         if (bootverbose)
828                 device_printf(dev, "attach_pre capping queues at %d\n",
829                     scctx->isc_ntxqsets_max);
830
831         if (adapter->hw.mac.type >= igb_mac_min) {
832                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
833                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
834                 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
835                 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
836                 scctx->isc_txrx = &igb_txrx;
837                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
838                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
839                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
840                 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
841                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
842                      CSUM_IP6_TCP | CSUM_IP6_UDP;
843                 if (adapter->hw.mac.type != e1000_82575)
844                         scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
845                 /*
846                 ** Some new devices, as with ixgbe, now may
847                 ** use a different BAR, so we need to keep
848                 ** track of which is used.
849                 */
850                 scctx->isc_msix_bar = pci_msix_table_bar(dev);
851         } else if (adapter->hw.mac.type >= em_mac_min) {
852                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
853                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
854                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
855                 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
856                 scctx->isc_txrx = &em_txrx;
857                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
858                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
859                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
860                 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
861                 /*
862                  * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
863                  * by default as we don't have workarounds for all associated
864                  * silicon errata.  E. g., with several MACs such as 82573E,
865                  * TSO only works at Gigabit speed and otherwise can cause the
866                  * hardware to hang (which also would be next to impossible to
867                  * work around given that already queued TSO-using descriptors
868                  * would need to be flushed and vlan(4) reconfigured at runtime
869                  * in case of a link speed change).  Moreover, MACs like 82579
870                  * still can hang at Gigabit even with all publicly documented
871                  * TSO workarounds implemented.  Generally, the penality of
872                  * these workarounds is rather high and may involve copying
873                  * mbuf data around so advantages of TSO lapse.  Still, TSO may
874                  * work for a few MACs of this class - at least when sticking
875                  * with Gigabit - in which case users may enable TSO manually.
876                  */
877                 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
878                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
879                 /*
880                  * We support MSI-X with 82574 only, but indicate to iflib(4)
881                  * that it shall give MSI at least a try with other devices.
882                  */
883                 if (adapter->hw.mac.type == e1000_82574) {
884                         scctx->isc_msix_bar = pci_msix_table_bar(dev);;
885                 } else {
886                         scctx->isc_msix_bar = -1;
887                         scctx->isc_disable_msix = 1;
888                 }
889         } else {
890                 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
891                 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
892                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
893                 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
894                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
895                 scctx->isc_txrx = &lem_txrx;
896                 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
897                 if (adapter->hw.mac.type < e1000_82543)
898                         scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
899                 /* INTx only */
900                 scctx->isc_msix_bar = 0;
901         }
902
903         /* Setup PCI resources */
904         if (em_allocate_pci_resources(ctx)) {
905                 device_printf(dev, "Allocation of PCI resources failed\n");
906                 error = ENXIO;
907                 goto err_pci;
908         }
909
910         /*
911         ** For ICH8 and family we need to
912         ** map the flash memory, and this
913         ** must happen after the MAC is
914         ** identified
915         */
916         if ((hw->mac.type == e1000_ich8lan) ||
917             (hw->mac.type == e1000_ich9lan) ||
918             (hw->mac.type == e1000_ich10lan) ||
919             (hw->mac.type == e1000_pchlan) ||
920             (hw->mac.type == e1000_pch2lan) ||
921             (hw->mac.type == e1000_pch_lpt)) {
922                 int rid = EM_BAR_TYPE_FLASH;
923                 adapter->flash = bus_alloc_resource_any(dev,
924                     SYS_RES_MEMORY, &rid, RF_ACTIVE);
925                 if (adapter->flash == NULL) {
926                         device_printf(dev, "Mapping of Flash failed\n");
927                         error = ENXIO;
928                         goto err_pci;
929                 }
930                 /* This is used in the shared code */
931                 hw->flash_address = (u8 *)adapter->flash;
932                 adapter->osdep.flash_bus_space_tag =
933                     rman_get_bustag(adapter->flash);
934                 adapter->osdep.flash_bus_space_handle =
935                     rman_get_bushandle(adapter->flash);
936         }
937         /*
938         ** In the new SPT device flash is not  a
939         ** separate BAR, rather it is also in BAR0,
940         ** so use the same tag and an offset handle for the
941         ** FLASH read/write macros in the shared code.
942         */
943         else if (hw->mac.type >= e1000_pch_spt) {
944                 adapter->osdep.flash_bus_space_tag =
945                     adapter->osdep.mem_bus_space_tag;
946                 adapter->osdep.flash_bus_space_handle =
947                     adapter->osdep.mem_bus_space_handle
948                     + E1000_FLASH_BASE_ADDR;
949         }
950
951         /* Do Shared Code initialization */
952         error = e1000_setup_init_funcs(hw, TRUE);
953         if (error) {
954                 device_printf(dev, "Setup of Shared code failed, error %d\n",
955                     error);
956                 error = ENXIO;
957                 goto err_pci;
958         }
959
960         em_setup_msix(ctx);
961         e1000_get_bus_info(hw);
962
963         /* Set up some sysctls for the tunable interrupt delays */
964         em_add_int_delay_sysctl(adapter, "rx_int_delay",
965             "receive interrupt delay in usecs", &adapter->rx_int_delay,
966             E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
967         em_add_int_delay_sysctl(adapter, "tx_int_delay",
968             "transmit interrupt delay in usecs", &adapter->tx_int_delay,
969             E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
970         em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
971             "receive interrupt delay limit in usecs",
972             &adapter->rx_abs_int_delay,
973             E1000_REGISTER(hw, E1000_RADV),
974             em_rx_abs_int_delay_dflt);
975         em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
976             "transmit interrupt delay limit in usecs",
977             &adapter->tx_abs_int_delay,
978             E1000_REGISTER(hw, E1000_TADV),
979             em_tx_abs_int_delay_dflt);
980         em_add_int_delay_sysctl(adapter, "itr",
981             "interrupt delay limit in usecs/4",
982             &adapter->tx_itr,
983             E1000_REGISTER(hw, E1000_ITR),
984             DEFAULT_ITR);
985
986         hw->mac.autoneg = DO_AUTO_NEG;
987         hw->phy.autoneg_wait_to_complete = FALSE;
988         hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
989
990         if (adapter->hw.mac.type < em_mac_min) {
991                 e1000_init_script_state_82541(&adapter->hw, TRUE);
992                 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
993         }
994         /* Copper options */
995         if (hw->phy.media_type == e1000_media_type_copper) {
996                 hw->phy.mdix = AUTO_ALL_MODES;
997                 hw->phy.disable_polarity_correction = FALSE;
998                 hw->phy.ms_type = EM_MASTER_SLAVE;
999         }
1000
1001         /*
1002          * Set the frame limits assuming
1003          * standard ethernet sized frames.
1004          */
1005         scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1006             ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1007
1008         /*
1009          * This controls when hardware reports transmit completion
1010          * status.
1011          */
1012         hw->mac.report_tx_early = 1;
1013
1014         /* Allocate multicast array memory. */
1015         adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1016             MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1017         if (adapter->mta == NULL) {
1018                 device_printf(dev, "Can not allocate multicast setup array\n");
1019                 error = ENOMEM;
1020                 goto err_late;
1021         }
1022
1023         /* Check SOL/IDER usage */
1024         if (e1000_check_reset_block(hw))
1025                 device_printf(dev, "PHY reset is blocked"
1026                               " due to SOL/IDER session.\n");
1027
1028         /* Sysctl for setting Energy Efficient Ethernet */
1029         hw->dev_spec.ich8lan.eee_disable = eee_setting;
1030         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1031             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1032             OID_AUTO, "eee_control",
1033             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1034             adapter, 0, em_sysctl_eee, "I",
1035             "Disable Energy Efficient Ethernet");
1036
1037         /*
1038         ** Start from a known state, this is
1039         ** important in reading the nvm and
1040         ** mac from that.
1041         */
1042         e1000_reset_hw(hw);
1043
1044         /* Make sure we have a good EEPROM before we read from it */
1045         if (e1000_validate_nvm_checksum(hw) < 0) {
1046                 /*
1047                 ** Some PCI-E parts fail the first check due to
1048                 ** the link being in sleep state, call it again,
1049                 ** if it fails a second time its a real issue.
1050                 */
1051                 if (e1000_validate_nvm_checksum(hw) < 0) {
1052                         device_printf(dev,
1053                             "The EEPROM Checksum Is Not Valid\n");
1054                         error = EIO;
1055                         goto err_late;
1056                 }
1057         }
1058
1059         /* Copy the permanent MAC address out of the EEPROM */
1060         if (e1000_read_mac_addr(hw) < 0) {
1061                 device_printf(dev, "EEPROM read error while reading MAC"
1062                               " address\n");
1063                 error = EIO;
1064                 goto err_late;
1065         }
1066
1067         if (!em_is_valid_ether_addr(hw->mac.addr)) {
1068                 device_printf(dev, "Invalid MAC address\n");
1069                 error = EIO;
1070                 goto err_late;
1071         }
1072
1073         /* Disable ULP support */
1074         e1000_disable_ulp_lpt_lp(hw, TRUE);
1075
1076         /*
1077          * Get Wake-on-Lan and Management info for later use
1078          */
1079         em_get_wakeup(ctx);
1080
1081         /* Enable only WOL MAGIC by default */
1082         scctx->isc_capenable &= ~IFCAP_WOL;
1083         if (adapter->wol != 0)
1084                 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1085
1086         iflib_set_mac(ctx, hw->mac.addr);
1087
1088         return (0);
1089
1090 err_late:
1091         em_release_hw_control(adapter);
1092 err_pci:
1093         em_free_pci_resources(ctx);
1094         free(adapter->mta, M_DEVBUF);
1095
1096         return (error);
1097 }
1098
1099 static int
1100 em_if_attach_post(if_ctx_t ctx)
1101 {
1102         struct adapter *adapter = iflib_get_softc(ctx);
1103         struct e1000_hw *hw = &adapter->hw;
1104         int error = 0;
1105         
1106         /* Setup OS specific network interface */
1107         error = em_setup_interface(ctx);
1108         if (error != 0) {
1109                 goto err_late;
1110         }
1111
1112         em_reset(ctx);
1113
1114         /* Initialize statistics */
1115         em_update_stats_counters(adapter);
1116         hw->mac.get_link_status = 1;
1117         em_if_update_admin_status(ctx);
1118         em_add_hw_stats(adapter);
1119
1120         /* Non-AMT based hardware can now take control from firmware */
1121         if (adapter->has_manage && !adapter->has_amt)
1122                 em_get_hw_control(adapter);
1123
1124         INIT_DEBUGOUT("em_if_attach_post: end");
1125
1126         return (error);
1127
1128 err_late:
1129         em_release_hw_control(adapter);
1130         em_free_pci_resources(ctx);
1131         em_if_queues_free(ctx);
1132         free(adapter->mta, M_DEVBUF);
1133
1134         return (error);
1135 }
1136
1137 /*********************************************************************
1138  *  Device removal routine
1139  *
1140  *  The detach entry point is called when the driver is being removed.
1141  *  This routine stops the adapter and deallocates all the resources
1142  *  that were allocated for driver operation.
1143  *
1144  *  return 0 on success, positive on failure
1145  *********************************************************************/
1146 static int
1147 em_if_detach(if_ctx_t ctx)
1148 {
1149         struct adapter  *adapter = iflib_get_softc(ctx);
1150
1151         INIT_DEBUGOUT("em_if_detach: begin");
1152
1153         e1000_phy_hw_reset(&adapter->hw);
1154
1155         em_release_manageability(adapter);
1156         em_release_hw_control(adapter);
1157         em_free_pci_resources(ctx);
1158
1159         return (0);
1160 }
1161
1162 /*********************************************************************
1163  *
1164  *  Shutdown entry point
1165  *
1166  **********************************************************************/
1167
1168 static int
1169 em_if_shutdown(if_ctx_t ctx)
1170 {
1171         return em_if_suspend(ctx);
1172 }
1173
1174 /*
1175  * Suspend/resume device methods.
1176  */
1177 static int
1178 em_if_suspend(if_ctx_t ctx)
1179 {
1180         struct adapter *adapter = iflib_get_softc(ctx);
1181
1182         em_release_manageability(adapter);
1183         em_release_hw_control(adapter);
1184         em_enable_wakeup(ctx);
1185         return (0);
1186 }
1187
1188 static int
1189 em_if_resume(if_ctx_t ctx)
1190 {
1191         struct adapter *adapter = iflib_get_softc(ctx);
1192
1193         if (adapter->hw.mac.type == e1000_pch2lan)
1194                 e1000_resume_workarounds_pchlan(&adapter->hw);
1195         em_if_init(ctx);
1196         em_init_manageability(adapter);
1197
1198         return(0);
1199 }
1200
1201 static int
1202 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1203 {
1204         int max_frame_size;
1205         struct adapter *adapter = iflib_get_softc(ctx);
1206         if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1207
1208          IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1209
1210         switch (adapter->hw.mac.type) {
1211         case e1000_82571:
1212         case e1000_82572:
1213         case e1000_ich9lan:
1214         case e1000_ich10lan:
1215         case e1000_pch2lan:
1216         case e1000_pch_lpt:
1217         case e1000_pch_spt:
1218         case e1000_pch_cnp:
1219         case e1000_82574:
1220         case e1000_82583:
1221         case e1000_80003es2lan:
1222                 /* 9K Jumbo Frame size */
1223                 max_frame_size = 9234;
1224                 break;
1225         case e1000_pchlan:
1226                 max_frame_size = 4096;
1227                 break;
1228         case e1000_82542:
1229         case e1000_ich8lan:
1230                 /* Adapters that do not support jumbo frames */
1231                 max_frame_size = ETHER_MAX_LEN;
1232                 break;
1233         default:
1234                 if (adapter->hw.mac.type >= igb_mac_min)
1235                         max_frame_size = 9234;
1236                 else /* lem */
1237                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
1238         }
1239         if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1240                 return (EINVAL);
1241         }
1242
1243         scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1244             mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1245         return (0);
1246 }
1247
1248 /*********************************************************************
1249  *  Init entry point
1250  *
1251  *  This routine is used in two ways. It is used by the stack as
1252  *  init entry point in network interface structure. It is also used
1253  *  by the driver as a hw/sw initialization routine to get to a
1254  *  consistent state.
1255  *
1256  **********************************************************************/
1257 static void
1258 em_if_init(if_ctx_t ctx)
1259 {
1260         struct adapter *adapter = iflib_get_softc(ctx);
1261         if_softc_ctx_t scctx = adapter->shared;
1262         struct ifnet *ifp = iflib_get_ifp(ctx);
1263         struct em_tx_queue *tx_que;
1264         int i;
1265
1266         INIT_DEBUGOUT("em_if_init: begin");
1267
1268         /* Get the latest mac address, User can use a LAA */
1269         bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1270             ETHER_ADDR_LEN);
1271
1272         /* Put the address into the Receive Address Array */
1273         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1274
1275         /*
1276          * With the 82571 adapter, RAR[0] may be overwritten
1277          * when the other port is reset, we make a duplicate
1278          * in RAR[14] for that eventuality, this assures
1279          * the interface continues to function.
1280          */
1281         if (adapter->hw.mac.type == e1000_82571) {
1282                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1283                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1284                     E1000_RAR_ENTRIES - 1);
1285         }
1286
1287
1288         /* Initialize the hardware */
1289         em_reset(ctx);
1290         em_if_update_admin_status(ctx);
1291
1292         for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1293                 struct tx_ring *txr = &tx_que->txr;
1294
1295                 txr->tx_rs_cidx = txr->tx_rs_pidx;
1296
1297                 /* Initialize the last processed descriptor to be the end of
1298                  * the ring, rather than the start, so that we avoid an
1299                  * off-by-one error when calculating how many descriptors are
1300                  * done in the credits_update function.
1301                  */
1302                 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1303         }
1304
1305         /* Setup VLAN support, basic and offload if available */
1306         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1307
1308         /* Clear bad data from Rx FIFOs */
1309         if (adapter->hw.mac.type >= igb_mac_min)
1310                 e1000_rx_fifo_flush_82575(&adapter->hw);
1311
1312         /* Configure for OS presence */
1313         em_init_manageability(adapter);
1314
1315         /* Prepare transmit descriptors and buffers */
1316         em_initialize_transmit_unit(ctx);
1317
1318         /* Setup Multicast table */
1319         em_if_multi_set(ctx);
1320
1321         adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1322         em_initialize_receive_unit(ctx);
1323
1324         /* Use real VLAN Filter support? */
1325         if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1326                 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1327                         /* Use real VLAN Filter support */
1328                         em_setup_vlan_hw_support(adapter);
1329                 else {
1330                         u32 ctrl;
1331                         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1332                         ctrl |= E1000_CTRL_VME;
1333                         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1334                 }
1335         } else {
1336                 u32 ctrl;
1337                 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1338                 ctrl &= ~E1000_CTRL_VME;
1339                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1340         }
1341
1342         /* Don't lose promiscuous settings */
1343         em_if_set_promisc(ctx, if_getflags(ifp));
1344         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1345
1346         /* MSI-X configuration for 82574 */
1347         if (adapter->hw.mac.type == e1000_82574) {
1348                 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1349
1350                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1351                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1352                 /* Set the IVAR - interrupt vector routing. */
1353                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1354         } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1355                 igb_configure_queues(adapter);
1356
1357         /* this clears any pending interrupts */
1358         E1000_READ_REG(&adapter->hw, E1000_ICR);
1359         E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1360
1361         /* AMT based hardware can now take control from firmware */
1362         if (adapter->has_manage && adapter->has_amt)
1363                 em_get_hw_control(adapter);
1364
1365         /* Set Energy Efficient Ethernet */
1366         if (adapter->hw.mac.type >= igb_mac_min &&
1367             adapter->hw.phy.media_type == e1000_media_type_copper) {
1368                 if (adapter->hw.mac.type == e1000_i354)
1369                         e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1370                 else
1371                         e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1372         }
1373 }
1374
1375 /*********************************************************************
1376  *
1377  *  Fast Legacy/MSI Combined Interrupt Service routine
1378  *
1379  *********************************************************************/
1380 int
1381 em_intr(void *arg)
1382 {
1383         struct adapter *adapter = arg;
1384         if_ctx_t ctx = adapter->ctx;
1385         u32 reg_icr;
1386
1387         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1388
1389         /* Hot eject? */
1390         if (reg_icr == 0xffffffff)
1391                 return FILTER_STRAY;
1392
1393         /* Definitely not our interrupt. */
1394         if (reg_icr == 0x0)
1395                 return FILTER_STRAY;
1396
1397         /*
1398          * Starting with the 82571 chip, bit 31 should be used to
1399          * determine whether the interrupt belongs to us.
1400          */
1401         if (adapter->hw.mac.type >= e1000_82571 &&
1402             (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1403                 return FILTER_STRAY;
1404
1405         /*
1406          * Only MSI-X interrupts have one-shot behavior by taking advantage
1407          * of the EIAC register.  Thus, explicitly disable interrupts.  This
1408          * also works around the MSI message reordering errata on certain
1409          * systems.
1410          */
1411         IFDI_INTR_DISABLE(ctx);
1412
1413         /* Link status change */
1414         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1415                 em_handle_link(ctx);
1416
1417         if (reg_icr & E1000_ICR_RXO)
1418                 adapter->rx_overruns++;
1419
1420         return (FILTER_SCHEDULE_THREAD);
1421 }
1422
1423 static int
1424 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1425 {
1426         struct adapter *adapter = iflib_get_softc(ctx);
1427         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1428
1429         E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1430         return (0);
1431 }
1432
1433 static int
1434 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1435 {
1436         struct adapter *adapter = iflib_get_softc(ctx);
1437         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1438
1439         E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1440         return (0);
1441 }
1442
1443 static int
1444 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1445 {
1446         struct adapter *adapter = iflib_get_softc(ctx);
1447         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1448
1449         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1450         return (0);
1451 }
1452
1453 static int
1454 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1455 {
1456         struct adapter *adapter = iflib_get_softc(ctx);
1457         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1458
1459         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1460         return (0);
1461 }
1462
1463 /*********************************************************************
1464  *
1465  *  MSI-X RX Interrupt Service routine
1466  *
1467  **********************************************************************/
1468 static int
1469 em_msix_que(void *arg)
1470 {
1471         struct em_rx_queue *que = arg;
1472
1473         ++que->irqs;
1474
1475         return (FILTER_SCHEDULE_THREAD);
1476 }
1477
1478 /*********************************************************************
1479  *
1480  *  MSI-X Link Fast Interrupt Service routine
1481  *
1482  **********************************************************************/
1483 static int
1484 em_msix_link(void *arg)
1485 {
1486         struct adapter *adapter = arg;
1487         u32 reg_icr;
1488
1489         ++adapter->link_irq;
1490         MPASS(adapter->hw.back != NULL);
1491         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1492
1493         if (reg_icr & E1000_ICR_RXO)
1494                 adapter->rx_overruns++;
1495
1496         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1497                 em_handle_link(adapter->ctx);
1498         } else if (adapter->hw.mac.type == e1000_82574) {
1499                 /* Only re-arm 82574 if em_if_update_admin_status() won't. */
1500                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1501                     E1000_IMS_LSC);
1502         }
1503
1504         if (adapter->hw.mac.type == e1000_82574) {
1505                 /*
1506                  * Because we must read the ICR for this interrupt it may
1507                  * clear other causes using autoclear, for this reason we
1508                  * simply create a soft interrupt for all these vectors.
1509                  */
1510                 if (reg_icr)
1511                         E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims);
1512         } else {
1513                 /* Re-arm unconditionally */
1514                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1515                 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1516         }
1517
1518         return (FILTER_HANDLED);
1519 }
1520
1521 static void
1522 em_handle_link(void *context)
1523 {
1524         if_ctx_t ctx = context;
1525         struct adapter *adapter = iflib_get_softc(ctx);
1526
1527         adapter->hw.mac.get_link_status = 1;
1528         iflib_admin_intr_deferred(ctx);
1529 }
1530
1531 /*********************************************************************
1532  *
1533  *  Media Ioctl callback
1534  *
1535  *  This routine is called whenever the user queries the status of
1536  *  the interface using ifconfig.
1537  *
1538  **********************************************************************/
1539 static void
1540 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1541 {
1542         struct adapter *adapter = iflib_get_softc(ctx);
1543         u_char fiber_type = IFM_1000_SX;
1544
1545         INIT_DEBUGOUT("em_if_media_status: begin");
1546
1547         iflib_admin_intr_deferred(ctx);
1548
1549         ifmr->ifm_status = IFM_AVALID;
1550         ifmr->ifm_active = IFM_ETHER;
1551
1552         if (!adapter->link_active) {
1553                 return;
1554         }
1555
1556         ifmr->ifm_status |= IFM_ACTIVE;
1557
1558         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1559             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1560                 if (adapter->hw.mac.type == e1000_82545)
1561                         fiber_type = IFM_1000_LX;
1562                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1563         } else {
1564                 switch (adapter->link_speed) {
1565                 case 10:
1566                         ifmr->ifm_active |= IFM_10_T;
1567                         break;
1568                 case 100:
1569                         ifmr->ifm_active |= IFM_100_TX;
1570                         break;
1571                 case 1000:
1572                         ifmr->ifm_active |= IFM_1000_T;
1573                         break;
1574                 }
1575                 if (adapter->link_duplex == FULL_DUPLEX)
1576                         ifmr->ifm_active |= IFM_FDX;
1577                 else
1578                         ifmr->ifm_active |= IFM_HDX;
1579         }
1580 }
1581
1582 /*********************************************************************
1583  *
1584  *  Media Ioctl callback
1585  *
1586  *  This routine is called when the user changes speed/duplex using
1587  *  media/mediopt option with ifconfig.
1588  *
1589  **********************************************************************/
1590 static int
1591 em_if_media_change(if_ctx_t ctx)
1592 {
1593         struct adapter *adapter = iflib_get_softc(ctx);
1594         struct ifmedia *ifm = iflib_get_media(ctx);
1595
1596         INIT_DEBUGOUT("em_if_media_change: begin");
1597
1598         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1599                 return (EINVAL);
1600
1601         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1602         case IFM_AUTO:
1603                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1604                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1605                 break;
1606         case IFM_1000_LX:
1607         case IFM_1000_SX:
1608         case IFM_1000_T:
1609                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1610                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1611                 break;
1612         case IFM_100_TX:
1613                 adapter->hw.mac.autoneg = FALSE;
1614                 adapter->hw.phy.autoneg_advertised = 0;
1615                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1616                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1617                 else
1618                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1619                 break;
1620         case IFM_10_T:
1621                 adapter->hw.mac.autoneg = FALSE;
1622                 adapter->hw.phy.autoneg_advertised = 0;
1623                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1624                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1625                 else
1626                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1627                 break;
1628         default:
1629                 device_printf(adapter->dev, "Unsupported media type\n");
1630         }
1631
1632         em_if_init(ctx);
1633
1634         return (0);
1635 }
1636
1637 static int
1638 em_if_set_promisc(if_ctx_t ctx, int flags)
1639 {
1640         struct adapter *adapter = iflib_get_softc(ctx);
1641         u32 reg_rctl;
1642
1643         em_disable_promisc(ctx);
1644
1645         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1646
1647         if (flags & IFF_PROMISC) {
1648                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1649                 /* Turn this on if you want to see bad packets */
1650                 if (em_debug_sbp)
1651                         reg_rctl |= E1000_RCTL_SBP;
1652                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1653         } else if (flags & IFF_ALLMULTI) {
1654                 reg_rctl |= E1000_RCTL_MPE;
1655                 reg_rctl &= ~E1000_RCTL_UPE;
1656                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1657         }
1658         return (0);
1659 }
1660
1661 static void
1662 em_disable_promisc(if_ctx_t ctx)
1663 {
1664         struct adapter *adapter = iflib_get_softc(ctx);
1665         struct ifnet *ifp = iflib_get_ifp(ctx);
1666         u32 reg_rctl;
1667         int mcnt = 0;
1668
1669         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1670         reg_rctl &= (~E1000_RCTL_UPE);
1671         if (if_getflags(ifp) & IFF_ALLMULTI)
1672                 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1673         else
1674                 mcnt = if_llmaddr_count(ifp);
1675         /* Don't disable if in MAX groups */
1676         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1677                 reg_rctl &=  (~E1000_RCTL_MPE);
1678         reg_rctl &=  (~E1000_RCTL_SBP);
1679         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1680 }
1681
1682
1683 static u_int
1684 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1685 {
1686         u8 *mta = arg;
1687
1688         if (cnt == MAX_NUM_MULTICAST_ADDRESSES)
1689                 return (1);
1690
1691         bcopy(LLADDR(sdl), &mta[cnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1692
1693         return (1);
1694 }
1695
1696 /*********************************************************************
1697  *  Multicast Update
1698  *
1699  *  This routine is called whenever multicast address list is updated.
1700  *
1701  **********************************************************************/
1702
1703 static void
1704 em_if_multi_set(if_ctx_t ctx)
1705 {
1706         struct adapter *adapter = iflib_get_softc(ctx);
1707         struct ifnet *ifp = iflib_get_ifp(ctx);
1708         u32 reg_rctl = 0;
1709         u8  *mta; /* Multicast array memory */
1710         int mcnt = 0;
1711
1712         IOCTL_DEBUGOUT("em_set_multi: begin");
1713
1714         mta = adapter->mta;
1715         bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1716
1717         if (adapter->hw.mac.type == e1000_82542 &&
1718             adapter->hw.revision_id == E1000_REVISION_2) {
1719                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1720                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1721                         e1000_pci_clear_mwi(&adapter->hw);
1722                 reg_rctl |= E1000_RCTL_RST;
1723                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1724                 msec_delay(5);
1725         }
1726
1727         mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1728
1729         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1730                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1731                 reg_rctl |= E1000_RCTL_MPE;
1732                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1733         } else
1734                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1735
1736         if (adapter->hw.mac.type == e1000_82542 &&
1737             adapter->hw.revision_id == E1000_REVISION_2) {
1738                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1739                 reg_rctl &= ~E1000_RCTL_RST;
1740                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1741                 msec_delay(5);
1742                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1743                         e1000_pci_set_mwi(&adapter->hw);
1744         }
1745 }
1746
1747 /*********************************************************************
1748  *  Timer routine
1749  *
1750  *  This routine schedules em_if_update_admin_status() to check for
1751  *  link status and to gather statistics as well as to perform some
1752  *  controller-specific hardware patting.
1753  *
1754  **********************************************************************/
1755 static void
1756 em_if_timer(if_ctx_t ctx, uint16_t qid)
1757 {
1758
1759         if (qid != 0)
1760                 return;
1761
1762         iflib_admin_intr_deferred(ctx);
1763 }
1764
1765 static void
1766 em_if_update_admin_status(if_ctx_t ctx)
1767 {
1768         struct adapter *adapter = iflib_get_softc(ctx);
1769         struct e1000_hw *hw = &adapter->hw;
1770         device_t dev = iflib_get_dev(ctx);
1771         u32 link_check, thstat, ctrl;
1772
1773         link_check = thstat = ctrl = 0;
1774         /* Get the cached link value or read phy for real */
1775         switch (hw->phy.media_type) {
1776         case e1000_media_type_copper:
1777                 if (hw->mac.get_link_status) {
1778                         if (hw->mac.type == e1000_pch_spt)
1779                                 msec_delay(50);
1780                         /* Do the work to read phy */
1781                         e1000_check_for_link(hw);
1782                         link_check = !hw->mac.get_link_status;
1783                         if (link_check) /* ESB2 fix */
1784                                 e1000_cfg_on_link_up(hw);
1785                 } else {
1786                         link_check = TRUE;
1787                 }
1788                 break;
1789         case e1000_media_type_fiber:
1790                 e1000_check_for_link(hw);
1791                 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1792                             E1000_STATUS_LU);
1793                 break;
1794         case e1000_media_type_internal_serdes:
1795                 e1000_check_for_link(hw);
1796                 link_check = adapter->hw.mac.serdes_has_link;
1797                 break;
1798         /* VF device is type_unknown */
1799         case e1000_media_type_unknown:
1800                 e1000_check_for_link(hw);
1801                 link_check = !hw->mac.get_link_status;
1802                 /* FALLTHROUGH */
1803         default:
1804                 break;
1805         }
1806
1807         /* Check for thermal downshift or shutdown */
1808         if (hw->mac.type == e1000_i350) {
1809                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1810                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1811         }
1812
1813         /* Now check for a transition */
1814         if (link_check && (adapter->link_active == 0)) {
1815                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1816                     &adapter->link_duplex);
1817                 /* Check if we must disable SPEED_MODE bit on PCI-E */
1818                 if ((adapter->link_speed != SPEED_1000) &&
1819                     ((hw->mac.type == e1000_82571) ||
1820                     (hw->mac.type == e1000_82572))) {
1821                         int tarc0;
1822                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1823                         tarc0 &= ~TARC_SPEED_MODE_BIT;
1824                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1825                 }
1826                 if (bootverbose)
1827                         device_printf(dev, "Link is up %d Mbps %s\n",
1828                             adapter->link_speed,
1829                             ((adapter->link_duplex == FULL_DUPLEX) ?
1830                             "Full Duplex" : "Half Duplex"));
1831                 adapter->link_active = 1;
1832                 adapter->smartspeed = 0;
1833                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1834                     E1000_CTRL_EXT_LINK_MODE_GMII &&
1835                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1836                         device_printf(dev, "Link: thermal downshift\n");
1837                 /* Delay Link Up for Phy update */
1838                 if (((hw->mac.type == e1000_i210) ||
1839                     (hw->mac.type == e1000_i211)) &&
1840                     (hw->phy.id == I210_I_PHY_ID))
1841                         msec_delay(I210_LINK_DELAY);
1842                 /* Reset if the media type changed. */
1843                 if ((hw->dev_spec._82575.media_changed) &&
1844                         (adapter->hw.mac.type >= igb_mac_min)) {
1845                         hw->dev_spec._82575.media_changed = false;
1846                         adapter->flags |= IGB_MEDIA_RESET;
1847                         em_reset(ctx);
1848                 }
1849                 iflib_link_state_change(ctx, LINK_STATE_UP,
1850                     IF_Mbps(adapter->link_speed));
1851         } else if (!link_check && (adapter->link_active == 1)) {
1852                 adapter->link_speed = 0;
1853                 adapter->link_duplex = 0;
1854                 adapter->link_active = 0;
1855                 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1856         }
1857         em_update_stats_counters(adapter);
1858
1859         /* Reset LAA into RAR[0] on 82571 */
1860         if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1861                 e1000_rar_set(hw, hw->mac.addr, 0);
1862
1863         if (hw->mac.type < em_mac_min)
1864                 lem_smartspeed(adapter);
1865         else if (hw->mac.type == e1000_82574 &&
1866             adapter->intr_type == IFLIB_INTR_MSIX)
1867                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1868                     E1000_IMS_LSC);
1869 }
1870
1871 static void
1872 em_if_watchdog_reset(if_ctx_t ctx)
1873 {
1874         struct adapter *adapter = iflib_get_softc(ctx);
1875
1876         /*
1877          * Just count the event; iflib(4) will already trigger a
1878          * sufficient reset of the controller.
1879          */
1880         adapter->watchdog_events++;
1881 }
1882
1883 /*********************************************************************
1884  *
1885  *  This routine disables all traffic on the adapter by issuing a
1886  *  global reset on the MAC.
1887  *
1888  **********************************************************************/
1889 static void
1890 em_if_stop(if_ctx_t ctx)
1891 {
1892         struct adapter *adapter = iflib_get_softc(ctx);
1893
1894         INIT_DEBUGOUT("em_if_stop: begin");
1895
1896         e1000_reset_hw(&adapter->hw);
1897         if (adapter->hw.mac.type >= e1000_82544)
1898                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1899
1900         e1000_led_off(&adapter->hw);
1901         e1000_cleanup_led(&adapter->hw);
1902 }
1903
1904 /*********************************************************************
1905  *
1906  *  Determine hardware revision.
1907  *
1908  **********************************************************************/
1909 static void
1910 em_identify_hardware(if_ctx_t ctx)
1911 {
1912         device_t dev = iflib_get_dev(ctx);
1913         struct adapter *adapter = iflib_get_softc(ctx);
1914
1915         /* Make sure our PCI config space has the necessary stuff set */
1916         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1917
1918         /* Save off the information about this board */
1919         adapter->hw.vendor_id = pci_get_vendor(dev);
1920         adapter->hw.device_id = pci_get_device(dev);
1921         adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1922         adapter->hw.subsystem_vendor_id =
1923             pci_read_config(dev, PCIR_SUBVEND_0, 2);
1924         adapter->hw.subsystem_device_id =
1925             pci_read_config(dev, PCIR_SUBDEV_0, 2);
1926
1927         /* Do Shared Code Init and Setup */
1928         if (e1000_set_mac_type(&adapter->hw)) {
1929                 device_printf(dev, "Setup init failure\n");
1930                 return;
1931         }
1932 }
1933
1934 static int
1935 em_allocate_pci_resources(if_ctx_t ctx)
1936 {
1937         struct adapter *adapter = iflib_get_softc(ctx);
1938         device_t dev = iflib_get_dev(ctx);
1939         int rid, val;
1940
1941         rid = PCIR_BAR(0);
1942         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1943             &rid, RF_ACTIVE);
1944         if (adapter->memory == NULL) {
1945                 device_printf(dev, "Unable to allocate bus resource: memory\n");
1946                 return (ENXIO);
1947         }
1948         adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1949         adapter->osdep.mem_bus_space_handle =
1950             rman_get_bushandle(adapter->memory);
1951         adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1952
1953         /* Only older adapters use IO mapping */
1954         if (adapter->hw.mac.type < em_mac_min &&
1955             adapter->hw.mac.type > e1000_82543) {
1956                 /* Figure our where our IO BAR is ? */
1957                 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1958                         val = pci_read_config(dev, rid, 4);
1959                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1960                                 break;
1961                         }
1962                         rid += 4;
1963                         /* check for 64bit BAR */
1964                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1965                                 rid += 4;
1966                 }
1967                 if (rid >= PCIR_CIS) {
1968                         device_printf(dev, "Unable to locate IO BAR\n");
1969                         return (ENXIO);
1970                 }
1971                 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1972                     &rid, RF_ACTIVE);
1973                 if (adapter->ioport == NULL) {
1974                         device_printf(dev, "Unable to allocate bus resource: "
1975                             "ioport\n");
1976                         return (ENXIO);
1977                 }
1978                 adapter->hw.io_base = 0;
1979                 adapter->osdep.io_bus_space_tag =
1980                     rman_get_bustag(adapter->ioport);
1981                 adapter->osdep.io_bus_space_handle =
1982                     rman_get_bushandle(adapter->ioport);
1983         }
1984
1985         adapter->hw.back = &adapter->osdep;
1986
1987         return (0);
1988 }
1989
1990 /*********************************************************************
1991  *
1992  *  Set up the MSI-X Interrupt handlers
1993  *
1994  **********************************************************************/
1995 static int
1996 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1997 {
1998         struct adapter *adapter = iflib_get_softc(ctx);
1999         struct em_rx_queue *rx_que = adapter->rx_queues;
2000         struct em_tx_queue *tx_que = adapter->tx_queues;
2001         int error, rid, i, vector = 0, rx_vectors;
2002         char buf[16];
2003
2004         /* First set up ring resources */
2005         for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
2006                 rid = vector + 1;
2007                 snprintf(buf, sizeof(buf), "rxq%d", i);
2008                 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2009                 if (error) {
2010                         device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2011                         adapter->rx_num_queues = i + 1;
2012                         goto fail;
2013                 }
2014
2015                 rx_que->msix =  vector;
2016
2017                 /*
2018                  * Set the bit to enable interrupt
2019                  * in E1000_IMS -- bits 20 and 21
2020                  * are for RX0 and RX1, note this has
2021                  * NOTHING to do with the MSI-X vector
2022                  */
2023                 if (adapter->hw.mac.type == e1000_82574) {
2024                         rx_que->eims = 1 << (20 + i);
2025                         adapter->ims |= rx_que->eims;
2026                         adapter->ivars |= (8 | rx_que->msix) << (i * 4);
2027                 } else if (adapter->hw.mac.type == e1000_82575)
2028                         rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2029                 else
2030                         rx_que->eims = 1 << vector;
2031         }
2032         rx_vectors = vector;
2033
2034         vector = 0;
2035         for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2036                 snprintf(buf, sizeof(buf), "txq%d", i);
2037                 tx_que = &adapter->tx_queues[i];
2038                 iflib_softirq_alloc_generic(ctx,
2039                     &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2040                     IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2041
2042                 tx_que->msix = (vector % adapter->rx_num_queues);
2043
2044                 /*
2045                  * Set the bit to enable interrupt
2046                  * in E1000_IMS -- bits 22 and 23
2047                  * are for TX0 and TX1, note this has
2048                  * NOTHING to do with the MSI-X vector
2049                  */
2050                 if (adapter->hw.mac.type == e1000_82574) {
2051                         tx_que->eims = 1 << (22 + i);
2052                         adapter->ims |= tx_que->eims;
2053                         adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2054                 } else if (adapter->hw.mac.type == e1000_82575) {
2055                         tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2056                 } else {
2057                         tx_que->eims = 1 << i;
2058                 }
2059         }
2060
2061         /* Link interrupt */
2062         rid = rx_vectors + 1;
2063         error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2064
2065         if (error) {
2066                 device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2067                 goto fail;
2068         }
2069         adapter->linkvec = rx_vectors;
2070         if (adapter->hw.mac.type < igb_mac_min) {
2071                 adapter->ivars |=  (8 | rx_vectors) << 16;
2072                 adapter->ivars |= 0x80000000;
2073         }
2074         return (0);
2075 fail:
2076         iflib_irq_free(ctx, &adapter->irq);
2077         rx_que = adapter->rx_queues;
2078         for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2079                 iflib_irq_free(ctx, &rx_que->que_irq);
2080         return (error);
2081 }
2082
2083 static void
2084 igb_configure_queues(struct adapter *adapter)
2085 {
2086         struct e1000_hw *hw = &adapter->hw;
2087         struct em_rx_queue *rx_que;
2088         struct em_tx_queue *tx_que;
2089         u32 tmp, ivar = 0, newitr = 0;
2090
2091         /* First turn on RSS capability */
2092         if (adapter->hw.mac.type != e1000_82575)
2093                 E1000_WRITE_REG(hw, E1000_GPIE,
2094                     E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2095                     E1000_GPIE_PBA | E1000_GPIE_NSICR);
2096
2097         /* Turn on MSI-X */
2098         switch (adapter->hw.mac.type) {
2099         case e1000_82580:
2100         case e1000_i350:
2101         case e1000_i354:
2102         case e1000_i210:
2103         case e1000_i211:
2104         case e1000_vfadapt:
2105         case e1000_vfadapt_i350:
2106                 /* RX entries */
2107                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2108                         u32 index = i >> 1;
2109                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2110                         rx_que = &adapter->rx_queues[i];
2111                         if (i & 1) {
2112                                 ivar &= 0xFF00FFFF;
2113                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2114                         } else {
2115                                 ivar &= 0xFFFFFF00;
2116                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2117                         }
2118                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2119                 }
2120                 /* TX entries */
2121                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2122                         u32 index = i >> 1;
2123                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2124                         tx_que = &adapter->tx_queues[i];
2125                         if (i & 1) {
2126                                 ivar &= 0x00FFFFFF;
2127                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2128                         } else {
2129                                 ivar &= 0xFFFF00FF;
2130                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2131                         }
2132                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2133                         adapter->que_mask |= tx_que->eims;
2134                 }
2135
2136                 /* And for the link interrupt */
2137                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2138                 adapter->link_mask = 1 << adapter->linkvec;
2139                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2140                 break;
2141         case e1000_82576:
2142                 /* RX entries */
2143                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2144                         u32 index = i & 0x7; /* Each IVAR has two entries */
2145                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2146                         rx_que = &adapter->rx_queues[i];
2147                         if (i < 8) {
2148                                 ivar &= 0xFFFFFF00;
2149                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2150                         } else {
2151                                 ivar &= 0xFF00FFFF;
2152                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2153                         }
2154                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2155                         adapter->que_mask |= rx_que->eims;
2156                 }
2157                 /* TX entries */
2158                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2159                         u32 index = i & 0x7; /* Each IVAR has two entries */
2160                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2161                         tx_que = &adapter->tx_queues[i];
2162                         if (i < 8) {
2163                                 ivar &= 0xFFFF00FF;
2164                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2165                         } else {
2166                                 ivar &= 0x00FFFFFF;
2167                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2168                         }
2169                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2170                         adapter->que_mask |= tx_que->eims;
2171                 }
2172
2173                 /* And for the link interrupt */
2174                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2175                 adapter->link_mask = 1 << adapter->linkvec;
2176                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2177                 break;
2178
2179         case e1000_82575:
2180                 /* enable MSI-X support*/
2181                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2182                 tmp |= E1000_CTRL_EXT_PBA_CLR;
2183                 /* Auto-Mask interrupts upon ICR read. */
2184                 tmp |= E1000_CTRL_EXT_EIAME;
2185                 tmp |= E1000_CTRL_EXT_IRCA;
2186                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2187
2188                 /* Queues */
2189                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2190                         rx_que = &adapter->rx_queues[i];
2191                         tmp = E1000_EICR_RX_QUEUE0 << i;
2192                         tmp |= E1000_EICR_TX_QUEUE0 << i;
2193                         rx_que->eims = tmp;
2194                         E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2195                             i, rx_que->eims);
2196                         adapter->que_mask |= rx_que->eims;
2197                 }
2198
2199                 /* Link */
2200                 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2201                     E1000_EIMS_OTHER);
2202                 adapter->link_mask |= E1000_EIMS_OTHER;
2203         default:
2204                 break;
2205         }
2206
2207         /* Set the starting interrupt rate */
2208         if (em_max_interrupt_rate > 0)
2209                 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2210
2211         if (hw->mac.type == e1000_82575)
2212                 newitr |= newitr << 16;
2213         else
2214                 newitr |= E1000_EITR_CNT_IGNR;
2215
2216         for (int i = 0; i < adapter->rx_num_queues; i++) {
2217                 rx_que = &adapter->rx_queues[i];
2218                 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2219         }
2220
2221         return;
2222 }
2223
2224 static void
2225 em_free_pci_resources(if_ctx_t ctx)
2226 {
2227         struct adapter *adapter = iflib_get_softc(ctx);
2228         struct em_rx_queue *que = adapter->rx_queues;
2229         device_t dev = iflib_get_dev(ctx);
2230
2231         /* Release all MSI-X queue resources */
2232         if (adapter->intr_type == IFLIB_INTR_MSIX)
2233                 iflib_irq_free(ctx, &adapter->irq);
2234
2235         if (que != NULL) {
2236                 for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2237                         iflib_irq_free(ctx, &que->que_irq);
2238                 }
2239         }
2240
2241         if (adapter->memory != NULL) {
2242                 bus_release_resource(dev, SYS_RES_MEMORY,
2243                     rman_get_rid(adapter->memory), adapter->memory);
2244                 adapter->memory = NULL;
2245         }
2246
2247         if (adapter->flash != NULL) {
2248                 bus_release_resource(dev, SYS_RES_MEMORY,
2249                     rman_get_rid(adapter->flash), adapter->flash);
2250                 adapter->flash = NULL;
2251         }
2252
2253         if (adapter->ioport != NULL) {
2254                 bus_release_resource(dev, SYS_RES_IOPORT,
2255                     rman_get_rid(adapter->ioport), adapter->ioport);
2256                 adapter->ioport = NULL;
2257         }
2258 }
2259
2260 /* Set up MSI or MSI-X */
2261 static int
2262 em_setup_msix(if_ctx_t ctx)
2263 {
2264         struct adapter *adapter = iflib_get_softc(ctx);
2265
2266         if (adapter->hw.mac.type == e1000_82574) {
2267                 em_enable_vectors_82574(ctx);
2268         }
2269         return (0);
2270 }
2271
2272 /*********************************************************************
2273  *
2274  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2275  *
2276  **********************************************************************/
2277 static void
2278 lem_smartspeed(struct adapter *adapter)
2279 {
2280         u16 phy_tmp;
2281
2282         if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2283             adapter->hw.mac.autoneg == 0 ||
2284             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2285                 return;
2286
2287         if (adapter->smartspeed == 0) {
2288                 /* If Master/Slave config fault is asserted twice,
2289                  * we assume back-to-back */
2290                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2291                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2292                         return;
2293                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2294                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2295                         e1000_read_phy_reg(&adapter->hw,
2296                             PHY_1000T_CTRL, &phy_tmp);
2297                         if(phy_tmp & CR_1000T_MS_ENABLE) {
2298                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2299                                 e1000_write_phy_reg(&adapter->hw,
2300                                     PHY_1000T_CTRL, phy_tmp);
2301                                 adapter->smartspeed++;
2302                                 if(adapter->hw.mac.autoneg &&
2303                                    !e1000_copper_link_autoneg(&adapter->hw) &&
2304                                    !e1000_read_phy_reg(&adapter->hw,
2305                                     PHY_CONTROL, &phy_tmp)) {
2306                                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2307                                                     MII_CR_RESTART_AUTO_NEG);
2308                                         e1000_write_phy_reg(&adapter->hw,
2309                                             PHY_CONTROL, phy_tmp);
2310                                 }
2311                         }
2312                 }
2313                 return;
2314         } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2315                 /* If still no link, perhaps using 2/3 pair cable */
2316                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2317                 phy_tmp |= CR_1000T_MS_ENABLE;
2318                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2319                 if(adapter->hw.mac.autoneg &&
2320                    !e1000_copper_link_autoneg(&adapter->hw) &&
2321                    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2322                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2323                                     MII_CR_RESTART_AUTO_NEG);
2324                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2325                 }
2326         }
2327         /* Restart process after EM_SMARTSPEED_MAX iterations */
2328         if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2329                 adapter->smartspeed = 0;
2330 }
2331
2332 /*********************************************************************
2333  *
2334  *  Initialize the DMA Coalescing feature
2335  *
2336  **********************************************************************/
2337 static void
2338 igb_init_dmac(struct adapter *adapter, u32 pba)
2339 {
2340         device_t        dev = adapter->dev;
2341         struct e1000_hw *hw = &adapter->hw;
2342         u32             dmac, reg = ~E1000_DMACR_DMAC_EN;
2343         u16             hwm;
2344         u16             max_frame_size;
2345
2346         if (hw->mac.type == e1000_i211)
2347                 return;
2348
2349         max_frame_size = adapter->shared->isc_max_frame_size;
2350         if (hw->mac.type > e1000_82580) {
2351
2352                 if (adapter->dmac == 0) { /* Disabling it */
2353                         E1000_WRITE_REG(hw, E1000_DMACR, reg);
2354                         return;
2355                 } else
2356                         device_printf(dev, "DMA Coalescing enabled\n");
2357
2358                 /* Set starting threshold */
2359                 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2360
2361                 hwm = 64 * pba - max_frame_size / 16;
2362                 if (hwm < 64 * (pba - 6))
2363                         hwm = 64 * (pba - 6);
2364                 reg = E1000_READ_REG(hw, E1000_FCRTC);
2365                 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2366                 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2367                     & E1000_FCRTC_RTH_COAL_MASK);
2368                 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2369
2370
2371                 dmac = pba - max_frame_size / 512;
2372                 if (dmac < pba - 10)
2373                         dmac = pba - 10;
2374                 reg = E1000_READ_REG(hw, E1000_DMACR);
2375                 reg &= ~E1000_DMACR_DMACTHR_MASK;
2376                 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2377                     & E1000_DMACR_DMACTHR_MASK);
2378
2379                 /* transition to L0x or L1 if available..*/
2380                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2381
2382                 /* Check if status is 2.5Gb backplane connection
2383                 * before configuration of watchdog timer, which is
2384                 * in msec values in 12.8usec intervals
2385                 * watchdog timer= msec values in 32usec intervals
2386                 * for non 2.5Gb connection
2387                 */
2388                 if (hw->mac.type == e1000_i354) {
2389                         int status = E1000_READ_REG(hw, E1000_STATUS);
2390                         if ((status & E1000_STATUS_2P5_SKU) &&
2391                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2392                                 reg |= ((adapter->dmac * 5) >> 6);
2393                         else
2394                                 reg |= (adapter->dmac >> 5);
2395                 } else {
2396                         reg |= (adapter->dmac >> 5);
2397                 }
2398
2399                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2400
2401                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2402
2403                 /* Set the interval before transition */
2404                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2405                 if (hw->mac.type == e1000_i350)
2406                         reg |= IGB_DMCTLX_DCFLUSH_DIS;
2407                 /*
2408                 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2409                 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2410                 */
2411                 if (hw->mac.type == e1000_i354) {
2412                         int status = E1000_READ_REG(hw, E1000_STATUS);
2413                         if ((status & E1000_STATUS_2P5_SKU) &&
2414                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2415                                 reg |= 0xA;
2416                         else
2417                                 reg |= 0x4;
2418                 } else {
2419                         reg |= 0x4;
2420                 }
2421
2422                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2423
2424                 /* free space in tx packet buffer to wake from DMA coal */
2425                 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2426                     (2 * max_frame_size)) >> 6);
2427
2428                 /* make low power state decision controlled by DMA coal */
2429                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2430                 reg &= ~E1000_PCIEMISC_LX_DECISION;
2431                 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2432
2433         } else if (hw->mac.type == e1000_82580) {
2434                 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2435                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2436                     reg & ~E1000_PCIEMISC_LX_DECISION);
2437                 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2438         }
2439 }
2440
2441 /*********************************************************************
2442  *
2443  *  Initialize the hardware to a configuration as specified by the
2444  *  adapter structure.
2445  *
2446  **********************************************************************/
2447 static void
2448 em_reset(if_ctx_t ctx)
2449 {
2450         device_t dev = iflib_get_dev(ctx);
2451         struct adapter *adapter = iflib_get_softc(ctx);
2452         struct ifnet *ifp = iflib_get_ifp(ctx);
2453         struct e1000_hw *hw = &adapter->hw;
2454         u16 rx_buffer_size;
2455         u32 pba;
2456
2457         INIT_DEBUGOUT("em_reset: begin");
2458         /* Let the firmware know the OS is in control */
2459         em_get_hw_control(adapter);
2460
2461         /* Set up smart power down as default off on newer adapters. */
2462         if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2463             hw->mac.type == e1000_82572)) {
2464                 u16 phy_tmp = 0;
2465
2466                 /* Speed up time to link by disabling smart power down. */
2467                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2468                 phy_tmp &= ~IGP02E1000_PM_SPD;
2469                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2470         }
2471
2472         /*
2473          * Packet Buffer Allocation (PBA)
2474          * Writing PBA sets the receive portion of the buffer
2475          * the remainder is used for the transmit buffer.
2476          */
2477         switch (hw->mac.type) {
2478         /* Total Packet Buffer on these is 48K */
2479         case e1000_82571:
2480         case e1000_82572:
2481         case e1000_80003es2lan:
2482                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2483                 break;
2484         case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2485                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2486                 break;
2487         case e1000_82574:
2488         case e1000_82583:
2489                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2490                 break;
2491         case e1000_ich8lan:
2492                 pba = E1000_PBA_8K;
2493                 break;
2494         case e1000_ich9lan:
2495         case e1000_ich10lan:
2496                 /* Boost Receive side for jumbo frames */
2497                 if (adapter->hw.mac.max_frame_size > 4096)
2498                         pba = E1000_PBA_14K;
2499                 else
2500                         pba = E1000_PBA_10K;
2501                 break;
2502         case e1000_pchlan:
2503         case e1000_pch2lan:
2504         case e1000_pch_lpt:
2505         case e1000_pch_spt:
2506         case e1000_pch_cnp:
2507                 pba = E1000_PBA_26K;
2508                 break;
2509         case e1000_82575:
2510                 pba = E1000_PBA_32K;
2511                 break;
2512         case e1000_82576:
2513         case e1000_vfadapt:
2514                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2515                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2516                 break;
2517         case e1000_82580:
2518         case e1000_i350:
2519         case e1000_i354:
2520         case e1000_vfadapt_i350:
2521                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2522                 pba = e1000_rxpbs_adjust_82580(pba);
2523                 break;
2524         case e1000_i210:
2525         case e1000_i211:
2526                 pba = E1000_PBA_34K;
2527                 break;
2528         default:
2529                 if (adapter->hw.mac.max_frame_size > 8192)
2530                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2531                 else
2532                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2533         }
2534
2535         /* Special needs in case of Jumbo frames */
2536         if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2537                 u32 tx_space, min_tx, min_rx;
2538                 pba = E1000_READ_REG(hw, E1000_PBA);
2539                 tx_space = pba >> 16;
2540                 pba &= 0xffff;
2541                 min_tx = (adapter->hw.mac.max_frame_size +
2542                     sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2543                 min_tx = roundup2(min_tx, 1024);
2544                 min_tx >>= 10;
2545                 min_rx = adapter->hw.mac.max_frame_size;
2546                 min_rx = roundup2(min_rx, 1024);
2547                 min_rx >>= 10;
2548                 if (tx_space < min_tx &&
2549                     ((min_tx - tx_space) < pba)) {
2550                         pba = pba - (min_tx - tx_space);
2551                         /*
2552                          * if short on rx space, rx wins
2553                          * and must trump tx adjustment
2554                          */
2555                         if (pba < min_rx)
2556                                 pba = min_rx;
2557                 }
2558                 E1000_WRITE_REG(hw, E1000_PBA, pba);
2559         }
2560
2561         if (hw->mac.type < igb_mac_min)
2562                 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2563
2564         INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2565
2566         /*
2567          * These parameters control the automatic generation (Tx) and
2568          * response (Rx) to Ethernet PAUSE frames.
2569          * - High water mark should allow for at least two frames to be
2570          *   received after sending an XOFF.
2571          * - Low water mark works best when it is very near the high water mark.
2572          *   This allows the receiver to restart by sending XON when it has
2573          *   drained a bit. Here we use an arbitrary value of 1500 which will
2574          *   restart after one full frame is pulled from the buffer. There
2575          *   could be several smaller frames in the buffer and if so they will
2576          *   not trigger the XON until their total number reduces the buffer
2577          *   by 1500.
2578          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2579          */
2580         rx_buffer_size = (pba & 0xffff) << 10;
2581         hw->fc.high_water = rx_buffer_size -
2582             roundup2(adapter->hw.mac.max_frame_size, 1024);
2583         hw->fc.low_water = hw->fc.high_water - 1500;
2584
2585         if (adapter->fc) /* locally set flow control value? */
2586                 hw->fc.requested_mode = adapter->fc;
2587         else
2588                 hw->fc.requested_mode = e1000_fc_full;
2589
2590         if (hw->mac.type == e1000_80003es2lan)
2591                 hw->fc.pause_time = 0xFFFF;
2592         else
2593                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
2594
2595         hw->fc.send_xon = TRUE;
2596
2597         /* Device specific overrides/settings */
2598         switch (hw->mac.type) {
2599         case e1000_pchlan:
2600                 /* Workaround: no TX flow ctrl for PCH */
2601                 hw->fc.requested_mode = e1000_fc_rx_pause;
2602                 hw->fc.pause_time = 0xFFFF; /* override */
2603                 if (if_getmtu(ifp) > ETHERMTU) {
2604                         hw->fc.high_water = 0x3500;
2605                         hw->fc.low_water = 0x1500;
2606                 } else {
2607                         hw->fc.high_water = 0x5000;
2608                         hw->fc.low_water = 0x3000;
2609                 }
2610                 hw->fc.refresh_time = 0x1000;
2611                 break;
2612         case e1000_pch2lan:
2613         case e1000_pch_lpt:
2614         case e1000_pch_spt:
2615         case e1000_pch_cnp:
2616                 hw->fc.high_water = 0x5C20;
2617                 hw->fc.low_water = 0x5048;
2618                 hw->fc.pause_time = 0x0650;
2619                 hw->fc.refresh_time = 0x0400;
2620                 /* Jumbos need adjusted PBA */
2621                 if (if_getmtu(ifp) > ETHERMTU)
2622                         E1000_WRITE_REG(hw, E1000_PBA, 12);
2623                 else
2624                         E1000_WRITE_REG(hw, E1000_PBA, 26);
2625                 break;
2626         case e1000_82575:
2627         case e1000_82576:
2628                 /* 8-byte granularity */
2629                 hw->fc.low_water = hw->fc.high_water - 8;
2630                 break;
2631         case e1000_82580:
2632         case e1000_i350:
2633         case e1000_i354:
2634         case e1000_i210:
2635         case e1000_i211:
2636         case e1000_vfadapt:
2637         case e1000_vfadapt_i350:
2638                 /* 16-byte granularity */
2639                 hw->fc.low_water = hw->fc.high_water - 16;
2640                 break;
2641         case e1000_ich9lan:
2642         case e1000_ich10lan:
2643                 if (if_getmtu(ifp) > ETHERMTU) {
2644                         hw->fc.high_water = 0x2800;
2645                         hw->fc.low_water = hw->fc.high_water - 8;
2646                         break;
2647                 }
2648                 /* FALLTHROUGH */
2649         default:
2650                 if (hw->mac.type == e1000_80003es2lan)
2651                         hw->fc.pause_time = 0xFFFF;
2652                 break;
2653         }
2654
2655         /* Issue a global reset */
2656         e1000_reset_hw(hw);
2657         if (adapter->hw.mac.type >= igb_mac_min) {
2658                 E1000_WRITE_REG(hw, E1000_WUC, 0);
2659         } else {
2660                 E1000_WRITE_REG(hw, E1000_WUFC, 0);
2661                 em_disable_aspm(adapter);
2662         }
2663         if (adapter->flags & IGB_MEDIA_RESET) {
2664                 e1000_setup_init_funcs(hw, TRUE);
2665                 e1000_get_bus_info(hw);
2666                 adapter->flags &= ~IGB_MEDIA_RESET;
2667         }
2668         /* and a re-init */
2669         if (e1000_init_hw(hw) < 0) {
2670                 device_printf(dev, "Hardware Initialization Failed\n");
2671                 return;
2672         }
2673         if (adapter->hw.mac.type >= igb_mac_min)
2674                 igb_init_dmac(adapter, pba);
2675
2676         E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2677         e1000_get_phy_info(hw);
2678         e1000_check_for_link(hw);
2679 }
2680
2681 /*
2682  * Initialise the RSS mapping for NICs that support multiple transmit/
2683  * receive rings.
2684  */
2685
2686 #define RSSKEYLEN 10
2687 static void
2688 em_initialize_rss_mapping(struct adapter *adapter)
2689 {
2690         uint8_t  rss_key[4 * RSSKEYLEN];
2691         uint32_t reta = 0;
2692         struct e1000_hw *hw = &adapter->hw;
2693         int i;
2694
2695         /*
2696          * Configure RSS key
2697          */
2698         arc4rand(rss_key, sizeof(rss_key), 0);
2699         for (i = 0; i < RSSKEYLEN; ++i) {
2700                 uint32_t rssrk = 0;
2701
2702                 rssrk = EM_RSSRK_VAL(rss_key, i);
2703                 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2704         }
2705
2706         /*
2707          * Configure RSS redirect table in following fashion:
2708          * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2709          */
2710         for (i = 0; i < sizeof(reta); ++i) {
2711                 uint32_t q;
2712
2713                 q = (i % adapter->rx_num_queues) << 7;
2714                 reta |= q << (8 * i);
2715         }
2716
2717         for (i = 0; i < 32; ++i)
2718                 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2719
2720         E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2721                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2722                         E1000_MRQC_RSS_FIELD_IPV4 |
2723                         E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2724                         E1000_MRQC_RSS_FIELD_IPV6_EX |
2725                         E1000_MRQC_RSS_FIELD_IPV6);
2726 }
2727
2728 static void
2729 igb_initialize_rss_mapping(struct adapter *adapter)
2730 {
2731         struct e1000_hw *hw = &adapter->hw;
2732         int i;
2733         int queue_id;
2734         u32 reta;
2735         u32 rss_key[10], mrqc, shift = 0;
2736
2737         /* XXX? */
2738         if (adapter->hw.mac.type == e1000_82575)
2739                 shift = 6;
2740
2741         /*
2742          * The redirection table controls which destination
2743          * queue each bucket redirects traffic to.
2744          * Each DWORD represents four queues, with the LSB
2745          * being the first queue in the DWORD.
2746          *
2747          * This just allocates buckets to queues using round-robin
2748          * allocation.
2749          *
2750          * NOTE: It Just Happens to line up with the default
2751          * RSS allocation method.
2752          */
2753
2754         /* Warning FM follows */
2755         reta = 0;
2756         for (i = 0; i < 128; i++) {
2757 #ifdef RSS
2758                 queue_id = rss_get_indirection_to_bucket(i);
2759                 /*
2760                  * If we have more queues than buckets, we'll
2761                  * end up mapping buckets to a subset of the
2762                  * queues.
2763                  *
2764                  * If we have more buckets than queues, we'll
2765                  * end up instead assigning multiple buckets
2766                  * to queues.
2767                  *
2768                  * Both are suboptimal, but we need to handle
2769                  * the case so we don't go out of bounds
2770                  * indexing arrays and such.
2771                  */
2772                 queue_id = queue_id % adapter->rx_num_queues;
2773 #else
2774                 queue_id = (i % adapter->rx_num_queues);
2775 #endif
2776                 /* Adjust if required */
2777                 queue_id = queue_id << shift;
2778
2779                 /*
2780                  * The low 8 bits are for hash value (n+0);
2781                  * The next 8 bits are for hash value (n+1), etc.
2782                  */
2783                 reta = reta >> 8;
2784                 reta = reta | ( ((uint32_t) queue_id) << 24);
2785                 if ((i & 3) == 3) {
2786                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2787                         reta = 0;
2788                 }
2789         }
2790
2791         /* Now fill in hash table */
2792
2793         /*
2794          * MRQC: Multiple Receive Queues Command
2795          * Set queuing to RSS control, number depends on the device.
2796          */
2797         mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2798
2799 #ifdef RSS
2800         /* XXX ew typecasting */
2801         rss_getkey((uint8_t *) &rss_key);
2802 #else
2803         arc4rand(&rss_key, sizeof(rss_key), 0);
2804 #endif
2805         for (i = 0; i < 10; i++)
2806                 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2807
2808         /*
2809          * Configure the RSS fields to hash upon.
2810          */
2811         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2812             E1000_MRQC_RSS_FIELD_IPV4_TCP);
2813         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2814             E1000_MRQC_RSS_FIELD_IPV6_TCP);
2815         mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2816             E1000_MRQC_RSS_FIELD_IPV6_UDP);
2817         mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2818             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2819
2820         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2821 }
2822
2823 /*********************************************************************
2824  *
2825  *  Setup networking device structure and register interface media.
2826  *
2827  **********************************************************************/
2828 static int
2829 em_setup_interface(if_ctx_t ctx)
2830 {
2831         struct ifnet *ifp = iflib_get_ifp(ctx);
2832         struct adapter *adapter = iflib_get_softc(ctx);
2833         if_softc_ctx_t scctx = adapter->shared;
2834
2835         INIT_DEBUGOUT("em_setup_interface: begin");
2836
2837         /* Single Queue */
2838         if (adapter->tx_num_queues == 1) {
2839                 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2840                 if_setsendqready(ifp);
2841         }
2842
2843         /*
2844          * Specify the media types supported by this adapter and register
2845          * callbacks to update media and link information
2846          */
2847         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2848             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2849                 u_char fiber_type = IFM_1000_SX;        /* default type */
2850
2851                 if (adapter->hw.mac.type == e1000_82545)
2852                         fiber_type = IFM_1000_LX;
2853                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2854                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2855         } else {
2856                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2857                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2858                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2859                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2860                 if (adapter->hw.phy.type != e1000_phy_ife) {
2861                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2862                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2863                 }
2864         }
2865         ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2866         ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2867         return (0);
2868 }
2869
2870 static int
2871 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2872 {
2873         struct adapter *adapter = iflib_get_softc(ctx);
2874         if_softc_ctx_t scctx = adapter->shared;
2875         int error = E1000_SUCCESS;
2876         struct em_tx_queue *que;
2877         int i, j;
2878
2879         MPASS(adapter->tx_num_queues > 0);
2880         MPASS(adapter->tx_num_queues == ntxqsets);
2881
2882         /* First allocate the top level queue structs */
2883         if (!(adapter->tx_queues =
2884             (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2885             adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2886                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2887                 return(ENOMEM);
2888         }
2889
2890         for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2891                 /* Set up some basics */
2892
2893                 struct tx_ring *txr = &que->txr;
2894                 txr->adapter = que->adapter = adapter;
2895                 que->me = txr->me =  i;
2896
2897                 /* Allocate report status array */
2898                 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2899                         device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2900                         error = ENOMEM;
2901                         goto fail;
2902                 }
2903                 for (j = 0; j < scctx->isc_ntxd[0]; j++)
2904                         txr->tx_rsq[j] = QIDX_INVALID;
2905                 /* get the virtual and physical address of the hardware queues */
2906                 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2907                 txr->tx_paddr = paddrs[i*ntxqs];
2908         }
2909
2910         if (bootverbose)
2911                 device_printf(iflib_get_dev(ctx),
2912                     "allocated for %d tx_queues\n", adapter->tx_num_queues);
2913         return (0);
2914 fail:
2915         em_if_queues_free(ctx);
2916         return (error);
2917 }
2918
2919 static int
2920 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2921 {
2922         struct adapter *adapter = iflib_get_softc(ctx);
2923         int error = E1000_SUCCESS;
2924         struct em_rx_queue *que;
2925         int i;
2926
2927         MPASS(adapter->rx_num_queues > 0);
2928         MPASS(adapter->rx_num_queues == nrxqsets);
2929
2930         /* First allocate the top level queue structs */
2931         if (!(adapter->rx_queues =
2932             (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2933             adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2934                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2935                 error = ENOMEM;
2936                 goto fail;
2937         }
2938
2939         for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2940                 /* Set up some basics */
2941                 struct rx_ring *rxr = &que->rxr;
2942                 rxr->adapter = que->adapter = adapter;
2943                 rxr->que = que;
2944                 que->me = rxr->me =  i;
2945
2946                 /* get the virtual and physical address of the hardware queues */
2947                 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2948                 rxr->rx_paddr = paddrs[i*nrxqs];
2949         }
2950  
2951         if (bootverbose)
2952                 device_printf(iflib_get_dev(ctx),
2953                     "allocated for %d rx_queues\n", adapter->rx_num_queues);
2954
2955         return (0);
2956 fail:
2957         em_if_queues_free(ctx);
2958         return (error);
2959 }
2960
2961 static void
2962 em_if_queues_free(if_ctx_t ctx)
2963 {
2964         struct adapter *adapter = iflib_get_softc(ctx);
2965         struct em_tx_queue *tx_que = adapter->tx_queues;
2966         struct em_rx_queue *rx_que = adapter->rx_queues;
2967
2968         if (tx_que != NULL) {
2969                 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2970                         struct tx_ring *txr = &tx_que->txr;
2971                         if (txr->tx_rsq == NULL)
2972                                 break;
2973
2974                         free(txr->tx_rsq, M_DEVBUF);
2975                         txr->tx_rsq = NULL;
2976                 }
2977                 free(adapter->tx_queues, M_DEVBUF);
2978                 adapter->tx_queues = NULL;
2979         }
2980
2981         if (rx_que != NULL) {
2982                 free(adapter->rx_queues, M_DEVBUF);
2983                 adapter->rx_queues = NULL;
2984         }
2985
2986         em_release_hw_control(adapter);
2987
2988         if (adapter->mta != NULL) {
2989                 free(adapter->mta, M_DEVBUF);
2990         }
2991 }
2992
2993 /*********************************************************************
2994  *
2995  *  Enable transmit unit.
2996  *
2997  **********************************************************************/
2998 static void
2999 em_initialize_transmit_unit(if_ctx_t ctx)
3000 {
3001         struct adapter *adapter = iflib_get_softc(ctx);
3002         if_softc_ctx_t scctx = adapter->shared;
3003         struct em_tx_queue *que;
3004         struct tx_ring  *txr;
3005         struct e1000_hw *hw = &adapter->hw;
3006         u32 tctl, txdctl = 0, tarc, tipg = 0;
3007
3008         INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3009
3010         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
3011                 u64 bus_addr;
3012                 caddr_t offp, endp;
3013
3014                 que = &adapter->tx_queues[i];
3015                 txr = &que->txr;
3016                 bus_addr = txr->tx_paddr;
3017
3018                 /* Clear checksum offload context. */
3019                 offp = (caddr_t)&txr->csum_flags;
3020                 endp = (caddr_t)(txr + 1);
3021                 bzero(offp, endp - offp);
3022
3023                 /* Base and Len of TX Ring */
3024                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
3025                     scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3026                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
3027                     (u32)(bus_addr >> 32));
3028                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
3029                     (u32)bus_addr);
3030                 /* Init the HEAD/TAIL indices */
3031                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3032                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3033
3034                 HW_DEBUGOUT2("Base = %x, Length = %x\n",
3035                     E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
3036                     E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
3037
3038                 txdctl = 0; /* clear txdctl */
3039                 txdctl |= 0x1f; /* PTHRESH */
3040                 txdctl |= 1 << 8; /* HTHRESH */
3041                 txdctl |= 1 << 16;/* WTHRESH */
3042                 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3043                 txdctl |= E1000_TXDCTL_GRAN;
3044                 txdctl |= 1 << 25; /* LWTHRESH */
3045
3046                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3047         }
3048
3049         /* Set the default values for the Tx Inter Packet Gap timer */
3050         switch (adapter->hw.mac.type) {
3051         case e1000_80003es2lan:
3052                 tipg = DEFAULT_82543_TIPG_IPGR1;
3053                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3054                     E1000_TIPG_IPGR2_SHIFT;
3055                 break;
3056         case e1000_82542:
3057                 tipg = DEFAULT_82542_TIPG_IPGT;
3058                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3059                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3060                 break;
3061         default:
3062                 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
3063                     (adapter->hw.phy.media_type ==
3064                     e1000_media_type_internal_serdes))
3065                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3066                 else
3067                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3068                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3069                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3070         }
3071
3072         E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3073         E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
3074
3075         if(adapter->hw.mac.type >= e1000_82540)
3076                 E1000_WRITE_REG(&adapter->hw, E1000_TADV,
3077                     adapter->tx_abs_int_delay.value);
3078
3079         if ((adapter->hw.mac.type == e1000_82571) ||
3080             (adapter->hw.mac.type == e1000_82572)) {
3081                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3082                 tarc |= TARC_SPEED_MODE_BIT;
3083                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3084         } else if (adapter->hw.mac.type == e1000_80003es2lan) {
3085                 /* errata: program both queues to unweighted RR */
3086                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3087                 tarc |= 1;
3088                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3089                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3090                 tarc |= 1;
3091                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3092         } else if (adapter->hw.mac.type == e1000_82574) {
3093                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3094                 tarc |= TARC_ERRATA_BIT;
3095                 if ( adapter->tx_num_queues > 1) {
3096                         tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3097                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3098                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3099                 } else
3100                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3101         }
3102
3103         if (adapter->tx_int_delay.value > 0)
3104                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3105
3106         /* Program the Transmit Control Register */
3107         tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3108         tctl &= ~E1000_TCTL_CT;
3109         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3110                    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3111
3112         if (adapter->hw.mac.type >= e1000_82571)
3113                 tctl |= E1000_TCTL_MULR;
3114
3115         /* This write will effectively turn on the transmit unit. */
3116         E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3117
3118         /* SPT and KBL errata workarounds */
3119         if (hw->mac.type == e1000_pch_spt) {
3120                 u32 reg;
3121                 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3122                 reg |= E1000_RCTL_RDMTS_HEX;
3123                 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3124                 /* i218-i219 Specification Update 1.5.4.5 */
3125                 reg = E1000_READ_REG(hw, E1000_TARC(0));
3126                 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3127                 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3128                 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3129         }
3130 }
3131
3132 /*********************************************************************
3133  *
3134  *  Enable receive unit.
3135  *
3136  **********************************************************************/
3137
3138 static void
3139 em_initialize_receive_unit(if_ctx_t ctx)
3140 {
3141         struct adapter *adapter = iflib_get_softc(ctx);
3142         if_softc_ctx_t scctx = adapter->shared;
3143         struct ifnet *ifp = iflib_get_ifp(ctx);
3144         struct e1000_hw *hw = &adapter->hw;
3145         struct em_rx_queue *que;
3146         int i;
3147         u32 rctl, rxcsum, rfctl;
3148
3149         INIT_DEBUGOUT("em_initialize_receive_units: begin");
3150
3151         /*
3152          * Make sure receives are disabled while setting
3153          * up the descriptor ring
3154          */
3155         rctl = E1000_READ_REG(hw, E1000_RCTL);
3156         /* Do not disable if ever enabled on this hardware */
3157         if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3158                 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3159
3160         /* Setup the Receive Control Register */
3161         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3162         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3163             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3164             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3165
3166         /* Do not store bad packets */
3167         rctl &= ~E1000_RCTL_SBP;
3168
3169         /* Enable Long Packet receive */
3170         if (if_getmtu(ifp) > ETHERMTU)
3171                 rctl |= E1000_RCTL_LPE;
3172         else
3173                 rctl &= ~E1000_RCTL_LPE;
3174
3175         /* Strip the CRC */
3176         if (!em_disable_crc_stripping)
3177                 rctl |= E1000_RCTL_SECRC;
3178
3179         if (adapter->hw.mac.type >= e1000_82540) {
3180                 E1000_WRITE_REG(&adapter->hw, E1000_RADV,
3181                             adapter->rx_abs_int_delay.value);
3182
3183                 /*
3184                  * Set the interrupt throttling rate. Value is calculated
3185                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3186                  */
3187                 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3188         }
3189         E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
3190             adapter->rx_int_delay.value);
3191
3192         /* Use extended rx descriptor formats */
3193         rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3194         rfctl |= E1000_RFCTL_EXTEN;
3195         /*
3196          * When using MSI-X interrupts we need to throttle
3197          * using the EITR register (82574 only)
3198          */
3199         if (hw->mac.type == e1000_82574) {
3200                 for (int i = 0; i < 4; i++)
3201                         E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3202                             DEFAULT_ITR);
3203                 /* Disable accelerated acknowledge */
3204                 rfctl |= E1000_RFCTL_ACK_DIS;
3205         }
3206         E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3207
3208         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3209         if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3210             adapter->hw.mac.type >= e1000_82543) {
3211                 if (adapter->tx_num_queues > 1) {
3212                         if (adapter->hw.mac.type >= igb_mac_min) {
3213                                 rxcsum |= E1000_RXCSUM_PCSD;
3214                                 if (hw->mac.type != e1000_82575)
3215                                         rxcsum |= E1000_RXCSUM_CRCOFL;
3216                         } else
3217                                 rxcsum |= E1000_RXCSUM_TUOFL |
3218                                         E1000_RXCSUM_IPOFL |
3219                                         E1000_RXCSUM_PCSD;
3220                 } else {
3221                         if (adapter->hw.mac.type >= igb_mac_min)
3222                                 rxcsum |= E1000_RXCSUM_IPPCSE;
3223                         else
3224                                 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3225                         if (adapter->hw.mac.type > e1000_82575)
3226                                 rxcsum |= E1000_RXCSUM_CRCOFL;
3227                 }
3228         } else
3229                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3230
3231         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3232
3233         if (adapter->rx_num_queues > 1) {
3234                 if (adapter->hw.mac.type >= igb_mac_min)
3235                         igb_initialize_rss_mapping(adapter);
3236                 else
3237                         em_initialize_rss_mapping(adapter);
3238         }
3239
3240         /*
3241          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3242          * long latencies are observed, like Lenovo X60. This
3243          * change eliminates the problem, but since having positive
3244          * values in RDTR is a known source of problems on other
3245          * platforms another solution is being sought.
3246          */
3247         if (hw->mac.type == e1000_82573)
3248                 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3249
3250         for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3251                 struct rx_ring *rxr = &que->rxr;
3252                 /* Setup the Base and Length of the Rx Descriptor Ring */
3253                 u64 bus_addr = rxr->rx_paddr;
3254 #if 0
3255                 u32 rdt = adapter->rx_num_queues -1;  /* default */
3256 #endif
3257
3258                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3259                     scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3260                 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3261                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3262                 /* Setup the Head and Tail Descriptor Pointers */
3263                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3264                 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3265         }
3266
3267         /*
3268          * Set PTHRESH for improved jumbo performance
3269          * According to 10.2.5.11 of Intel 82574 Datasheet,
3270          * RXDCTL(1) is written whenever RXDCTL(0) is written.
3271          * Only write to RXDCTL(1) if there is a need for different
3272          * settings.
3273          */
3274
3275         if (((adapter->hw.mac.type == e1000_ich9lan) ||
3276             (adapter->hw.mac.type == e1000_pch2lan) ||
3277             (adapter->hw.mac.type == e1000_ich10lan)) &&
3278             (if_getmtu(ifp) > ETHERMTU)) {
3279                 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3280                 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3281         } else if (adapter->hw.mac.type == e1000_82574) {
3282                 for (int i = 0; i < adapter->rx_num_queues; i++) {
3283                         u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3284                         rxdctl |= 0x20; /* PTHRESH */
3285                         rxdctl |= 4 << 8; /* HTHRESH */
3286                         rxdctl |= 4 << 16;/* WTHRESH */
3287                         rxdctl |= 1 << 24; /* Switch to granularity */
3288                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3289                 }
3290         } else if (adapter->hw.mac.type >= igb_mac_min) {
3291                 u32 psize, srrctl = 0;
3292
3293                 if (if_getmtu(ifp) > ETHERMTU) {
3294                         /* Set maximum packet len */
3295                         if (adapter->rx_mbuf_sz <= 4096) {
3296                                 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3297                                 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3298                         } else if (adapter->rx_mbuf_sz > 4096) {
3299                                 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3300                                 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3301                         }
3302                         psize = scctx->isc_max_frame_size;
3303                         /* are we on a vlan? */
3304                         if (ifp->if_vlantrunk != NULL)
3305                                 psize += VLAN_TAG_SIZE;
3306                         E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
3307                 } else {
3308                         srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3309                         rctl |= E1000_RCTL_SZ_2048;
3310                 }
3311
3312                 /*
3313                  * If TX flow control is disabled and there's >1 queue defined,
3314                  * enable DROP.
3315                  *
3316                  * This drops frames rather than hanging the RX MAC for all queues.
3317                  */
3318                 if ((adapter->rx_num_queues > 1) &&
3319                     (adapter->fc == e1000_fc_none ||
3320                      adapter->fc == e1000_fc_rx_pause)) {
3321                         srrctl |= E1000_SRRCTL_DROP_EN;
3322                 }
3323                         /* Setup the Base and Length of the Rx Descriptor Rings */
3324                 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3325                         struct rx_ring *rxr = &que->rxr;
3326                         u64 bus_addr = rxr->rx_paddr;
3327                         u32 rxdctl;
3328
3329 #ifdef notyet
3330                         /* Configure for header split? -- ignore for now */
3331                         rxr->hdr_split = igb_header_split;
3332 #else
3333                         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3334 #endif
3335
3336                         E1000_WRITE_REG(hw, E1000_RDLEN(i),
3337                                         scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3338                         E1000_WRITE_REG(hw, E1000_RDBAH(i),
3339                                         (uint32_t)(bus_addr >> 32));
3340                         E1000_WRITE_REG(hw, E1000_RDBAL(i),
3341                                         (uint32_t)bus_addr);
3342                         E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3343                         /* Enable this Queue */
3344                         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3345                         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3346                         rxdctl &= 0xFFF00000;
3347                         rxdctl |= IGB_RX_PTHRESH;
3348                         rxdctl |= IGB_RX_HTHRESH << 8;
3349                         rxdctl |= IGB_RX_WTHRESH << 16;
3350                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3351                 }               
3352         } else if (adapter->hw.mac.type >= e1000_pch2lan) {
3353                 if (if_getmtu(ifp) > ETHERMTU)
3354                         e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3355                 else
3356                         e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3357         }
3358
3359         /* Make sure VLAN Filters are off */
3360         rctl &= ~E1000_RCTL_VFE;
3361
3362         if (adapter->hw.mac.type < igb_mac_min) {
3363                 if (adapter->rx_mbuf_sz == MCLBYTES)
3364                         rctl |= E1000_RCTL_SZ_2048;
3365                 else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3366                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3367                 else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3368                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3369
3370                 /* ensure we clear use DTYPE of 00 here */
3371                 rctl &= ~0x00000C00;
3372         }
3373
3374         /* Write out the settings */
3375         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3376
3377         return;
3378 }
3379
3380 static void
3381 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3382 {
3383         struct adapter *adapter = iflib_get_softc(ctx);
3384         u32 index, bit;
3385
3386         index = (vtag >> 5) & 0x7F;
3387         bit = vtag & 0x1F;
3388         adapter->shadow_vfta[index] |= (1 << bit);
3389         ++adapter->num_vlans;
3390 }
3391
3392 static void
3393 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3394 {
3395         struct adapter *adapter = iflib_get_softc(ctx);
3396         u32 index, bit;
3397
3398         index = (vtag >> 5) & 0x7F;
3399         bit = vtag & 0x1F;
3400         adapter->shadow_vfta[index] &= ~(1 << bit);
3401         --adapter->num_vlans;
3402 }
3403
3404 static void
3405 em_setup_vlan_hw_support(struct adapter *adapter)
3406 {
3407         struct e1000_hw *hw = &adapter->hw;
3408         u32 reg;
3409
3410         /*
3411          * We get here thru init_locked, meaning
3412          * a soft reset, this has already cleared
3413          * the VFTA and other state, so if there
3414          * have been no vlan's registered do nothing.
3415          */
3416         if (adapter->num_vlans == 0)
3417                 return;
3418
3419         /*
3420          * A soft reset zero's out the VFTA, so
3421          * we need to repopulate it now.
3422          */
3423         for (int i = 0; i < EM_VFTA_SIZE; i++)
3424                 if (adapter->shadow_vfta[i] != 0)
3425                         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3426                             i, adapter->shadow_vfta[i]);
3427
3428         reg = E1000_READ_REG(hw, E1000_CTRL);
3429         reg |= E1000_CTRL_VME;
3430         E1000_WRITE_REG(hw, E1000_CTRL, reg);
3431
3432         /* Enable the Filter Table */
3433         reg = E1000_READ_REG(hw, E1000_RCTL);
3434         reg &= ~E1000_RCTL_CFIEN;
3435         reg |= E1000_RCTL_VFE;
3436         E1000_WRITE_REG(hw, E1000_RCTL, reg);
3437 }
3438
3439 static void
3440 em_if_intr_enable(if_ctx_t ctx)
3441 {
3442         struct adapter *adapter = iflib_get_softc(ctx);
3443         struct e1000_hw *hw = &adapter->hw;
3444         u32 ims_mask = IMS_ENABLE_MASK;
3445
3446         if (hw->mac.type == e1000_82574) {
3447                 E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3448                 ims_mask |= adapter->ims;
3449         }
3450         E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3451 }
3452
3453 static void
3454 em_if_intr_disable(if_ctx_t ctx)
3455 {
3456         struct adapter *adapter = iflib_get_softc(ctx);
3457         struct e1000_hw *hw = &adapter->hw;
3458
3459         if (hw->mac.type == e1000_82574)
3460                 E1000_WRITE_REG(hw, EM_EIAC, 0);
3461         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3462 }
3463
3464 static void
3465 igb_if_intr_enable(if_ctx_t ctx)
3466 {
3467         struct adapter *adapter = iflib_get_softc(ctx);
3468         struct e1000_hw *hw = &adapter->hw;
3469         u32 mask;
3470
3471         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3472                 mask = (adapter->que_mask | adapter->link_mask);
3473                 E1000_WRITE_REG(hw, E1000_EIAC, mask);
3474                 E1000_WRITE_REG(hw, E1000_EIAM, mask);
3475                 E1000_WRITE_REG(hw, E1000_EIMS, mask);
3476                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3477         } else
3478                 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3479         E1000_WRITE_FLUSH(hw);
3480 }
3481
3482 static void
3483 igb_if_intr_disable(if_ctx_t ctx)
3484 {
3485         struct adapter *adapter = iflib_get_softc(ctx);
3486         struct e1000_hw *hw = &adapter->hw;
3487
3488         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3489                 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3490                 E1000_WRITE_REG(hw, E1000_EIAC, 0);
3491         }
3492         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3493         E1000_WRITE_FLUSH(hw);
3494 }
3495
3496 /*
3497  * Bit of a misnomer, what this really means is
3498  * to enable OS management of the system... aka
3499  * to disable special hardware management features
3500  */
3501 static void
3502 em_init_manageability(struct adapter *adapter)
3503 {
3504         /* A shared code workaround */
3505 #define E1000_82542_MANC2H E1000_MANC2H
3506         if (adapter->has_manage) {
3507                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3508                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3509
3510                 /* disable hardware interception of ARP */
3511                 manc &= ~(E1000_MANC_ARP_EN);
3512
3513                 /* enable receiving management packets to the host */
3514                 manc |= E1000_MANC_EN_MNG2HOST;
3515 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3516 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3517                 manc2h |= E1000_MNG2HOST_PORT_623;
3518                 manc2h |= E1000_MNG2HOST_PORT_664;
3519                 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3520                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3521         }
3522 }
3523
3524 /*
3525  * Give control back to hardware management
3526  * controller if there is one.
3527  */
3528 static void
3529 em_release_manageability(struct adapter *adapter)
3530 {
3531         if (adapter->has_manage) {
3532                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3533
3534                 /* re-enable hardware interception of ARP */
3535                 manc |= E1000_MANC_ARP_EN;
3536                 manc &= ~E1000_MANC_EN_MNG2HOST;
3537
3538                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3539         }
3540 }
3541
3542 /*
3543  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3544  * For ASF and Pass Through versions of f/w this means
3545  * that the driver is loaded. For AMT version type f/w
3546  * this means that the network i/f is open.
3547  */
3548 static void
3549 em_get_hw_control(struct adapter *adapter)
3550 {
3551         u32 ctrl_ext, swsm;
3552
3553         if (adapter->vf_ifp)
3554                 return;
3555
3556         if (adapter->hw.mac.type == e1000_82573) {
3557                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3558                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3559                     swsm | E1000_SWSM_DRV_LOAD);
3560                 return;
3561         }
3562         /* else */
3563         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3564         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3565             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3566 }
3567
3568 /*
3569  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3570  * For ASF and Pass Through versions of f/w this means that
3571  * the driver is no longer loaded. For AMT versions of the
3572  * f/w this means that the network i/f is closed.
3573  */
3574 static void
3575 em_release_hw_control(struct adapter *adapter)
3576 {
3577         u32 ctrl_ext, swsm;
3578
3579         if (!adapter->has_manage)
3580                 return;
3581
3582         if (adapter->hw.mac.type == e1000_82573) {
3583                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3584                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3585                     swsm & ~E1000_SWSM_DRV_LOAD);
3586                 return;
3587         }
3588         /* else */
3589         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3590         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3591             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3592         return;
3593 }
3594
3595 static int
3596 em_is_valid_ether_addr(u8 *addr)
3597 {
3598         char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3599
3600         if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3601                 return (FALSE);
3602         }
3603
3604         return (TRUE);
3605 }
3606
3607 /*
3608 ** Parse the interface capabilities with regard
3609 ** to both system management and wake-on-lan for
3610 ** later use.
3611 */
3612 static void
3613 em_get_wakeup(if_ctx_t ctx)
3614 {
3615         struct adapter *adapter = iflib_get_softc(ctx);
3616         device_t dev = iflib_get_dev(ctx);
3617         u16 eeprom_data = 0, device_id, apme_mask;
3618
3619         adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3620         apme_mask = EM_EEPROM_APME;
3621
3622         switch (adapter->hw.mac.type) {
3623         case e1000_82542:
3624         case e1000_82543:
3625                 break;
3626         case e1000_82544:
3627                 e1000_read_nvm(&adapter->hw,
3628                     NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3629                 apme_mask = EM_82544_APME;
3630                 break;
3631         case e1000_82546:
3632         case e1000_82546_rev_3:
3633                 if (adapter->hw.bus.func == 1) {
3634                         e1000_read_nvm(&adapter->hw,
3635                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3636                         break;
3637                 } else
3638                         e1000_read_nvm(&adapter->hw,
3639                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3640                 break;
3641         case e1000_82573:
3642         case e1000_82583:
3643                 adapter->has_amt = TRUE;
3644                 /* FALLTHROUGH */
3645         case e1000_82571:
3646         case e1000_82572:
3647         case e1000_80003es2lan:
3648                 if (adapter->hw.bus.func == 1) {
3649                         e1000_read_nvm(&adapter->hw,
3650                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3651                         break;
3652                 } else
3653                         e1000_read_nvm(&adapter->hw,
3654                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3655                 break;
3656         case e1000_ich8lan:
3657         case e1000_ich9lan:
3658         case e1000_ich10lan:
3659         case e1000_pchlan:
3660         case e1000_pch2lan:
3661         case e1000_pch_lpt:
3662         case e1000_pch_spt:
3663         case e1000_82575:       /* listing all igb devices */
3664         case e1000_82576:
3665         case e1000_82580:
3666         case e1000_i350:
3667         case e1000_i354:
3668         case e1000_i210:
3669         case e1000_i211:
3670         case e1000_vfadapt:
3671         case e1000_vfadapt_i350:
3672                 apme_mask = E1000_WUC_APME;
3673                 adapter->has_amt = TRUE;
3674                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3675                 break;
3676         default:
3677                 e1000_read_nvm(&adapter->hw,
3678                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3679                 break;
3680         }
3681         if (eeprom_data & apme_mask)
3682                 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3683         /*
3684          * We have the eeprom settings, now apply the special cases
3685          * where the eeprom may be wrong or the board won't support
3686          * wake on lan on a particular port
3687          */
3688         device_id = pci_get_device(dev);
3689         switch (device_id) {
3690         case E1000_DEV_ID_82546GB_PCIE:
3691                 adapter->wol = 0;
3692                 break;
3693         case E1000_DEV_ID_82546EB_FIBER:
3694         case E1000_DEV_ID_82546GB_FIBER:
3695                 /* Wake events only supported on port A for dual fiber
3696                  * regardless of eeprom setting */
3697                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3698                     E1000_STATUS_FUNC_1)
3699                         adapter->wol = 0;
3700                 break;
3701         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3702                 /* if quad port adapter, disable WoL on all but port A */
3703                 if (global_quad_port_a != 0)
3704                         adapter->wol = 0;
3705                 /* Reset for multiple quad port adapters */
3706                 if (++global_quad_port_a == 4)
3707                         global_quad_port_a = 0;
3708                 break;
3709         case E1000_DEV_ID_82571EB_FIBER:
3710                 /* Wake events only supported on port A for dual fiber
3711                  * regardless of eeprom setting */
3712                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3713                     E1000_STATUS_FUNC_1)
3714                         adapter->wol = 0;
3715                 break;
3716         case E1000_DEV_ID_82571EB_QUAD_COPPER:
3717         case E1000_DEV_ID_82571EB_QUAD_FIBER:
3718         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3719                 /* if quad port adapter, disable WoL on all but port A */
3720                 if (global_quad_port_a != 0)
3721                         adapter->wol = 0;
3722                 /* Reset for multiple quad port adapters */
3723                 if (++global_quad_port_a == 4)
3724                         global_quad_port_a = 0;
3725                 break;
3726         }
3727         return;
3728 }
3729
3730
3731 /*
3732  * Enable PCI Wake On Lan capability
3733  */
3734 static void
3735 em_enable_wakeup(if_ctx_t ctx)
3736 {
3737         struct adapter *adapter = iflib_get_softc(ctx);
3738         device_t dev = iflib_get_dev(ctx);
3739         if_t ifp = iflib_get_ifp(ctx);
3740         int error = 0;
3741         u32 pmc, ctrl, ctrl_ext, rctl;
3742         u16 status;
3743
3744         if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3745                 return;
3746
3747         /*
3748          * Determine type of Wakeup: note that wol
3749          * is set with all bits on by default.
3750          */
3751         if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3752                 adapter->wol &= ~E1000_WUFC_MAG;
3753
3754         if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3755                 adapter->wol &= ~E1000_WUFC_EX;
3756
3757         if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3758                 adapter->wol &= ~E1000_WUFC_MC;
3759         else {
3760                 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3761                 rctl |= E1000_RCTL_MPE;
3762                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3763         }
3764
3765         if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3766                 goto pme;
3767
3768         /* Advertise the wakeup capability */
3769         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3770         ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3771         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3772
3773         /* Keep the laser running on Fiber adapters */
3774         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3775             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3776                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3777                 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3778                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3779         }
3780
3781         if ((adapter->hw.mac.type == e1000_ich8lan) ||
3782             (adapter->hw.mac.type == e1000_pchlan) ||
3783             (adapter->hw.mac.type == e1000_ich9lan) ||
3784             (adapter->hw.mac.type == e1000_ich10lan))
3785                 e1000_suspend_workarounds_ich8lan(&adapter->hw);
3786
3787         if ( adapter->hw.mac.type >= e1000_pchlan) {
3788                 error = em_enable_phy_wakeup(adapter);
3789                 if (error)
3790                         goto pme;
3791         } else {
3792                 /* Enable wakeup by the MAC */
3793                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3794                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3795         }
3796
3797         if (adapter->hw.phy.type == e1000_phy_igp_3)
3798                 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3799
3800 pme:
3801         status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3802         status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3803         if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3804                 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3805         pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3806
3807         return;
3808 }
3809
3810 /*
3811  * WOL in the newer chipset interfaces (pchlan)
3812  * require thing to be copied into the phy
3813  */
3814 static int
3815 em_enable_phy_wakeup(struct adapter *adapter)
3816 {
3817         struct e1000_hw *hw = &adapter->hw;
3818         u32 mreg, ret = 0;
3819         u16 preg;
3820
3821         /* copy MAC RARs to PHY RARs */
3822         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3823
3824         /* copy MAC MTA to PHY MTA */
3825         for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3826                 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3827                 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3828                 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3829                     (u16)((mreg >> 16) & 0xFFFF));
3830         }
3831
3832         /* configure PHY Rx Control register */
3833         e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3834         mreg = E1000_READ_REG(hw, E1000_RCTL);
3835         if (mreg & E1000_RCTL_UPE)
3836                 preg |= BM_RCTL_UPE;
3837         if (mreg & E1000_RCTL_MPE)
3838                 preg |= BM_RCTL_MPE;
3839         preg &= ~(BM_RCTL_MO_MASK);
3840         if (mreg & E1000_RCTL_MO_3)
3841                 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3842                                 << BM_RCTL_MO_SHIFT);
3843         if (mreg & E1000_RCTL_BAM)
3844                 preg |= BM_RCTL_BAM;
3845         if (mreg & E1000_RCTL_PMCF)
3846                 preg |= BM_RCTL_PMCF;
3847         mreg = E1000_READ_REG(hw, E1000_CTRL);
3848         if (mreg & E1000_CTRL_RFCE)
3849                 preg |= BM_RCTL_RFCE;
3850         e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3851
3852         /* enable PHY wakeup in MAC register */
3853         E1000_WRITE_REG(hw, E1000_WUC,
3854             E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3855         E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3856
3857         /* configure and enable PHY wakeup in PHY registers */
3858         e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3859         e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3860
3861         /* activate PHY wakeup */
3862         ret = hw->phy.ops.acquire(hw);
3863         if (ret) {
3864                 printf("Could not acquire PHY\n");
3865                 return ret;
3866         }
3867         e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3868                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3869         ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3870         if (ret) {
3871                 printf("Could not read PHY page 769\n");
3872                 goto out;
3873         }
3874         preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3875         ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3876         if (ret)
3877                 printf("Could not set PHY Host Wakeup bit\n");
3878 out:
3879         hw->phy.ops.release(hw);
3880
3881         return ret;
3882 }
3883
3884 static void
3885 em_if_led_func(if_ctx_t ctx, int onoff)
3886 {
3887         struct adapter *adapter = iflib_get_softc(ctx);
3888
3889         if (onoff) {
3890                 e1000_setup_led(&adapter->hw);
3891                 e1000_led_on(&adapter->hw);
3892         } else {
3893                 e1000_led_off(&adapter->hw);
3894                 e1000_cleanup_led(&adapter->hw);
3895         }
3896 }
3897
3898 /*
3899  * Disable the L0S and L1 LINK states
3900  */
3901 static void
3902 em_disable_aspm(struct adapter *adapter)
3903 {
3904         int base, reg;
3905         u16 link_cap,link_ctrl;
3906         device_t dev = adapter->dev;
3907
3908         switch (adapter->hw.mac.type) {
3909         case e1000_82573:
3910         case e1000_82574:
3911         case e1000_82583:
3912                 break;
3913         default:
3914                 return;
3915         }
3916         if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3917                 return;
3918         reg = base + PCIER_LINK_CAP;
3919         link_cap = pci_read_config(dev, reg, 2);
3920         if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3921                 return;
3922         reg = base + PCIER_LINK_CTL;
3923         link_ctrl = pci_read_config(dev, reg, 2);
3924         link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3925         pci_write_config(dev, reg, link_ctrl, 2);
3926         return;
3927 }
3928
3929 /**********************************************************************
3930  *
3931  *  Update the board statistics counters.
3932  *
3933  **********************************************************************/
3934 static void
3935 em_update_stats_counters(struct adapter *adapter)
3936 {
3937         u64 prev_xoffrxc = adapter->stats.xoffrxc;
3938
3939         if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3940            (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3941                 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3942                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3943         }
3944         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3945         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3946         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3947         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3948
3949         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3950         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3951         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3952         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3953         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3954         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3955         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3956         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3957         /*
3958          ** For watchdog management we need to know if we have been
3959          ** paused during the last interval, so capture that here.
3960         */
3961         if (adapter->stats.xoffrxc != prev_xoffrxc)
3962                 adapter->shared->isc_pause_frames = 1;
3963         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3964         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3965         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3966         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3967         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3968         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3969         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3970         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3971         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3972         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3973         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3974         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3975
3976         /* For the 64-bit byte counters the low dword must be read first. */
3977         /* Both registers clear on the read of the high dword */
3978
3979         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3980             ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3981         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3982             ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3983
3984         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3985         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3986         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3987         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3988         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3989
3990         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3991         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3992
3993         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3994         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3995         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3996         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3997         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3998         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3999         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
4000         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
4001         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
4002         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
4003
4004         /* Interrupt Counts */
4005
4006         adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
4007         adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
4008         adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
4009         adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
4010         adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
4011         adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
4012         adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
4013         adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
4014         adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
4015
4016         if (adapter->hw.mac.type >= e1000_82543) {
4017                 adapter->stats.algnerrc +=
4018                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4019                 adapter->stats.rxerrc +=
4020                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4021                 adapter->stats.tncrs +=
4022                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4023                 adapter->stats.cexterr +=
4024                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4025                 adapter->stats.tsctc +=
4026                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4027                 adapter->stats.tsctfc +=
4028                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4029         }
4030 }
4031
4032 static uint64_t
4033 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4034 {
4035         struct adapter *adapter = iflib_get_softc(ctx);
4036         struct ifnet *ifp = iflib_get_ifp(ctx);
4037
4038         switch (cnt) {
4039         case IFCOUNTER_COLLISIONS:
4040                 return (adapter->stats.colc);
4041         case IFCOUNTER_IERRORS:
4042                 return (adapter->dropped_pkts + adapter->stats.rxerrc +
4043                     adapter->stats.crcerrs + adapter->stats.algnerrc +
4044                     adapter->stats.ruc + adapter->stats.roc +
4045                     adapter->stats.mpc + adapter->stats.cexterr);
4046         case IFCOUNTER_OERRORS:
4047                 return (adapter->stats.ecol + adapter->stats.latecol +
4048                     adapter->watchdog_events);
4049         default:
4050                 return (if_get_counter_default(ifp, cnt));
4051         }
4052 }
4053
4054 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4055  * @ctx: iflib context
4056  * @event: event code to check
4057  *
4058  * Defaults to returning true for unknown events.
4059  *
4060  * @returns true if iflib needs to reinit the interface
4061  */
4062 static bool
4063 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4064 {
4065         switch (event) {
4066         case IFLIB_RESTART_VLAN_CONFIG:
4067         default:
4068                 return (true);
4069         }
4070 }
4071
4072 /* Export a single 32-bit register via a read-only sysctl. */
4073 static int
4074 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4075 {
4076         struct adapter *adapter;
4077         u_int val;
4078
4079         adapter = oidp->oid_arg1;
4080         val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4081         return (sysctl_handle_int(oidp, &val, 0, req));
4082 }
4083
4084 /*
4085  * Add sysctl variables, one per statistic, to the system.
4086  */
4087 static void
4088 em_add_hw_stats(struct adapter *adapter)
4089 {
4090         device_t dev = iflib_get_dev(adapter->ctx);
4091         struct em_tx_queue *tx_que = adapter->tx_queues;
4092         struct em_rx_queue *rx_que = adapter->rx_queues;
4093
4094         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4095         struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4096         struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4097         struct e1000_hw_stats *stats = &adapter->stats;
4098
4099         struct sysctl_oid *stat_node, *queue_node, *int_node;
4100         struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4101
4102 #define QUEUE_NAME_LEN 32
4103         char namebuf[QUEUE_NAME_LEN];
4104
4105         /* Driver Statistics */
4106         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4107                         CTLFLAG_RD, &adapter->dropped_pkts,
4108                         "Driver dropped packets");
4109         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4110                         CTLFLAG_RD, &adapter->link_irq,
4111                         "Link MSI-X IRQ Handled");
4112         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4113                         CTLFLAG_RD, &adapter->rx_overruns,
4114                         "RX overruns");
4115         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4116                         CTLFLAG_RD, &adapter->watchdog_events,
4117                         "Watchdog timeouts");
4118         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4119             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4120             adapter, E1000_CTRL, em_sysctl_reg_handler, "IU",
4121             "Device Control Register");
4122         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4123             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4124             adapter, E1000_RCTL, em_sysctl_reg_handler, "IU",
4125             "Receiver Control Register");
4126         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4127                         CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4128                         "Flow Control High Watermark");
4129         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4130                         CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4131                         "Flow Control Low Watermark");
4132
4133         for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4134                 struct tx_ring *txr = &tx_que->txr;
4135                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4136                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4137                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4138                 queue_list = SYSCTL_CHILDREN(queue_node);
4139
4140                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4141                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4142                     E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4143                     "Transmit Descriptor Head");
4144                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4145                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4146                     E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4147                     "Transmit Descriptor Tail");
4148                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4149                                 CTLFLAG_RD, &txr->tx_irq,
4150                                 "Queue MSI-X Transmit Interrupts");
4151         }
4152
4153         for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4154                 struct rx_ring *rxr = &rx_que->rxr;
4155                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4156                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4157                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4158                 queue_list = SYSCTL_CHILDREN(queue_node);
4159
4160                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4161                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4162                     E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4163                     "Receive Descriptor Head");
4164                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4165                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4166                     E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4167                     "Receive Descriptor Tail");
4168                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4169                                 CTLFLAG_RD, &rxr->rx_irq,
4170                                 "Queue MSI-X Receive Interrupts");
4171         }
4172
4173         /* MAC stats get their own sub node */
4174
4175         stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4176             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4177         stat_list = SYSCTL_CHILDREN(stat_node);
4178
4179         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4180                         CTLFLAG_RD, &stats->ecol,
4181                         "Excessive collisions");
4182         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4183                         CTLFLAG_RD, &stats->scc,
4184                         "Single collisions");
4185         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4186                         CTLFLAG_RD, &stats->mcc,
4187                         "Multiple collisions");
4188         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4189                         CTLFLAG_RD, &stats->latecol,
4190                         "Late collisions");
4191         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4192                         CTLFLAG_RD, &stats->colc,
4193                         "Collision Count");
4194         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4195                         CTLFLAG_RD, &adapter->stats.symerrs,
4196                         "Symbol Errors");
4197         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4198                         CTLFLAG_RD, &adapter->stats.sec,
4199                         "Sequence Errors");
4200         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4201                         CTLFLAG_RD, &adapter->stats.dc,
4202                         "Defer Count");
4203         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4204                         CTLFLAG_RD, &adapter->stats.mpc,
4205                         "Missed Packets");
4206         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4207                         CTLFLAG_RD, &adapter->stats.rnbc,
4208                         "Receive No Buffers");
4209         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4210                         CTLFLAG_RD, &adapter->stats.ruc,
4211                         "Receive Undersize");
4212         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4213                         CTLFLAG_RD, &adapter->stats.rfc,
4214                         "Fragmented Packets Received ");
4215         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4216                         CTLFLAG_RD, &adapter->stats.roc,
4217                         "Oversized Packets Received");
4218         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4219                         CTLFLAG_RD, &adapter->stats.rjc,
4220                         "Recevied Jabber");
4221         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4222                         CTLFLAG_RD, &adapter->stats.rxerrc,
4223                         "Receive Errors");
4224         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4225                         CTLFLAG_RD, &adapter->stats.crcerrs,
4226                         "CRC errors");
4227         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4228                         CTLFLAG_RD, &adapter->stats.algnerrc,
4229                         "Alignment Errors");
4230         /* On 82575 these are collision counts */
4231         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4232                         CTLFLAG_RD, &adapter->stats.cexterr,
4233                         "Collision/Carrier extension errors");
4234         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4235                         CTLFLAG_RD, &adapter->stats.xonrxc,
4236                         "XON Received");
4237         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4238                         CTLFLAG_RD, &adapter->stats.xontxc,
4239                         "XON Transmitted");
4240         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4241                         CTLFLAG_RD, &adapter->stats.xoffrxc,
4242                         "XOFF Received");
4243         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4244                         CTLFLAG_RD, &adapter->stats.xofftxc,
4245                         "XOFF Transmitted");
4246
4247         /* Packet Reception Stats */
4248         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4249                         CTLFLAG_RD, &adapter->stats.tpr,
4250                         "Total Packets Received ");
4251         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4252                         CTLFLAG_RD, &adapter->stats.gprc,
4253                         "Good Packets Received");
4254         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4255                         CTLFLAG_RD, &adapter->stats.bprc,
4256                         "Broadcast Packets Received");
4257         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4258                         CTLFLAG_RD, &adapter->stats.mprc,
4259                         "Multicast Packets Received");
4260         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4261                         CTLFLAG_RD, &adapter->stats.prc64,
4262                         "64 byte frames received ");
4263         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4264                         CTLFLAG_RD, &adapter->stats.prc127,
4265                         "65-127 byte frames received");
4266         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4267                         CTLFLAG_RD, &adapter->stats.prc255,
4268                         "128-255 byte frames received");
4269         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4270                         CTLFLAG_RD, &adapter->stats.prc511,
4271                         "256-511 byte frames received");
4272         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4273                         CTLFLAG_RD, &adapter->stats.prc1023,
4274                         "512-1023 byte frames received");
4275         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4276                         CTLFLAG_RD, &adapter->stats.prc1522,
4277                         "1023-1522 byte frames received");
4278         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4279                         CTLFLAG_RD, &adapter->stats.gorc,
4280                         "Good Octets Received");
4281
4282         /* Packet Transmission Stats */
4283         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4284                         CTLFLAG_RD, &adapter->stats.gotc,
4285                         "Good Octets Transmitted");
4286         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4287                         CTLFLAG_RD, &adapter->stats.tpt,
4288                         "Total Packets Transmitted");
4289         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4290                         CTLFLAG_RD, &adapter->stats.gptc,
4291                         "Good Packets Transmitted");
4292         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4293                         CTLFLAG_RD, &adapter->stats.bptc,
4294                         "Broadcast Packets Transmitted");
4295         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4296                         CTLFLAG_RD, &adapter->stats.mptc,
4297                         "Multicast Packets Transmitted");
4298         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4299                         CTLFLAG_RD, &adapter->stats.ptc64,
4300                         "64 byte frames transmitted ");
4301         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4302                         CTLFLAG_RD, &adapter->stats.ptc127,
4303                         "65-127 byte frames transmitted");
4304         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4305                         CTLFLAG_RD, &adapter->stats.ptc255,
4306                         "128-255 byte frames transmitted");
4307         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4308                         CTLFLAG_RD, &adapter->stats.ptc511,
4309                         "256-511 byte frames transmitted");
4310         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4311                         CTLFLAG_RD, &adapter->stats.ptc1023,
4312                         "512-1023 byte frames transmitted");
4313         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4314                         CTLFLAG_RD, &adapter->stats.ptc1522,
4315                         "1024-1522 byte frames transmitted");
4316         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4317                         CTLFLAG_RD, &adapter->stats.tsctc,
4318                         "TSO Contexts Transmitted");
4319         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4320                         CTLFLAG_RD, &adapter->stats.tsctfc,
4321                         "TSO Contexts Failed");
4322
4323
4324         /* Interrupt Stats */
4325
4326         int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4327             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4328         int_list = SYSCTL_CHILDREN(int_node);
4329
4330         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4331                         CTLFLAG_RD, &adapter->stats.iac,
4332                         "Interrupt Assertion Count");
4333
4334         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4335                         CTLFLAG_RD, &adapter->stats.icrxptc,
4336                         "Interrupt Cause Rx Pkt Timer Expire Count");
4337
4338         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4339                         CTLFLAG_RD, &adapter->stats.icrxatc,
4340                         "Interrupt Cause Rx Abs Timer Expire Count");
4341
4342         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4343                         CTLFLAG_RD, &adapter->stats.ictxptc,
4344                         "Interrupt Cause Tx Pkt Timer Expire Count");
4345
4346         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4347                         CTLFLAG_RD, &adapter->stats.ictxatc,
4348                         "Interrupt Cause Tx Abs Timer Expire Count");
4349
4350         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4351                         CTLFLAG_RD, &adapter->stats.ictxqec,
4352                         "Interrupt Cause Tx Queue Empty Count");
4353
4354         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4355                         CTLFLAG_RD, &adapter->stats.ictxqmtc,
4356                         "Interrupt Cause Tx Queue Min Thresh Count");
4357
4358         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4359                         CTLFLAG_RD, &adapter->stats.icrxdmtc,
4360                         "Interrupt Cause Rx Desc Min Thresh Count");
4361
4362         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4363                         CTLFLAG_RD, &adapter->stats.icrxoc,
4364                         "Interrupt Cause Receiver Overrun Count");
4365 }
4366
4367 /**********************************************************************
4368  *
4369  *  This routine provides a way to dump out the adapter eeprom,
4370  *  often a useful debug/service tool. This only dumps the first
4371  *  32 words, stuff that matters is in that extent.
4372  *
4373  **********************************************************************/
4374 static int
4375 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4376 {
4377         struct adapter *adapter = (struct adapter *)arg1;
4378         int error;
4379         int result;
4380
4381         result = -1;
4382         error = sysctl_handle_int(oidp, &result, 0, req);
4383
4384         if (error || !req->newptr)
4385                 return (error);
4386
4387         /*
4388          * This value will cause a hex dump of the
4389          * first 32 16-bit words of the EEPROM to
4390          * the screen.
4391          */
4392         if (result == 1)
4393                 em_print_nvm_info(adapter);
4394
4395         return (error);
4396 }
4397
4398 static void
4399 em_print_nvm_info(struct adapter *adapter)
4400 {
4401         u16 eeprom_data;
4402         int i, j, row = 0;
4403
4404         /* Its a bit crude, but it gets the job done */
4405         printf("\nInterface EEPROM Dump:\n");
4406         printf("Offset\n0x0000  ");
4407         for (i = 0, j = 0; i < 32; i++, j++) {
4408                 if (j == 8) { /* Make the offset block */
4409                         j = 0; ++row;
4410                         printf("\n0x00%x0  ",row);
4411                 }
4412                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4413                 printf("%04x ", eeprom_data);
4414         }
4415         printf("\n");
4416 }
4417
4418 static int
4419 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4420 {
4421         struct em_int_delay_info *info;
4422         struct adapter *adapter;
4423         u32 regval;
4424         int error, usecs, ticks;
4425
4426         info = (struct em_int_delay_info *) arg1;
4427         usecs = info->value;
4428         error = sysctl_handle_int(oidp, &usecs, 0, req);
4429         if (error != 0 || req->newptr == NULL)
4430                 return (error);
4431         if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4432                 return (EINVAL);
4433         info->value = usecs;
4434         ticks = EM_USECS_TO_TICKS(usecs);
4435         if (info->offset == E1000_ITR)  /* units are 256ns here */
4436                 ticks *= 4;
4437
4438         adapter = info->adapter;
4439
4440         regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4441         regval = (regval & ~0xffff) | (ticks & 0xffff);
4442         /* Handle a few special cases. */
4443         switch (info->offset) {
4444         case E1000_RDTR:
4445                 break;
4446         case E1000_TIDV:
4447                 if (ticks == 0) {
4448                         adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4449                         /* Don't write 0 into the TIDV register. */
4450                         regval++;
4451                 } else
4452                         adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4453                 break;
4454         }
4455         E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4456         return (0);
4457 }
4458
4459 static void
4460 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4461         const char *description, struct em_int_delay_info *info,
4462         int offset, int value)
4463 {
4464         info->adapter = adapter;
4465         info->offset = offset;
4466         info->value = value;
4467         SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4468             SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4469             OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4470             info, 0, em_sysctl_int_delay, "I", description);
4471 }
4472
4473 /*
4474  * Set flow control using sysctl:
4475  * Flow control values:
4476  *      0 - off
4477  *      1 - rx pause
4478  *      2 - tx pause
4479  *      3 - full
4480  */
4481 static int
4482 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4483 {
4484         int error;
4485         static int input = 3; /* default is full */
4486         struct adapter  *adapter = (struct adapter *) arg1;
4487
4488         error = sysctl_handle_int(oidp, &input, 0, req);
4489
4490         if ((error) || (req->newptr == NULL))
4491                 return (error);
4492
4493         if (input == adapter->fc) /* no change? */
4494                 return (error);
4495
4496         switch (input) {
4497         case e1000_fc_rx_pause:
4498         case e1000_fc_tx_pause:
4499         case e1000_fc_full:
4500         case e1000_fc_none:
4501                 adapter->hw.fc.requested_mode = input;
4502                 adapter->fc = input;
4503                 break;
4504         default:
4505                 /* Do nothing */
4506                 return (error);
4507         }
4508
4509         adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4510         e1000_force_mac_fc(&adapter->hw);
4511         return (error);
4512 }
4513
4514 /*
4515  * Manage Energy Efficient Ethernet:
4516  * Control values:
4517  *     0/1 - enabled/disabled
4518  */
4519 static int
4520 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4521 {
4522         struct adapter *adapter = (struct adapter *) arg1;
4523         int error, value;
4524
4525         value = adapter->hw.dev_spec.ich8lan.eee_disable;
4526         error = sysctl_handle_int(oidp, &value, 0, req);
4527         if (error || req->newptr == NULL)
4528                 return (error);
4529         adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4530         em_if_init(adapter->ctx);
4531
4532         return (0);
4533 }
4534
4535 static int
4536 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4537 {
4538         struct adapter *adapter;
4539         int error;
4540         int result;
4541
4542         result = -1;
4543         error = sysctl_handle_int(oidp, &result, 0, req);
4544
4545         if (error || !req->newptr)
4546                 return (error);
4547
4548         if (result == 1) {
4549                 adapter = (struct adapter *) arg1;
4550                 em_print_debug_info(adapter);
4551         }
4552
4553         return (error);
4554 }
4555
4556 static int
4557 em_get_rs(SYSCTL_HANDLER_ARGS)
4558 {
4559         struct adapter *adapter = (struct adapter *) arg1;
4560         int error;
4561         int result;
4562
4563         result = 0;
4564         error = sysctl_handle_int(oidp, &result, 0, req);
4565
4566         if (error || !req->newptr || result != 1)
4567                 return (error);
4568         em_dump_rs(adapter);
4569
4570         return (error);
4571 }
4572
4573 static void
4574 em_if_debug(if_ctx_t ctx)
4575 {
4576         em_dump_rs(iflib_get_softc(ctx));
4577 }
4578
4579 /*
4580  * This routine is meant to be fluid, add whatever is
4581  * needed for debugging a problem.  -jfv
4582  */
4583 static void
4584 em_print_debug_info(struct adapter *adapter)
4585 {
4586         device_t dev = iflib_get_dev(adapter->ctx);
4587         struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4588         struct tx_ring *txr = &adapter->tx_queues->txr;
4589         struct rx_ring *rxr = &adapter->rx_queues->rxr;
4590
4591         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4592                 printf("Interface is RUNNING ");
4593         else
4594                 printf("Interface is NOT RUNNING\n");
4595
4596         if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4597                 printf("and INACTIVE\n");
4598         else
4599                 printf("and ACTIVE\n");
4600
4601         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4602                 device_printf(dev, "TX Queue %d ------\n", i);
4603                 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4604                         E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4605                         E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4606
4607         }
4608         for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4609                 device_printf(dev, "RX Queue %d ------\n", j);
4610                 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4611                         E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4612                         E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4613         }
4614 }
4615
4616 /*
4617  * 82574 only:
4618  * Write a new value to the EEPROM increasing the number of MSI-X
4619  * vectors from 3 to 5, for proper multiqueue support.
4620  */
4621 static void
4622 em_enable_vectors_82574(if_ctx_t ctx)
4623 {
4624         struct adapter *adapter = iflib_get_softc(ctx);
4625         struct e1000_hw *hw = &adapter->hw;
4626         device_t dev = iflib_get_dev(ctx);
4627         u16 edata;
4628
4629         e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4630         if (bootverbose)
4631                 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4632         if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4633                 device_printf(dev, "Writing to eeprom: increasing "
4634                     "reported MSI-X vectors from 3 to 5...\n");
4635                 edata &= ~(EM_NVM_MSIX_N_MASK);
4636                 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4637                 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4638                 e1000_update_nvm_checksum(hw);
4639                 device_printf(dev, "Writing to eeprom: done\n");
4640         }
4641 }