]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/if_em.c
Fix igb interfaces failing to switch to inactive state.
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / if_em.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82547
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54         /* Intel(R) PRO/1000 Network Connection - Legacy em*/
55         PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56         PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57         PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58         PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59         PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60
61         PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62         PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63         PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64         PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65         PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66         PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67         PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68
69         PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70
71         PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72         PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73
74         PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75         PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76         PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77         PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78
79         PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80         PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81         PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82         PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83         PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84
85         PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86         PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87         PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88         PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89         PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90         PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91         PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94
95         PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96         PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97         PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98
99         /* Intel(R) PRO/1000 Network Connection - em */
100         PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101         PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108         PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109         PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110         PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111         PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112         PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113         PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114         PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115         PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116         PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124         PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128         PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134         PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137         PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138         PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139         PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150         PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151         PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157         PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159         PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164         PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177         /* required last entry */
178         PVID_END
179 };
180
181 static pci_vendor_info_t igb_vendor_info_array[] =
182 {
183         /* Intel(R) PRO/1000 Network Connection - igb */
184         PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
185         PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
186         PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
187         PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
188         PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
189         PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
190         PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191         PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192         PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195         PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196         PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197         PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198         PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199         PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200         PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201         PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205         PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206         PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207         PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208         PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209         PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210         PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211         PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212         PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213         PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214         PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215         PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216         PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217         PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218         PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219         PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222         PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223         /* required last entry */
224         PVID_END
225 };
226
227 /*********************************************************************
228  *  Function prototypes
229  *********************************************************************/
230 static void     *em_register(device_t dev);
231 static void     *igb_register(device_t dev);
232 static int      em_if_attach_pre(if_ctx_t ctx);
233 static int      em_if_attach_post(if_ctx_t ctx);
234 static int      em_if_detach(if_ctx_t ctx);
235 static int      em_if_shutdown(if_ctx_t ctx);
236 static int      em_if_suspend(if_ctx_t ctx);
237 static int      em_if_resume(if_ctx_t ctx);
238
239 static int      em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
240 static int      em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
241 static void     em_if_queues_free(if_ctx_t ctx);
242
243 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
244 static void     em_if_init(if_ctx_t ctx);
245 static void     em_if_stop(if_ctx_t ctx);
246 static void     em_if_media_status(if_ctx_t, struct ifmediareq *);
247 static int      em_if_media_change(if_ctx_t ctx);
248 static int      em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
249 static void     em_if_timer(if_ctx_t ctx, uint16_t qid);
250 static void     em_if_vlan_register(if_ctx_t ctx, u16 vtag);
251 static void     em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
252 static void     em_if_watchdog_reset(if_ctx_t ctx);
253
254 static void     em_identify_hardware(if_ctx_t ctx);
255 static int      em_allocate_pci_resources(if_ctx_t ctx);
256 static void     em_free_pci_resources(if_ctx_t ctx);
257 static void     em_reset(if_ctx_t ctx);
258 static int      em_setup_interface(if_ctx_t ctx);
259 static int      em_setup_msix(if_ctx_t ctx);
260
261 static void     em_initialize_transmit_unit(if_ctx_t ctx);
262 static void     em_initialize_receive_unit(if_ctx_t ctx);
263
264 static void     em_if_intr_enable(if_ctx_t ctx);
265 static void     em_if_intr_disable(if_ctx_t ctx);
266 static void     igb_if_intr_enable(if_ctx_t ctx);
267 static void     igb_if_intr_disable(if_ctx_t ctx);
268 static int      em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
269 static int      em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
270 static int      igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
271 static int      igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
272 static void     em_if_multi_set(if_ctx_t ctx);
273 static void     em_if_update_admin_status(if_ctx_t ctx);
274 static void     em_if_debug(if_ctx_t ctx);
275 static void     em_update_stats_counters(struct adapter *);
276 static void     em_add_hw_stats(struct adapter *adapter);
277 static int      em_if_set_promisc(if_ctx_t ctx, int flags);
278 static void     em_setup_vlan_hw_support(struct adapter *);
279 static int      em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
280 static void     em_print_nvm_info(struct adapter *);
281 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
282 static int      em_get_rs(SYSCTL_HANDLER_ARGS);
283 static void     em_print_debug_info(struct adapter *);
284 static int      em_is_valid_ether_addr(u8 *);
285 static int      em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
286 static void     em_add_int_delay_sysctl(struct adapter *, const char *,
287                     const char *, struct em_int_delay_info *, int, int);
288 /* Management and WOL Support */
289 static void     em_init_manageability(struct adapter *);
290 static void     em_release_manageability(struct adapter *);
291 static void     em_get_hw_control(struct adapter *);
292 static void     em_release_hw_control(struct adapter *);
293 static void     em_get_wakeup(if_ctx_t ctx);
294 static void     em_enable_wakeup(if_ctx_t ctx);
295 static int      em_enable_phy_wakeup(struct adapter *);
296 static void     em_disable_aspm(struct adapter *);
297
298 int             em_intr(void *arg);
299 static void     em_disable_promisc(if_ctx_t ctx);
300
301 /* MSI-X handlers */
302 static int      em_if_msix_intr_assign(if_ctx_t, int);
303 static int      em_msix_link(void *);
304 static void     em_handle_link(void *context);
305
306 static void     em_enable_vectors_82574(if_ctx_t);
307
308 static int      em_set_flowcntl(SYSCTL_HANDLER_ARGS);
309 static int      em_sysctl_eee(SYSCTL_HANDLER_ARGS);
310 static void     em_if_led_func(if_ctx_t ctx, int onoff);
311
312 static int      em_get_regs(SYSCTL_HANDLER_ARGS);
313
314 static void     lem_smartspeed(struct adapter *adapter);
315 static void     igb_configure_queues(struct adapter *adapter);
316
317
318 /*********************************************************************
319  *  FreeBSD Device Interface Entry Points
320  *********************************************************************/
321 static device_method_t em_methods[] = {
322         /* Device interface */
323         DEVMETHOD(device_register, em_register),
324         DEVMETHOD(device_probe, iflib_device_probe),
325         DEVMETHOD(device_attach, iflib_device_attach),
326         DEVMETHOD(device_detach, iflib_device_detach),
327         DEVMETHOD(device_shutdown, iflib_device_shutdown),
328         DEVMETHOD(device_suspend, iflib_device_suspend),
329         DEVMETHOD(device_resume, iflib_device_resume),
330         DEVMETHOD_END
331 };
332
333 static device_method_t igb_methods[] = {
334         /* Device interface */
335         DEVMETHOD(device_register, igb_register),
336         DEVMETHOD(device_probe, iflib_device_probe),
337         DEVMETHOD(device_attach, iflib_device_attach),
338         DEVMETHOD(device_detach, iflib_device_detach),
339         DEVMETHOD(device_shutdown, iflib_device_shutdown),
340         DEVMETHOD(device_suspend, iflib_device_suspend),
341         DEVMETHOD(device_resume, iflib_device_resume),
342         DEVMETHOD_END
343 };
344
345
346 static driver_t em_driver = {
347         "em", em_methods, sizeof(struct adapter),
348 };
349
350 static devclass_t em_devclass;
351 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
352
353 MODULE_DEPEND(em, pci, 1, 1, 1);
354 MODULE_DEPEND(em, ether, 1, 1, 1);
355 MODULE_DEPEND(em, iflib, 1, 1, 1);
356
357 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
358
359 static driver_t igb_driver = {
360         "igb", igb_methods, sizeof(struct adapter),
361 };
362
363 static devclass_t igb_devclass;
364 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
365
366 MODULE_DEPEND(igb, pci, 1, 1, 1);
367 MODULE_DEPEND(igb, ether, 1, 1, 1);
368 MODULE_DEPEND(igb, iflib, 1, 1, 1);
369
370 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
371
372 static device_method_t em_if_methods[] = {
373         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
374         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
375         DEVMETHOD(ifdi_detach, em_if_detach),
376         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
377         DEVMETHOD(ifdi_suspend, em_if_suspend),
378         DEVMETHOD(ifdi_resume, em_if_resume),
379         DEVMETHOD(ifdi_init, em_if_init),
380         DEVMETHOD(ifdi_stop, em_if_stop),
381         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
382         DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
383         DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
384         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
385         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
386         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
387         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
388         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
389         DEVMETHOD(ifdi_media_status, em_if_media_status),
390         DEVMETHOD(ifdi_media_change, em_if_media_change),
391         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
392         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
393         DEVMETHOD(ifdi_timer, em_if_timer),
394         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
395         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
396         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
397         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
398         DEVMETHOD(ifdi_led_func, em_if_led_func),
399         DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
400         DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
401         DEVMETHOD(ifdi_debug, em_if_debug),
402         DEVMETHOD_END
403 };
404
405 static driver_t em_if_driver = {
406         "em_if", em_if_methods, sizeof(struct adapter)
407 };
408
409 static device_method_t igb_if_methods[] = {
410         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
411         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
412         DEVMETHOD(ifdi_detach, em_if_detach),
413         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
414         DEVMETHOD(ifdi_suspend, em_if_suspend),
415         DEVMETHOD(ifdi_resume, em_if_resume),
416         DEVMETHOD(ifdi_init, em_if_init),
417         DEVMETHOD(ifdi_stop, em_if_stop),
418         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
419         DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
420         DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
421         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
422         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
423         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
424         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
425         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
426         DEVMETHOD(ifdi_media_status, em_if_media_status),
427         DEVMETHOD(ifdi_media_change, em_if_media_change),
428         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
429         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
430         DEVMETHOD(ifdi_timer, em_if_timer),
431         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
432         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
433         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
434         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
435         DEVMETHOD(ifdi_led_func, em_if_led_func),
436         DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
437         DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
438         DEVMETHOD(ifdi_debug, em_if_debug),
439         DEVMETHOD_END
440 };
441
442 static driver_t igb_if_driver = {
443         "igb_if", igb_if_methods, sizeof(struct adapter)
444 };
445
446 /*********************************************************************
447  *  Tunable default values.
448  *********************************************************************/
449
450 #define EM_TICKS_TO_USECS(ticks)        ((1024 * (ticks) + 500) / 1000)
451 #define EM_USECS_TO_TICKS(usecs)        ((1000 * (usecs) + 512) / 1024)
452
453 #define MAX_INTS_PER_SEC        8000
454 #define DEFAULT_ITR             (1000000000/(MAX_INTS_PER_SEC * 256))
455
456 /* Allow common code without TSO */
457 #ifndef CSUM_TSO
458 #define CSUM_TSO        0
459 #endif
460
461 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters");
462
463 static int em_disable_crc_stripping = 0;
464 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
465     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
466
467 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
468 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
469 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
470     0, "Default transmit interrupt delay in usecs");
471 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
472     0, "Default receive interrupt delay in usecs");
473
474 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
475 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
476 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
477     &em_tx_abs_int_delay_dflt, 0,
478     "Default transmit interrupt delay limit in usecs");
479 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
480     &em_rx_abs_int_delay_dflt, 0,
481     "Default receive interrupt delay limit in usecs");
482
483 static int em_smart_pwr_down = FALSE;
484 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
485     0, "Set to true to leave smart power down enabled on newer adapters");
486
487 /* Controls whether promiscuous also shows bad packets */
488 static int em_debug_sbp = TRUE;
489 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
490     "Show bad packets in promiscuous mode");
491
492 /* How many packets rxeof tries to clean at a time */
493 static int em_rx_process_limit = 100;
494 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
495     &em_rx_process_limit, 0,
496     "Maximum number of received packets to process "
497     "at a time, -1 means unlimited");
498
499 /* Energy efficient ethernet - default to OFF */
500 static int eee_setting = 1;
501 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
502     "Enable Energy Efficient Ethernet");
503
504 /*
505 ** Tuneable Interrupt rate
506 */
507 static int em_max_interrupt_rate = 8000;
508 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
509     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
510
511
512
513 /* Global used in WOL setup with multiport cards */
514 static int global_quad_port_a = 0;
515
516 extern struct if_txrx igb_txrx;
517 extern struct if_txrx em_txrx;
518 extern struct if_txrx lem_txrx;
519
520 static struct if_shared_ctx em_sctx_init = {
521         .isc_magic = IFLIB_MAGIC,
522         .isc_q_align = PAGE_SIZE,
523         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
524         .isc_tx_maxsegsize = PAGE_SIZE,
525         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
526         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
527         .isc_rx_maxsize = MJUM9BYTES,
528         .isc_rx_nsegments = 1,
529         .isc_rx_maxsegsize = MJUM9BYTES,
530         .isc_nfl = 1,
531         .isc_nrxqs = 1,
532         .isc_ntxqs = 1,
533         .isc_admin_intrcnt = 1,
534         .isc_vendor_info = em_vendor_info_array,
535         .isc_driver_version = em_driver_version,
536         .isc_driver = &em_if_driver,
537         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
538
539         .isc_nrxd_min = {EM_MIN_RXD},
540         .isc_ntxd_min = {EM_MIN_TXD},
541         .isc_nrxd_max = {EM_MAX_RXD},
542         .isc_ntxd_max = {EM_MAX_TXD},
543         .isc_nrxd_default = {EM_DEFAULT_RXD},
544         .isc_ntxd_default = {EM_DEFAULT_TXD},
545 };
546
547 if_shared_ctx_t em_sctx = &em_sctx_init;
548
549 static struct if_shared_ctx igb_sctx_init = {
550         .isc_magic = IFLIB_MAGIC,
551         .isc_q_align = PAGE_SIZE,
552         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
553         .isc_tx_maxsegsize = PAGE_SIZE,
554         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
555         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
556         .isc_rx_maxsize = MJUM9BYTES,
557         .isc_rx_nsegments = 1,
558         .isc_rx_maxsegsize = MJUM9BYTES,
559         .isc_nfl = 1,
560         .isc_nrxqs = 1,
561         .isc_ntxqs = 1,
562         .isc_admin_intrcnt = 1,
563         .isc_vendor_info = igb_vendor_info_array,
564         .isc_driver_version = em_driver_version,
565         .isc_driver = &igb_if_driver,
566         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
567
568         .isc_nrxd_min = {EM_MIN_RXD},
569         .isc_ntxd_min = {EM_MIN_TXD},
570         .isc_nrxd_max = {IGB_MAX_RXD},
571         .isc_ntxd_max = {IGB_MAX_TXD},
572         .isc_nrxd_default = {EM_DEFAULT_RXD},
573         .isc_ntxd_default = {EM_DEFAULT_TXD},
574 };
575
576 if_shared_ctx_t igb_sctx = &igb_sctx_init;
577
578 /*****************************************************************
579  *
580  * Dump Registers
581  *
582  ****************************************************************/
583 #define IGB_REGS_LEN 739
584
585 static int em_get_regs(SYSCTL_HANDLER_ARGS)
586 {
587         struct adapter *adapter = (struct adapter *)arg1;
588         struct e1000_hw *hw = &adapter->hw;
589         struct sbuf *sb;
590         u32 *regs_buff;
591         int rc;
592
593         regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
594         memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
595
596         rc = sysctl_wire_old_buffer(req, 0);
597         MPASS(rc == 0);
598         if (rc != 0) {
599                 free(regs_buff, M_DEVBUF);
600                 return (rc);
601         }
602
603         sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
604         MPASS(sb != NULL);
605         if (sb == NULL) {
606                 free(regs_buff, M_DEVBUF);
607                 return (ENOMEM);
608         }
609
610         /* General Registers */
611         regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
612         regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
613         regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
614         regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
615         regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
616         regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
617         regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
618         regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
619         regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
620         regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
621         regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
622         regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
623         regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
624         regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
625         regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
626         regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
627         regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
628         regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
629         regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
630         regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
631         regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
632         regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
633
634         sbuf_printf(sb, "General Registers\n");
635         sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
636         sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
637         sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
638
639         sbuf_printf(sb, "Interrupt Registers\n");
640         sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
641
642         sbuf_printf(sb, "RX Registers\n");
643         sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
644         sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
645         sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
646         sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
647         sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
648         sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
649         sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
650
651         sbuf_printf(sb, "TX Registers\n");
652         sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
653         sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
654         sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
655         sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
656         sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
657         sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
658         sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
659         sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
660         sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
661         sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
662         sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
663
664         free(regs_buff, M_DEVBUF);
665
666 #ifdef DUMP_DESCS
667         {
668                 if_softc_ctx_t scctx = adapter->shared;
669                 struct rx_ring *rxr = &rx_que->rxr;
670                 struct tx_ring *txr = &tx_que->txr;
671                 int ntxd = scctx->isc_ntxd[0];
672                 int nrxd = scctx->isc_nrxd[0];
673                 int j;
674
675         for (j = 0; j < nrxd; j++) {
676                 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
677                 u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
678                 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
679         }
680
681         for (j = 0; j < min(ntxd, 256); j++) {
682                 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
683
684                 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
685                             j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
686                             buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
687
688         }
689         }
690 #endif
691
692         rc = sbuf_finish(sb);
693         sbuf_delete(sb);
694         return(rc);
695 }
696
697 static void *
698 em_register(device_t dev)
699 {
700         return (em_sctx);
701 }
702
703 static void *
704 igb_register(device_t dev)
705 {
706         return (igb_sctx);
707 }
708
709 static int
710 em_set_num_queues(if_ctx_t ctx)
711 {
712         struct adapter *adapter = iflib_get_softc(ctx);
713         int maxqueues;
714
715         /* Sanity check based on HW */
716         switch (adapter->hw.mac.type) {
717         case e1000_82576:
718         case e1000_82580:
719         case e1000_i350:
720         case e1000_i354:
721                 maxqueues = 8;
722                 break;
723         case e1000_i210:
724         case e1000_82575:
725                 maxqueues = 4;
726                 break;
727         case e1000_i211:
728         case e1000_82574:
729                 maxqueues = 2;
730                 break;
731         default:
732                 maxqueues = 1;
733                 break;
734         }
735
736         return (maxqueues);
737 }
738
739 #define LEM_CAPS                                                        \
740     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
741     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
742
743 #define EM_CAPS                                                         \
744     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
745     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
746     IFCAP_LRO | IFCAP_VLAN_HWTSO
747
748 #define IGB_CAPS                                                        \
749     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
750     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
751     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
752     IFCAP_TSO6
753
754 /*********************************************************************
755  *  Device initialization routine
756  *
757  *  The attach entry point is called when the driver is being loaded.
758  *  This routine identifies the type of hardware, allocates all resources
759  *  and initializes the hardware.
760  *
761  *  return 0 on success, positive on failure
762  *********************************************************************/
763 static int
764 em_if_attach_pre(if_ctx_t ctx)
765 {
766         struct adapter *adapter;
767         if_softc_ctx_t scctx;
768         device_t dev;
769         struct e1000_hw *hw;
770         int error = 0;
771
772         INIT_DEBUGOUT("em_if_attach_pre: begin");
773         dev = iflib_get_dev(ctx);
774         adapter = iflib_get_softc(ctx);
775
776         adapter->ctx = adapter->osdep.ctx = ctx;
777         adapter->dev = adapter->osdep.dev = dev;
778         scctx = adapter->shared = iflib_get_softc_ctx(ctx);
779         adapter->media = iflib_get_media(ctx);
780         hw = &adapter->hw;
781
782         adapter->tx_process_limit = scctx->isc_ntxd[0];
783
784         /* SYSCTL stuff */
785         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
786             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
787             OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
788             em_sysctl_nvm_info, "I", "NVM Information");
789
790         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
791             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
792             OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
793             em_sysctl_debug_info, "I", "Debug Information");
794
795         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
796             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
797             OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
798             em_set_flowcntl, "I", "Flow Control");
799
800         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
801             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
802             OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0,
803             em_get_regs, "A", "Dump Registers");
804
805         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
806             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
807             OID_AUTO, "rs_dump", CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
808             em_get_rs, "I", "Dump RS indexes");
809
810         /* Determine hardware and mac info */
811         em_identify_hardware(ctx);
812
813         scctx->isc_tx_nsegments = EM_MAX_SCATTER;
814         scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
815         if (bootverbose)
816                 device_printf(dev, "attach_pre capping queues at %d\n",
817                     scctx->isc_ntxqsets_max);
818
819         if (adapter->hw.mac.type >= igb_mac_min) {
820                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
821                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
822                 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
823                 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
824                 scctx->isc_txrx = &igb_txrx;
825                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
826                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
827                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
828                 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
829                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
830                      CSUM_IP6_TCP | CSUM_IP6_UDP;
831                 if (adapter->hw.mac.type != e1000_82575)
832                         scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
833                 /*
834                 ** Some new devices, as with ixgbe, now may
835                 ** use a different BAR, so we need to keep
836                 ** track of which is used.
837                 */
838                 scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
839                 if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0)
840                         scctx->isc_msix_bar += 4;
841         } else if (adapter->hw.mac.type >= em_mac_min) {
842                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
843                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
844                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
845                 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
846                 scctx->isc_txrx = &em_txrx;
847                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
848                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
849                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
850                 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
851                 /*
852                  * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
853                  * by default as we don't have workarounds for all associated
854                  * silicon errata.  E. g., with several MACs such as 82573E,
855                  * TSO only works at Gigabit speed and otherwise can cause the
856                  * hardware to hang (which also would be next to impossible to
857                  * work around given that already queued TSO-using descriptors
858                  * would need to be flushed and vlan(4) reconfigured at runtime
859                  * in case of a link speed change).  Moreover, MACs like 82579
860                  * still can hang at Gigabit even with all publicly documented
861                  * TSO workarounds implemented.  Generally, the penality of
862                  * these workarounds is rather high and may involve copying
863                  * mbuf data around so advantages of TSO lapse.  Still, TSO may
864                  * work for a few MACs of this class - at least when sticking
865                  * with Gigabit - in which case users may enable TSO manually.
866                  */
867                 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
868                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
869                 /*
870                  * We support MSI-X with 82574 only, but indicate to iflib(4)
871                  * that it shall give MSI at least a try with other devices.
872                  */
873                 if (adapter->hw.mac.type == e1000_82574) {
874                         scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
875                 } else {
876                         scctx->isc_msix_bar = -1;
877                         scctx->isc_disable_msix = 1;
878                 }
879         } else {
880                 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
881                 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
882                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
883                 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
884                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
885                 scctx->isc_txrx = &lem_txrx;
886                 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
887                 if (adapter->hw.mac.type < e1000_82543)
888                         scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
889                 /* INTx only */
890                 scctx->isc_msix_bar = 0;
891         }
892
893         /* Setup PCI resources */
894         if (em_allocate_pci_resources(ctx)) {
895                 device_printf(dev, "Allocation of PCI resources failed\n");
896                 error = ENXIO;
897                 goto err_pci;
898         }
899
900         /*
901         ** For ICH8 and family we need to
902         ** map the flash memory, and this
903         ** must happen after the MAC is
904         ** identified
905         */
906         if ((hw->mac.type == e1000_ich8lan) ||
907             (hw->mac.type == e1000_ich9lan) ||
908             (hw->mac.type == e1000_ich10lan) ||
909             (hw->mac.type == e1000_pchlan) ||
910             (hw->mac.type == e1000_pch2lan) ||
911             (hw->mac.type == e1000_pch_lpt)) {
912                 int rid = EM_BAR_TYPE_FLASH;
913                 adapter->flash = bus_alloc_resource_any(dev,
914                     SYS_RES_MEMORY, &rid, RF_ACTIVE);
915                 if (adapter->flash == NULL) {
916                         device_printf(dev, "Mapping of Flash failed\n");
917                         error = ENXIO;
918                         goto err_pci;
919                 }
920                 /* This is used in the shared code */
921                 hw->flash_address = (u8 *)adapter->flash;
922                 adapter->osdep.flash_bus_space_tag =
923                     rman_get_bustag(adapter->flash);
924                 adapter->osdep.flash_bus_space_handle =
925                     rman_get_bushandle(adapter->flash);
926         }
927         /*
928         ** In the new SPT device flash is not  a
929         ** separate BAR, rather it is also in BAR0,
930         ** so use the same tag and an offset handle for the
931         ** FLASH read/write macros in the shared code.
932         */
933         else if (hw->mac.type >= e1000_pch_spt) {
934                 adapter->osdep.flash_bus_space_tag =
935                     adapter->osdep.mem_bus_space_tag;
936                 adapter->osdep.flash_bus_space_handle =
937                     adapter->osdep.mem_bus_space_handle
938                     + E1000_FLASH_BASE_ADDR;
939         }
940
941         /* Do Shared Code initialization */
942         error = e1000_setup_init_funcs(hw, TRUE);
943         if (error) {
944                 device_printf(dev, "Setup of Shared code failed, error %d\n",
945                     error);
946                 error = ENXIO;
947                 goto err_pci;
948         }
949
950         em_setup_msix(ctx);
951         e1000_get_bus_info(hw);
952
953         /* Set up some sysctls for the tunable interrupt delays */
954         em_add_int_delay_sysctl(adapter, "rx_int_delay",
955             "receive interrupt delay in usecs", &adapter->rx_int_delay,
956             E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
957         em_add_int_delay_sysctl(adapter, "tx_int_delay",
958             "transmit interrupt delay in usecs", &adapter->tx_int_delay,
959             E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
960         em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
961             "receive interrupt delay limit in usecs",
962             &adapter->rx_abs_int_delay,
963             E1000_REGISTER(hw, E1000_RADV),
964             em_rx_abs_int_delay_dflt);
965         em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
966             "transmit interrupt delay limit in usecs",
967             &adapter->tx_abs_int_delay,
968             E1000_REGISTER(hw, E1000_TADV),
969             em_tx_abs_int_delay_dflt);
970         em_add_int_delay_sysctl(adapter, "itr",
971             "interrupt delay limit in usecs/4",
972             &adapter->tx_itr,
973             E1000_REGISTER(hw, E1000_ITR),
974             DEFAULT_ITR);
975
976         hw->mac.autoneg = DO_AUTO_NEG;
977         hw->phy.autoneg_wait_to_complete = FALSE;
978         hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
979
980         if (adapter->hw.mac.type < em_mac_min) {
981                 e1000_init_script_state_82541(&adapter->hw, TRUE);
982                 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
983         }
984         /* Copper options */
985         if (hw->phy.media_type == e1000_media_type_copper) {
986                 hw->phy.mdix = AUTO_ALL_MODES;
987                 hw->phy.disable_polarity_correction = FALSE;
988                 hw->phy.ms_type = EM_MASTER_SLAVE;
989         }
990
991         /*
992          * Set the frame limits assuming
993          * standard ethernet sized frames.
994          */
995         scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
996             ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
997
998         /*
999          * This controls when hardware reports transmit completion
1000          * status.
1001          */
1002         hw->mac.report_tx_early = 1;
1003
1004         /* Allocate multicast array memory. */
1005         adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
1006             MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1007         if (adapter->mta == NULL) {
1008                 device_printf(dev, "Can not allocate multicast setup array\n");
1009                 error = ENOMEM;
1010                 goto err_late;
1011         }
1012
1013         /* Check SOL/IDER usage */
1014         if (e1000_check_reset_block(hw))
1015                 device_printf(dev, "PHY reset is blocked"
1016                               " due to SOL/IDER session.\n");
1017
1018         /* Sysctl for setting Energy Efficient Ethernet */
1019         hw->dev_spec.ich8lan.eee_disable = eee_setting;
1020         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1021             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1022             OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW,
1023             adapter, 0, em_sysctl_eee, "I",
1024             "Disable Energy Efficient Ethernet");
1025
1026         /*
1027         ** Start from a known state, this is
1028         ** important in reading the nvm and
1029         ** mac from that.
1030         */
1031         e1000_reset_hw(hw);
1032
1033         /* Make sure we have a good EEPROM before we read from it */
1034         if (e1000_validate_nvm_checksum(hw) < 0) {
1035                 /*
1036                 ** Some PCI-E parts fail the first check due to
1037                 ** the link being in sleep state, call it again,
1038                 ** if it fails a second time its a real issue.
1039                 */
1040                 if (e1000_validate_nvm_checksum(hw) < 0) {
1041                         device_printf(dev,
1042                             "The EEPROM Checksum Is Not Valid\n");
1043                         error = EIO;
1044                         goto err_late;
1045                 }
1046         }
1047
1048         /* Copy the permanent MAC address out of the EEPROM */
1049         if (e1000_read_mac_addr(hw) < 0) {
1050                 device_printf(dev, "EEPROM read error while reading MAC"
1051                               " address\n");
1052                 error = EIO;
1053                 goto err_late;
1054         }
1055
1056         if (!em_is_valid_ether_addr(hw->mac.addr)) {
1057                 device_printf(dev, "Invalid MAC address\n");
1058                 error = EIO;
1059                 goto err_late;
1060         }
1061
1062         /* Disable ULP support */
1063         e1000_disable_ulp_lpt_lp(hw, TRUE);
1064
1065         /*
1066          * Get Wake-on-Lan and Management info for later use
1067          */
1068         em_get_wakeup(ctx);
1069
1070         /* Enable only WOL MAGIC by default */
1071         scctx->isc_capenable &= ~IFCAP_WOL;
1072         if (adapter->wol != 0)
1073                 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1074
1075         iflib_set_mac(ctx, hw->mac.addr);
1076
1077         return (0);
1078
1079 err_late:
1080         em_release_hw_control(adapter);
1081 err_pci:
1082         em_free_pci_resources(ctx);
1083         free(adapter->mta, M_DEVBUF);
1084
1085         return (error);
1086 }
1087
1088 static int
1089 em_if_attach_post(if_ctx_t ctx)
1090 {
1091         struct adapter *adapter = iflib_get_softc(ctx);
1092         struct e1000_hw *hw = &adapter->hw;
1093         int error = 0;
1094         
1095         /* Setup OS specific network interface */
1096         error = em_setup_interface(ctx);
1097         if (error != 0) {
1098                 goto err_late;
1099         }
1100
1101         em_reset(ctx);
1102
1103         /* Initialize statistics */
1104         em_update_stats_counters(adapter);
1105         hw->mac.get_link_status = 1;
1106         em_if_update_admin_status(ctx);
1107         em_add_hw_stats(adapter);
1108
1109         /* Non-AMT based hardware can now take control from firmware */
1110         if (adapter->has_manage && !adapter->has_amt)
1111                 em_get_hw_control(adapter);
1112
1113         INIT_DEBUGOUT("em_if_attach_post: end");
1114
1115         return (error);
1116
1117 err_late:
1118         em_release_hw_control(adapter);
1119         em_free_pci_resources(ctx);
1120         em_if_queues_free(ctx);
1121         free(adapter->mta, M_DEVBUF);
1122
1123         return (error);
1124 }
1125
1126 /*********************************************************************
1127  *  Device removal routine
1128  *
1129  *  The detach entry point is called when the driver is being removed.
1130  *  This routine stops the adapter and deallocates all the resources
1131  *  that were allocated for driver operation.
1132  *
1133  *  return 0 on success, positive on failure
1134  *********************************************************************/
1135 static int
1136 em_if_detach(if_ctx_t ctx)
1137 {
1138         struct adapter  *adapter = iflib_get_softc(ctx);
1139
1140         INIT_DEBUGOUT("em_if_detach: begin");
1141
1142         e1000_phy_hw_reset(&adapter->hw);
1143
1144         em_release_manageability(adapter);
1145         em_release_hw_control(adapter);
1146         em_free_pci_resources(ctx);
1147
1148         return (0);
1149 }
1150
1151 /*********************************************************************
1152  *
1153  *  Shutdown entry point
1154  *
1155  **********************************************************************/
1156
1157 static int
1158 em_if_shutdown(if_ctx_t ctx)
1159 {
1160         return em_if_suspend(ctx);
1161 }
1162
1163 /*
1164  * Suspend/resume device methods.
1165  */
1166 static int
1167 em_if_suspend(if_ctx_t ctx)
1168 {
1169         struct adapter *adapter = iflib_get_softc(ctx);
1170
1171         em_release_manageability(adapter);
1172         em_release_hw_control(adapter);
1173         em_enable_wakeup(ctx);
1174         return (0);
1175 }
1176
1177 static int
1178 em_if_resume(if_ctx_t ctx)
1179 {
1180         struct adapter *adapter = iflib_get_softc(ctx);
1181
1182         if (adapter->hw.mac.type == e1000_pch2lan)
1183                 e1000_resume_workarounds_pchlan(&adapter->hw);
1184         em_if_init(ctx);
1185         em_init_manageability(adapter);
1186
1187         return(0);
1188 }
1189
1190 static int
1191 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1192 {
1193         int max_frame_size;
1194         struct adapter *adapter = iflib_get_softc(ctx);
1195         if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1196
1197          IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1198
1199         switch (adapter->hw.mac.type) {
1200         case e1000_82571:
1201         case e1000_82572:
1202         case e1000_ich9lan:
1203         case e1000_ich10lan:
1204         case e1000_pch2lan:
1205         case e1000_pch_lpt:
1206         case e1000_pch_spt:
1207         case e1000_pch_cnp:
1208         case e1000_82574:
1209         case e1000_82583:
1210         case e1000_80003es2lan:
1211                 /* 9K Jumbo Frame size */
1212                 max_frame_size = 9234;
1213                 break;
1214         case e1000_pchlan:
1215                 max_frame_size = 4096;
1216                 break;
1217         case e1000_82542:
1218         case e1000_ich8lan:
1219                 /* Adapters that do not support jumbo frames */
1220                 max_frame_size = ETHER_MAX_LEN;
1221                 break;
1222         default:
1223                 if (adapter->hw.mac.type >= igb_mac_min)
1224                         max_frame_size = 9234;
1225                 else /* lem */
1226                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
1227         }
1228         if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1229                 return (EINVAL);
1230         }
1231
1232         scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1233             mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1234         return (0);
1235 }
1236
1237 /*********************************************************************
1238  *  Init entry point
1239  *
1240  *  This routine is used in two ways. It is used by the stack as
1241  *  init entry point in network interface structure. It is also used
1242  *  by the driver as a hw/sw initialization routine to get to a
1243  *  consistent state.
1244  *
1245  **********************************************************************/
1246 static void
1247 em_if_init(if_ctx_t ctx)
1248 {
1249         struct adapter *adapter = iflib_get_softc(ctx);
1250         if_softc_ctx_t scctx = adapter->shared;
1251         struct ifnet *ifp = iflib_get_ifp(ctx);
1252         struct em_tx_queue *tx_que;
1253         int i;
1254
1255         INIT_DEBUGOUT("em_if_init: begin");
1256
1257         /* Get the latest mac address, User can use a LAA */
1258         bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1259             ETHER_ADDR_LEN);
1260
1261         /* Put the address into the Receive Address Array */
1262         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1263
1264         /*
1265          * With the 82571 adapter, RAR[0] may be overwritten
1266          * when the other port is reset, we make a duplicate
1267          * in RAR[14] for that eventuality, this assures
1268          * the interface continues to function.
1269          */
1270         if (adapter->hw.mac.type == e1000_82571) {
1271                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1272                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1273                     E1000_RAR_ENTRIES - 1);
1274         }
1275
1276
1277         /* Initialize the hardware */
1278         em_reset(ctx);
1279         em_if_update_admin_status(ctx);
1280
1281         for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1282                 struct tx_ring *txr = &tx_que->txr;
1283
1284                 txr->tx_rs_cidx = txr->tx_rs_pidx;
1285
1286                 /* Initialize the last processed descriptor to be the end of
1287                  * the ring, rather than the start, so that we avoid an
1288                  * off-by-one error when calculating how many descriptors are
1289                  * done in the credits_update function.
1290                  */
1291                 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1292         }
1293
1294         /* Setup VLAN support, basic and offload if available */
1295         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1296
1297         /* Clear bad data from Rx FIFOs */
1298         if (adapter->hw.mac.type >= igb_mac_min)
1299                 e1000_rx_fifo_flush_82575(&adapter->hw);
1300
1301         /* Configure for OS presence */
1302         em_init_manageability(adapter);
1303
1304         /* Prepare transmit descriptors and buffers */
1305         em_initialize_transmit_unit(ctx);
1306
1307         /* Setup Multicast table */
1308         em_if_multi_set(ctx);
1309
1310         adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1311         em_initialize_receive_unit(ctx);
1312
1313         /* Use real VLAN Filter support? */
1314         if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1315                 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1316                         /* Use real VLAN Filter support */
1317                         em_setup_vlan_hw_support(adapter);
1318                 else {
1319                         u32 ctrl;
1320                         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1321                         ctrl |= E1000_CTRL_VME;
1322                         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1323                 }
1324         }
1325
1326         /* Don't lose promiscuous settings */
1327         em_if_set_promisc(ctx, IFF_PROMISC);
1328         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1329
1330         /* MSI-X configuration for 82574 */
1331         if (adapter->hw.mac.type == e1000_82574) {
1332                 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1333
1334                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1335                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1336                 /* Set the IVAR - interrupt vector routing. */
1337                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1338         } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1339                 igb_configure_queues(adapter);
1340
1341         /* this clears any pending interrupts */
1342         E1000_READ_REG(&adapter->hw, E1000_ICR);
1343         E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1344
1345         /* AMT based hardware can now take control from firmware */
1346         if (adapter->has_manage && adapter->has_amt)
1347                 em_get_hw_control(adapter);
1348
1349         /* Set Energy Efficient Ethernet */
1350         if (adapter->hw.mac.type >= igb_mac_min &&
1351             adapter->hw.phy.media_type == e1000_media_type_copper) {
1352                 if (adapter->hw.mac.type == e1000_i354)
1353                         e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1354                 else
1355                         e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1356         }
1357 }
1358
1359 /*********************************************************************
1360  *
1361  *  Fast Legacy/MSI Combined Interrupt Service routine
1362  *
1363  *********************************************************************/
1364 int
1365 em_intr(void *arg)
1366 {
1367         struct adapter *adapter = arg;
1368         if_ctx_t ctx = adapter->ctx;
1369         u32 reg_icr;
1370
1371         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1372
1373         /* Hot eject? */
1374         if (reg_icr == 0xffffffff)
1375                 return FILTER_STRAY;
1376
1377         /* Definitely not our interrupt. */
1378         if (reg_icr == 0x0)
1379                 return FILTER_STRAY;
1380
1381         /*
1382          * Starting with the 82571 chip, bit 31 should be used to
1383          * determine whether the interrupt belongs to us.
1384          */
1385         if (adapter->hw.mac.type >= e1000_82571 &&
1386             (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1387                 return FILTER_STRAY;
1388
1389         /*
1390          * Only MSI-X interrupts have one-shot behavior by taking advantage
1391          * of the EIAC register.  Thus, explicitly disable interrupts.  This
1392          * also works around the MSI message reordering errata on certain
1393          * systems.
1394          */
1395         IFDI_INTR_DISABLE(ctx);
1396
1397         /* Link status change */
1398         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1399                 em_handle_link(ctx);
1400
1401         if (reg_icr & E1000_ICR_RXO)
1402                 adapter->rx_overruns++;
1403
1404         return (FILTER_SCHEDULE_THREAD);
1405 }
1406
1407 static int
1408 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1409 {
1410         struct adapter *adapter = iflib_get_softc(ctx);
1411         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1412
1413         E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1414         return (0);
1415 }
1416
1417 static int
1418 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1419 {
1420         struct adapter *adapter = iflib_get_softc(ctx);
1421         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1422
1423         E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1424         return (0);
1425 }
1426
1427 static int
1428 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1429 {
1430         struct adapter *adapter = iflib_get_softc(ctx);
1431         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1432
1433         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1434         return (0);
1435 }
1436
1437 static int
1438 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1439 {
1440         struct adapter *adapter = iflib_get_softc(ctx);
1441         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1442
1443         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1444         return (0);
1445 }
1446
1447 /*********************************************************************
1448  *
1449  *  MSI-X RX Interrupt Service routine
1450  *
1451  **********************************************************************/
1452 static int
1453 em_msix_que(void *arg)
1454 {
1455         struct em_rx_queue *que = arg;
1456
1457         ++que->irqs;
1458
1459         return (FILTER_SCHEDULE_THREAD);
1460 }
1461
1462 /*********************************************************************
1463  *
1464  *  MSI-X Link Fast Interrupt Service routine
1465  *
1466  **********************************************************************/
1467 static int
1468 em_msix_link(void *arg)
1469 {
1470         struct adapter *adapter = arg;
1471         u32 reg_icr;
1472
1473         ++adapter->link_irq;
1474         MPASS(adapter->hw.back != NULL);
1475         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1476
1477         if (reg_icr & E1000_ICR_RXO)
1478                 adapter->rx_overruns++;
1479
1480         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1481                 em_handle_link(adapter->ctx);
1482         } else if (adapter->hw.mac.type == e1000_82574) {
1483                 /* Only re-arm 82574 if em_if_update_admin_status() won't. */
1484                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1485                     E1000_IMS_LSC);
1486         }
1487
1488         if (adapter->hw.mac.type == e1000_82574) {
1489                 /*
1490                  * Because we must read the ICR for this interrupt it may
1491                  * clear other causes using autoclear, for this reason we
1492                  * simply create a soft interrupt for all these vectors.
1493                  */
1494                 if (reg_icr)
1495                         E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims);
1496         } else {
1497                 /* Re-arm unconditionally */
1498                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1499                 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1500         }
1501
1502         return (FILTER_HANDLED);
1503 }
1504
1505 static void
1506 em_handle_link(void *context)
1507 {
1508         if_ctx_t ctx = context;
1509         struct adapter *adapter = iflib_get_softc(ctx);
1510
1511         adapter->hw.mac.get_link_status = 1;
1512         iflib_admin_intr_deferred(ctx);
1513 }
1514
1515 /*********************************************************************
1516  *
1517  *  Media Ioctl callback
1518  *
1519  *  This routine is called whenever the user queries the status of
1520  *  the interface using ifconfig.
1521  *
1522  **********************************************************************/
1523 static void
1524 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1525 {
1526         struct adapter *adapter = iflib_get_softc(ctx);
1527         u_char fiber_type = IFM_1000_SX;
1528
1529         INIT_DEBUGOUT("em_if_media_status: begin");
1530
1531         iflib_admin_intr_deferred(ctx);
1532
1533         ifmr->ifm_status = IFM_AVALID;
1534         ifmr->ifm_active = IFM_ETHER;
1535
1536         if (!adapter->link_active) {
1537                 return;
1538         }
1539
1540         ifmr->ifm_status |= IFM_ACTIVE;
1541
1542         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1543             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1544                 if (adapter->hw.mac.type == e1000_82545)
1545                         fiber_type = IFM_1000_LX;
1546                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1547         } else {
1548                 switch (adapter->link_speed) {
1549                 case 10:
1550                         ifmr->ifm_active |= IFM_10_T;
1551                         break;
1552                 case 100:
1553                         ifmr->ifm_active |= IFM_100_TX;
1554                         break;
1555                 case 1000:
1556                         ifmr->ifm_active |= IFM_1000_T;
1557                         break;
1558                 }
1559                 if (adapter->link_duplex == FULL_DUPLEX)
1560                         ifmr->ifm_active |= IFM_FDX;
1561                 else
1562                         ifmr->ifm_active |= IFM_HDX;
1563         }
1564 }
1565
1566 /*********************************************************************
1567  *
1568  *  Media Ioctl callback
1569  *
1570  *  This routine is called when the user changes speed/duplex using
1571  *  media/mediopt option with ifconfig.
1572  *
1573  **********************************************************************/
1574 static int
1575 em_if_media_change(if_ctx_t ctx)
1576 {
1577         struct adapter *adapter = iflib_get_softc(ctx);
1578         struct ifmedia *ifm = iflib_get_media(ctx);
1579
1580         INIT_DEBUGOUT("em_if_media_change: begin");
1581
1582         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1583                 return (EINVAL);
1584
1585         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1586         case IFM_AUTO:
1587                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1588                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1589                 break;
1590         case IFM_1000_LX:
1591         case IFM_1000_SX:
1592         case IFM_1000_T:
1593                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1594                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1595                 break;
1596         case IFM_100_TX:
1597                 adapter->hw.mac.autoneg = FALSE;
1598                 adapter->hw.phy.autoneg_advertised = 0;
1599                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1600                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1601                 else
1602                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1603                 break;
1604         case IFM_10_T:
1605                 adapter->hw.mac.autoneg = FALSE;
1606                 adapter->hw.phy.autoneg_advertised = 0;
1607                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1608                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1609                 else
1610                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1611                 break;
1612         default:
1613                 device_printf(adapter->dev, "Unsupported media type\n");
1614         }
1615
1616         em_if_init(ctx);
1617
1618         return (0);
1619 }
1620
1621 static int
1622 em_if_set_promisc(if_ctx_t ctx, int flags)
1623 {
1624         struct adapter *adapter = iflib_get_softc(ctx);
1625         u32 reg_rctl;
1626
1627         em_disable_promisc(ctx);
1628
1629         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1630
1631         if (flags & IFF_PROMISC) {
1632                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1633                 /* Turn this on if you want to see bad packets */
1634                 if (em_debug_sbp)
1635                         reg_rctl |= E1000_RCTL_SBP;
1636                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1637         } else if (flags & IFF_ALLMULTI) {
1638                 reg_rctl |= E1000_RCTL_MPE;
1639                 reg_rctl &= ~E1000_RCTL_UPE;
1640                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1641         }
1642         return (0);
1643 }
1644
1645 static void
1646 em_disable_promisc(if_ctx_t ctx)
1647 {
1648         struct adapter *adapter = iflib_get_softc(ctx);
1649         struct ifnet *ifp = iflib_get_ifp(ctx);
1650         u32 reg_rctl;
1651         int mcnt = 0;
1652
1653         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1654         reg_rctl &= (~E1000_RCTL_UPE);
1655         if (if_getflags(ifp) & IFF_ALLMULTI)
1656                 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1657         else
1658                 mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES);
1659         /* Don't disable if in MAX groups */
1660         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1661                 reg_rctl &=  (~E1000_RCTL_MPE);
1662         reg_rctl &=  (~E1000_RCTL_SBP);
1663         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1664 }
1665
1666
1667 /*********************************************************************
1668  *  Multicast Update
1669  *
1670  *  This routine is called whenever multicast address list is updated.
1671  *
1672  **********************************************************************/
1673
1674 static void
1675 em_if_multi_set(if_ctx_t ctx)
1676 {
1677         struct adapter *adapter = iflib_get_softc(ctx);
1678         struct ifnet *ifp = iflib_get_ifp(ctx);
1679         u32 reg_rctl = 0;
1680         u8  *mta; /* Multicast array memory */
1681         int mcnt = 0;
1682
1683         IOCTL_DEBUGOUT("em_set_multi: begin");
1684
1685         mta = adapter->mta;
1686         bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1687
1688         if (adapter->hw.mac.type == e1000_82542 &&
1689             adapter->hw.revision_id == E1000_REVISION_2) {
1690                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1691                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1692                         e1000_pci_clear_mwi(&adapter->hw);
1693                 reg_rctl |= E1000_RCTL_RST;
1694                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1695                 msec_delay(5);
1696         }
1697
1698         if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES);
1699
1700         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1701                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1702                 reg_rctl |= E1000_RCTL_MPE;
1703                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1704         } else
1705                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1706
1707         if (adapter->hw.mac.type == e1000_82542 &&
1708             adapter->hw.revision_id == E1000_REVISION_2) {
1709                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1710                 reg_rctl &= ~E1000_RCTL_RST;
1711                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1712                 msec_delay(5);
1713                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1714                         e1000_pci_set_mwi(&adapter->hw);
1715         }
1716 }
1717
1718 /*********************************************************************
1719  *  Timer routine
1720  *
1721  *  This routine schedules em_if_update_admin_status() to check for
1722  *  link status and to gather statistics as well as to perform some
1723  *  controller-specific hardware patting.
1724  *
1725  **********************************************************************/
1726 static void
1727 em_if_timer(if_ctx_t ctx, uint16_t qid)
1728 {
1729
1730         if (qid != 0)
1731                 return;
1732
1733         iflib_admin_intr_deferred(ctx);
1734 }
1735
1736 static void
1737 em_if_update_admin_status(if_ctx_t ctx)
1738 {
1739         struct adapter *adapter = iflib_get_softc(ctx);
1740         struct e1000_hw *hw = &adapter->hw;
1741         device_t dev = iflib_get_dev(ctx);
1742         u32 link_check, thstat, ctrl;
1743
1744         link_check = thstat = ctrl = 0;
1745         /* Get the cached link value or read phy for real */
1746         switch (hw->phy.media_type) {
1747         case e1000_media_type_copper:
1748                 if (hw->mac.get_link_status) {
1749                         if (hw->mac.type == e1000_pch_spt)
1750                                 msec_delay(50);
1751                         /* Do the work to read phy */
1752                         e1000_check_for_link(hw);
1753                         link_check = !hw->mac.get_link_status;
1754                         if (link_check) /* ESB2 fix */
1755                                 e1000_cfg_on_link_up(hw);
1756                 } else {
1757                         link_check = TRUE;
1758                 }
1759                 break;
1760         case e1000_media_type_fiber:
1761                 e1000_check_for_link(hw);
1762                 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1763                             E1000_STATUS_LU);
1764                 break;
1765         case e1000_media_type_internal_serdes:
1766                 e1000_check_for_link(hw);
1767                 link_check = adapter->hw.mac.serdes_has_link;
1768                 break;
1769         /* VF device is type_unknown */
1770         case e1000_media_type_unknown:
1771                 e1000_check_for_link(hw);
1772                 link_check = !hw->mac.get_link_status;
1773                 /* FALLTHROUGH */
1774         default:
1775                 break;
1776         }
1777
1778         /* Check for thermal downshift or shutdown */
1779         if (hw->mac.type == e1000_i350) {
1780                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1781                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1782         }
1783
1784         /* Now check for a transition */
1785         if (link_check && (adapter->link_active == 0)) {
1786                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1787                     &adapter->link_duplex);
1788                 /* Check if we must disable SPEED_MODE bit on PCI-E */
1789                 if ((adapter->link_speed != SPEED_1000) &&
1790                     ((hw->mac.type == e1000_82571) ||
1791                     (hw->mac.type == e1000_82572))) {
1792                         int tarc0;
1793                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1794                         tarc0 &= ~TARC_SPEED_MODE_BIT;
1795                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1796                 }
1797                 if (bootverbose)
1798                         device_printf(dev, "Link is up %d Mbps %s\n",
1799                             adapter->link_speed,
1800                             ((adapter->link_duplex == FULL_DUPLEX) ?
1801                             "Full Duplex" : "Half Duplex"));
1802                 adapter->link_active = 1;
1803                 adapter->smartspeed = 0;
1804                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1805                     E1000_CTRL_EXT_LINK_MODE_GMII &&
1806                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1807                         device_printf(dev, "Link: thermal downshift\n");
1808                 /* Delay Link Up for Phy update */
1809                 if (((hw->mac.type == e1000_i210) ||
1810                     (hw->mac.type == e1000_i211)) &&
1811                     (hw->phy.id == I210_I_PHY_ID))
1812                         msec_delay(I210_LINK_DELAY);
1813                 /* Reset if the media type changed. */
1814                 if ((hw->dev_spec._82575.media_changed) &&
1815                         (adapter->hw.mac.type >= igb_mac_min)) {
1816                         hw->dev_spec._82575.media_changed = false;
1817                         adapter->flags |= IGB_MEDIA_RESET;
1818                         em_reset(ctx);
1819                 }
1820                 iflib_link_state_change(ctx, LINK_STATE_UP,
1821                     IF_Mbps(adapter->link_speed));
1822         } else if (!link_check && (adapter->link_active == 1)) {
1823                 adapter->link_speed = 0;
1824                 adapter->link_duplex = 0;
1825                 adapter->link_active = 0;
1826                 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1827         }
1828         em_update_stats_counters(adapter);
1829
1830         /* Reset LAA into RAR[0] on 82571 */
1831         if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1832                 e1000_rar_set(hw, hw->mac.addr, 0);
1833
1834         if (hw->mac.type < em_mac_min)
1835                 lem_smartspeed(adapter);
1836         else if (hw->mac.type == e1000_82574 &&
1837             adapter->intr_type == IFLIB_INTR_MSIX)
1838                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1839                     E1000_IMS_LSC);
1840 }
1841
1842 static void
1843 em_if_watchdog_reset(if_ctx_t ctx)
1844 {
1845         struct adapter *adapter = iflib_get_softc(ctx);
1846
1847         /*
1848          * Just count the event; iflib(4) will already trigger a
1849          * sufficient reset of the controller.
1850          */
1851         adapter->watchdog_events++;
1852 }
1853
1854 /*********************************************************************
1855  *
1856  *  This routine disables all traffic on the adapter by issuing a
1857  *  global reset on the MAC.
1858  *
1859  **********************************************************************/
1860 static void
1861 em_if_stop(if_ctx_t ctx)
1862 {
1863         struct adapter *adapter = iflib_get_softc(ctx);
1864
1865         INIT_DEBUGOUT("em_if_stop: begin");
1866
1867         e1000_reset_hw(&adapter->hw);
1868         if (adapter->hw.mac.type >= e1000_82544)
1869                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1870
1871         e1000_led_off(&adapter->hw);
1872         e1000_cleanup_led(&adapter->hw);
1873 }
1874
1875 /*********************************************************************
1876  *
1877  *  Determine hardware revision.
1878  *
1879  **********************************************************************/
1880 static void
1881 em_identify_hardware(if_ctx_t ctx)
1882 {
1883         device_t dev = iflib_get_dev(ctx);
1884         struct adapter *adapter = iflib_get_softc(ctx);
1885
1886         /* Make sure our PCI config space has the necessary stuff set */
1887         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1888
1889         /* Save off the information about this board */
1890         adapter->hw.vendor_id = pci_get_vendor(dev);
1891         adapter->hw.device_id = pci_get_device(dev);
1892         adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1893         adapter->hw.subsystem_vendor_id =
1894             pci_read_config(dev, PCIR_SUBVEND_0, 2);
1895         adapter->hw.subsystem_device_id =
1896             pci_read_config(dev, PCIR_SUBDEV_0, 2);
1897
1898         /* Do Shared Code Init and Setup */
1899         if (e1000_set_mac_type(&adapter->hw)) {
1900                 device_printf(dev, "Setup init failure\n");
1901                 return;
1902         }
1903 }
1904
1905 static int
1906 em_allocate_pci_resources(if_ctx_t ctx)
1907 {
1908         struct adapter *adapter = iflib_get_softc(ctx);
1909         device_t dev = iflib_get_dev(ctx);
1910         int rid, val;
1911
1912         rid = PCIR_BAR(0);
1913         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1914             &rid, RF_ACTIVE);
1915         if (adapter->memory == NULL) {
1916                 device_printf(dev, "Unable to allocate bus resource: memory\n");
1917                 return (ENXIO);
1918         }
1919         adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1920         adapter->osdep.mem_bus_space_handle =
1921             rman_get_bushandle(adapter->memory);
1922         adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1923
1924         /* Only older adapters use IO mapping */
1925         if (adapter->hw.mac.type < em_mac_min &&
1926             adapter->hw.mac.type > e1000_82543) {
1927                 /* Figure our where our IO BAR is ? */
1928                 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1929                         val = pci_read_config(dev, rid, 4);
1930                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1931                                 break;
1932                         }
1933                         rid += 4;
1934                         /* check for 64bit BAR */
1935                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1936                                 rid += 4;
1937                 }
1938                 if (rid >= PCIR_CIS) {
1939                         device_printf(dev, "Unable to locate IO BAR\n");
1940                         return (ENXIO);
1941                 }
1942                 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1943                     &rid, RF_ACTIVE);
1944                 if (adapter->ioport == NULL) {
1945                         device_printf(dev, "Unable to allocate bus resource: "
1946                             "ioport\n");
1947                         return (ENXIO);
1948                 }
1949                 adapter->hw.io_base = 0;
1950                 adapter->osdep.io_bus_space_tag =
1951                     rman_get_bustag(adapter->ioport);
1952                 adapter->osdep.io_bus_space_handle =
1953                     rman_get_bushandle(adapter->ioport);
1954         }
1955
1956         adapter->hw.back = &adapter->osdep;
1957
1958         return (0);
1959 }
1960
1961 /*********************************************************************
1962  *
1963  *  Set up the MSI-X Interrupt handlers
1964  *
1965  **********************************************************************/
1966 static int
1967 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1968 {
1969         struct adapter *adapter = iflib_get_softc(ctx);
1970         struct em_rx_queue *rx_que = adapter->rx_queues;
1971         struct em_tx_queue *tx_que = adapter->tx_queues;
1972         int error, rid, i, vector = 0, rx_vectors;
1973         char buf[16];
1974
1975         /* First set up ring resources */
1976         for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
1977                 rid = vector + 1;
1978                 snprintf(buf, sizeof(buf), "rxq%d", i);
1979                 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
1980                 if (error) {
1981                         device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
1982                         adapter->rx_num_queues = i + 1;
1983                         goto fail;
1984                 }
1985
1986                 rx_que->msix =  vector;
1987
1988                 /*
1989                  * Set the bit to enable interrupt
1990                  * in E1000_IMS -- bits 20 and 21
1991                  * are for RX0 and RX1, note this has
1992                  * NOTHING to do with the MSI-X vector
1993                  */
1994                 if (adapter->hw.mac.type == e1000_82574) {
1995                         rx_que->eims = 1 << (20 + i);
1996                         adapter->ims |= rx_que->eims;
1997                         adapter->ivars |= (8 | rx_que->msix) << (i * 4);
1998                 } else if (adapter->hw.mac.type == e1000_82575)
1999                         rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2000                 else
2001                         rx_que->eims = 1 << vector;
2002         }
2003         rx_vectors = vector;
2004
2005         vector = 0;
2006         for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2007                 snprintf(buf, sizeof(buf), "txq%d", i);
2008                 tx_que = &adapter->tx_queues[i];
2009                 iflib_softirq_alloc_generic(ctx,
2010                     &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2011                     IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2012
2013                 tx_que->msix = (vector % adapter->rx_num_queues);
2014
2015                 /*
2016                  * Set the bit to enable interrupt
2017                  * in E1000_IMS -- bits 22 and 23
2018                  * are for TX0 and TX1, note this has
2019                  * NOTHING to do with the MSI-X vector
2020                  */
2021                 if (adapter->hw.mac.type == e1000_82574) {
2022                         tx_que->eims = 1 << (22 + i);
2023                         adapter->ims |= tx_que->eims;
2024                         adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2025                 } else if (adapter->hw.mac.type == e1000_82575) {
2026                         tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2027                 } else {
2028                         tx_que->eims = 1 << i;
2029                 }
2030         }
2031
2032         /* Link interrupt */
2033         rid = rx_vectors + 1;
2034         error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2035
2036         if (error) {
2037                 device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2038                 goto fail;
2039         }
2040         adapter->linkvec = rx_vectors;
2041         if (adapter->hw.mac.type < igb_mac_min) {
2042                 adapter->ivars |=  (8 | rx_vectors) << 16;
2043                 adapter->ivars |= 0x80000000;
2044         }
2045         return (0);
2046 fail:
2047         iflib_irq_free(ctx, &adapter->irq);
2048         rx_que = adapter->rx_queues;
2049         for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2050                 iflib_irq_free(ctx, &rx_que->que_irq);
2051         return (error);
2052 }
2053
2054 static void
2055 igb_configure_queues(struct adapter *adapter)
2056 {
2057         struct e1000_hw *hw = &adapter->hw;
2058         struct em_rx_queue *rx_que;
2059         struct em_tx_queue *tx_que;
2060         u32 tmp, ivar = 0, newitr = 0;
2061
2062         /* First turn on RSS capability */
2063         if (adapter->hw.mac.type != e1000_82575)
2064                 E1000_WRITE_REG(hw, E1000_GPIE,
2065                     E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2066                     E1000_GPIE_PBA | E1000_GPIE_NSICR);
2067
2068         /* Turn on MSI-X */
2069         switch (adapter->hw.mac.type) {
2070         case e1000_82580:
2071         case e1000_i350:
2072         case e1000_i354:
2073         case e1000_i210:
2074         case e1000_i211:
2075         case e1000_vfadapt:
2076         case e1000_vfadapt_i350:
2077                 /* RX entries */
2078                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2079                         u32 index = i >> 1;
2080                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2081                         rx_que = &adapter->rx_queues[i];
2082                         if (i & 1) {
2083                                 ivar &= 0xFF00FFFF;
2084                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2085                         } else {
2086                                 ivar &= 0xFFFFFF00;
2087                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2088                         }
2089                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2090                 }
2091                 /* TX entries */
2092                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2093                         u32 index = i >> 1;
2094                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2095                         tx_que = &adapter->tx_queues[i];
2096                         if (i & 1) {
2097                                 ivar &= 0x00FFFFFF;
2098                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2099                         } else {
2100                                 ivar &= 0xFFFF00FF;
2101                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2102                         }
2103                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2104                         adapter->que_mask |= tx_que->eims;
2105                 }
2106
2107                 /* And for the link interrupt */
2108                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2109                 adapter->link_mask = 1 << adapter->linkvec;
2110                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2111                 break;
2112         case e1000_82576:
2113                 /* RX entries */
2114                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2115                         u32 index = i & 0x7; /* Each IVAR has two entries */
2116                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2117                         rx_que = &adapter->rx_queues[i];
2118                         if (i < 8) {
2119                                 ivar &= 0xFFFFFF00;
2120                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2121                         } else {
2122                                 ivar &= 0xFF00FFFF;
2123                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2124                         }
2125                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2126                         adapter->que_mask |= rx_que->eims;
2127                 }
2128                 /* TX entries */
2129                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2130                         u32 index = i & 0x7; /* Each IVAR has two entries */
2131                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2132                         tx_que = &adapter->tx_queues[i];
2133                         if (i < 8) {
2134                                 ivar &= 0xFFFF00FF;
2135                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2136                         } else {
2137                                 ivar &= 0x00FFFFFF;
2138                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2139                         }
2140                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2141                         adapter->que_mask |= tx_que->eims;
2142                 }
2143
2144                 /* And for the link interrupt */
2145                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2146                 adapter->link_mask = 1 << adapter->linkvec;
2147                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2148                 break;
2149
2150         case e1000_82575:
2151                 /* enable MSI-X support*/
2152                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2153                 tmp |= E1000_CTRL_EXT_PBA_CLR;
2154                 /* Auto-Mask interrupts upon ICR read. */
2155                 tmp |= E1000_CTRL_EXT_EIAME;
2156                 tmp |= E1000_CTRL_EXT_IRCA;
2157                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2158
2159                 /* Queues */
2160                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2161                         rx_que = &adapter->rx_queues[i];
2162                         tmp = E1000_EICR_RX_QUEUE0 << i;
2163                         tmp |= E1000_EICR_TX_QUEUE0 << i;
2164                         rx_que->eims = tmp;
2165                         E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2166                             i, rx_que->eims);
2167                         adapter->que_mask |= rx_que->eims;
2168                 }
2169
2170                 /* Link */
2171                 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2172                     E1000_EIMS_OTHER);
2173                 adapter->link_mask |= E1000_EIMS_OTHER;
2174         default:
2175                 break;
2176         }
2177
2178         /* Set the starting interrupt rate */
2179         if (em_max_interrupt_rate > 0)
2180                 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2181
2182         if (hw->mac.type == e1000_82575)
2183                 newitr |= newitr << 16;
2184         else
2185                 newitr |= E1000_EITR_CNT_IGNR;
2186
2187         for (int i = 0; i < adapter->rx_num_queues; i++) {
2188                 rx_que = &adapter->rx_queues[i];
2189                 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2190         }
2191
2192         return;
2193 }
2194
2195 static void
2196 em_free_pci_resources(if_ctx_t ctx)
2197 {
2198         struct adapter *adapter = iflib_get_softc(ctx);
2199         struct em_rx_queue *que = adapter->rx_queues;
2200         device_t dev = iflib_get_dev(ctx);
2201
2202         /* Release all MSI-X queue resources */
2203         if (adapter->intr_type == IFLIB_INTR_MSIX)
2204                 iflib_irq_free(ctx, &adapter->irq);
2205
2206         for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2207                 iflib_irq_free(ctx, &que->que_irq);
2208         }
2209
2210         if (adapter->memory != NULL) {
2211                 bus_release_resource(dev, SYS_RES_MEMORY,
2212                     rman_get_rid(adapter->memory), adapter->memory);
2213                 adapter->memory = NULL;
2214         }
2215
2216         if (adapter->flash != NULL) {
2217                 bus_release_resource(dev, SYS_RES_MEMORY,
2218                     rman_get_rid(adapter->flash), adapter->flash);
2219                 adapter->flash = NULL;
2220         }
2221
2222         if (adapter->ioport != NULL) {
2223                 bus_release_resource(dev, SYS_RES_IOPORT,
2224                     rman_get_rid(adapter->ioport), adapter->ioport);
2225                 adapter->ioport = NULL;
2226         }
2227 }
2228
2229 /* Set up MSI or MSI-X */
2230 static int
2231 em_setup_msix(if_ctx_t ctx)
2232 {
2233         struct adapter *adapter = iflib_get_softc(ctx);
2234
2235         if (adapter->hw.mac.type == e1000_82574) {
2236                 em_enable_vectors_82574(ctx);
2237         }
2238         return (0);
2239 }
2240
2241 /*********************************************************************
2242  *
2243  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2244  *
2245  **********************************************************************/
2246 static void
2247 lem_smartspeed(struct adapter *adapter)
2248 {
2249         u16 phy_tmp;
2250
2251         if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2252             adapter->hw.mac.autoneg == 0 ||
2253             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2254                 return;
2255
2256         if (adapter->smartspeed == 0) {
2257                 /* If Master/Slave config fault is asserted twice,
2258                  * we assume back-to-back */
2259                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2260                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2261                         return;
2262                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2263                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2264                         e1000_read_phy_reg(&adapter->hw,
2265                             PHY_1000T_CTRL, &phy_tmp);
2266                         if(phy_tmp & CR_1000T_MS_ENABLE) {
2267                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2268                                 e1000_write_phy_reg(&adapter->hw,
2269                                     PHY_1000T_CTRL, phy_tmp);
2270                                 adapter->smartspeed++;
2271                                 if(adapter->hw.mac.autoneg &&
2272                                    !e1000_copper_link_autoneg(&adapter->hw) &&
2273                                    !e1000_read_phy_reg(&adapter->hw,
2274                                     PHY_CONTROL, &phy_tmp)) {
2275                                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2276                                                     MII_CR_RESTART_AUTO_NEG);
2277                                         e1000_write_phy_reg(&adapter->hw,
2278                                             PHY_CONTROL, phy_tmp);
2279                                 }
2280                         }
2281                 }
2282                 return;
2283         } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2284                 /* If still no link, perhaps using 2/3 pair cable */
2285                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2286                 phy_tmp |= CR_1000T_MS_ENABLE;
2287                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2288                 if(adapter->hw.mac.autoneg &&
2289                    !e1000_copper_link_autoneg(&adapter->hw) &&
2290                    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2291                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2292                                     MII_CR_RESTART_AUTO_NEG);
2293                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2294                 }
2295         }
2296         /* Restart process after EM_SMARTSPEED_MAX iterations */
2297         if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2298                 adapter->smartspeed = 0;
2299 }
2300
2301 /*********************************************************************
2302  *
2303  *  Initialize the DMA Coalescing feature
2304  *
2305  **********************************************************************/
2306 static void
2307 igb_init_dmac(struct adapter *adapter, u32 pba)
2308 {
2309         device_t        dev = adapter->dev;
2310         struct e1000_hw *hw = &adapter->hw;
2311         u32             dmac, reg = ~E1000_DMACR_DMAC_EN;
2312         u16             hwm;
2313         u16             max_frame_size;
2314
2315         if (hw->mac.type == e1000_i211)
2316                 return;
2317
2318         max_frame_size = adapter->shared->isc_max_frame_size;
2319         if (hw->mac.type > e1000_82580) {
2320
2321                 if (adapter->dmac == 0) { /* Disabling it */
2322                         E1000_WRITE_REG(hw, E1000_DMACR, reg);
2323                         return;
2324                 } else
2325                         device_printf(dev, "DMA Coalescing enabled\n");
2326
2327                 /* Set starting threshold */
2328                 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2329
2330                 hwm = 64 * pba - max_frame_size / 16;
2331                 if (hwm < 64 * (pba - 6))
2332                         hwm = 64 * (pba - 6);
2333                 reg = E1000_READ_REG(hw, E1000_FCRTC);
2334                 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2335                 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2336                     & E1000_FCRTC_RTH_COAL_MASK);
2337                 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2338
2339
2340                 dmac = pba - max_frame_size / 512;
2341                 if (dmac < pba - 10)
2342                         dmac = pba - 10;
2343                 reg = E1000_READ_REG(hw, E1000_DMACR);
2344                 reg &= ~E1000_DMACR_DMACTHR_MASK;
2345                 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2346                     & E1000_DMACR_DMACTHR_MASK);
2347
2348                 /* transition to L0x or L1 if available..*/
2349                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2350
2351                 /* Check if status is 2.5Gb backplane connection
2352                 * before configuration of watchdog timer, which is
2353                 * in msec values in 12.8usec intervals
2354                 * watchdog timer= msec values in 32usec intervals
2355                 * for non 2.5Gb connection
2356                 */
2357                 if (hw->mac.type == e1000_i354) {
2358                         int status = E1000_READ_REG(hw, E1000_STATUS);
2359                         if ((status & E1000_STATUS_2P5_SKU) &&
2360                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2361                                 reg |= ((adapter->dmac * 5) >> 6);
2362                         else
2363                                 reg |= (adapter->dmac >> 5);
2364                 } else {
2365                         reg |= (adapter->dmac >> 5);
2366                 }
2367
2368                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2369
2370                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2371
2372                 /* Set the interval before transition */
2373                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2374                 if (hw->mac.type == e1000_i350)
2375                         reg |= IGB_DMCTLX_DCFLUSH_DIS;
2376                 /*
2377                 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2378                 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2379                 */
2380                 if (hw->mac.type == e1000_i354) {
2381                         int status = E1000_READ_REG(hw, E1000_STATUS);
2382                         if ((status & E1000_STATUS_2P5_SKU) &&
2383                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2384                                 reg |= 0xA;
2385                         else
2386                                 reg |= 0x4;
2387                 } else {
2388                         reg |= 0x4;
2389                 }
2390
2391                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2392
2393                 /* free space in tx packet buffer to wake from DMA coal */
2394                 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2395                     (2 * max_frame_size)) >> 6);
2396
2397                 /* make low power state decision controlled by DMA coal */
2398                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2399                 reg &= ~E1000_PCIEMISC_LX_DECISION;
2400                 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2401
2402         } else if (hw->mac.type == e1000_82580) {
2403                 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2404                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2405                     reg & ~E1000_PCIEMISC_LX_DECISION);
2406                 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2407         }
2408 }
2409
2410 /*********************************************************************
2411  *
2412  *  Initialize the hardware to a configuration as specified by the
2413  *  adapter structure.
2414  *
2415  **********************************************************************/
2416 static void
2417 em_reset(if_ctx_t ctx)
2418 {
2419         device_t dev = iflib_get_dev(ctx);
2420         struct adapter *adapter = iflib_get_softc(ctx);
2421         struct ifnet *ifp = iflib_get_ifp(ctx);
2422         struct e1000_hw *hw = &adapter->hw;
2423         u16 rx_buffer_size;
2424         u32 pba;
2425
2426         INIT_DEBUGOUT("em_reset: begin");
2427         /* Let the firmware know the OS is in control */
2428         em_get_hw_control(adapter);
2429
2430         /* Set up smart power down as default off on newer adapters. */
2431         if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2432             hw->mac.type == e1000_82572)) {
2433                 u16 phy_tmp = 0;
2434
2435                 /* Speed up time to link by disabling smart power down. */
2436                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2437                 phy_tmp &= ~IGP02E1000_PM_SPD;
2438                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2439         }
2440
2441         /*
2442          * Packet Buffer Allocation (PBA)
2443          * Writing PBA sets the receive portion of the buffer
2444          * the remainder is used for the transmit buffer.
2445          */
2446         switch (hw->mac.type) {
2447         /* Total Packet Buffer on these is 48K */
2448         case e1000_82571:
2449         case e1000_82572:
2450         case e1000_80003es2lan:
2451                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2452                 break;
2453         case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2454                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2455                 break;
2456         case e1000_82574:
2457         case e1000_82583:
2458                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2459                 break;
2460         case e1000_ich8lan:
2461                 pba = E1000_PBA_8K;
2462                 break;
2463         case e1000_ich9lan:
2464         case e1000_ich10lan:
2465                 /* Boost Receive side for jumbo frames */
2466                 if (adapter->hw.mac.max_frame_size > 4096)
2467                         pba = E1000_PBA_14K;
2468                 else
2469                         pba = E1000_PBA_10K;
2470                 break;
2471         case e1000_pchlan:
2472         case e1000_pch2lan:
2473         case e1000_pch_lpt:
2474         case e1000_pch_spt:
2475         case e1000_pch_cnp:
2476                 pba = E1000_PBA_26K;
2477                 break;
2478         case e1000_82575:
2479                 pba = E1000_PBA_32K;
2480                 break;
2481         case e1000_82576:
2482         case e1000_vfadapt:
2483                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2484                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2485                 break;
2486         case e1000_82580:
2487         case e1000_i350:
2488         case e1000_i354:
2489         case e1000_vfadapt_i350:
2490                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2491                 pba = e1000_rxpbs_adjust_82580(pba);
2492                 break;
2493         case e1000_i210:
2494         case e1000_i211:
2495                 pba = E1000_PBA_34K;
2496                 break;
2497         default:
2498                 if (adapter->hw.mac.max_frame_size > 8192)
2499                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2500                 else
2501                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2502         }
2503
2504         /* Special needs in case of Jumbo frames */
2505         if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2506                 u32 tx_space, min_tx, min_rx;
2507                 pba = E1000_READ_REG(hw, E1000_PBA);
2508                 tx_space = pba >> 16;
2509                 pba &= 0xffff;
2510                 min_tx = (adapter->hw.mac.max_frame_size +
2511                     sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2512                 min_tx = roundup2(min_tx, 1024);
2513                 min_tx >>= 10;
2514                 min_rx = adapter->hw.mac.max_frame_size;
2515                 min_rx = roundup2(min_rx, 1024);
2516                 min_rx >>= 10;
2517                 if (tx_space < min_tx &&
2518                     ((min_tx - tx_space) < pba)) {
2519                         pba = pba - (min_tx - tx_space);
2520                         /*
2521                          * if short on rx space, rx wins
2522                          * and must trump tx adjustment
2523                          */
2524                         if (pba < min_rx)
2525                                 pba = min_rx;
2526                 }
2527                 E1000_WRITE_REG(hw, E1000_PBA, pba);
2528         }
2529
2530         if (hw->mac.type < igb_mac_min)
2531                 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2532
2533         INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2534
2535         /*
2536          * These parameters control the automatic generation (Tx) and
2537          * response (Rx) to Ethernet PAUSE frames.
2538          * - High water mark should allow for at least two frames to be
2539          *   received after sending an XOFF.
2540          * - Low water mark works best when it is very near the high water mark.
2541          *   This allows the receiver to restart by sending XON when it has
2542          *   drained a bit. Here we use an arbitrary value of 1500 which will
2543          *   restart after one full frame is pulled from the buffer. There
2544          *   could be several smaller frames in the buffer and if so they will
2545          *   not trigger the XON until their total number reduces the buffer
2546          *   by 1500.
2547          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2548          */
2549         rx_buffer_size = (pba & 0xffff) << 10;
2550         hw->fc.high_water = rx_buffer_size -
2551             roundup2(adapter->hw.mac.max_frame_size, 1024);
2552         hw->fc.low_water = hw->fc.high_water - 1500;
2553
2554         if (adapter->fc) /* locally set flow control value? */
2555                 hw->fc.requested_mode = adapter->fc;
2556         else
2557                 hw->fc.requested_mode = e1000_fc_full;
2558
2559         if (hw->mac.type == e1000_80003es2lan)
2560                 hw->fc.pause_time = 0xFFFF;
2561         else
2562                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
2563
2564         hw->fc.send_xon = TRUE;
2565
2566         /* Device specific overrides/settings */
2567         switch (hw->mac.type) {
2568         case e1000_pchlan:
2569                 /* Workaround: no TX flow ctrl for PCH */
2570                 hw->fc.requested_mode = e1000_fc_rx_pause;
2571                 hw->fc.pause_time = 0xFFFF; /* override */
2572                 if (if_getmtu(ifp) > ETHERMTU) {
2573                         hw->fc.high_water = 0x3500;
2574                         hw->fc.low_water = 0x1500;
2575                 } else {
2576                         hw->fc.high_water = 0x5000;
2577                         hw->fc.low_water = 0x3000;
2578                 }
2579                 hw->fc.refresh_time = 0x1000;
2580                 break;
2581         case e1000_pch2lan:
2582         case e1000_pch_lpt:
2583         case e1000_pch_spt:
2584         case e1000_pch_cnp:
2585                 hw->fc.high_water = 0x5C20;
2586                 hw->fc.low_water = 0x5048;
2587                 hw->fc.pause_time = 0x0650;
2588                 hw->fc.refresh_time = 0x0400;
2589                 /* Jumbos need adjusted PBA */
2590                 if (if_getmtu(ifp) > ETHERMTU)
2591                         E1000_WRITE_REG(hw, E1000_PBA, 12);
2592                 else
2593                         E1000_WRITE_REG(hw, E1000_PBA, 26);
2594                 break;
2595         case e1000_82575:
2596         case e1000_82576:
2597                 /* 8-byte granularity */
2598                 hw->fc.low_water = hw->fc.high_water - 8;
2599                 break;
2600         case e1000_82580:
2601         case e1000_i350:
2602         case e1000_i354:
2603         case e1000_i210:
2604         case e1000_i211:
2605         case e1000_vfadapt:
2606         case e1000_vfadapt_i350:
2607                 /* 16-byte granularity */
2608                 hw->fc.low_water = hw->fc.high_water - 16;
2609                 break;
2610         case e1000_ich9lan:
2611         case e1000_ich10lan:
2612                 if (if_getmtu(ifp) > ETHERMTU) {
2613                         hw->fc.high_water = 0x2800;
2614                         hw->fc.low_water = hw->fc.high_water - 8;
2615                         break;
2616                 }
2617                 /* FALLTHROUGH */
2618         default:
2619                 if (hw->mac.type == e1000_80003es2lan)
2620                         hw->fc.pause_time = 0xFFFF;
2621                 break;
2622         }
2623
2624         /* Issue a global reset */
2625         e1000_reset_hw(hw);
2626         if (adapter->hw.mac.type >= igb_mac_min) {
2627                 E1000_WRITE_REG(hw, E1000_WUC, 0);
2628         } else {
2629                 E1000_WRITE_REG(hw, E1000_WUFC, 0);
2630                 em_disable_aspm(adapter);
2631         }
2632         if (adapter->flags & IGB_MEDIA_RESET) {
2633                 e1000_setup_init_funcs(hw, TRUE);
2634                 e1000_get_bus_info(hw);
2635                 adapter->flags &= ~IGB_MEDIA_RESET;
2636         }
2637         /* and a re-init */
2638         if (e1000_init_hw(hw) < 0) {
2639                 device_printf(dev, "Hardware Initialization Failed\n");
2640                 return;
2641         }
2642         if (adapter->hw.mac.type >= igb_mac_min)
2643                 igb_init_dmac(adapter, pba);
2644
2645         E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2646         e1000_get_phy_info(hw);
2647         e1000_check_for_link(hw);
2648 }
2649
2650 /*
2651  * Initialise the RSS mapping for NICs that support multiple transmit/
2652  * receive rings.
2653  */
2654
2655 #define RSSKEYLEN 10
2656 static void
2657 em_initialize_rss_mapping(struct adapter *adapter)
2658 {
2659         uint8_t  rss_key[4 * RSSKEYLEN];
2660         uint32_t reta = 0;
2661         struct e1000_hw *hw = &adapter->hw;
2662         int i;
2663
2664         /*
2665          * Configure RSS key
2666          */
2667         arc4rand(rss_key, sizeof(rss_key), 0);
2668         for (i = 0; i < RSSKEYLEN; ++i) {
2669                 uint32_t rssrk = 0;
2670
2671                 rssrk = EM_RSSRK_VAL(rss_key, i);
2672                 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2673         }
2674
2675         /*
2676          * Configure RSS redirect table in following fashion:
2677          * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2678          */
2679         for (i = 0; i < sizeof(reta); ++i) {
2680                 uint32_t q;
2681
2682                 q = (i % adapter->rx_num_queues) << 7;
2683                 reta |= q << (8 * i);
2684         }
2685
2686         for (i = 0; i < 32; ++i)
2687                 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2688
2689         E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2690                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2691                         E1000_MRQC_RSS_FIELD_IPV4 |
2692                         E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2693                         E1000_MRQC_RSS_FIELD_IPV6_EX |
2694                         E1000_MRQC_RSS_FIELD_IPV6);
2695 }
2696
2697 static void
2698 igb_initialize_rss_mapping(struct adapter *adapter)
2699 {
2700         struct e1000_hw *hw = &adapter->hw;
2701         int i;
2702         int queue_id;
2703         u32 reta;
2704         u32 rss_key[10], mrqc, shift = 0;
2705
2706         /* XXX? */
2707         if (adapter->hw.mac.type == e1000_82575)
2708                 shift = 6;
2709
2710         /*
2711          * The redirection table controls which destination
2712          * queue each bucket redirects traffic to.
2713          * Each DWORD represents four queues, with the LSB
2714          * being the first queue in the DWORD.
2715          *
2716          * This just allocates buckets to queues using round-robin
2717          * allocation.
2718          *
2719          * NOTE: It Just Happens to line up with the default
2720          * RSS allocation method.
2721          */
2722
2723         /* Warning FM follows */
2724         reta = 0;
2725         for (i = 0; i < 128; i++) {
2726 #ifdef RSS
2727                 queue_id = rss_get_indirection_to_bucket(i);
2728                 /*
2729                  * If we have more queues than buckets, we'll
2730                  * end up mapping buckets to a subset of the
2731                  * queues.
2732                  *
2733                  * If we have more buckets than queues, we'll
2734                  * end up instead assigning multiple buckets
2735                  * to queues.
2736                  *
2737                  * Both are suboptimal, but we need to handle
2738                  * the case so we don't go out of bounds
2739                  * indexing arrays and such.
2740                  */
2741                 queue_id = queue_id % adapter->rx_num_queues;
2742 #else
2743                 queue_id = (i % adapter->rx_num_queues);
2744 #endif
2745                 /* Adjust if required */
2746                 queue_id = queue_id << shift;
2747
2748                 /*
2749                  * The low 8 bits are for hash value (n+0);
2750                  * The next 8 bits are for hash value (n+1), etc.
2751                  */
2752                 reta = reta >> 8;
2753                 reta = reta | ( ((uint32_t) queue_id) << 24);
2754                 if ((i & 3) == 3) {
2755                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2756                         reta = 0;
2757                 }
2758         }
2759
2760         /* Now fill in hash table */
2761
2762         /*
2763          * MRQC: Multiple Receive Queues Command
2764          * Set queuing to RSS control, number depends on the device.
2765          */
2766         mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2767
2768 #ifdef RSS
2769         /* XXX ew typecasting */
2770         rss_getkey((uint8_t *) &rss_key);
2771 #else
2772         arc4rand(&rss_key, sizeof(rss_key), 0);
2773 #endif
2774         for (i = 0; i < 10; i++)
2775                 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2776
2777         /*
2778          * Configure the RSS fields to hash upon.
2779          */
2780         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2781             E1000_MRQC_RSS_FIELD_IPV4_TCP);
2782         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2783             E1000_MRQC_RSS_FIELD_IPV6_TCP);
2784         mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2785             E1000_MRQC_RSS_FIELD_IPV6_UDP);
2786         mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2787             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2788
2789         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2790 }
2791
2792 /*********************************************************************
2793  *
2794  *  Setup networking device structure and register interface media.
2795  *
2796  **********************************************************************/
2797 static int
2798 em_setup_interface(if_ctx_t ctx)
2799 {
2800         struct ifnet *ifp = iflib_get_ifp(ctx);
2801         struct adapter *adapter = iflib_get_softc(ctx);
2802         if_softc_ctx_t scctx = adapter->shared;
2803
2804         INIT_DEBUGOUT("em_setup_interface: begin");
2805
2806         /* Single Queue */
2807         if (adapter->tx_num_queues == 1) {
2808                 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2809                 if_setsendqready(ifp);
2810         }
2811
2812         /*
2813          * Specify the media types supported by this adapter and register
2814          * callbacks to update media and link information
2815          */
2816         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2817             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2818                 u_char fiber_type = IFM_1000_SX;        /* default type */
2819
2820                 if (adapter->hw.mac.type == e1000_82545)
2821                         fiber_type = IFM_1000_LX;
2822                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2823                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2824         } else {
2825                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2826                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2827                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2828                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2829                 if (adapter->hw.phy.type != e1000_phy_ife) {
2830                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2831                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2832                 }
2833         }
2834         ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2835         ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2836         return (0);
2837 }
2838
2839 static int
2840 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2841 {
2842         struct adapter *adapter = iflib_get_softc(ctx);
2843         if_softc_ctx_t scctx = adapter->shared;
2844         int error = E1000_SUCCESS;
2845         struct em_tx_queue *que;
2846         int i, j;
2847
2848         MPASS(adapter->tx_num_queues > 0);
2849         MPASS(adapter->tx_num_queues == ntxqsets);
2850
2851         /* First allocate the top level queue structs */
2852         if (!(adapter->tx_queues =
2853             (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2854             adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2855                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2856                 return(ENOMEM);
2857         }
2858
2859         for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2860                 /* Set up some basics */
2861
2862                 struct tx_ring *txr = &que->txr;
2863                 txr->adapter = que->adapter = adapter;
2864                 que->me = txr->me =  i;
2865
2866                 /* Allocate report status array */
2867                 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2868                         device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2869                         error = ENOMEM;
2870                         goto fail;
2871                 }
2872                 for (j = 0; j < scctx->isc_ntxd[0]; j++)
2873                         txr->tx_rsq[j] = QIDX_INVALID;
2874                 /* get the virtual and physical address of the hardware queues */
2875                 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2876                 txr->tx_paddr = paddrs[i*ntxqs];
2877         }
2878
2879         if (bootverbose)
2880                 device_printf(iflib_get_dev(ctx),
2881                     "allocated for %d tx_queues\n", adapter->tx_num_queues);
2882         return (0);
2883 fail:
2884         em_if_queues_free(ctx);
2885         return (error);
2886 }
2887
2888 static int
2889 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2890 {
2891         struct adapter *adapter = iflib_get_softc(ctx);
2892         int error = E1000_SUCCESS;
2893         struct em_rx_queue *que;
2894         int i;
2895
2896         MPASS(adapter->rx_num_queues > 0);
2897         MPASS(adapter->rx_num_queues == nrxqsets);
2898
2899         /* First allocate the top level queue structs */
2900         if (!(adapter->rx_queues =
2901             (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2902             adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2903                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2904                 error = ENOMEM;
2905                 goto fail;
2906         }
2907
2908         for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2909                 /* Set up some basics */
2910                 struct rx_ring *rxr = &que->rxr;
2911                 rxr->adapter = que->adapter = adapter;
2912                 rxr->que = que;
2913                 que->me = rxr->me =  i;
2914
2915                 /* get the virtual and physical address of the hardware queues */
2916                 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2917                 rxr->rx_paddr = paddrs[i*nrxqs];
2918         }
2919  
2920         if (bootverbose)
2921                 device_printf(iflib_get_dev(ctx),
2922                     "allocated for %d rx_queues\n", adapter->rx_num_queues);
2923
2924         return (0);
2925 fail:
2926         em_if_queues_free(ctx);
2927         return (error);
2928 }
2929
2930 static void
2931 em_if_queues_free(if_ctx_t ctx)
2932 {
2933         struct adapter *adapter = iflib_get_softc(ctx);
2934         struct em_tx_queue *tx_que = adapter->tx_queues;
2935         struct em_rx_queue *rx_que = adapter->rx_queues;
2936
2937         if (tx_que != NULL) {
2938                 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2939                         struct tx_ring *txr = &tx_que->txr;
2940                         if (txr->tx_rsq == NULL)
2941                                 break;
2942
2943                         free(txr->tx_rsq, M_DEVBUF);
2944                         txr->tx_rsq = NULL;
2945                 }
2946                 free(adapter->tx_queues, M_DEVBUF);
2947                 adapter->tx_queues = NULL;
2948         }
2949
2950         if (rx_que != NULL) {
2951                 free(adapter->rx_queues, M_DEVBUF);
2952                 adapter->rx_queues = NULL;
2953         }
2954
2955         em_release_hw_control(adapter);
2956
2957         if (adapter->mta != NULL) {
2958                 free(adapter->mta, M_DEVBUF);
2959         }
2960 }
2961
2962 /*********************************************************************
2963  *
2964  *  Enable transmit unit.
2965  *
2966  **********************************************************************/
2967 static void
2968 em_initialize_transmit_unit(if_ctx_t ctx)
2969 {
2970         struct adapter *adapter = iflib_get_softc(ctx);
2971         if_softc_ctx_t scctx = adapter->shared;
2972         struct em_tx_queue *que;
2973         struct tx_ring  *txr;
2974         struct e1000_hw *hw = &adapter->hw;
2975         u32 tctl, txdctl = 0, tarc, tipg = 0;
2976
2977         INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2978
2979         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
2980                 u64 bus_addr;
2981                 caddr_t offp, endp;
2982
2983                 que = &adapter->tx_queues[i];
2984                 txr = &que->txr;
2985                 bus_addr = txr->tx_paddr;
2986
2987                 /* Clear checksum offload context. */
2988                 offp = (caddr_t)&txr->csum_flags;
2989                 endp = (caddr_t)(txr + 1);
2990                 bzero(offp, endp - offp);
2991
2992                 /* Base and Len of TX Ring */
2993                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2994                     scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
2995                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2996                     (u32)(bus_addr >> 32));
2997                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
2998                     (u32)bus_addr);
2999                 /* Init the HEAD/TAIL indices */
3000                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3001                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3002
3003                 HW_DEBUGOUT2("Base = %x, Length = %x\n",
3004                     E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
3005                     E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
3006
3007                 txdctl = 0; /* clear txdctl */
3008                 txdctl |= 0x1f; /* PTHRESH */
3009                 txdctl |= 1 << 8; /* HTHRESH */
3010                 txdctl |= 1 << 16;/* WTHRESH */
3011                 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3012                 txdctl |= E1000_TXDCTL_GRAN;
3013                 txdctl |= 1 << 25; /* LWTHRESH */
3014
3015                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3016         }
3017
3018         /* Set the default values for the Tx Inter Packet Gap timer */
3019         switch (adapter->hw.mac.type) {
3020         case e1000_80003es2lan:
3021                 tipg = DEFAULT_82543_TIPG_IPGR1;
3022                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3023                     E1000_TIPG_IPGR2_SHIFT;
3024                 break;
3025         case e1000_82542:
3026                 tipg = DEFAULT_82542_TIPG_IPGT;
3027                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3028                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3029                 break;
3030         default:
3031                 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
3032                     (adapter->hw.phy.media_type ==
3033                     e1000_media_type_internal_serdes))
3034                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3035                 else
3036                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3037                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3038                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3039         }
3040
3041         E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3042         E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
3043
3044         if(adapter->hw.mac.type >= e1000_82540)
3045                 E1000_WRITE_REG(&adapter->hw, E1000_TADV,
3046                     adapter->tx_abs_int_delay.value);
3047
3048         if ((adapter->hw.mac.type == e1000_82571) ||
3049             (adapter->hw.mac.type == e1000_82572)) {
3050                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3051                 tarc |= TARC_SPEED_MODE_BIT;
3052                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3053         } else if (adapter->hw.mac.type == e1000_80003es2lan) {
3054                 /* errata: program both queues to unweighted RR */
3055                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3056                 tarc |= 1;
3057                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3058                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3059                 tarc |= 1;
3060                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3061         } else if (adapter->hw.mac.type == e1000_82574) {
3062                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3063                 tarc |= TARC_ERRATA_BIT;
3064                 if ( adapter->tx_num_queues > 1) {
3065                         tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3066                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3067                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3068                 } else
3069                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3070         }
3071
3072         if (adapter->tx_int_delay.value > 0)
3073                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3074
3075         /* Program the Transmit Control Register */
3076         tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3077         tctl &= ~E1000_TCTL_CT;
3078         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3079                    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3080
3081         if (adapter->hw.mac.type >= e1000_82571)
3082                 tctl |= E1000_TCTL_MULR;
3083
3084         /* This write will effectively turn on the transmit unit. */
3085         E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3086
3087         /* SPT and KBL errata workarounds */
3088         if (hw->mac.type == e1000_pch_spt) {
3089                 u32 reg;
3090                 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3091                 reg |= E1000_RCTL_RDMTS_HEX;
3092                 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3093                 /* i218-i219 Specification Update 1.5.4.5 */
3094                 reg = E1000_READ_REG(hw, E1000_TARC(0));
3095                 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3096                 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3097                 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3098         }
3099 }
3100
3101 /*********************************************************************
3102  *
3103  *  Enable receive unit.
3104  *
3105  **********************************************************************/
3106
3107 static void
3108 em_initialize_receive_unit(if_ctx_t ctx)
3109 {
3110         struct adapter *adapter = iflib_get_softc(ctx);
3111         if_softc_ctx_t scctx = adapter->shared;
3112         struct ifnet *ifp = iflib_get_ifp(ctx);
3113         struct e1000_hw *hw = &adapter->hw;
3114         struct em_rx_queue *que;
3115         int i;
3116         u32 rctl, rxcsum, rfctl;
3117
3118         INIT_DEBUGOUT("em_initialize_receive_units: begin");
3119
3120         /*
3121          * Make sure receives are disabled while setting
3122          * up the descriptor ring
3123          */
3124         rctl = E1000_READ_REG(hw, E1000_RCTL);
3125         /* Do not disable if ever enabled on this hardware */
3126         if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3127                 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3128
3129         /* Setup the Receive Control Register */
3130         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3131         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3132             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3133             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3134
3135         /* Do not store bad packets */
3136         rctl &= ~E1000_RCTL_SBP;
3137
3138         /* Enable Long Packet receive */
3139         if (if_getmtu(ifp) > ETHERMTU)
3140                 rctl |= E1000_RCTL_LPE;
3141         else
3142                 rctl &= ~E1000_RCTL_LPE;
3143
3144         /* Strip the CRC */
3145         if (!em_disable_crc_stripping)
3146                 rctl |= E1000_RCTL_SECRC;
3147
3148         if (adapter->hw.mac.type >= e1000_82540) {
3149                 E1000_WRITE_REG(&adapter->hw, E1000_RADV,
3150                             adapter->rx_abs_int_delay.value);
3151
3152                 /*
3153                  * Set the interrupt throttling rate. Value is calculated
3154                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3155                  */
3156                 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3157         }
3158         E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
3159             adapter->rx_int_delay.value);
3160
3161         /* Use extended rx descriptor formats */
3162         rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3163         rfctl |= E1000_RFCTL_EXTEN;
3164         /*
3165          * When using MSI-X interrupts we need to throttle
3166          * using the EITR register (82574 only)
3167          */
3168         if (hw->mac.type == e1000_82574) {
3169                 for (int i = 0; i < 4; i++)
3170                         E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3171                             DEFAULT_ITR);
3172                 /* Disable accelerated acknowledge */
3173                 rfctl |= E1000_RFCTL_ACK_DIS;
3174         }
3175         E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3176
3177         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3178         if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3179             adapter->hw.mac.type >= e1000_82543) {
3180                 if (adapter->tx_num_queues > 1) {
3181                         if (adapter->hw.mac.type >= igb_mac_min) {
3182                                 rxcsum |= E1000_RXCSUM_PCSD;
3183                                 if (hw->mac.type != e1000_82575)
3184                                         rxcsum |= E1000_RXCSUM_CRCOFL;
3185                         } else
3186                                 rxcsum |= E1000_RXCSUM_TUOFL |
3187                                         E1000_RXCSUM_IPOFL |
3188                                         E1000_RXCSUM_PCSD;
3189                 } else {
3190                         if (adapter->hw.mac.type >= igb_mac_min)
3191                                 rxcsum |= E1000_RXCSUM_IPPCSE;
3192                         else
3193                                 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3194                         if (adapter->hw.mac.type > e1000_82575)
3195                                 rxcsum |= E1000_RXCSUM_CRCOFL;
3196                 }
3197         } else
3198                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3199
3200         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3201
3202         if (adapter->rx_num_queues > 1) {
3203                 if (adapter->hw.mac.type >= igb_mac_min)
3204                         igb_initialize_rss_mapping(adapter);
3205                 else
3206                         em_initialize_rss_mapping(adapter);
3207         }
3208
3209         /*
3210          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3211          * long latencies are observed, like Lenovo X60. This
3212          * change eliminates the problem, but since having positive
3213          * values in RDTR is a known source of problems on other
3214          * platforms another solution is being sought.
3215          */
3216         if (hw->mac.type == e1000_82573)
3217                 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3218
3219         for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3220                 struct rx_ring *rxr = &que->rxr;
3221                 /* Setup the Base and Length of the Rx Descriptor Ring */
3222                 u64 bus_addr = rxr->rx_paddr;
3223 #if 0
3224                 u32 rdt = adapter->rx_num_queues -1;  /* default */
3225 #endif
3226
3227                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3228                     scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3229                 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3230                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3231                 /* Setup the Head and Tail Descriptor Pointers */
3232                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3233                 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3234         }
3235
3236         /*
3237          * Set PTHRESH for improved jumbo performance
3238          * According to 10.2.5.11 of Intel 82574 Datasheet,
3239          * RXDCTL(1) is written whenever RXDCTL(0) is written.
3240          * Only write to RXDCTL(1) if there is a need for different
3241          * settings.
3242          */
3243
3244         if (((adapter->hw.mac.type == e1000_ich9lan) ||
3245             (adapter->hw.mac.type == e1000_pch2lan) ||
3246             (adapter->hw.mac.type == e1000_ich10lan)) &&
3247             (if_getmtu(ifp) > ETHERMTU)) {
3248                 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3249                 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3250         } else if (adapter->hw.mac.type == e1000_82574) {
3251                 for (int i = 0; i < adapter->rx_num_queues; i++) {
3252                         u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3253                         rxdctl |= 0x20; /* PTHRESH */
3254                         rxdctl |= 4 << 8; /* HTHRESH */
3255                         rxdctl |= 4 << 16;/* WTHRESH */
3256                         rxdctl |= 1 << 24; /* Switch to granularity */
3257                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3258                 }
3259         } else if (adapter->hw.mac.type >= igb_mac_min) {
3260                 u32 psize, srrctl = 0;
3261
3262                 if (if_getmtu(ifp) > ETHERMTU) {
3263                         /* Set maximum packet len */
3264                         if (adapter->rx_mbuf_sz <= 4096) {
3265                                 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3266                                 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3267                         } else if (adapter->rx_mbuf_sz > 4096) {
3268                                 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3269                                 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3270                         }
3271                         psize = scctx->isc_max_frame_size;
3272                         /* are we on a vlan? */
3273                         if (ifp->if_vlantrunk != NULL)
3274                                 psize += VLAN_TAG_SIZE;
3275                         E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
3276                 } else {
3277                         srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3278                         rctl |= E1000_RCTL_SZ_2048;
3279                 }
3280
3281                 /*
3282                  * If TX flow control is disabled and there's >1 queue defined,
3283                  * enable DROP.
3284                  *
3285                  * This drops frames rather than hanging the RX MAC for all queues.
3286                  */
3287                 if ((adapter->rx_num_queues > 1) &&
3288                     (adapter->fc == e1000_fc_none ||
3289                      adapter->fc == e1000_fc_rx_pause)) {
3290                         srrctl |= E1000_SRRCTL_DROP_EN;
3291                 }
3292                         /* Setup the Base and Length of the Rx Descriptor Rings */
3293                 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3294                         struct rx_ring *rxr = &que->rxr;
3295                         u64 bus_addr = rxr->rx_paddr;
3296                         u32 rxdctl;
3297
3298 #ifdef notyet
3299                         /* Configure for header split? -- ignore for now */
3300                         rxr->hdr_split = igb_header_split;
3301 #else
3302                         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3303 #endif
3304
3305                         E1000_WRITE_REG(hw, E1000_RDLEN(i),
3306                                         scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3307                         E1000_WRITE_REG(hw, E1000_RDBAH(i),
3308                                         (uint32_t)(bus_addr >> 32));
3309                         E1000_WRITE_REG(hw, E1000_RDBAL(i),
3310                                         (uint32_t)bus_addr);
3311                         E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3312                         /* Enable this Queue */
3313                         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3314                         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3315                         rxdctl &= 0xFFF00000;
3316                         rxdctl |= IGB_RX_PTHRESH;
3317                         rxdctl |= IGB_RX_HTHRESH << 8;
3318                         rxdctl |= IGB_RX_WTHRESH << 16;
3319                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3320                 }               
3321         } else if (adapter->hw.mac.type >= e1000_pch2lan) {
3322                 if (if_getmtu(ifp) > ETHERMTU)
3323                         e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3324                 else
3325                         e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3326         }
3327
3328         /* Make sure VLAN Filters are off */
3329         rctl &= ~E1000_RCTL_VFE;
3330
3331         if (adapter->hw.mac.type < igb_mac_min) {
3332                 if (adapter->rx_mbuf_sz == MCLBYTES)
3333                         rctl |= E1000_RCTL_SZ_2048;
3334                 else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3335                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3336                 else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3337                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3338
3339                 /* ensure we clear use DTYPE of 00 here */
3340                 rctl &= ~0x00000C00;
3341         }
3342
3343         /* Write out the settings */
3344         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3345
3346         return;
3347 }
3348
3349 static void
3350 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3351 {
3352         struct adapter *adapter = iflib_get_softc(ctx);
3353         u32 index, bit;
3354
3355         index = (vtag >> 5) & 0x7F;
3356         bit = vtag & 0x1F;
3357         adapter->shadow_vfta[index] |= (1 << bit);
3358         ++adapter->num_vlans;
3359 }
3360
3361 static void
3362 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3363 {
3364         struct adapter *adapter = iflib_get_softc(ctx);
3365         u32 index, bit;
3366
3367         index = (vtag >> 5) & 0x7F;
3368         bit = vtag & 0x1F;
3369         adapter->shadow_vfta[index] &= ~(1 << bit);
3370         --adapter->num_vlans;
3371 }
3372
3373 static void
3374 em_setup_vlan_hw_support(struct adapter *adapter)
3375 {
3376         struct e1000_hw *hw = &adapter->hw;
3377         u32 reg;
3378
3379         /*
3380          * We get here thru init_locked, meaning
3381          * a soft reset, this has already cleared
3382          * the VFTA and other state, so if there
3383          * have been no vlan's registered do nothing.
3384          */
3385         if (adapter->num_vlans == 0)
3386                 return;
3387
3388         /*
3389          * A soft reset zero's out the VFTA, so
3390          * we need to repopulate it now.
3391          */
3392         for (int i = 0; i < EM_VFTA_SIZE; i++)
3393                 if (adapter->shadow_vfta[i] != 0)
3394                         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3395                             i, adapter->shadow_vfta[i]);
3396
3397         reg = E1000_READ_REG(hw, E1000_CTRL);
3398         reg |= E1000_CTRL_VME;
3399         E1000_WRITE_REG(hw, E1000_CTRL, reg);
3400
3401         /* Enable the Filter Table */
3402         reg = E1000_READ_REG(hw, E1000_RCTL);
3403         reg &= ~E1000_RCTL_CFIEN;
3404         reg |= E1000_RCTL_VFE;
3405         E1000_WRITE_REG(hw, E1000_RCTL, reg);
3406 }
3407
3408 static void
3409 em_if_intr_enable(if_ctx_t ctx)
3410 {
3411         struct adapter *adapter = iflib_get_softc(ctx);
3412         struct e1000_hw *hw = &adapter->hw;
3413         u32 ims_mask = IMS_ENABLE_MASK;
3414
3415         if (hw->mac.type == e1000_82574) {
3416                 E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3417                 ims_mask |= adapter->ims;
3418         }
3419         E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3420 }
3421
3422 static void
3423 em_if_intr_disable(if_ctx_t ctx)
3424 {
3425         struct adapter *adapter = iflib_get_softc(ctx);
3426         struct e1000_hw *hw = &adapter->hw;
3427
3428         if (hw->mac.type == e1000_82574)
3429                 E1000_WRITE_REG(hw, EM_EIAC, 0);
3430         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3431 }
3432
3433 static void
3434 igb_if_intr_enable(if_ctx_t ctx)
3435 {
3436         struct adapter *adapter = iflib_get_softc(ctx);
3437         struct e1000_hw *hw = &adapter->hw;
3438         u32 mask;
3439
3440         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3441                 mask = (adapter->que_mask | adapter->link_mask);
3442                 E1000_WRITE_REG(hw, E1000_EIAC, mask);
3443                 E1000_WRITE_REG(hw, E1000_EIAM, mask);
3444                 E1000_WRITE_REG(hw, E1000_EIMS, mask);
3445                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3446         } else
3447                 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3448         E1000_WRITE_FLUSH(hw);
3449 }
3450
3451 static void
3452 igb_if_intr_disable(if_ctx_t ctx)
3453 {
3454         struct adapter *adapter = iflib_get_softc(ctx);
3455         struct e1000_hw *hw = &adapter->hw;
3456
3457         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3458                 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3459                 E1000_WRITE_REG(hw, E1000_EIAC, 0);
3460         }
3461         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3462         E1000_WRITE_FLUSH(hw);
3463 }
3464
3465 /*
3466  * Bit of a misnomer, what this really means is
3467  * to enable OS management of the system... aka
3468  * to disable special hardware management features
3469  */
3470 static void
3471 em_init_manageability(struct adapter *adapter)
3472 {
3473         /* A shared code workaround */
3474 #define E1000_82542_MANC2H E1000_MANC2H
3475         if (adapter->has_manage) {
3476                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3477                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3478
3479                 /* disable hardware interception of ARP */
3480                 manc &= ~(E1000_MANC_ARP_EN);
3481
3482                 /* enable receiving management packets to the host */
3483                 manc |= E1000_MANC_EN_MNG2HOST;
3484 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3485 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3486                 manc2h |= E1000_MNG2HOST_PORT_623;
3487                 manc2h |= E1000_MNG2HOST_PORT_664;
3488                 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3489                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3490         }
3491 }
3492
3493 /*
3494  * Give control back to hardware management
3495  * controller if there is one.
3496  */
3497 static void
3498 em_release_manageability(struct adapter *adapter)
3499 {
3500         if (adapter->has_manage) {
3501                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3502
3503                 /* re-enable hardware interception of ARP */
3504                 manc |= E1000_MANC_ARP_EN;
3505                 manc &= ~E1000_MANC_EN_MNG2HOST;
3506
3507                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3508         }
3509 }
3510
3511 /*
3512  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3513  * For ASF and Pass Through versions of f/w this means
3514  * that the driver is loaded. For AMT version type f/w
3515  * this means that the network i/f is open.
3516  */
3517 static void
3518 em_get_hw_control(struct adapter *adapter)
3519 {
3520         u32 ctrl_ext, swsm;
3521
3522         if (adapter->vf_ifp)
3523                 return;
3524
3525         if (adapter->hw.mac.type == e1000_82573) {
3526                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3527                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3528                     swsm | E1000_SWSM_DRV_LOAD);
3529                 return;
3530         }
3531         /* else */
3532         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3533         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3534             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3535 }
3536
3537 /*
3538  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3539  * For ASF and Pass Through versions of f/w this means that
3540  * the driver is no longer loaded. For AMT versions of the
3541  * f/w this means that the network i/f is closed.
3542  */
3543 static void
3544 em_release_hw_control(struct adapter *adapter)
3545 {
3546         u32 ctrl_ext, swsm;
3547
3548         if (!adapter->has_manage)
3549                 return;
3550
3551         if (adapter->hw.mac.type == e1000_82573) {
3552                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3553                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3554                     swsm & ~E1000_SWSM_DRV_LOAD);
3555                 return;
3556         }
3557         /* else */
3558         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3559         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3560             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3561         return;
3562 }
3563
3564 static int
3565 em_is_valid_ether_addr(u8 *addr)
3566 {
3567         char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3568
3569         if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3570                 return (FALSE);
3571         }
3572
3573         return (TRUE);
3574 }
3575
3576 /*
3577 ** Parse the interface capabilities with regard
3578 ** to both system management and wake-on-lan for
3579 ** later use.
3580 */
3581 static void
3582 em_get_wakeup(if_ctx_t ctx)
3583 {
3584         struct adapter *adapter = iflib_get_softc(ctx);
3585         device_t dev = iflib_get_dev(ctx);
3586         u16 eeprom_data = 0, device_id, apme_mask;
3587
3588         adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3589         apme_mask = EM_EEPROM_APME;
3590
3591         switch (adapter->hw.mac.type) {
3592         case e1000_82542:
3593         case e1000_82543:
3594                 break;
3595         case e1000_82544:
3596                 e1000_read_nvm(&adapter->hw,
3597                     NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3598                 apme_mask = EM_82544_APME;
3599                 break;
3600         case e1000_82546:
3601         case e1000_82546_rev_3:
3602                 if (adapter->hw.bus.func == 1) {
3603                         e1000_read_nvm(&adapter->hw,
3604                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3605                         break;
3606                 } else
3607                         e1000_read_nvm(&adapter->hw,
3608                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3609                 break;
3610         case e1000_82573:
3611         case e1000_82583:
3612                 adapter->has_amt = TRUE;
3613                 /* FALLTHROUGH */
3614         case e1000_82571:
3615         case e1000_82572:
3616         case e1000_80003es2lan:
3617                 if (adapter->hw.bus.func == 1) {
3618                         e1000_read_nvm(&adapter->hw,
3619                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3620                         break;
3621                 } else
3622                         e1000_read_nvm(&adapter->hw,
3623                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3624                 break;
3625         case e1000_ich8lan:
3626         case e1000_ich9lan:
3627         case e1000_ich10lan:
3628         case e1000_pchlan:
3629         case e1000_pch2lan:
3630         case e1000_pch_lpt:
3631         case e1000_pch_spt:
3632         case e1000_82575:       /* listing all igb devices */
3633         case e1000_82576:
3634         case e1000_82580:
3635         case e1000_i350:
3636         case e1000_i354:
3637         case e1000_i210:
3638         case e1000_i211:
3639         case e1000_vfadapt:
3640         case e1000_vfadapt_i350:
3641                 apme_mask = E1000_WUC_APME;
3642                 adapter->has_amt = TRUE;
3643                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3644                 break;
3645         default:
3646                 e1000_read_nvm(&adapter->hw,
3647                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3648                 break;
3649         }
3650         if (eeprom_data & apme_mask)
3651                 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3652         /*
3653          * We have the eeprom settings, now apply the special cases
3654          * where the eeprom may be wrong or the board won't support
3655          * wake on lan on a particular port
3656          */
3657         device_id = pci_get_device(dev);
3658         switch (device_id) {
3659         case E1000_DEV_ID_82546GB_PCIE:
3660                 adapter->wol = 0;
3661                 break;
3662         case E1000_DEV_ID_82546EB_FIBER:
3663         case E1000_DEV_ID_82546GB_FIBER:
3664                 /* Wake events only supported on port A for dual fiber
3665                  * regardless of eeprom setting */
3666                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3667                     E1000_STATUS_FUNC_1)
3668                         adapter->wol = 0;
3669                 break;
3670         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3671                 /* if quad port adapter, disable WoL on all but port A */
3672                 if (global_quad_port_a != 0)
3673                         adapter->wol = 0;
3674                 /* Reset for multiple quad port adapters */
3675                 if (++global_quad_port_a == 4)
3676                         global_quad_port_a = 0;
3677                 break;
3678         case E1000_DEV_ID_82571EB_FIBER:
3679                 /* Wake events only supported on port A for dual fiber
3680                  * regardless of eeprom setting */
3681                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3682                     E1000_STATUS_FUNC_1)
3683                         adapter->wol = 0;
3684                 break;
3685         case E1000_DEV_ID_82571EB_QUAD_COPPER:
3686         case E1000_DEV_ID_82571EB_QUAD_FIBER:
3687         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3688                 /* if quad port adapter, disable WoL on all but port A */
3689                 if (global_quad_port_a != 0)
3690                         adapter->wol = 0;
3691                 /* Reset for multiple quad port adapters */
3692                 if (++global_quad_port_a == 4)
3693                         global_quad_port_a = 0;
3694                 break;
3695         }
3696         return;
3697 }
3698
3699
3700 /*
3701  * Enable PCI Wake On Lan capability
3702  */
3703 static void
3704 em_enable_wakeup(if_ctx_t ctx)
3705 {
3706         struct adapter *adapter = iflib_get_softc(ctx);
3707         device_t dev = iflib_get_dev(ctx);
3708         if_t ifp = iflib_get_ifp(ctx);
3709         int error = 0;
3710         u32 pmc, ctrl, ctrl_ext, rctl;
3711         u16 status;
3712
3713         if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3714                 return;
3715
3716         /*
3717          * Determine type of Wakeup: note that wol
3718          * is set with all bits on by default.
3719          */
3720         if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3721                 adapter->wol &= ~E1000_WUFC_MAG;
3722
3723         if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3724                 adapter->wol &= ~E1000_WUFC_EX;
3725
3726         if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3727                 adapter->wol &= ~E1000_WUFC_MC;
3728         else {
3729                 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3730                 rctl |= E1000_RCTL_MPE;
3731                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3732         }
3733
3734         if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3735                 goto pme;
3736
3737         /* Advertise the wakeup capability */
3738         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3739         ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3740         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3741
3742         /* Keep the laser running on Fiber adapters */
3743         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3744             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3745                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3746                 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3747                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3748         }
3749
3750         if ((adapter->hw.mac.type == e1000_ich8lan) ||
3751             (adapter->hw.mac.type == e1000_pchlan) ||
3752             (adapter->hw.mac.type == e1000_ich9lan) ||
3753             (adapter->hw.mac.type == e1000_ich10lan))
3754                 e1000_suspend_workarounds_ich8lan(&adapter->hw);
3755
3756         if ( adapter->hw.mac.type >= e1000_pchlan) {
3757                 error = em_enable_phy_wakeup(adapter);
3758                 if (error)
3759                         goto pme;
3760         } else {
3761                 /* Enable wakeup by the MAC */
3762                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3763                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3764         }
3765
3766         if (adapter->hw.phy.type == e1000_phy_igp_3)
3767                 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3768
3769 pme:
3770         status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3771         status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3772         if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3773                 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3774         pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3775
3776         return;
3777 }
3778
3779 /*
3780  * WOL in the newer chipset interfaces (pchlan)
3781  * require thing to be copied into the phy
3782  */
3783 static int
3784 em_enable_phy_wakeup(struct adapter *adapter)
3785 {
3786         struct e1000_hw *hw = &adapter->hw;
3787         u32 mreg, ret = 0;
3788         u16 preg;
3789
3790         /* copy MAC RARs to PHY RARs */
3791         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3792
3793         /* copy MAC MTA to PHY MTA */
3794         for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3795                 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3796                 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3797                 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3798                     (u16)((mreg >> 16) & 0xFFFF));
3799         }
3800
3801         /* configure PHY Rx Control register */
3802         e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3803         mreg = E1000_READ_REG(hw, E1000_RCTL);
3804         if (mreg & E1000_RCTL_UPE)
3805                 preg |= BM_RCTL_UPE;
3806         if (mreg & E1000_RCTL_MPE)
3807                 preg |= BM_RCTL_MPE;
3808         preg &= ~(BM_RCTL_MO_MASK);
3809         if (mreg & E1000_RCTL_MO_3)
3810                 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3811                                 << BM_RCTL_MO_SHIFT);
3812         if (mreg & E1000_RCTL_BAM)
3813                 preg |= BM_RCTL_BAM;
3814         if (mreg & E1000_RCTL_PMCF)
3815                 preg |= BM_RCTL_PMCF;
3816         mreg = E1000_READ_REG(hw, E1000_CTRL);
3817         if (mreg & E1000_CTRL_RFCE)
3818                 preg |= BM_RCTL_RFCE;
3819         e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3820
3821         /* enable PHY wakeup in MAC register */
3822         E1000_WRITE_REG(hw, E1000_WUC,
3823             E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3824         E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3825
3826         /* configure and enable PHY wakeup in PHY registers */
3827         e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3828         e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3829
3830         /* activate PHY wakeup */
3831         ret = hw->phy.ops.acquire(hw);
3832         if (ret) {
3833                 printf("Could not acquire PHY\n");
3834                 return ret;
3835         }
3836         e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3837                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3838         ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3839         if (ret) {
3840                 printf("Could not read PHY page 769\n");
3841                 goto out;
3842         }
3843         preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3844         ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3845         if (ret)
3846                 printf("Could not set PHY Host Wakeup bit\n");
3847 out:
3848         hw->phy.ops.release(hw);
3849
3850         return ret;
3851 }
3852
3853 static void
3854 em_if_led_func(if_ctx_t ctx, int onoff)
3855 {
3856         struct adapter *adapter = iflib_get_softc(ctx);
3857
3858         if (onoff) {
3859                 e1000_setup_led(&adapter->hw);
3860                 e1000_led_on(&adapter->hw);
3861         } else {
3862                 e1000_led_off(&adapter->hw);
3863                 e1000_cleanup_led(&adapter->hw);
3864         }
3865 }
3866
3867 /*
3868  * Disable the L0S and L1 LINK states
3869  */
3870 static void
3871 em_disable_aspm(struct adapter *adapter)
3872 {
3873         int base, reg;
3874         u16 link_cap,link_ctrl;
3875         device_t dev = adapter->dev;
3876
3877         switch (adapter->hw.mac.type) {
3878         case e1000_82573:
3879         case e1000_82574:
3880         case e1000_82583:
3881                 break;
3882         default:
3883                 return;
3884         }
3885         if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3886                 return;
3887         reg = base + PCIER_LINK_CAP;
3888         link_cap = pci_read_config(dev, reg, 2);
3889         if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3890                 return;
3891         reg = base + PCIER_LINK_CTL;
3892         link_ctrl = pci_read_config(dev, reg, 2);
3893         link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3894         pci_write_config(dev, reg, link_ctrl, 2);
3895         return;
3896 }
3897
3898 /**********************************************************************
3899  *
3900  *  Update the board statistics counters.
3901  *
3902  **********************************************************************/
3903 static void
3904 em_update_stats_counters(struct adapter *adapter)
3905 {
3906
3907         if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3908            (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3909                 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3910                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3911         }
3912         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3913         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3914         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3915         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3916
3917         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3918         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3919         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3920         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3921         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3922         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3923         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3924         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3925         /*
3926          ** For watchdog management we need to know if we have been
3927          ** paused during the last interval, so capture that here.
3928         */
3929         adapter->shared->isc_pause_frames = adapter->stats.xoffrxc;
3930         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3931         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3932         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3933         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3934         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3935         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3936         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3937         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3938         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3939         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3940         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3941         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3942
3943         /* For the 64-bit byte counters the low dword must be read first. */
3944         /* Both registers clear on the read of the high dword */
3945
3946         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3947             ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3948         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3949             ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3950
3951         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3952         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3953         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3954         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3955         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3956
3957         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3958         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3959
3960         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3961         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3962         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3963         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3964         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3965         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3966         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3967         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3968         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3969         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3970
3971         /* Interrupt Counts */
3972
3973         adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3974         adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3975         adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3976         adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
3977         adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
3978         adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
3979         adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
3980         adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
3981         adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
3982
3983         if (adapter->hw.mac.type >= e1000_82543) {
3984                 adapter->stats.algnerrc +=
3985                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3986                 adapter->stats.rxerrc +=
3987                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3988                 adapter->stats.tncrs +=
3989                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3990                 adapter->stats.cexterr +=
3991                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3992                 adapter->stats.tsctc +=
3993                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3994                 adapter->stats.tsctfc +=
3995                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3996         }
3997 }
3998
3999 static uint64_t
4000 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4001 {
4002         struct adapter *adapter = iflib_get_softc(ctx);
4003         struct ifnet *ifp = iflib_get_ifp(ctx);
4004
4005         switch (cnt) {
4006         case IFCOUNTER_COLLISIONS:
4007                 return (adapter->stats.colc);
4008         case IFCOUNTER_IERRORS:
4009                 return (adapter->dropped_pkts + adapter->stats.rxerrc +
4010                     adapter->stats.crcerrs + adapter->stats.algnerrc +
4011                     adapter->stats.ruc + adapter->stats.roc +
4012                     adapter->stats.mpc + adapter->stats.cexterr);
4013         case IFCOUNTER_OERRORS:
4014                 return (adapter->stats.ecol + adapter->stats.latecol +
4015                     adapter->watchdog_events);
4016         default:
4017                 return (if_get_counter_default(ifp, cnt));
4018         }
4019 }
4020
4021 /* Export a single 32-bit register via a read-only sysctl. */
4022 static int
4023 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4024 {
4025         struct adapter *adapter;
4026         u_int val;
4027
4028         adapter = oidp->oid_arg1;
4029         val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4030         return (sysctl_handle_int(oidp, &val, 0, req));
4031 }
4032
4033 /*
4034  * Add sysctl variables, one per statistic, to the system.
4035  */
4036 static void
4037 em_add_hw_stats(struct adapter *adapter)
4038 {
4039         device_t dev = iflib_get_dev(adapter->ctx);
4040         struct em_tx_queue *tx_que = adapter->tx_queues;
4041         struct em_rx_queue *rx_que = adapter->rx_queues;
4042
4043         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4044         struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4045         struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4046         struct e1000_hw_stats *stats = &adapter->stats;
4047
4048         struct sysctl_oid *stat_node, *queue_node, *int_node;
4049         struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4050
4051 #define QUEUE_NAME_LEN 32
4052         char namebuf[QUEUE_NAME_LEN];
4053
4054         /* Driver Statistics */
4055         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4056                         CTLFLAG_RD, &adapter->dropped_pkts,
4057                         "Driver dropped packets");
4058         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4059                         CTLFLAG_RD, &adapter->link_irq,
4060                         "Link MSI-X IRQ Handled");
4061         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4062                         CTLFLAG_RD, &adapter->rx_overruns,
4063                         "RX overruns");
4064         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4065                         CTLFLAG_RD, &adapter->watchdog_events,
4066                         "Watchdog timeouts");
4067         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4068                         CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
4069                         em_sysctl_reg_handler, "IU",
4070                         "Device Control Register");
4071         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4072                         CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
4073                         em_sysctl_reg_handler, "IU",
4074                         "Receiver Control Register");
4075         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4076                         CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4077                         "Flow Control High Watermark");
4078         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4079                         CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4080                         "Flow Control Low Watermark");
4081
4082         for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4083                 struct tx_ring *txr = &tx_que->txr;
4084                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4085                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4086                                             CTLFLAG_RD, NULL, "TX Queue Name");
4087                 queue_list = SYSCTL_CHILDREN(queue_node);
4088
4089                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4090                                 CTLTYPE_UINT | CTLFLAG_RD, adapter,
4091                                 E1000_TDH(txr->me),
4092                                 em_sysctl_reg_handler, "IU",
4093                                 "Transmit Descriptor Head");
4094                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4095                                 CTLTYPE_UINT | CTLFLAG_RD, adapter,
4096                                 E1000_TDT(txr->me),
4097                                 em_sysctl_reg_handler, "IU",
4098                                 "Transmit Descriptor Tail");
4099                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4100                                 CTLFLAG_RD, &txr->tx_irq,
4101                                 "Queue MSI-X Transmit Interrupts");
4102         }
4103
4104         for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4105                 struct rx_ring *rxr = &rx_que->rxr;
4106                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4107                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4108                                             CTLFLAG_RD, NULL, "RX Queue Name");
4109                 queue_list = SYSCTL_CHILDREN(queue_node);
4110
4111                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4112                                 CTLTYPE_UINT | CTLFLAG_RD, adapter,
4113                                 E1000_RDH(rxr->me),
4114                                 em_sysctl_reg_handler, "IU",
4115                                 "Receive Descriptor Head");
4116                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4117                                 CTLTYPE_UINT | CTLFLAG_RD, adapter,
4118                                 E1000_RDT(rxr->me),
4119                                 em_sysctl_reg_handler, "IU",
4120                                 "Receive Descriptor Tail");
4121                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4122                                 CTLFLAG_RD, &rxr->rx_irq,
4123                                 "Queue MSI-X Receive Interrupts");
4124         }
4125
4126         /* MAC stats get their own sub node */
4127
4128         stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4129                                     CTLFLAG_RD, NULL, "Statistics");
4130         stat_list = SYSCTL_CHILDREN(stat_node);
4131
4132         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4133                         CTLFLAG_RD, &stats->ecol,
4134                         "Excessive collisions");
4135         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4136                         CTLFLAG_RD, &stats->scc,
4137                         "Single collisions");
4138         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4139                         CTLFLAG_RD, &stats->mcc,
4140                         "Multiple collisions");
4141         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4142                         CTLFLAG_RD, &stats->latecol,
4143                         "Late collisions");
4144         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4145                         CTLFLAG_RD, &stats->colc,
4146                         "Collision Count");
4147         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4148                         CTLFLAG_RD, &adapter->stats.symerrs,
4149                         "Symbol Errors");
4150         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4151                         CTLFLAG_RD, &adapter->stats.sec,
4152                         "Sequence Errors");
4153         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4154                         CTLFLAG_RD, &adapter->stats.dc,
4155                         "Defer Count");
4156         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4157                         CTLFLAG_RD, &adapter->stats.mpc,
4158                         "Missed Packets");
4159         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4160                         CTLFLAG_RD, &adapter->stats.rnbc,
4161                         "Receive No Buffers");
4162         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4163                         CTLFLAG_RD, &adapter->stats.ruc,
4164                         "Receive Undersize");
4165         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4166                         CTLFLAG_RD, &adapter->stats.rfc,
4167                         "Fragmented Packets Received ");
4168         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4169                         CTLFLAG_RD, &adapter->stats.roc,
4170                         "Oversized Packets Received");
4171         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4172                         CTLFLAG_RD, &adapter->stats.rjc,
4173                         "Recevied Jabber");
4174         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4175                         CTLFLAG_RD, &adapter->stats.rxerrc,
4176                         "Receive Errors");
4177         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4178                         CTLFLAG_RD, &adapter->stats.crcerrs,
4179                         "CRC errors");
4180         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4181                         CTLFLAG_RD, &adapter->stats.algnerrc,
4182                         "Alignment Errors");
4183         /* On 82575 these are collision counts */
4184         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4185                         CTLFLAG_RD, &adapter->stats.cexterr,
4186                         "Collision/Carrier extension errors");
4187         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4188                         CTLFLAG_RD, &adapter->stats.xonrxc,
4189                         "XON Received");
4190         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4191                         CTLFLAG_RD, &adapter->stats.xontxc,
4192                         "XON Transmitted");
4193         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4194                         CTLFLAG_RD, &adapter->stats.xoffrxc,
4195                         "XOFF Received");
4196         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4197                         CTLFLAG_RD, &adapter->stats.xofftxc,
4198                         "XOFF Transmitted");
4199
4200         /* Packet Reception Stats */
4201         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4202                         CTLFLAG_RD, &adapter->stats.tpr,
4203                         "Total Packets Received ");
4204         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4205                         CTLFLAG_RD, &adapter->stats.gprc,
4206                         "Good Packets Received");
4207         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4208                         CTLFLAG_RD, &adapter->stats.bprc,
4209                         "Broadcast Packets Received");
4210         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4211                         CTLFLAG_RD, &adapter->stats.mprc,
4212                         "Multicast Packets Received");
4213         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4214                         CTLFLAG_RD, &adapter->stats.prc64,
4215                         "64 byte frames received ");
4216         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4217                         CTLFLAG_RD, &adapter->stats.prc127,
4218                         "65-127 byte frames received");
4219         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4220                         CTLFLAG_RD, &adapter->stats.prc255,
4221                         "128-255 byte frames received");
4222         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4223                         CTLFLAG_RD, &adapter->stats.prc511,
4224                         "256-511 byte frames received");
4225         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4226                         CTLFLAG_RD, &adapter->stats.prc1023,
4227                         "512-1023 byte frames received");
4228         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4229                         CTLFLAG_RD, &adapter->stats.prc1522,
4230                         "1023-1522 byte frames received");
4231         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4232                         CTLFLAG_RD, &adapter->stats.gorc,
4233                         "Good Octets Received");
4234
4235         /* Packet Transmission Stats */
4236         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4237                         CTLFLAG_RD, &adapter->stats.gotc,
4238                         "Good Octets Transmitted");
4239         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4240                         CTLFLAG_RD, &adapter->stats.tpt,
4241                         "Total Packets Transmitted");
4242         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4243                         CTLFLAG_RD, &adapter->stats.gptc,
4244                         "Good Packets Transmitted");
4245         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4246                         CTLFLAG_RD, &adapter->stats.bptc,
4247                         "Broadcast Packets Transmitted");
4248         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4249                         CTLFLAG_RD, &adapter->stats.mptc,
4250                         "Multicast Packets Transmitted");
4251         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4252                         CTLFLAG_RD, &adapter->stats.ptc64,
4253                         "64 byte frames transmitted ");
4254         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4255                         CTLFLAG_RD, &adapter->stats.ptc127,
4256                         "65-127 byte frames transmitted");
4257         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4258                         CTLFLAG_RD, &adapter->stats.ptc255,
4259                         "128-255 byte frames transmitted");
4260         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4261                         CTLFLAG_RD, &adapter->stats.ptc511,
4262                         "256-511 byte frames transmitted");
4263         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4264                         CTLFLAG_RD, &adapter->stats.ptc1023,
4265                         "512-1023 byte frames transmitted");
4266         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4267                         CTLFLAG_RD, &adapter->stats.ptc1522,
4268                         "1024-1522 byte frames transmitted");
4269         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4270                         CTLFLAG_RD, &adapter->stats.tsctc,
4271                         "TSO Contexts Transmitted");
4272         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4273                         CTLFLAG_RD, &adapter->stats.tsctfc,
4274                         "TSO Contexts Failed");
4275
4276
4277         /* Interrupt Stats */
4278
4279         int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4280                                     CTLFLAG_RD, NULL, "Interrupt Statistics");
4281         int_list = SYSCTL_CHILDREN(int_node);
4282
4283         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4284                         CTLFLAG_RD, &adapter->stats.iac,
4285                         "Interrupt Assertion Count");
4286
4287         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4288                         CTLFLAG_RD, &adapter->stats.icrxptc,
4289                         "Interrupt Cause Rx Pkt Timer Expire Count");
4290
4291         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4292                         CTLFLAG_RD, &adapter->stats.icrxatc,
4293                         "Interrupt Cause Rx Abs Timer Expire Count");
4294
4295         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4296                         CTLFLAG_RD, &adapter->stats.ictxptc,
4297                         "Interrupt Cause Tx Pkt Timer Expire Count");
4298
4299         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4300                         CTLFLAG_RD, &adapter->stats.ictxatc,
4301                         "Interrupt Cause Tx Abs Timer Expire Count");
4302
4303         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4304                         CTLFLAG_RD, &adapter->stats.ictxqec,
4305                         "Interrupt Cause Tx Queue Empty Count");
4306
4307         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4308                         CTLFLAG_RD, &adapter->stats.ictxqmtc,
4309                         "Interrupt Cause Tx Queue Min Thresh Count");
4310
4311         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4312                         CTLFLAG_RD, &adapter->stats.icrxdmtc,
4313                         "Interrupt Cause Rx Desc Min Thresh Count");
4314
4315         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4316                         CTLFLAG_RD, &adapter->stats.icrxoc,
4317                         "Interrupt Cause Receiver Overrun Count");
4318 }
4319
4320 /**********************************************************************
4321  *
4322  *  This routine provides a way to dump out the adapter eeprom,
4323  *  often a useful debug/service tool. This only dumps the first
4324  *  32 words, stuff that matters is in that extent.
4325  *
4326  **********************************************************************/
4327 static int
4328 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4329 {
4330         struct adapter *adapter = (struct adapter *)arg1;
4331         int error;
4332         int result;
4333
4334         result = -1;
4335         error = sysctl_handle_int(oidp, &result, 0, req);
4336
4337         if (error || !req->newptr)
4338                 return (error);
4339
4340         /*
4341          * This value will cause a hex dump of the
4342          * first 32 16-bit words of the EEPROM to
4343          * the screen.
4344          */
4345         if (result == 1)
4346                 em_print_nvm_info(adapter);
4347
4348         return (error);
4349 }
4350
4351 static void
4352 em_print_nvm_info(struct adapter *adapter)
4353 {
4354         u16 eeprom_data;
4355         int i, j, row = 0;
4356
4357         /* Its a bit crude, but it gets the job done */
4358         printf("\nInterface EEPROM Dump:\n");
4359         printf("Offset\n0x0000  ");
4360         for (i = 0, j = 0; i < 32; i++, j++) {
4361                 if (j == 8) { /* Make the offset block */
4362                         j = 0; ++row;
4363                         printf("\n0x00%x0  ",row);
4364                 }
4365                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4366                 printf("%04x ", eeprom_data);
4367         }
4368         printf("\n");
4369 }
4370
4371 static int
4372 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4373 {
4374         struct em_int_delay_info *info;
4375         struct adapter *adapter;
4376         u32 regval;
4377         int error, usecs, ticks;
4378
4379         info = (struct em_int_delay_info *) arg1;
4380         usecs = info->value;
4381         error = sysctl_handle_int(oidp, &usecs, 0, req);
4382         if (error != 0 || req->newptr == NULL)
4383                 return (error);
4384         if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4385                 return (EINVAL);
4386         info->value = usecs;
4387         ticks = EM_USECS_TO_TICKS(usecs);
4388         if (info->offset == E1000_ITR)  /* units are 256ns here */
4389                 ticks *= 4;
4390
4391         adapter = info->adapter;
4392
4393         regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4394         regval = (regval & ~0xffff) | (ticks & 0xffff);
4395         /* Handle a few special cases. */
4396         switch (info->offset) {
4397         case E1000_RDTR:
4398                 break;
4399         case E1000_TIDV:
4400                 if (ticks == 0) {
4401                         adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4402                         /* Don't write 0 into the TIDV register. */
4403                         regval++;
4404                 } else
4405                         adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4406                 break;
4407         }
4408         E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4409         return (0);
4410 }
4411
4412 static void
4413 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4414         const char *description, struct em_int_delay_info *info,
4415         int offset, int value)
4416 {
4417         info->adapter = adapter;
4418         info->offset = offset;
4419         info->value = value;
4420         SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4421             SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4422             OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
4423             info, 0, em_sysctl_int_delay, "I", description);
4424 }
4425
4426 /*
4427  * Set flow control using sysctl:
4428  * Flow control values:
4429  *      0 - off
4430  *      1 - rx pause
4431  *      2 - tx pause
4432  *      3 - full
4433  */
4434 static int
4435 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4436 {
4437         int error;
4438         static int input = 3; /* default is full */
4439         struct adapter  *adapter = (struct adapter *) arg1;
4440
4441         error = sysctl_handle_int(oidp, &input, 0, req);
4442
4443         if ((error) || (req->newptr == NULL))
4444                 return (error);
4445
4446         if (input == adapter->fc) /* no change? */
4447                 return (error);
4448
4449         switch (input) {
4450         case e1000_fc_rx_pause:
4451         case e1000_fc_tx_pause:
4452         case e1000_fc_full:
4453         case e1000_fc_none:
4454                 adapter->hw.fc.requested_mode = input;
4455                 adapter->fc = input;
4456                 break;
4457         default:
4458                 /* Do nothing */
4459                 return (error);
4460         }
4461
4462         adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4463         e1000_force_mac_fc(&adapter->hw);
4464         return (error);
4465 }
4466
4467 /*
4468  * Manage Energy Efficient Ethernet:
4469  * Control values:
4470  *     0/1 - enabled/disabled
4471  */
4472 static int
4473 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4474 {
4475         struct adapter *adapter = (struct adapter *) arg1;
4476         int error, value;
4477
4478         value = adapter->hw.dev_spec.ich8lan.eee_disable;
4479         error = sysctl_handle_int(oidp, &value, 0, req);
4480         if (error || req->newptr == NULL)
4481                 return (error);
4482         adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4483         em_if_init(adapter->ctx);
4484
4485         return (0);
4486 }
4487
4488 static int
4489 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4490 {
4491         struct adapter *adapter;
4492         int error;
4493         int result;
4494
4495         result = -1;
4496         error = sysctl_handle_int(oidp, &result, 0, req);
4497
4498         if (error || !req->newptr)
4499                 return (error);
4500
4501         if (result == 1) {
4502                 adapter = (struct adapter *) arg1;
4503                 em_print_debug_info(adapter);
4504         }
4505
4506         return (error);
4507 }
4508
4509 static int
4510 em_get_rs(SYSCTL_HANDLER_ARGS)
4511 {
4512         struct adapter *adapter = (struct adapter *) arg1;
4513         int error;
4514         int result;
4515
4516         result = 0;
4517         error = sysctl_handle_int(oidp, &result, 0, req);
4518
4519         if (error || !req->newptr || result != 1)
4520                 return (error);
4521         em_dump_rs(adapter);
4522
4523         return (error);
4524 }
4525
4526 static void
4527 em_if_debug(if_ctx_t ctx)
4528 {
4529         em_dump_rs(iflib_get_softc(ctx));
4530 }
4531
4532 /*
4533  * This routine is meant to be fluid, add whatever is
4534  * needed for debugging a problem.  -jfv
4535  */
4536 static void
4537 em_print_debug_info(struct adapter *adapter)
4538 {
4539         device_t dev = iflib_get_dev(adapter->ctx);
4540         struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4541         struct tx_ring *txr = &adapter->tx_queues->txr;
4542         struct rx_ring *rxr = &adapter->rx_queues->rxr;
4543
4544         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4545                 printf("Interface is RUNNING ");
4546         else
4547                 printf("Interface is NOT RUNNING\n");
4548
4549         if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4550                 printf("and INACTIVE\n");
4551         else
4552                 printf("and ACTIVE\n");
4553
4554         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4555                 device_printf(dev, "TX Queue %d ------\n", i);
4556                 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4557                         E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4558                         E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4559
4560         }
4561         for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4562                 device_printf(dev, "RX Queue %d ------\n", j);
4563                 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4564                         E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4565                         E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4566         }
4567 }
4568
4569 /*
4570  * 82574 only:
4571  * Write a new value to the EEPROM increasing the number of MSI-X
4572  * vectors from 3 to 5, for proper multiqueue support.
4573  */
4574 static void
4575 em_enable_vectors_82574(if_ctx_t ctx)
4576 {
4577         struct adapter *adapter = iflib_get_softc(ctx);
4578         struct e1000_hw *hw = &adapter->hw;
4579         device_t dev = iflib_get_dev(ctx);
4580         u16 edata;
4581
4582         e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4583         if (bootverbose)
4584                 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4585         if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4586                 device_printf(dev, "Writing to eeprom: increasing "
4587                     "reported MSI-X vectors from 3 to 5...\n");
4588                 edata &= ~(EM_NVM_MSIX_N_MASK);
4589                 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4590                 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4591                 e1000_update_nvm_checksum(hw);
4592                 device_printf(dev, "Writing to eeprom: done\n");
4593         }
4594 }