]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/geom/raid/g_raid.c
GEOM: Reduce unnecessary log interleaving with sbufs
[FreeBSD/FreeBSD.git] / sys / geom / raid / g_raid.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/bio.h>
40 #include <sys/sbuf.h>
41 #include <sys/sysctl.h>
42 #include <sys/malloc.h>
43 #include <sys/eventhandler.h>
44 #include <vm/uma.h>
45 #include <geom/geom.h>
46 #include <geom/geom_dbg.h>
47 #include <sys/proc.h>
48 #include <sys/kthread.h>
49 #include <sys/sched.h>
50 #include <geom/raid/g_raid.h>
51 #include "g_raid_md_if.h"
52 #include "g_raid_tr_if.h"
53
54 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
55
56 SYSCTL_DECL(_kern_geom);
57 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
58 int g_raid_enable = 1;
59 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN,
60     &g_raid_enable, 0, "Enable on-disk metadata taste");
61 u_int g_raid_aggressive_spare = 0;
62 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN,
63     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
64 u_int g_raid_debug = 0;
65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0,
66     "Debug level");
67 int g_raid_read_err_thresh = 10;
68 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN,
69     &g_raid_read_err_thresh, 0,
70     "Number of read errors equated to disk failure");
71 u_int g_raid_start_timeout = 30;
72 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN,
73     &g_raid_start_timeout, 0,
74     "Time to wait for all array components");
75 static u_int g_raid_clean_time = 5;
76 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN,
77     &g_raid_clean_time, 0, "Mark volume as clean when idling");
78 static u_int g_raid_disconnect_on_failure = 1;
79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
80     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
81 static u_int g_raid_name_format = 0;
82 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN,
83     &g_raid_name_format, 0, "Providers name format.");
84 static u_int g_raid_idle_threshold = 1000000;
85 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN,
86     &g_raid_idle_threshold, 1000000,
87     "Time in microseconds to consider a volume idle.");
88
89 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
90         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
91         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
92         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
93 } while (0)
94
95 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
96     LIST_HEAD_INITIALIZER(g_raid_md_classes);
97
98 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
99     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
100
101 LIST_HEAD(, g_raid_volume) g_raid_volumes =
102     LIST_HEAD_INITIALIZER(g_raid_volumes);
103
104 static eventhandler_tag g_raid_post_sync = NULL;
105 static int g_raid_started = 0;
106 static int g_raid_shutdown = 0;
107
108 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
109     struct g_geom *gp);
110 static g_taste_t g_raid_taste;
111 static void g_raid_init(struct g_class *mp);
112 static void g_raid_fini(struct g_class *mp);
113
114 struct g_class g_raid_class = {
115         .name = G_RAID_CLASS_NAME,
116         .version = G_VERSION,
117         .ctlreq = g_raid_ctl,
118         .taste = g_raid_taste,
119         .destroy_geom = g_raid_destroy_geom,
120         .init = g_raid_init,
121         .fini = g_raid_fini
122 };
123
124 static void g_raid_destroy_provider(struct g_raid_volume *vol);
125 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
126 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
127 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
128 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
129 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
130     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
131 static void g_raid_start(struct bio *bp);
132 static void g_raid_start_request(struct bio *bp);
133 static void g_raid_disk_done(struct bio *bp);
134 static void g_raid_poll(struct g_raid_softc *sc);
135
136 static const char *
137 g_raid_node_event2str(int event)
138 {
139
140         switch (event) {
141         case G_RAID_NODE_E_WAKE:
142                 return ("WAKE");
143         case G_RAID_NODE_E_START:
144                 return ("START");
145         default:
146                 return ("INVALID");
147         }
148 }
149
150 const char *
151 g_raid_disk_state2str(int state)
152 {
153
154         switch (state) {
155         case G_RAID_DISK_S_NONE:
156                 return ("NONE");
157         case G_RAID_DISK_S_OFFLINE:
158                 return ("OFFLINE");
159         case G_RAID_DISK_S_DISABLED:
160                 return ("DISABLED");
161         case G_RAID_DISK_S_FAILED:
162                 return ("FAILED");
163         case G_RAID_DISK_S_STALE_FAILED:
164                 return ("STALE_FAILED");
165         case G_RAID_DISK_S_SPARE:
166                 return ("SPARE");
167         case G_RAID_DISK_S_STALE:
168                 return ("STALE");
169         case G_RAID_DISK_S_ACTIVE:
170                 return ("ACTIVE");
171         default:
172                 return ("INVALID");
173         }
174 }
175
176 static const char *
177 g_raid_disk_event2str(int event)
178 {
179
180         switch (event) {
181         case G_RAID_DISK_E_DISCONNECTED:
182                 return ("DISCONNECTED");
183         default:
184                 return ("INVALID");
185         }
186 }
187
188 const char *
189 g_raid_subdisk_state2str(int state)
190 {
191
192         switch (state) {
193         case G_RAID_SUBDISK_S_NONE:
194                 return ("NONE");
195         case G_RAID_SUBDISK_S_FAILED:
196                 return ("FAILED");
197         case G_RAID_SUBDISK_S_NEW:
198                 return ("NEW");
199         case G_RAID_SUBDISK_S_REBUILD:
200                 return ("REBUILD");
201         case G_RAID_SUBDISK_S_UNINITIALIZED:
202                 return ("UNINITIALIZED");
203         case G_RAID_SUBDISK_S_STALE:
204                 return ("STALE");
205         case G_RAID_SUBDISK_S_RESYNC:
206                 return ("RESYNC");
207         case G_RAID_SUBDISK_S_ACTIVE:
208                 return ("ACTIVE");
209         default:
210                 return ("INVALID");
211         }
212 }
213
214 static const char *
215 g_raid_subdisk_event2str(int event)
216 {
217
218         switch (event) {
219         case G_RAID_SUBDISK_E_NEW:
220                 return ("NEW");
221         case G_RAID_SUBDISK_E_FAILED:
222                 return ("FAILED");
223         case G_RAID_SUBDISK_E_DISCONNECTED:
224                 return ("DISCONNECTED");
225         default:
226                 return ("INVALID");
227         }
228 }
229
230 const char *
231 g_raid_volume_state2str(int state)
232 {
233
234         switch (state) {
235         case G_RAID_VOLUME_S_STARTING:
236                 return ("STARTING");
237         case G_RAID_VOLUME_S_BROKEN:
238                 return ("BROKEN");
239         case G_RAID_VOLUME_S_DEGRADED:
240                 return ("DEGRADED");
241         case G_RAID_VOLUME_S_SUBOPTIMAL:
242                 return ("SUBOPTIMAL");
243         case G_RAID_VOLUME_S_OPTIMAL:
244                 return ("OPTIMAL");
245         case G_RAID_VOLUME_S_UNSUPPORTED:
246                 return ("UNSUPPORTED");
247         case G_RAID_VOLUME_S_STOPPED:
248                 return ("STOPPED");
249         default:
250                 return ("INVALID");
251         }
252 }
253
254 static const char *
255 g_raid_volume_event2str(int event)
256 {
257
258         switch (event) {
259         case G_RAID_VOLUME_E_UP:
260                 return ("UP");
261         case G_RAID_VOLUME_E_DOWN:
262                 return ("DOWN");
263         case G_RAID_VOLUME_E_START:
264                 return ("START");
265         case G_RAID_VOLUME_E_STARTMD:
266                 return ("STARTMD");
267         default:
268                 return ("INVALID");
269         }
270 }
271
272 const char *
273 g_raid_volume_level2str(int level, int qual)
274 {
275
276         switch (level) {
277         case G_RAID_VOLUME_RL_RAID0:
278                 return ("RAID0");
279         case G_RAID_VOLUME_RL_RAID1:
280                 return ("RAID1");
281         case G_RAID_VOLUME_RL_RAID3:
282                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
283                         return ("RAID3-P0");
284                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
285                         return ("RAID3-PN");
286                 return ("RAID3");
287         case G_RAID_VOLUME_RL_RAID4:
288                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
289                         return ("RAID4-P0");
290                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
291                         return ("RAID4-PN");
292                 return ("RAID4");
293         case G_RAID_VOLUME_RL_RAID5:
294                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
295                         return ("RAID5-RA");
296                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
297                         return ("RAID5-RS");
298                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
299                         return ("RAID5-LA");
300                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
301                         return ("RAID5-LS");
302                 return ("RAID5");
303         case G_RAID_VOLUME_RL_RAID6:
304                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
305                         return ("RAID6-RA");
306                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
307                         return ("RAID6-RS");
308                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
309                         return ("RAID6-LA");
310                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
311                         return ("RAID6-LS");
312                 return ("RAID6");
313         case G_RAID_VOLUME_RL_RAIDMDF:
314                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
315                         return ("RAIDMDF-RA");
316                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
317                         return ("RAIDMDF-RS");
318                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
319                         return ("RAIDMDF-LA");
320                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
321                         return ("RAIDMDF-LS");
322                 return ("RAIDMDF");
323         case G_RAID_VOLUME_RL_RAID1E:
324                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
325                         return ("RAID1E-A");
326                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
327                         return ("RAID1E-O");
328                 return ("RAID1E");
329         case G_RAID_VOLUME_RL_SINGLE:
330                 return ("SINGLE");
331         case G_RAID_VOLUME_RL_CONCAT:
332                 return ("CONCAT");
333         case G_RAID_VOLUME_RL_RAID5E:
334                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
335                         return ("RAID5E-RA");
336                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
337                         return ("RAID5E-RS");
338                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
339                         return ("RAID5E-LA");
340                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
341                         return ("RAID5E-LS");
342                 return ("RAID5E");
343         case G_RAID_VOLUME_RL_RAID5EE:
344                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
345                         return ("RAID5EE-RA");
346                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
347                         return ("RAID5EE-RS");
348                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
349                         return ("RAID5EE-LA");
350                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
351                         return ("RAID5EE-LS");
352                 return ("RAID5EE");
353         case G_RAID_VOLUME_RL_RAID5R:
354                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
355                         return ("RAID5R-RA");
356                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
357                         return ("RAID5R-RS");
358                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
359                         return ("RAID5R-LA");
360                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
361                         return ("RAID5R-LS");
362                 return ("RAID5E");
363         default:
364                 return ("UNKNOWN");
365         }
366 }
367
368 int
369 g_raid_volume_str2level(const char *str, int *level, int *qual)
370 {
371
372         *level = G_RAID_VOLUME_RL_UNKNOWN;
373         *qual = G_RAID_VOLUME_RLQ_NONE;
374         if (strcasecmp(str, "RAID0") == 0)
375                 *level = G_RAID_VOLUME_RL_RAID0;
376         else if (strcasecmp(str, "RAID1") == 0)
377                 *level = G_RAID_VOLUME_RL_RAID1;
378         else if (strcasecmp(str, "RAID3-P0") == 0) {
379                 *level = G_RAID_VOLUME_RL_RAID3;
380                 *qual = G_RAID_VOLUME_RLQ_R3P0;
381         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
382                    strcasecmp(str, "RAID3") == 0) {
383                 *level = G_RAID_VOLUME_RL_RAID3;
384                 *qual = G_RAID_VOLUME_RLQ_R3PN;
385         } else if (strcasecmp(str, "RAID4-P0") == 0) {
386                 *level = G_RAID_VOLUME_RL_RAID4;
387                 *qual = G_RAID_VOLUME_RLQ_R4P0;
388         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
389                    strcasecmp(str, "RAID4") == 0) {
390                 *level = G_RAID_VOLUME_RL_RAID4;
391                 *qual = G_RAID_VOLUME_RLQ_R4PN;
392         } else if (strcasecmp(str, "RAID5-RA") == 0) {
393                 *level = G_RAID_VOLUME_RL_RAID5;
394                 *qual = G_RAID_VOLUME_RLQ_R5RA;
395         } else if (strcasecmp(str, "RAID5-RS") == 0) {
396                 *level = G_RAID_VOLUME_RL_RAID5;
397                 *qual = G_RAID_VOLUME_RLQ_R5RS;
398         } else if (strcasecmp(str, "RAID5") == 0 ||
399                    strcasecmp(str, "RAID5-LA") == 0) {
400                 *level = G_RAID_VOLUME_RL_RAID5;
401                 *qual = G_RAID_VOLUME_RLQ_R5LA;
402         } else if (strcasecmp(str, "RAID5-LS") == 0) {
403                 *level = G_RAID_VOLUME_RL_RAID5;
404                 *qual = G_RAID_VOLUME_RLQ_R5LS;
405         } else if (strcasecmp(str, "RAID6-RA") == 0) {
406                 *level = G_RAID_VOLUME_RL_RAID6;
407                 *qual = G_RAID_VOLUME_RLQ_R6RA;
408         } else if (strcasecmp(str, "RAID6-RS") == 0) {
409                 *level = G_RAID_VOLUME_RL_RAID6;
410                 *qual = G_RAID_VOLUME_RLQ_R6RS;
411         } else if (strcasecmp(str, "RAID6") == 0 ||
412                    strcasecmp(str, "RAID6-LA") == 0) {
413                 *level = G_RAID_VOLUME_RL_RAID6;
414                 *qual = G_RAID_VOLUME_RLQ_R6LA;
415         } else if (strcasecmp(str, "RAID6-LS") == 0) {
416                 *level = G_RAID_VOLUME_RL_RAID6;
417                 *qual = G_RAID_VOLUME_RLQ_R6LS;
418         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
419                 *level = G_RAID_VOLUME_RL_RAIDMDF;
420                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
421         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
422                 *level = G_RAID_VOLUME_RL_RAIDMDF;
423                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
424         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
425                    strcasecmp(str, "RAIDMDF-LA") == 0) {
426                 *level = G_RAID_VOLUME_RL_RAIDMDF;
427                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
428         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
429                 *level = G_RAID_VOLUME_RL_RAIDMDF;
430                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
431         } else if (strcasecmp(str, "RAID10") == 0 ||
432                    strcasecmp(str, "RAID1E") == 0 ||
433                    strcasecmp(str, "RAID1E-A") == 0) {
434                 *level = G_RAID_VOLUME_RL_RAID1E;
435                 *qual = G_RAID_VOLUME_RLQ_R1EA;
436         } else if (strcasecmp(str, "RAID1E-O") == 0) {
437                 *level = G_RAID_VOLUME_RL_RAID1E;
438                 *qual = G_RAID_VOLUME_RLQ_R1EO;
439         } else if (strcasecmp(str, "SINGLE") == 0)
440                 *level = G_RAID_VOLUME_RL_SINGLE;
441         else if (strcasecmp(str, "CONCAT") == 0)
442                 *level = G_RAID_VOLUME_RL_CONCAT;
443         else if (strcasecmp(str, "RAID5E-RA") == 0) {
444                 *level = G_RAID_VOLUME_RL_RAID5E;
445                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
446         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
447                 *level = G_RAID_VOLUME_RL_RAID5E;
448                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
449         } else if (strcasecmp(str, "RAID5E") == 0 ||
450                    strcasecmp(str, "RAID5E-LA") == 0) {
451                 *level = G_RAID_VOLUME_RL_RAID5E;
452                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
453         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
454                 *level = G_RAID_VOLUME_RL_RAID5E;
455                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
456         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
457                 *level = G_RAID_VOLUME_RL_RAID5EE;
458                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
459         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
460                 *level = G_RAID_VOLUME_RL_RAID5EE;
461                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
462         } else if (strcasecmp(str, "RAID5EE") == 0 ||
463                    strcasecmp(str, "RAID5EE-LA") == 0) {
464                 *level = G_RAID_VOLUME_RL_RAID5EE;
465                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
466         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
467                 *level = G_RAID_VOLUME_RL_RAID5EE;
468                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
469         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
470                 *level = G_RAID_VOLUME_RL_RAID5R;
471                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
472         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
473                 *level = G_RAID_VOLUME_RL_RAID5R;
474                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
475         } else if (strcasecmp(str, "RAID5R") == 0 ||
476                    strcasecmp(str, "RAID5R-LA") == 0) {
477                 *level = G_RAID_VOLUME_RL_RAID5R;
478                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
479         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
480                 *level = G_RAID_VOLUME_RL_RAID5R;
481                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
482         } else
483                 return (-1);
484         return (0);
485 }
486
487 const char *
488 g_raid_get_diskname(struct g_raid_disk *disk)
489 {
490
491         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
492                 return ("[unknown]");
493         return (disk->d_consumer->provider->name);
494 }
495
496 void
497 g_raid_get_disk_info(struct g_raid_disk *disk)
498 {
499         struct g_consumer *cp = disk->d_consumer;
500         int error, len;
501
502         /* Read kernel dumping information. */
503         disk->d_kd.offset = 0;
504         disk->d_kd.length = OFF_MAX;
505         len = sizeof(disk->d_kd);
506         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
507         if (error)
508                 disk->d_kd.di.dumper = NULL;
509         if (disk->d_kd.di.dumper == NULL)
510                 G_RAID_DEBUG1(2, disk->d_softc,
511                     "Dumping not supported by %s: %d.", 
512                     cp->provider->name, error);
513
514         /* Read BIO_DELETE support. */
515         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
516         if (error)
517                 disk->d_candelete = 0;
518         if (!disk->d_candelete)
519                 G_RAID_DEBUG1(2, disk->d_softc,
520                     "BIO_DELETE not supported by %s: %d.", 
521                     cp->provider->name, error);
522 }
523
524 void
525 g_raid_report_disk_state(struct g_raid_disk *disk)
526 {
527         struct g_raid_subdisk *sd;
528         int len, state;
529         uint32_t s;
530
531         if (disk->d_consumer == NULL)
532                 return;
533         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
534                 s = G_STATE_ACTIVE; /* XXX */
535         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
536             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
537                 s = G_STATE_FAILED;
538         } else {
539                 state = G_RAID_SUBDISK_S_ACTIVE;
540                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
541                         if (sd->sd_state < state)
542                                 state = sd->sd_state;
543                 }
544                 if (state == G_RAID_SUBDISK_S_FAILED)
545                         s = G_STATE_FAILED;
546                 else if (state == G_RAID_SUBDISK_S_NEW ||
547                     state == G_RAID_SUBDISK_S_REBUILD)
548                         s = G_STATE_REBUILD;
549                 else if (state == G_RAID_SUBDISK_S_STALE ||
550                     state == G_RAID_SUBDISK_S_RESYNC)
551                         s = G_STATE_RESYNC;
552                 else
553                         s = G_STATE_ACTIVE;
554         }
555         len = sizeof(s);
556         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
557         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
558             g_raid_get_diskname(disk), s);
559 }
560
561 void
562 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
563 {
564
565         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
566             g_raid_get_diskname(disk),
567             g_raid_disk_state2str(disk->d_state),
568             g_raid_disk_state2str(state));
569         disk->d_state = state;
570         g_raid_report_disk_state(disk);
571 }
572
573 void
574 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
575 {
576
577         G_RAID_DEBUG1(0, sd->sd_softc,
578             "Subdisk %s:%d-%s state changed from %s to %s.",
579             sd->sd_volume->v_name, sd->sd_pos,
580             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
581             g_raid_subdisk_state2str(sd->sd_state),
582             g_raid_subdisk_state2str(state));
583         sd->sd_state = state;
584         if (sd->sd_disk)
585                 g_raid_report_disk_state(sd->sd_disk);
586 }
587
588 void
589 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
590 {
591
592         G_RAID_DEBUG1(0, vol->v_softc,
593             "Volume %s state changed from %s to %s.",
594             vol->v_name,
595             g_raid_volume_state2str(vol->v_state),
596             g_raid_volume_state2str(state));
597         vol->v_state = state;
598 }
599
600 /*
601  * --- Events handling functions ---
602  * Events in geom_raid are used to maintain subdisks and volumes status
603  * from one thread to simplify locking.
604  */
605 static void
606 g_raid_event_free(struct g_raid_event *ep)
607 {
608
609         free(ep, M_RAID);
610 }
611
612 int
613 g_raid_event_send(void *arg, int event, int flags)
614 {
615         struct g_raid_softc *sc;
616         struct g_raid_event *ep;
617         int error;
618
619         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
620                 sc = ((struct g_raid_volume *)arg)->v_softc;
621         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
622                 sc = ((struct g_raid_disk *)arg)->d_softc;
623         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
624                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
625         } else {
626                 sc = arg;
627         }
628         ep = malloc(sizeof(*ep), M_RAID,
629             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
630         if (ep == NULL)
631                 return (ENOMEM);
632         ep->e_tgt = arg;
633         ep->e_event = event;
634         ep->e_flags = flags;
635         ep->e_error = 0;
636         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
637         mtx_lock(&sc->sc_queue_mtx);
638         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
639         mtx_unlock(&sc->sc_queue_mtx);
640         wakeup(sc);
641
642         if ((flags & G_RAID_EVENT_WAIT) == 0)
643                 return (0);
644
645         sx_assert(&sc->sc_lock, SX_XLOCKED);
646         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
647         sx_xunlock(&sc->sc_lock);
648         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
649                 mtx_lock(&sc->sc_queue_mtx);
650                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
651                     hz * 5);
652         }
653         error = ep->e_error;
654         g_raid_event_free(ep);
655         sx_xlock(&sc->sc_lock);
656         return (error);
657 }
658
659 static void
660 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
661 {
662         struct g_raid_event *ep, *tmpep;
663
664         sx_assert(&sc->sc_lock, SX_XLOCKED);
665
666         mtx_lock(&sc->sc_queue_mtx);
667         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
668                 if (ep->e_tgt != tgt)
669                         continue;
670                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
671                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
672                         g_raid_event_free(ep);
673                 else {
674                         ep->e_error = ECANCELED;
675                         wakeup(ep);
676                 }
677         }
678         mtx_unlock(&sc->sc_queue_mtx);
679 }
680
681 static int
682 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
683 {
684         struct g_raid_event *ep;
685         int     res = 0;
686
687         sx_assert(&sc->sc_lock, SX_XLOCKED);
688
689         mtx_lock(&sc->sc_queue_mtx);
690         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
691                 if (ep->e_tgt != tgt)
692                         continue;
693                 res = 1;
694                 break;
695         }
696         mtx_unlock(&sc->sc_queue_mtx);
697         return (res);
698 }
699
700 /*
701  * Return the number of disks in given state.
702  * If state is equal to -1, count all connected disks.
703  */
704 u_int
705 g_raid_ndisks(struct g_raid_softc *sc, int state)
706 {
707         struct g_raid_disk *disk;
708         u_int n;
709
710         sx_assert(&sc->sc_lock, SX_LOCKED);
711
712         n = 0;
713         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
714                 if (disk->d_state == state || state == -1)
715                         n++;
716         }
717         return (n);
718 }
719
720 /*
721  * Return the number of subdisks in given state.
722  * If state is equal to -1, count all connected disks.
723  */
724 u_int
725 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
726 {
727         struct g_raid_subdisk *subdisk;
728         struct g_raid_softc *sc;
729         u_int i, n ;
730
731         sc = vol->v_softc;
732         sx_assert(&sc->sc_lock, SX_LOCKED);
733
734         n = 0;
735         for (i = 0; i < vol->v_disks_count; i++) {
736                 subdisk = &vol->v_subdisks[i];
737                 if ((state == -1 &&
738                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
739                     subdisk->sd_state == state)
740                         n++;
741         }
742         return (n);
743 }
744
745 /*
746  * Return the first subdisk in given state.
747  * If state is equal to -1, then the first connected disks.
748  */
749 struct g_raid_subdisk *
750 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
751 {
752         struct g_raid_subdisk *sd;
753         struct g_raid_softc *sc;
754         u_int i;
755
756         sc = vol->v_softc;
757         sx_assert(&sc->sc_lock, SX_LOCKED);
758
759         for (i = 0; i < vol->v_disks_count; i++) {
760                 sd = &vol->v_subdisks[i];
761                 if ((state == -1 &&
762                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
763                     sd->sd_state == state)
764                         return (sd);
765         }
766         return (NULL);
767 }
768
769 struct g_consumer *
770 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
771 {
772         struct g_consumer *cp;
773         struct g_provider *pp;
774
775         g_topology_assert();
776
777         if (strncmp(name, "/dev/", 5) == 0)
778                 name += 5;
779         pp = g_provider_by_name(name);
780         if (pp == NULL)
781                 return (NULL);
782         cp = g_new_consumer(sc->sc_geom);
783         cp->flags |= G_CF_DIRECT_RECEIVE;
784         if (g_attach(cp, pp) != 0) {
785                 g_destroy_consumer(cp);
786                 return (NULL);
787         }
788         if (g_access(cp, 1, 1, 1) != 0) {
789                 g_detach(cp);
790                 g_destroy_consumer(cp);
791                 return (NULL);
792         }
793         return (cp);
794 }
795
796 static u_int
797 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
798 {
799         struct bio *bp;
800         u_int nreqs = 0;
801
802         mtx_lock(&sc->sc_queue_mtx);
803         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
804                 if (bp->bio_from == cp)
805                         nreqs++;
806         }
807         mtx_unlock(&sc->sc_queue_mtx);
808         return (nreqs);
809 }
810
811 u_int
812 g_raid_nopens(struct g_raid_softc *sc)
813 {
814         struct g_raid_volume *vol;
815         u_int opens;
816
817         opens = 0;
818         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
819                 if (vol->v_provider_open != 0)
820                         opens++;
821         }
822         return (opens);
823 }
824
825 static int
826 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
827 {
828
829         if (cp->index > 0) {
830                 G_RAID_DEBUG1(2, sc,
831                     "I/O requests for %s exist, can't destroy it now.",
832                     cp->provider->name);
833                 return (1);
834         }
835         if (g_raid_nrequests(sc, cp) > 0) {
836                 G_RAID_DEBUG1(2, sc,
837                     "I/O requests for %s in queue, can't destroy it now.",
838                     cp->provider->name);
839                 return (1);
840         }
841         return (0);
842 }
843
844 static void
845 g_raid_destroy_consumer(void *arg, int flags __unused)
846 {
847         struct g_consumer *cp;
848
849         g_topology_assert();
850
851         cp = arg;
852         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
853         g_detach(cp);
854         g_destroy_consumer(cp);
855 }
856
857 void
858 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
859 {
860         struct g_provider *pp;
861         int retaste_wait;
862
863         g_topology_assert_not();
864
865         g_topology_lock();
866         cp->private = NULL;
867         if (g_raid_consumer_is_busy(sc, cp))
868                 goto out;
869         pp = cp->provider;
870         retaste_wait = 0;
871         if (cp->acw == 1) {
872                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
873                         retaste_wait = 1;
874         }
875         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
876                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
877         if (retaste_wait) {
878                 /*
879                  * After retaste event was send (inside g_access()), we can send
880                  * event to detach and destroy consumer.
881                  * A class, which has consumer to the given provider connected
882                  * will not receive retaste event for the provider.
883                  * This is the way how I ignore retaste events when I close
884                  * consumers opened for write: I detach and destroy consumer
885                  * after retaste event is sent.
886                  */
887                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
888                 goto out;
889         }
890         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
891         g_detach(cp);
892         g_destroy_consumer(cp);
893 out:
894         g_topology_unlock();
895 }
896
897 static void
898 g_raid_orphan(struct g_consumer *cp)
899 {
900         struct g_raid_disk *disk;
901
902         g_topology_assert();
903
904         disk = cp->private;
905         if (disk == NULL)
906                 return;
907         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
908             G_RAID_EVENT_DISK);
909 }
910
911 static void
912 g_raid_clean(struct g_raid_volume *vol, int acw)
913 {
914         struct g_raid_softc *sc;
915         int timeout;
916
917         sc = vol->v_softc;
918         g_topology_assert_not();
919         sx_assert(&sc->sc_lock, SX_XLOCKED);
920
921 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
922 //              return;
923         if (!vol->v_dirty)
924                 return;
925         if (vol->v_writes > 0)
926                 return;
927         if (acw > 0 || (acw == -1 &&
928             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
929                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
930                 if (!g_raid_shutdown && timeout > 0)
931                         return;
932         }
933         vol->v_dirty = 0;
934         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
935             vol->v_name);
936         g_raid_write_metadata(sc, vol, NULL, NULL);
937 }
938
939 static void
940 g_raid_dirty(struct g_raid_volume *vol)
941 {
942         struct g_raid_softc *sc;
943
944         sc = vol->v_softc;
945         g_topology_assert_not();
946         sx_assert(&sc->sc_lock, SX_XLOCKED);
947
948 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
949 //              return;
950         vol->v_dirty = 1;
951         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
952             vol->v_name);
953         g_raid_write_metadata(sc, vol, NULL, NULL);
954 }
955
956 void
957 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
958 {
959         struct g_raid_volume *vol;
960         struct g_raid_subdisk *sd;
961         struct bio_queue_head queue;
962         struct bio *cbp;
963         int i;
964
965         vol = tr->tro_volume;
966
967         /*
968          * Allocate all bios before sending any request, so we can return
969          * ENOMEM in nice and clean way.
970          */
971         bioq_init(&queue);
972         for (i = 0; i < vol->v_disks_count; i++) {
973                 sd = &vol->v_subdisks[i];
974                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
975                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
976                         continue;
977                 cbp = g_clone_bio(bp);
978                 if (cbp == NULL)
979                         goto failure;
980                 cbp->bio_caller1 = sd;
981                 bioq_insert_tail(&queue, cbp);
982         }
983         while ((cbp = bioq_takefirst(&queue)) != NULL) {
984                 sd = cbp->bio_caller1;
985                 cbp->bio_caller1 = NULL;
986                 g_raid_subdisk_iostart(sd, cbp);
987         }
988         return;
989 failure:
990         while ((cbp = bioq_takefirst(&queue)) != NULL)
991                 g_destroy_bio(cbp);
992         if (bp->bio_error == 0)
993                 bp->bio_error = ENOMEM;
994         g_raid_iodone(bp, bp->bio_error);
995 }
996
997 static void
998 g_raid_tr_kerneldump_common_done(struct bio *bp)
999 {
1000
1001         bp->bio_flags |= BIO_DONE;
1002 }
1003
1004 int
1005 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
1006     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1007 {
1008         struct g_raid_softc *sc;
1009         struct g_raid_volume *vol;
1010         struct bio bp;
1011
1012         vol = tr->tro_volume;
1013         sc = vol->v_softc;
1014
1015         g_reset_bio(&bp);
1016         bp.bio_cmd = BIO_WRITE;
1017         bp.bio_done = g_raid_tr_kerneldump_common_done;
1018         bp.bio_attribute = NULL;
1019         bp.bio_offset = offset;
1020         bp.bio_length = length;
1021         bp.bio_data = virtual;
1022         bp.bio_to = vol->v_provider;
1023
1024         g_raid_start(&bp);
1025         while (!(bp.bio_flags & BIO_DONE)) {
1026                 G_RAID_DEBUG1(4, sc, "Poll...");
1027                 g_raid_poll(sc);
1028                 DELAY(10);
1029         }
1030
1031         return (bp.bio_error != 0 ? EIO : 0);
1032 }
1033
1034 static int
1035 g_raid_dump(void *arg,
1036     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1037 {
1038         struct g_raid_volume *vol;
1039         int error;
1040
1041         vol = (struct g_raid_volume *)arg;
1042         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
1043             (long long unsigned)offset, (long long unsigned)length);
1044
1045         error = G_RAID_TR_KERNELDUMP(vol->v_tr,
1046             virtual, physical, offset, length);
1047         return (error);
1048 }
1049
1050 static void
1051 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
1052 {
1053         struct g_kerneldump *gkd;
1054         struct g_provider *pp;
1055         struct g_raid_volume *vol;
1056
1057         gkd = (struct g_kerneldump*)bp->bio_data;
1058         pp = bp->bio_to;
1059         vol = pp->private;
1060         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
1061                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
1062         gkd->di.dumper = g_raid_dump;
1063         gkd->di.priv = vol;
1064         gkd->di.blocksize = vol->v_sectorsize;
1065         gkd->di.maxiosize = DFLTPHYS;
1066         gkd->di.mediaoffset = gkd->offset;
1067         if ((gkd->offset + gkd->length) > vol->v_mediasize)
1068                 gkd->length = vol->v_mediasize - gkd->offset;
1069         gkd->di.mediasize = gkd->length;
1070         g_io_deliver(bp, 0);
1071 }
1072
1073 static void
1074 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
1075 {
1076         struct g_provider *pp;
1077         struct g_raid_volume *vol;
1078         struct g_raid_subdisk *sd;
1079         int i, val;
1080
1081         pp = bp->bio_to;
1082         vol = pp->private;
1083         for (i = 0; i < vol->v_disks_count; i++) {
1084                 sd = &vol->v_subdisks[i];
1085                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1086                         continue;
1087                 if (sd->sd_disk->d_candelete)
1088                         break;
1089         }
1090         val = i < vol->v_disks_count;
1091         g_handleattr(bp, "GEOM::candelete", &val, sizeof(val));
1092 }
1093
1094 static void
1095 g_raid_start(struct bio *bp)
1096 {
1097         struct g_raid_softc *sc;
1098
1099         sc = bp->bio_to->geom->softc;
1100         /*
1101          * If sc == NULL or there are no valid disks, provider's error
1102          * should be set and g_raid_start() should not be called at all.
1103          */
1104 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
1105 //          ("Provider's error should be set (error=%d)(mirror=%s).",
1106 //          bp->bio_to->error, bp->bio_to->name));
1107         G_RAID_LOGREQ(3, bp, "Request received.");
1108
1109         switch (bp->bio_cmd) {
1110         case BIO_READ:
1111         case BIO_WRITE:
1112         case BIO_DELETE:
1113         case BIO_FLUSH:
1114                 break;
1115         case BIO_GETATTR:
1116                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
1117                         g_raid_candelete(sc, bp);
1118                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
1119                         g_raid_kerneldump(sc, bp);
1120                 else
1121                         g_io_deliver(bp, EOPNOTSUPP);
1122                 return;
1123         default:
1124                 g_io_deliver(bp, EOPNOTSUPP);
1125                 return;
1126         }
1127         mtx_lock(&sc->sc_queue_mtx);
1128         bioq_insert_tail(&sc->sc_queue, bp);
1129         mtx_unlock(&sc->sc_queue_mtx);
1130         if (!dumping) {
1131                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
1132                 wakeup(sc);
1133         }
1134 }
1135
1136 static int
1137 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
1138 {
1139         /*
1140          * 5 cases:
1141          * (1) bp entirely below NO
1142          * (2) bp entirely above NO
1143          * (3) bp start below, but end in range YES
1144          * (4) bp entirely within YES
1145          * (5) bp starts within, ends above YES
1146          *
1147          * lock range 10-19 (offset 10 length 10)
1148          * (1) 1-5: first if kicks it out
1149          * (2) 30-35: second if kicks it out
1150          * (3) 5-15: passes both ifs
1151          * (4) 12-14: passes both ifs
1152          * (5) 19-20: passes both
1153          */
1154         off_t lend = lstart + len - 1;
1155         off_t bstart = bp->bio_offset;
1156         off_t bend = bp->bio_offset + bp->bio_length - 1;
1157
1158         if (bend < lstart)
1159                 return (0);
1160         if (lend < bstart)
1161                 return (0);
1162         return (1);
1163 }
1164
1165 static int
1166 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
1167 {
1168         struct g_raid_lock *lp;
1169
1170         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
1171
1172         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1173                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
1174                         return (1);
1175         }
1176         return (0);
1177 }
1178
1179 static void
1180 g_raid_start_request(struct bio *bp)
1181 {
1182         struct g_raid_softc *sc;
1183         struct g_raid_volume *vol;
1184
1185         sc = bp->bio_to->geom->softc;
1186         sx_assert(&sc->sc_lock, SX_LOCKED);
1187         vol = bp->bio_to->private;
1188
1189         /*
1190          * Check to see if this item is in a locked range.  If so,
1191          * queue it to our locked queue and return.  We'll requeue
1192          * it when the range is unlocked.  Internal I/O for the
1193          * rebuild/rescan/recovery process is excluded from this
1194          * check so we can actually do the recovery.
1195          */
1196         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
1197             g_raid_is_in_locked_range(vol, bp)) {
1198                 G_RAID_LOGREQ(3, bp, "Defer request.");
1199                 bioq_insert_tail(&vol->v_locked, bp);
1200                 return;
1201         }
1202
1203         /*
1204          * If we're actually going to do the write/delete, then
1205          * update the idle stats for the volume.
1206          */
1207         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1208                 if (!vol->v_dirty)
1209                         g_raid_dirty(vol);
1210                 vol->v_writes++;
1211         }
1212
1213         /*
1214          * Put request onto inflight queue, so we can check if new
1215          * synchronization requests don't collide with it.  Then tell
1216          * the transformation layer to start the I/O.
1217          */
1218         bioq_insert_tail(&vol->v_inflight, bp);
1219         G_RAID_LOGREQ(4, bp, "Request started");
1220         G_RAID_TR_IOSTART(vol->v_tr, bp);
1221 }
1222
1223 static void
1224 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
1225 {
1226         off_t off, len;
1227         struct bio *nbp;
1228         struct g_raid_lock *lp;
1229
1230         vol->v_pending_lock = 0;
1231         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1232                 if (lp->l_pending) {
1233                         off = lp->l_offset;
1234                         len = lp->l_length;
1235                         lp->l_pending = 0;
1236                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
1237                                 if (g_raid_bio_overlaps(nbp, off, len))
1238                                         lp->l_pending++;
1239                         }
1240                         if (lp->l_pending) {
1241                                 vol->v_pending_lock = 1;
1242                                 G_RAID_DEBUG1(4, vol->v_softc,
1243                                     "Deferred lock(%jd, %jd) has %d pending",
1244                                     (intmax_t)off, (intmax_t)(off + len),
1245                                     lp->l_pending);
1246                                 continue;
1247                         }
1248                         G_RAID_DEBUG1(4, vol->v_softc,
1249                             "Deferred lock of %jd to %jd completed",
1250                             (intmax_t)off, (intmax_t)(off + len));
1251                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1252                 }
1253         }
1254 }
1255
1256 void
1257 g_raid_iodone(struct bio *bp, int error)
1258 {
1259         struct g_raid_softc *sc;
1260         struct g_raid_volume *vol;
1261
1262         sc = bp->bio_to->geom->softc;
1263         sx_assert(&sc->sc_lock, SX_LOCKED);
1264         vol = bp->bio_to->private;
1265         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
1266
1267         /* Update stats if we done write/delete. */
1268         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1269                 vol->v_writes--;
1270                 vol->v_last_write = time_uptime;
1271         }
1272
1273         bioq_remove(&vol->v_inflight, bp);
1274         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
1275                 g_raid_finish_with_locked_ranges(vol, bp);
1276         getmicrouptime(&vol->v_last_done);
1277         g_io_deliver(bp, error);
1278 }
1279
1280 int
1281 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
1282     struct bio *ignore, void *argp)
1283 {
1284         struct g_raid_softc *sc;
1285         struct g_raid_lock *lp;
1286         struct bio *bp;
1287
1288         sc = vol->v_softc;
1289         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
1290         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
1291         lp->l_offset = off;
1292         lp->l_length = len;
1293         lp->l_callback_arg = argp;
1294
1295         lp->l_pending = 0;
1296         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
1297                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
1298                         lp->l_pending++;
1299         }       
1300
1301         /*
1302          * If there are any writes that are pending, we return EBUSY.  All
1303          * callers will have to wait until all pending writes clear.
1304          */
1305         if (lp->l_pending > 0) {
1306                 vol->v_pending_lock = 1;
1307                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
1308                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
1309                 return (EBUSY);
1310         }
1311         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
1312             (intmax_t)off, (intmax_t)(off+len));
1313         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1314         return (0);
1315 }
1316
1317 int
1318 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
1319 {
1320         struct g_raid_lock *lp;
1321         struct g_raid_softc *sc;
1322         struct bio *bp;
1323
1324         sc = vol->v_softc;
1325         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1326                 if (lp->l_offset == off && lp->l_length == len) {
1327                         LIST_REMOVE(lp, l_next);
1328                         /* XXX
1329                          * Right now we just put them all back on the queue
1330                          * and hope for the best.  We hope this because any
1331                          * locked ranges will go right back on this list
1332                          * when the worker thread runs.
1333                          * XXX
1334                          */
1335                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
1336                             (intmax_t)lp->l_offset,
1337                             (intmax_t)(lp->l_offset+lp->l_length));
1338                         mtx_lock(&sc->sc_queue_mtx);
1339                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
1340                                 bioq_insert_tail(&sc->sc_queue, bp);
1341                         mtx_unlock(&sc->sc_queue_mtx);
1342                         free(lp, M_RAID);
1343                         return (0);
1344                 }
1345         }
1346         return (EINVAL);
1347 }
1348
1349 void
1350 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
1351 {
1352         struct g_consumer *cp;
1353         struct g_raid_disk *disk, *tdisk;
1354
1355         bp->bio_caller1 = sd;
1356
1357         /*
1358          * Make sure that the disk is present. Generally it is a task of
1359          * transformation layers to not send requests to absent disks, but
1360          * it is better to be safe and report situation then sorry.
1361          */
1362         if (sd->sd_disk == NULL) {
1363                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
1364 nodisk:
1365                 bp->bio_from = NULL;
1366                 bp->bio_to = NULL;
1367                 bp->bio_error = ENXIO;
1368                 g_raid_disk_done(bp);
1369                 return;
1370         }
1371         disk = sd->sd_disk;
1372         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
1373             disk->d_state != G_RAID_DISK_S_FAILED) {
1374                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
1375                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
1376                 goto nodisk;
1377         }
1378
1379         cp = disk->d_consumer;
1380         bp->bio_from = cp;
1381         bp->bio_to = cp->provider;
1382         cp->index++;
1383
1384         /* Update average disks load. */
1385         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
1386                 if (tdisk->d_consumer == NULL)
1387                         tdisk->d_load = 0;
1388                 else
1389                         tdisk->d_load = (tdisk->d_consumer->index *
1390                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
1391         }
1392
1393         disk->d_last_offset = bp->bio_offset + bp->bio_length;
1394         if (dumping) {
1395                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
1396                 if (bp->bio_cmd == BIO_WRITE) {
1397                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
1398                             bp->bio_data, 0, bp->bio_offset, bp->bio_length);
1399                 } else
1400                         bp->bio_error = EOPNOTSUPP;
1401                 g_raid_disk_done(bp);
1402         } else {
1403                 bp->bio_done = g_raid_disk_done;
1404                 bp->bio_offset += sd->sd_offset;
1405                 G_RAID_LOGREQ(3, bp, "Sending request.");
1406                 g_io_request(bp, cp);
1407         }
1408 }
1409
1410 int
1411 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
1412     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1413 {
1414
1415         if (sd->sd_disk == NULL)
1416                 return (ENXIO);
1417         if (sd->sd_disk->d_kd.di.dumper == NULL)
1418                 return (EOPNOTSUPP);
1419         return (dump_write(&sd->sd_disk->d_kd.di,
1420             virtual, physical,
1421             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
1422             length));
1423 }
1424
1425 static void
1426 g_raid_disk_done(struct bio *bp)
1427 {
1428         struct g_raid_softc *sc;
1429         struct g_raid_subdisk *sd;
1430
1431         sd = bp->bio_caller1;
1432         sc = sd->sd_softc;
1433         mtx_lock(&sc->sc_queue_mtx);
1434         bioq_insert_tail(&sc->sc_queue, bp);
1435         mtx_unlock(&sc->sc_queue_mtx);
1436         if (!dumping)
1437                 wakeup(sc);
1438 }
1439
1440 static void
1441 g_raid_disk_done_request(struct bio *bp)
1442 {
1443         struct g_raid_softc *sc;
1444         struct g_raid_disk *disk;
1445         struct g_raid_subdisk *sd;
1446         struct g_raid_volume *vol;
1447
1448         g_topology_assert_not();
1449
1450         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
1451         sd = bp->bio_caller1;
1452         sc = sd->sd_softc;
1453         vol = sd->sd_volume;
1454         if (bp->bio_from != NULL) {
1455                 bp->bio_from->index--;
1456                 disk = bp->bio_from->private;
1457                 if (disk == NULL)
1458                         g_raid_kill_consumer(sc, bp->bio_from);
1459         }
1460         bp->bio_offset -= sd->sd_offset;
1461
1462         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
1463 }
1464
1465 static void
1466 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
1467 {
1468
1469         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
1470                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
1471         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
1472                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
1473         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
1474                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
1475         else
1476                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
1477         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
1478                 KASSERT(ep->e_error == 0,
1479                     ("Error cannot be handled."));
1480                 g_raid_event_free(ep);
1481         } else {
1482                 ep->e_flags |= G_RAID_EVENT_DONE;
1483                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
1484                 mtx_lock(&sc->sc_queue_mtx);
1485                 wakeup(ep);
1486                 mtx_unlock(&sc->sc_queue_mtx);
1487         }
1488 }
1489
1490 /*
1491  * Worker thread.
1492  */
1493 static void
1494 g_raid_worker(void *arg)
1495 {
1496         struct g_raid_softc *sc;
1497         struct g_raid_event *ep;
1498         struct g_raid_volume *vol;
1499         struct bio *bp;
1500         struct timeval now, t;
1501         int timeout, rv;
1502
1503         sc = arg;
1504         thread_lock(curthread);
1505         sched_prio(curthread, PRIBIO);
1506         thread_unlock(curthread);
1507
1508         sx_xlock(&sc->sc_lock);
1509         for (;;) {
1510                 mtx_lock(&sc->sc_queue_mtx);
1511                 /*
1512                  * First take a look at events.
1513                  * This is important to handle events before any I/O requests.
1514                  */
1515                 bp = NULL;
1516                 vol = NULL;
1517                 rv = 0;
1518                 ep = TAILQ_FIRST(&sc->sc_events);
1519                 if (ep != NULL)
1520                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1521                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
1522                         ;
1523                 else {
1524                         getmicrouptime(&now);
1525                         t = now;
1526                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1527                                 if (bioq_first(&vol->v_inflight) == NULL &&
1528                                     vol->v_tr &&
1529                                     timevalcmp(&vol->v_last_done, &t, < ))
1530                                         t = vol->v_last_done;
1531                         }
1532                         timevalsub(&t, &now);
1533                         timeout = g_raid_idle_threshold +
1534                             t.tv_sec * 1000000 + t.tv_usec;
1535                         if (timeout > 0) {
1536                                 /*
1537                                  * Two steps to avoid overflows at HZ=1000
1538                                  * and idle timeouts > 2.1s.  Some rounding
1539                                  * errors can occur, but they are < 1tick,
1540                                  * which is deemed to be close enough for
1541                                  * this purpose.
1542                                  */
1543                                 int micpertic = 1000000 / hz;
1544                                 timeout = (timeout + micpertic - 1) / micpertic;
1545                                 sx_xunlock(&sc->sc_lock);
1546                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
1547                                     PRIBIO | PDROP, "-", timeout);
1548                                 sx_xlock(&sc->sc_lock);
1549                                 goto process;
1550                         } else
1551                                 rv = EWOULDBLOCK;
1552                 }
1553                 mtx_unlock(&sc->sc_queue_mtx);
1554 process:
1555                 if (ep != NULL) {
1556                         g_raid_handle_event(sc, ep);
1557                 } else if (bp != NULL) {
1558                         if (bp->bio_to != NULL &&
1559                             bp->bio_to->geom == sc->sc_geom)
1560                                 g_raid_start_request(bp);
1561                         else
1562                                 g_raid_disk_done_request(bp);
1563                 } else if (rv == EWOULDBLOCK) {
1564                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1565                                 g_raid_clean(vol, -1);
1566                                 if (bioq_first(&vol->v_inflight) == NULL &&
1567                                     vol->v_tr) {
1568                                         t.tv_sec = g_raid_idle_threshold / 1000000;
1569                                         t.tv_usec = g_raid_idle_threshold % 1000000;
1570                                         timevaladd(&t, &vol->v_last_done);
1571                                         getmicrouptime(&now);
1572                                         if (timevalcmp(&t, &now, <= )) {
1573                                                 G_RAID_TR_IDLE(vol->v_tr);
1574                                                 vol->v_last_done = now;
1575                                         }
1576                                 }
1577                         }
1578                 }
1579                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
1580                         g_raid_destroy_node(sc, 1);     /* May not return. */
1581         }
1582 }
1583
1584 static void
1585 g_raid_poll(struct g_raid_softc *sc)
1586 {
1587         struct g_raid_event *ep;
1588         struct bio *bp;
1589
1590         sx_xlock(&sc->sc_lock);
1591         mtx_lock(&sc->sc_queue_mtx);
1592         /*
1593          * First take a look at events.
1594          * This is important to handle events before any I/O requests.
1595          */
1596         ep = TAILQ_FIRST(&sc->sc_events);
1597         if (ep != NULL) {
1598                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1599                 mtx_unlock(&sc->sc_queue_mtx);
1600                 g_raid_handle_event(sc, ep);
1601                 goto out;
1602         }
1603         bp = bioq_takefirst(&sc->sc_queue);
1604         if (bp != NULL) {
1605                 mtx_unlock(&sc->sc_queue_mtx);
1606                 if (bp->bio_from == NULL ||
1607                     bp->bio_from->geom != sc->sc_geom)
1608                         g_raid_start_request(bp);
1609                 else
1610                         g_raid_disk_done_request(bp);
1611         }
1612 out:
1613         sx_xunlock(&sc->sc_lock);
1614 }
1615
1616 static void
1617 g_raid_launch_provider(struct g_raid_volume *vol)
1618 {
1619         struct g_raid_disk *disk;
1620         struct g_raid_subdisk *sd;
1621         struct g_raid_softc *sc;
1622         struct g_provider *pp;
1623         char name[G_RAID_MAX_VOLUMENAME];
1624         off_t off;
1625         int i;
1626
1627         sc = vol->v_softc;
1628         sx_assert(&sc->sc_lock, SX_LOCKED);
1629
1630         g_topology_lock();
1631         /* Try to name provider with volume name. */
1632         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
1633         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
1634             g_provider_by_name(name) != NULL) {
1635                 /* Otherwise use sequential volume number. */
1636                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
1637         }
1638
1639         pp = g_new_providerf(sc->sc_geom, "%s", name);
1640         pp->flags |= G_PF_DIRECT_RECEIVE;
1641         if (vol->v_tr->tro_class->trc_accept_unmapped) {
1642                 pp->flags |= G_PF_ACCEPT_UNMAPPED;
1643                 for (i = 0; i < vol->v_disks_count; i++) {
1644                         sd = &vol->v_subdisks[i];
1645                         if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1646                                 continue;
1647                         if ((sd->sd_disk->d_consumer->provider->flags &
1648                             G_PF_ACCEPT_UNMAPPED) == 0)
1649                                 pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
1650                 }
1651         }
1652         pp->private = vol;
1653         pp->mediasize = vol->v_mediasize;
1654         pp->sectorsize = vol->v_sectorsize;
1655         pp->stripesize = 0;
1656         pp->stripeoffset = 0;
1657         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
1658             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
1659             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
1660             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
1661                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
1662                     disk->d_consumer != NULL &&
1663                     disk->d_consumer->provider != NULL) {
1664                         pp->stripesize = disk->d_consumer->provider->stripesize;
1665                         off = disk->d_consumer->provider->stripeoffset;
1666                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
1667                         if (off > 0)
1668                                 pp->stripeoffset %= off;
1669                 }
1670                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
1671                         pp->stripesize *= (vol->v_disks_count - 1);
1672                         pp->stripeoffset *= (vol->v_disks_count - 1);
1673                 }
1674         } else
1675                 pp->stripesize = vol->v_strip_size;
1676         vol->v_provider = pp;
1677         g_error_provider(pp, 0);
1678         g_topology_unlock();
1679         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
1680             pp->name, vol->v_name);
1681 }
1682
1683 static void
1684 g_raid_destroy_provider(struct g_raid_volume *vol)
1685 {
1686         struct g_raid_softc *sc;
1687         struct g_provider *pp;
1688         struct bio *bp, *tmp;
1689
1690         g_topology_assert_not();
1691         sc = vol->v_softc;
1692         pp = vol->v_provider;
1693         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
1694
1695         g_topology_lock();
1696         g_error_provider(pp, ENXIO);
1697         mtx_lock(&sc->sc_queue_mtx);
1698         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
1699                 if (bp->bio_to != pp)
1700                         continue;
1701                 bioq_remove(&sc->sc_queue, bp);
1702                 g_io_deliver(bp, ENXIO);
1703         }
1704         mtx_unlock(&sc->sc_queue_mtx);
1705         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
1706             pp->name, vol->v_name);
1707         g_wither_provider(pp, ENXIO);
1708         g_topology_unlock();
1709         vol->v_provider = NULL;
1710 }
1711
1712 /*
1713  * Update device state.
1714  */
1715 static int
1716 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
1717 {
1718         struct g_raid_softc *sc;
1719
1720         sc = vol->v_softc;
1721         sx_assert(&sc->sc_lock, SX_XLOCKED);
1722
1723         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
1724             g_raid_volume_event2str(event),
1725             vol->v_name);
1726         switch (event) {
1727         case G_RAID_VOLUME_E_DOWN:
1728                 if (vol->v_provider != NULL)
1729                         g_raid_destroy_provider(vol);
1730                 break;
1731         case G_RAID_VOLUME_E_UP:
1732                 if (vol->v_provider == NULL)
1733                         g_raid_launch_provider(vol);
1734                 break;
1735         case G_RAID_VOLUME_E_START:
1736                 if (vol->v_tr)
1737                         G_RAID_TR_START(vol->v_tr);
1738                 return (0);
1739         default:
1740                 if (sc->sc_md)
1741                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
1742                 return (0);
1743         }
1744
1745         /* Manage root mount release. */
1746         if (vol->v_starting) {
1747                 vol->v_starting = 0;
1748                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
1749                 root_mount_rel(vol->v_rootmount);
1750                 vol->v_rootmount = NULL;
1751         }
1752         if (vol->v_stopping && vol->v_provider_open == 0)
1753                 g_raid_destroy_volume(vol);
1754         return (0);
1755 }
1756
1757 /*
1758  * Update subdisk state.
1759  */
1760 static int
1761 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
1762 {
1763         struct g_raid_softc *sc;
1764         struct g_raid_volume *vol;
1765
1766         sc = sd->sd_softc;
1767         vol = sd->sd_volume;
1768         sx_assert(&sc->sc_lock, SX_XLOCKED);
1769
1770         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
1771             g_raid_subdisk_event2str(event),
1772             vol->v_name, sd->sd_pos,
1773             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
1774         if (vol->v_tr)
1775                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
1776
1777         return (0);
1778 }
1779
1780 /*
1781  * Update disk state.
1782  */
1783 static int
1784 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
1785 {
1786         struct g_raid_softc *sc;
1787
1788         sc = disk->d_softc;
1789         sx_assert(&sc->sc_lock, SX_XLOCKED);
1790
1791         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
1792             g_raid_disk_event2str(event),
1793             g_raid_get_diskname(disk));
1794
1795         if (sc->sc_md)
1796                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
1797         return (0);
1798 }
1799
1800 /*
1801  * Node event.
1802  */
1803 static int
1804 g_raid_update_node(struct g_raid_softc *sc, u_int event)
1805 {
1806         sx_assert(&sc->sc_lock, SX_XLOCKED);
1807
1808         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
1809             g_raid_node_event2str(event));
1810
1811         if (event == G_RAID_NODE_E_WAKE)
1812                 return (0);
1813         if (sc->sc_md)
1814                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
1815         return (0);
1816 }
1817
1818 static int
1819 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
1820 {
1821         struct g_raid_volume *vol;
1822         struct g_raid_softc *sc;
1823         int dcw, opens, error = 0;
1824
1825         g_topology_assert();
1826         sc = pp->geom->softc;
1827         vol = pp->private;
1828         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
1829         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
1830
1831         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
1832             acr, acw, ace);
1833         dcw = pp->acw + acw;
1834
1835         g_topology_unlock();
1836         sx_xlock(&sc->sc_lock);
1837         /* Deny new opens while dying. */
1838         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
1839                 error = ENXIO;
1840                 goto out;
1841         }
1842         /* Deny write opens for read-only volumes. */
1843         if (vol->v_read_only && acw > 0) {
1844                 error = EROFS;
1845                 goto out;
1846         }
1847         if (dcw == 0)
1848                 g_raid_clean(vol, dcw);
1849         vol->v_provider_open += acr + acw + ace;
1850         /* Handle delayed node destruction. */
1851         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
1852             vol->v_provider_open == 0) {
1853                 /* Count open volumes. */
1854                 opens = g_raid_nopens(sc);
1855                 if (opens == 0) {
1856                         sc->sc_stopping = G_RAID_DESTROY_HARD;
1857                         /* Wake up worker to make it selfdestruct. */
1858                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1859                 }
1860         }
1861         /* Handle open volume destruction. */
1862         if (vol->v_stopping && vol->v_provider_open == 0)
1863                 g_raid_destroy_volume(vol);
1864 out:
1865         sx_xunlock(&sc->sc_lock);
1866         g_topology_lock();
1867         return (error);
1868 }
1869
1870 struct g_raid_softc *
1871 g_raid_create_node(struct g_class *mp,
1872     const char *name, struct g_raid_md_object *md)
1873 {
1874         struct g_raid_softc *sc;
1875         struct g_geom *gp;
1876         int error;
1877
1878         g_topology_assert();
1879         G_RAID_DEBUG(1, "Creating array %s.", name);
1880
1881         gp = g_new_geomf(mp, "%s", name);
1882         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
1883         gp->start = g_raid_start;
1884         gp->orphan = g_raid_orphan;
1885         gp->access = g_raid_access;
1886         gp->dumpconf = g_raid_dumpconf;
1887
1888         sc->sc_md = md;
1889         sc->sc_geom = gp;
1890         sc->sc_flags = 0;
1891         TAILQ_INIT(&sc->sc_volumes);
1892         TAILQ_INIT(&sc->sc_disks);
1893         sx_init(&sc->sc_lock, "graid:lock");
1894         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
1895         TAILQ_INIT(&sc->sc_events);
1896         bioq_init(&sc->sc_queue);
1897         gp->softc = sc;
1898         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
1899             "g_raid %s", name);
1900         if (error != 0) {
1901                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
1902                 mtx_destroy(&sc->sc_queue_mtx);
1903                 sx_destroy(&sc->sc_lock);
1904                 g_destroy_geom(sc->sc_geom);
1905                 free(sc, M_RAID);
1906                 return (NULL);
1907         }
1908
1909         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
1910         return (sc);
1911 }
1912
1913 struct g_raid_volume *
1914 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
1915 {
1916         struct g_raid_volume    *vol, *vol1;
1917         int i;
1918
1919         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
1920         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
1921         vol->v_softc = sc;
1922         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
1923         vol->v_state = G_RAID_VOLUME_S_STARTING;
1924         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1925         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
1926         vol->v_rotate_parity = 1;
1927         bioq_init(&vol->v_inflight);
1928         bioq_init(&vol->v_locked);
1929         LIST_INIT(&vol->v_locks);
1930         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
1931                 vol->v_subdisks[i].sd_softc = sc;
1932                 vol->v_subdisks[i].sd_volume = vol;
1933                 vol->v_subdisks[i].sd_pos = i;
1934                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
1935         }
1936
1937         /* Find free ID for this volume. */
1938         g_topology_lock();
1939         vol1 = vol;
1940         if (id >= 0) {
1941                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1942                         if (vol1->v_global_id == id)
1943                                 break;
1944                 }
1945         }
1946         if (vol1 != NULL) {
1947                 for (id = 0; ; id++) {
1948                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1949                                 if (vol1->v_global_id == id)
1950                                         break;
1951                         }
1952                         if (vol1 == NULL)
1953                                 break;
1954                 }
1955         }
1956         vol->v_global_id = id;
1957         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
1958         g_topology_unlock();
1959
1960         /* Delay root mounting. */
1961         vol->v_rootmount = root_mount_hold("GRAID");
1962         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
1963         vol->v_starting = 1;
1964         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
1965         return (vol);
1966 }
1967
1968 struct g_raid_disk *
1969 g_raid_create_disk(struct g_raid_softc *sc)
1970 {
1971         struct g_raid_disk      *disk;
1972
1973         G_RAID_DEBUG1(1, sc, "Creating disk.");
1974         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
1975         disk->d_softc = sc;
1976         disk->d_state = G_RAID_DISK_S_NONE;
1977         TAILQ_INIT(&disk->d_subdisks);
1978         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
1979         return (disk);
1980 }
1981
1982 int g_raid_start_volume(struct g_raid_volume *vol)
1983 {
1984         struct g_raid_tr_class *class;
1985         struct g_raid_tr_object *obj;
1986         int status;
1987
1988         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
1989         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
1990                 if (!class->trc_enable)
1991                         continue;
1992                 G_RAID_DEBUG1(2, vol->v_softc,
1993                     "Tasting volume %s for %s transformation.",
1994                     vol->v_name, class->name);
1995                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
1996                     M_WAITOK);
1997                 obj->tro_class = class;
1998                 obj->tro_volume = vol;
1999                 status = G_RAID_TR_TASTE(obj, vol);
2000                 if (status != G_RAID_TR_TASTE_FAIL)
2001                         break;
2002                 kobj_delete((kobj_t)obj, M_RAID);
2003         }
2004         if (class == NULL) {
2005                 G_RAID_DEBUG1(0, vol->v_softc,
2006                     "No transformation module found for %s.",
2007                     vol->v_name);
2008                 vol->v_tr = NULL;
2009                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
2010                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
2011                     G_RAID_EVENT_VOLUME);
2012                 return (-1);
2013         }
2014         G_RAID_DEBUG1(2, vol->v_softc,
2015             "Transformation module %s chosen for %s.",
2016             class->name, vol->v_name);
2017         vol->v_tr = obj;
2018         return (0);
2019 }
2020
2021 int
2022 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
2023 {
2024         struct g_raid_volume *vol, *tmpv;
2025         struct g_raid_disk *disk, *tmpd;
2026         int error = 0;
2027
2028         sc->sc_stopping = G_RAID_DESTROY_HARD;
2029         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
2030                 if (g_raid_destroy_volume(vol))
2031                         error = EBUSY;
2032         }
2033         if (error)
2034                 return (error);
2035         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
2036                 if (g_raid_destroy_disk(disk))
2037                         error = EBUSY;
2038         }
2039         if (error)
2040                 return (error);
2041         if (sc->sc_md) {
2042                 G_RAID_MD_FREE(sc->sc_md);
2043                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
2044                 sc->sc_md = NULL;
2045         }
2046         if (sc->sc_geom != NULL) {
2047                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
2048                 g_topology_lock();
2049                 sc->sc_geom->softc = NULL;
2050                 g_wither_geom(sc->sc_geom, ENXIO);
2051                 g_topology_unlock();
2052                 sc->sc_geom = NULL;
2053         } else
2054                 G_RAID_DEBUG(1, "Array destroyed.");
2055         if (worker) {
2056                 g_raid_event_cancel(sc, sc);
2057                 mtx_destroy(&sc->sc_queue_mtx);
2058                 sx_xunlock(&sc->sc_lock);
2059                 sx_destroy(&sc->sc_lock);
2060                 wakeup(&sc->sc_stopping);
2061                 free(sc, M_RAID);
2062                 curthread->td_pflags &= ~TDP_GEOM;
2063                 G_RAID_DEBUG(1, "Thread exiting.");
2064                 kproc_exit(0);
2065         } else {
2066                 /* Wake up worker to make it selfdestruct. */
2067                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2068         }
2069         return (0);
2070 }
2071
2072 int
2073 g_raid_destroy_volume(struct g_raid_volume *vol)
2074 {
2075         struct g_raid_softc *sc;
2076         struct g_raid_disk *disk;
2077         int i;
2078
2079         sc = vol->v_softc;
2080         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
2081         vol->v_stopping = 1;
2082         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
2083                 if (vol->v_tr) {
2084                         G_RAID_TR_STOP(vol->v_tr);
2085                         return (EBUSY);
2086                 } else
2087                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
2088         }
2089         if (g_raid_event_check(sc, vol) != 0)
2090                 return (EBUSY);
2091         if (vol->v_provider != NULL)
2092                 return (EBUSY);
2093         if (vol->v_provider_open != 0)
2094                 return (EBUSY);
2095         if (vol->v_tr) {
2096                 G_RAID_TR_FREE(vol->v_tr);
2097                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
2098                 vol->v_tr = NULL;
2099         }
2100         if (vol->v_rootmount)
2101                 root_mount_rel(vol->v_rootmount);
2102         g_topology_lock();
2103         LIST_REMOVE(vol, v_global_next);
2104         g_topology_unlock();
2105         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
2106         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
2107                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
2108                 disk = vol->v_subdisks[i].sd_disk;
2109                 if (disk == NULL)
2110                         continue;
2111                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
2112         }
2113         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
2114         if (sc->sc_md)
2115                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
2116         g_raid_event_cancel(sc, vol);
2117         free(vol, M_RAID);
2118         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
2119                 /* Wake up worker to let it selfdestruct. */
2120                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2121         }
2122         return (0);
2123 }
2124
2125 int
2126 g_raid_destroy_disk(struct g_raid_disk *disk)
2127 {
2128         struct g_raid_softc *sc;
2129         struct g_raid_subdisk *sd, *tmp;
2130
2131         sc = disk->d_softc;
2132         G_RAID_DEBUG1(2, sc, "Destroying disk.");
2133         if (disk->d_consumer) {
2134                 g_raid_kill_consumer(sc, disk->d_consumer);
2135                 disk->d_consumer = NULL;
2136         }
2137         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
2138                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
2139                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2140                     G_RAID_EVENT_SUBDISK);
2141                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
2142                 sd->sd_disk = NULL;
2143         }
2144         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
2145         if (sc->sc_md)
2146                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
2147         g_raid_event_cancel(sc, disk);
2148         free(disk, M_RAID);
2149         return (0);
2150 }
2151
2152 int
2153 g_raid_destroy(struct g_raid_softc *sc, int how)
2154 {
2155         int error, opens;
2156
2157         g_topology_assert_not();
2158         if (sc == NULL)
2159                 return (ENXIO);
2160         sx_assert(&sc->sc_lock, SX_XLOCKED);
2161
2162         /* Count open volumes. */
2163         opens = g_raid_nopens(sc);
2164
2165         /* React on some opened volumes. */
2166         if (opens > 0) {
2167                 switch (how) {
2168                 case G_RAID_DESTROY_SOFT:
2169                         G_RAID_DEBUG1(1, sc,
2170                             "%d volumes are still open.",
2171                             opens);
2172                         sx_xunlock(&sc->sc_lock);
2173                         return (EBUSY);
2174                 case G_RAID_DESTROY_DELAYED:
2175                         G_RAID_DEBUG1(1, sc,
2176                             "Array will be destroyed on last close.");
2177                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
2178                         sx_xunlock(&sc->sc_lock);
2179                         return (EBUSY);
2180                 case G_RAID_DESTROY_HARD:
2181                         G_RAID_DEBUG1(1, sc,
2182                             "%d volumes are still open.",
2183                             opens);
2184                 }
2185         }
2186
2187         /* Mark node for destruction. */
2188         sc->sc_stopping = G_RAID_DESTROY_HARD;
2189         /* Wake up worker to let it selfdestruct. */
2190         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2191         /* Sleep until node destroyed. */
2192         error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
2193             PRIBIO | PDROP, "r:destroy", hz * 3);
2194         return (error == EWOULDBLOCK ? EBUSY : 0);
2195 }
2196
2197 static void
2198 g_raid_taste_orphan(struct g_consumer *cp)
2199 {
2200
2201         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
2202             cp->provider->name));
2203 }
2204
2205 static struct g_geom *
2206 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
2207 {
2208         struct g_consumer *cp;
2209         struct g_geom *gp, *geom;
2210         struct g_raid_md_class *class;
2211         struct g_raid_md_object *obj;
2212         int status;
2213
2214         g_topology_assert();
2215         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
2216         if (!g_raid_enable)
2217                 return (NULL);
2218         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
2219
2220         geom = NULL;
2221         status = G_RAID_MD_TASTE_FAIL;
2222         gp = g_new_geomf(mp, "raid:taste");
2223         /*
2224          * This orphan function should be never called.
2225          */
2226         gp->orphan = g_raid_taste_orphan;
2227         cp = g_new_consumer(gp);
2228         cp->flags |= G_CF_DIRECT_RECEIVE;
2229         g_attach(cp, pp);
2230         if (g_access(cp, 1, 0, 0) != 0)
2231                 goto ofail;
2232
2233         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2234                 if (!class->mdc_enable)
2235                         continue;
2236                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
2237                     pp->name, class->name);
2238                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2239                     M_WAITOK);
2240                 obj->mdo_class = class;
2241                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
2242                 if (status != G_RAID_MD_TASTE_NEW)
2243                         kobj_delete((kobj_t)obj, M_RAID);
2244                 if (status != G_RAID_MD_TASTE_FAIL)
2245                         break;
2246         }
2247
2248         if (status == G_RAID_MD_TASTE_FAIL)
2249                 (void)g_access(cp, -1, 0, 0);
2250 ofail:
2251         g_detach(cp);
2252         g_destroy_consumer(cp);
2253         g_destroy_geom(gp);
2254         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
2255         return (geom);
2256 }
2257
2258 int
2259 g_raid_create_node_format(const char *format, struct gctl_req *req,
2260     struct g_geom **gp)
2261 {
2262         struct g_raid_md_class *class;
2263         struct g_raid_md_object *obj;
2264         int status;
2265
2266         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
2267         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2268                 if (strcasecmp(class->name, format) == 0)
2269                         break;
2270         }
2271         if (class == NULL) {
2272                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
2273                 return (G_RAID_MD_TASTE_FAIL);
2274         }
2275         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2276             M_WAITOK);
2277         obj->mdo_class = class;
2278         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
2279         if (status != G_RAID_MD_TASTE_NEW)
2280                 kobj_delete((kobj_t)obj, M_RAID);
2281         return (status);
2282 }
2283
2284 static int
2285 g_raid_destroy_geom(struct gctl_req *req __unused,
2286     struct g_class *mp __unused, struct g_geom *gp)
2287 {
2288         struct g_raid_softc *sc;
2289         int error;
2290
2291         g_topology_unlock();
2292         sc = gp->softc;
2293         sx_xlock(&sc->sc_lock);
2294         g_cancel_event(sc);
2295         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
2296         g_topology_lock();
2297         return (error);
2298 }
2299
2300 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
2301     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2302 {
2303
2304         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2305                 return;
2306         if (sc->sc_md)
2307                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
2308 }
2309
2310 void g_raid_fail_disk(struct g_raid_softc *sc,
2311     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2312 {
2313
2314         if (disk == NULL)
2315                 disk = sd->sd_disk;
2316         if (disk == NULL) {
2317                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
2318                 return;
2319         }
2320         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2321                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
2322                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
2323                 return;
2324         }
2325         if (sc->sc_md)
2326                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
2327 }
2328
2329 static void
2330 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
2331     struct g_consumer *cp, struct g_provider *pp)
2332 {
2333         struct g_raid_softc *sc;
2334         struct g_raid_volume *vol;
2335         struct g_raid_subdisk *sd;
2336         struct g_raid_disk *disk;
2337         int i, s;
2338
2339         g_topology_assert();
2340
2341         sc = gp->softc;
2342         if (sc == NULL)
2343                 return;
2344         if (pp != NULL) {
2345                 vol = pp->private;
2346                 g_topology_unlock();
2347                 sx_xlock(&sc->sc_lock);
2348                 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
2349                     sc->sc_md->mdo_class->name,
2350                     g_raid_volume_level2str(vol->v_raid_level,
2351                     vol->v_raid_level_qualifier));
2352                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
2353                     vol->v_name);
2354                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
2355                     g_raid_volume_level2str(vol->v_raid_level,
2356                     vol->v_raid_level_qualifier));
2357                 sbuf_printf(sb,
2358                     "%s<Transformation>%s</Transformation>\n", indent,
2359                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
2360                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
2361                     vol->v_disks_count);
2362                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
2363                     vol->v_strip_size);
2364                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2365                     g_raid_volume_state2str(vol->v_state));
2366                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
2367                     vol->v_dirty ? "Yes" : "No");
2368                 sbuf_printf(sb, "%s<Subdisks>", indent);
2369                 for (i = 0; i < vol->v_disks_count; i++) {
2370                         sd = &vol->v_subdisks[i];
2371                         if (sd->sd_disk != NULL &&
2372                             sd->sd_disk->d_consumer != NULL) {
2373                                 sbuf_printf(sb, "%s ",
2374                                     g_raid_get_diskname(sd->sd_disk));
2375                         } else {
2376                                 sbuf_cat(sb, "NONE ");
2377                         }
2378                         sbuf_printf(sb, "(%s",
2379                             g_raid_subdisk_state2str(sd->sd_state));
2380                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2381                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2382                                 sbuf_printf(sb, " %d%%",
2383                                     (int)(sd->sd_rebuild_pos * 100 /
2384                                      sd->sd_size));
2385                         }
2386                         sbuf_cat(sb, ")");
2387                         if (i + 1 < vol->v_disks_count)
2388                                 sbuf_cat(sb, ", ");
2389                 }
2390                 sbuf_cat(sb, "</Subdisks>\n");
2391                 sx_xunlock(&sc->sc_lock);
2392                 g_topology_lock();
2393         } else if (cp != NULL) {
2394                 disk = cp->private;
2395                 if (disk == NULL)
2396                         return;
2397                 g_topology_unlock();
2398                 sx_xlock(&sc->sc_lock);
2399                 sbuf_printf(sb, "%s<State>%s", indent,
2400                     g_raid_disk_state2str(disk->d_state));
2401                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
2402                         sbuf_cat(sb, " (");
2403                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2404                                 sbuf_printf(sb, "%s",
2405                                     g_raid_subdisk_state2str(sd->sd_state));
2406                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2407                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2408                                         sbuf_printf(sb, " %d%%",
2409                                             (int)(sd->sd_rebuild_pos * 100 /
2410                                              sd->sd_size));
2411                                 }
2412                                 if (TAILQ_NEXT(sd, sd_next))
2413                                         sbuf_cat(sb, ", ");
2414                         }
2415                         sbuf_cat(sb, ")");
2416                 }
2417                 sbuf_cat(sb, "</State>\n");
2418                 sbuf_printf(sb, "%s<Subdisks>", indent);
2419                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2420                         sbuf_printf(sb, "r%d(%s):%d@%ju",
2421                             sd->sd_volume->v_global_id,
2422                             sd->sd_volume->v_name,
2423                             sd->sd_pos, (uintmax_t)sd->sd_offset);
2424                         if (TAILQ_NEXT(sd, sd_next))
2425                                 sbuf_cat(sb, ", ");
2426                 }
2427                 sbuf_cat(sb, "</Subdisks>\n");
2428                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
2429                     disk->d_read_errs);
2430                 sx_xunlock(&sc->sc_lock);
2431                 g_topology_lock();
2432         } else {
2433                 g_topology_unlock();
2434                 sx_xlock(&sc->sc_lock);
2435                 if (sc->sc_md) {
2436                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
2437                             sc->sc_md->mdo_class->name);
2438                 }
2439                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
2440                         s = 0xff;
2441                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2442                                 if (vol->v_state < s)
2443                                         s = vol->v_state;
2444                         }
2445                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2446                             g_raid_volume_state2str(s));
2447                 }
2448                 sx_xunlock(&sc->sc_lock);
2449                 g_topology_lock();
2450         }
2451 }
2452
2453 static void
2454 g_raid_shutdown_post_sync(void *arg, int howto)
2455 {
2456         struct g_class *mp;
2457         struct g_geom *gp, *gp2;
2458         struct g_raid_softc *sc;
2459         struct g_raid_volume *vol;
2460
2461         mp = arg;
2462         g_topology_lock();
2463         g_raid_shutdown = 1;
2464         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
2465                 if ((sc = gp->softc) == NULL)
2466                         continue;
2467                 g_topology_unlock();
2468                 sx_xlock(&sc->sc_lock);
2469                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
2470                         g_raid_clean(vol, -1);
2471                 g_cancel_event(sc);
2472                 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
2473                 g_topology_lock();
2474         }
2475         g_topology_unlock();
2476 }
2477
2478 static void
2479 g_raid_init(struct g_class *mp)
2480 {
2481
2482         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
2483             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
2484         if (g_raid_post_sync == NULL)
2485                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
2486         g_raid_started = 1;
2487 }
2488
2489 static void
2490 g_raid_fini(struct g_class *mp)
2491 {
2492
2493         if (g_raid_post_sync != NULL)
2494                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
2495         g_raid_started = 0;
2496 }
2497
2498 int
2499 g_raid_md_modevent(module_t mod, int type, void *arg)
2500 {
2501         struct g_raid_md_class *class, *c, *nc;
2502         int error;
2503
2504         error = 0;
2505         class = arg;
2506         switch (type) {
2507         case MOD_LOAD:
2508                 c = LIST_FIRST(&g_raid_md_classes);
2509                 if (c == NULL || c->mdc_priority > class->mdc_priority)
2510                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
2511                 else {
2512                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
2513                             nc->mdc_priority < class->mdc_priority)
2514                                 c = nc;
2515                         LIST_INSERT_AFTER(c, class, mdc_list);
2516                 }
2517                 if (g_raid_started)
2518                         g_retaste(&g_raid_class);
2519                 break;
2520         case MOD_UNLOAD:
2521                 LIST_REMOVE(class, mdc_list);
2522                 break;
2523         default:
2524                 error = EOPNOTSUPP;
2525                 break;
2526         }
2527
2528         return (error);
2529 }
2530
2531 int
2532 g_raid_tr_modevent(module_t mod, int type, void *arg)
2533 {
2534         struct g_raid_tr_class *class, *c, *nc;
2535         int error;
2536
2537         error = 0;
2538         class = arg;
2539         switch (type) {
2540         case MOD_LOAD:
2541                 c = LIST_FIRST(&g_raid_tr_classes);
2542                 if (c == NULL || c->trc_priority > class->trc_priority)
2543                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
2544                 else {
2545                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
2546                             nc->trc_priority < class->trc_priority)
2547                                 c = nc;
2548                         LIST_INSERT_AFTER(c, class, trc_list);
2549                 }
2550                 break;
2551         case MOD_UNLOAD:
2552                 LIST_REMOVE(class, trc_list);
2553                 break;
2554         default:
2555                 error = EOPNOTSUPP;
2556                 break;
2557         }
2558
2559         return (error);
2560 }
2561
2562 /*
2563  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
2564  * to reduce module priority, allowing submodules to register them first.
2565  */
2566 static moduledata_t g_raid_mod = {
2567         "g_raid",
2568         g_modevent,
2569         &g_raid_class
2570 };
2571 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
2572 MODULE_VERSION(geom_raid, 0);