]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
Merge ^/head r358239 through r358262.
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/epoch.h>
44 #include <sys/rangelock.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sdt.h>
47 #include <sys/smp.h>
48 #include <sys/sched.h>
49 #include <sys/sleepqueue.h>
50 #include <sys/selinfo.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysent.h>
53 #include <sys/turnstile.h>
54 #include <sys/ktr.h>
55 #include <sys/rwlock.h>
56 #include <sys/umtx.h>
57 #include <sys/vmmeter.h>
58 #include <sys/cpuset.h>
59 #ifdef  HWPMC_HOOKS
60 #include <sys/pmckern.h>
61 #endif
62
63 #include <security/audit/audit.h>
64
65 #include <vm/vm.h>
66 #include <vm/vm_extern.h>
67 #include <vm/uma.h>
68 #include <sys/eventhandler.h>
69
70 /*
71  * Asserts below verify the stability of struct thread and struct proc
72  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
73  * to drift, change to the structures must be accompanied by the
74  * assert update.
75  *
76  * On the stable branches after KBI freeze, conditions must not be
77  * violated.  Typically new fields are moved to the end of the
78  * structures.
79  */
80 #ifdef __amd64__
81 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
82     "struct thread KBI td_flags");
83 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
84     "struct thread KBI td_pflags");
85 _Static_assert(offsetof(struct thread, td_frame) == 0x498,
86     "struct thread KBI td_frame");
87 _Static_assert(offsetof(struct thread, td_emuldata) == 0x6b0,
88     "struct thread KBI td_emuldata");
89 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
90     "struct proc KBI p_flag");
91 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
92     "struct proc KBI p_pid");
93 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c8,
94     "struct proc KBI p_filemon");
95 _Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
96     "struct proc KBI p_comm");
97 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4c0,
98     "struct proc KBI p_emuldata");
99 #endif
100 #ifdef __i386__
101 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
102     "struct thread KBI td_flags");
103 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
104     "struct thread KBI td_pflags");
105 _Static_assert(offsetof(struct thread, td_frame) == 0x2fc,
106     "struct thread KBI td_frame");
107 _Static_assert(offsetof(struct thread, td_emuldata) == 0x344,
108     "struct thread KBI td_emuldata");
109 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
110     "struct proc KBI p_flag");
111 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
112     "struct proc KBI p_pid");
113 _Static_assert(offsetof(struct proc, p_filemon) == 0x278,
114     "struct proc KBI p_filemon");
115 _Static_assert(offsetof(struct proc, p_comm) == 0x28c,
116     "struct proc KBI p_comm");
117 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
118     "struct proc KBI p_emuldata");
119 #endif
120
121 SDT_PROVIDER_DECLARE(proc);
122 SDT_PROBE_DEFINE(proc, , , lwp__exit);
123
124 /*
125  * thread related storage.
126  */
127 static uma_zone_t thread_zone;
128
129 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
130 static struct mtx zombie_lock;
131 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
132
133 static void thread_zombie(struct thread *);
134 static int thread_unsuspend_one(struct thread *td, struct proc *p,
135     bool boundary);
136
137 #define TID_BUFFER_SIZE 1024
138
139 struct mtx tid_lock;
140 static struct unrhdr *tid_unrhdr;
141 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
142 static int tid_head, tid_tail;
143 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
144
145 struct  tidhashhead *tidhashtbl;
146 u_long  tidhash;
147 struct  rwlock tidhash_lock;
148
149 EVENTHANDLER_LIST_DEFINE(thread_ctor);
150 EVENTHANDLER_LIST_DEFINE(thread_dtor);
151 EVENTHANDLER_LIST_DEFINE(thread_init);
152 EVENTHANDLER_LIST_DEFINE(thread_fini);
153
154 static lwpid_t
155 tid_alloc(void)
156 {
157         lwpid_t tid;
158
159         tid = alloc_unr(tid_unrhdr);
160         if (tid != -1)
161                 return (tid);
162         mtx_lock(&tid_lock);
163         if (tid_head == tid_tail) {
164                 mtx_unlock(&tid_lock);
165                 return (-1);
166         }
167         tid = tid_buffer[tid_head];
168         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
169         mtx_unlock(&tid_lock);
170         return (tid);
171 }
172
173 static void
174 tid_free(lwpid_t tid)
175 {
176         lwpid_t tmp_tid = -1;
177
178         mtx_lock(&tid_lock);
179         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
180                 tmp_tid = tid_buffer[tid_head];
181                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
182         }
183         tid_buffer[tid_tail] = tid;
184         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
185         mtx_unlock(&tid_lock);
186         if (tmp_tid != -1)
187                 free_unr(tid_unrhdr, tmp_tid);
188 }
189
190 /*
191  * Prepare a thread for use.
192  */
193 static int
194 thread_ctor(void *mem, int size, void *arg, int flags)
195 {
196         struct thread   *td;
197
198         td = (struct thread *)mem;
199         td->td_state = TDS_INACTIVE;
200         td->td_lastcpu = td->td_oncpu = NOCPU;
201
202         td->td_tid = tid_alloc();
203
204         /*
205          * Note that td_critnest begins life as 1 because the thread is not
206          * running and is thereby implicitly waiting to be on the receiving
207          * end of a context switch.
208          */
209         td->td_critnest = 1;
210         td->td_lend_user_pri = PRI_MAX;
211         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
212 #ifdef AUDIT
213         audit_thread_alloc(td);
214 #endif
215         umtx_thread_alloc(td);
216         return (0);
217 }
218
219 /*
220  * Reclaim a thread after use.
221  */
222 static void
223 thread_dtor(void *mem, int size, void *arg)
224 {
225         struct thread *td;
226
227         td = (struct thread *)mem;
228
229 #ifdef INVARIANTS
230         /* Verify that this thread is in a safe state to free. */
231         switch (td->td_state) {
232         case TDS_INHIBITED:
233         case TDS_RUNNING:
234         case TDS_CAN_RUN:
235         case TDS_RUNQ:
236                 /*
237                  * We must never unlink a thread that is in one of
238                  * these states, because it is currently active.
239                  */
240                 panic("bad state for thread unlinking");
241                 /* NOTREACHED */
242         case TDS_INACTIVE:
243                 break;
244         default:
245                 panic("bad thread state");
246                 /* NOTREACHED */
247         }
248 #endif
249 #ifdef AUDIT
250         audit_thread_free(td);
251 #endif
252         /* Free all OSD associated to this thread. */
253         osd_thread_exit(td);
254         td_softdep_cleanup(td);
255         MPASS(td->td_su == NULL);
256
257         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
258         tid_free(td->td_tid);
259 }
260
261 /*
262  * Initialize type-stable parts of a thread (when newly created).
263  */
264 static int
265 thread_init(void *mem, int size, int flags)
266 {
267         struct thread *td;
268
269         td = (struct thread *)mem;
270
271         td->td_sleepqueue = sleepq_alloc();
272         td->td_turnstile = turnstile_alloc();
273         td->td_rlqe = NULL;
274         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
275         umtx_thread_init(td);
276         td->td_kstack = 0;
277         td->td_sel = NULL;
278         return (0);
279 }
280
281 /*
282  * Tear down type-stable parts of a thread (just before being discarded).
283  */
284 static void
285 thread_fini(void *mem, int size)
286 {
287         struct thread *td;
288
289         td = (struct thread *)mem;
290         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
291         rlqentry_free(td->td_rlqe);
292         turnstile_free(td->td_turnstile);
293         sleepq_free(td->td_sleepqueue);
294         umtx_thread_fini(td);
295         seltdfini(td);
296 }
297
298 /*
299  * For a newly created process,
300  * link up all the structures and its initial threads etc.
301  * called from:
302  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
303  * proc_dtor() (should go away)
304  * proc_init()
305  */
306 void
307 proc_linkup0(struct proc *p, struct thread *td)
308 {
309         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
310         proc_linkup(p, td);
311 }
312
313 void
314 proc_linkup(struct proc *p, struct thread *td)
315 {
316
317         sigqueue_init(&p->p_sigqueue, p);
318         p->p_ksi = ksiginfo_alloc(1);
319         if (p->p_ksi != NULL) {
320                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
321                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
322         }
323         LIST_INIT(&p->p_mqnotifier);
324         p->p_numthreads = 0;
325         thread_link(td, p);
326 }
327
328 /*
329  * Initialize global thread allocation resources.
330  */
331 void
332 threadinit(void)
333 {
334
335         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
336
337         /*
338          * pid_max cannot be greater than PID_MAX.
339          * leave one number for thread0.
340          */
341         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
342
343         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
344             thread_ctor, thread_dtor, thread_init, thread_fini,
345             32 - 1, UMA_ZONE_NOFREE);
346         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
347         rw_init(&tidhash_lock, "tidhash");
348 }
349
350 /*
351  * Place an unused thread on the zombie list.
352  * Use the slpq as that must be unused by now.
353  */
354 void
355 thread_zombie(struct thread *td)
356 {
357         mtx_lock_spin(&zombie_lock);
358         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
359         mtx_unlock_spin(&zombie_lock);
360 }
361
362 /*
363  * Release a thread that has exited after cpu_throw().
364  */
365 void
366 thread_stash(struct thread *td)
367 {
368         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
369         thread_zombie(td);
370 }
371
372 /*
373  * Reap zombie resources.
374  */
375 void
376 thread_reap(void)
377 {
378         struct thread *td_first, *td_next;
379
380         /*
381          * Don't even bother to lock if none at this instant,
382          * we really don't care about the next instant.
383          */
384         if (!TAILQ_EMPTY(&zombie_threads)) {
385                 mtx_lock_spin(&zombie_lock);
386                 td_first = TAILQ_FIRST(&zombie_threads);
387                 if (td_first)
388                         TAILQ_INIT(&zombie_threads);
389                 mtx_unlock_spin(&zombie_lock);
390                 while (td_first) {
391                         td_next = TAILQ_NEXT(td_first, td_slpq);
392                         thread_cow_free(td_first);
393                         thread_free(td_first);
394                         td_first = td_next;
395                 }
396         }
397 }
398
399 /*
400  * Allocate a thread.
401  */
402 struct thread *
403 thread_alloc(int pages)
404 {
405         struct thread *td;
406
407         thread_reap(); /* check if any zombies to get */
408
409         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
410         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
411         if (!vm_thread_new(td, pages)) {
412                 uma_zfree(thread_zone, td);
413                 return (NULL);
414         }
415         cpu_thread_alloc(td);
416         return (td);
417 }
418
419 int
420 thread_alloc_stack(struct thread *td, int pages)
421 {
422
423         KASSERT(td->td_kstack == 0,
424             ("thread_alloc_stack called on a thread with kstack"));
425         if (!vm_thread_new(td, pages))
426                 return (0);
427         cpu_thread_alloc(td);
428         return (1);
429 }
430
431 /*
432  * Deallocate a thread.
433  */
434 void
435 thread_free(struct thread *td)
436 {
437
438         lock_profile_thread_exit(td);
439         if (td->td_cpuset)
440                 cpuset_rel(td->td_cpuset);
441         td->td_cpuset = NULL;
442         cpu_thread_free(td);
443         if (td->td_kstack != 0)
444                 vm_thread_dispose(td);
445         callout_drain(&td->td_slpcallout);
446         uma_zfree(thread_zone, td);
447 }
448
449 void
450 thread_cow_get_proc(struct thread *newtd, struct proc *p)
451 {
452
453         PROC_LOCK_ASSERT(p, MA_OWNED);
454         newtd->td_ucred = crhold(p->p_ucred);
455         newtd->td_limit = lim_hold(p->p_limit);
456         newtd->td_cowgen = p->p_cowgen;
457 }
458
459 void
460 thread_cow_get(struct thread *newtd, struct thread *td)
461 {
462
463         newtd->td_ucred = crhold(td->td_ucred);
464         newtd->td_limit = lim_hold(td->td_limit);
465         newtd->td_cowgen = td->td_cowgen;
466 }
467
468 void
469 thread_cow_free(struct thread *td)
470 {
471
472         if (td->td_ucred != NULL)
473                 crfree(td->td_ucred);
474         if (td->td_limit != NULL)
475                 lim_free(td->td_limit);
476 }
477
478 void
479 thread_cow_update(struct thread *td)
480 {
481         struct proc *p;
482         struct ucred *oldcred;
483         struct plimit *oldlimit;
484
485         p = td->td_proc;
486         oldcred = NULL;
487         oldlimit = NULL;
488         PROC_LOCK(p);
489         if (td->td_ucred != p->p_ucred) {
490                 oldcred = td->td_ucred;
491                 td->td_ucred = crhold(p->p_ucred);
492         }
493         if (td->td_limit != p->p_limit) {
494                 oldlimit = td->td_limit;
495                 td->td_limit = lim_hold(p->p_limit);
496         }
497         td->td_cowgen = p->p_cowgen;
498         PROC_UNLOCK(p);
499         if (oldcred != NULL)
500                 crfree(oldcred);
501         if (oldlimit != NULL)
502                 lim_free(oldlimit);
503 }
504
505 /*
506  * Discard the current thread and exit from its context.
507  * Always called with scheduler locked.
508  *
509  * Because we can't free a thread while we're operating under its context,
510  * push the current thread into our CPU's deadthread holder. This means
511  * we needn't worry about someone else grabbing our context before we
512  * do a cpu_throw().
513  */
514 void
515 thread_exit(void)
516 {
517         uint64_t runtime, new_switchtime;
518         struct thread *td;
519         struct thread *td2;
520         struct proc *p;
521         int wakeup_swapper;
522
523         td = curthread;
524         p = td->td_proc;
525
526         PROC_SLOCK_ASSERT(p, MA_OWNED);
527         mtx_assert(&Giant, MA_NOTOWNED);
528
529         PROC_LOCK_ASSERT(p, MA_OWNED);
530         KASSERT(p != NULL, ("thread exiting without a process"));
531         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
532             (long)p->p_pid, td->td_name);
533         SDT_PROBE0(proc, , , lwp__exit);
534         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
535
536         /*
537          * drop FPU & debug register state storage, or any other
538          * architecture specific resources that
539          * would not be on a new untouched process.
540          */
541         cpu_thread_exit(td);
542
543         /*
544          * The last thread is left attached to the process
545          * So that the whole bundle gets recycled. Skip
546          * all this stuff if we never had threads.
547          * EXIT clears all sign of other threads when
548          * it goes to single threading, so the last thread always
549          * takes the short path.
550          */
551         if (p->p_flag & P_HADTHREADS) {
552                 if (p->p_numthreads > 1) {
553                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
554                         thread_unlink(td);
555                         td2 = FIRST_THREAD_IN_PROC(p);
556                         sched_exit_thread(td2, td);
557
558                         /*
559                          * The test below is NOT true if we are the
560                          * sole exiting thread. P_STOPPED_SINGLE is unset
561                          * in exit1() after it is the only survivor.
562                          */
563                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
564                                 if (p->p_numthreads == p->p_suspcount) {
565                                         thread_lock(p->p_singlethread);
566                                         wakeup_swapper = thread_unsuspend_one(
567                                                 p->p_singlethread, p, false);
568                                         if (wakeup_swapper)
569                                                 kick_proc0();
570                                 }
571                         }
572
573                         PCPU_SET(deadthread, td);
574                 } else {
575                         /*
576                          * The last thread is exiting.. but not through exit()
577                          */
578                         panic ("thread_exit: Last thread exiting on its own");
579                 }
580         } 
581 #ifdef  HWPMC_HOOKS
582         /*
583          * If this thread is part of a process that is being tracked by hwpmc(4),
584          * inform the module of the thread's impending exit.
585          */
586         if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
587                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
588                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
589         } else if (PMC_SYSTEM_SAMPLING_ACTIVE())
590                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
591 #endif
592         PROC_UNLOCK(p);
593         PROC_STATLOCK(p);
594         thread_lock(td);
595         PROC_SUNLOCK(p);
596
597         /* Do the same timestamp bookkeeping that mi_switch() would do. */
598         new_switchtime = cpu_ticks();
599         runtime = new_switchtime - PCPU_GET(switchtime);
600         td->td_runtime += runtime;
601         td->td_incruntime += runtime;
602         PCPU_SET(switchtime, new_switchtime);
603         PCPU_SET(switchticks, ticks);
604         VM_CNT_INC(v_swtch);
605
606         /* Save our resource usage in our process. */
607         td->td_ru.ru_nvcsw++;
608         ruxagg_locked(p, td);
609         rucollect(&p->p_ru, &td->td_ru);
610         PROC_STATUNLOCK(p);
611
612         td->td_state = TDS_INACTIVE;
613 #ifdef WITNESS
614         witness_thread_exit(td);
615 #endif
616         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
617         sched_throw(td);
618         panic("I'm a teapot!");
619         /* NOTREACHED */
620 }
621
622 /*
623  * Do any thread specific cleanups that may be needed in wait()
624  * called with Giant, proc and schedlock not held.
625  */
626 void
627 thread_wait(struct proc *p)
628 {
629         struct thread *td;
630
631         mtx_assert(&Giant, MA_NOTOWNED);
632         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
633         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
634         td = FIRST_THREAD_IN_PROC(p);
635         /* Lock the last thread so we spin until it exits cpu_throw(). */
636         thread_lock(td);
637         thread_unlock(td);
638         lock_profile_thread_exit(td);
639         cpuset_rel(td->td_cpuset);
640         td->td_cpuset = NULL;
641         cpu_thread_clean(td);
642         thread_cow_free(td);
643         callout_drain(&td->td_slpcallout);
644         thread_reap();  /* check for zombie threads etc. */
645 }
646
647 /*
648  * Link a thread to a process.
649  * set up anything that needs to be initialized for it to
650  * be used by the process.
651  */
652 void
653 thread_link(struct thread *td, struct proc *p)
654 {
655
656         /*
657          * XXX This can't be enabled because it's called for proc0 before
658          * its lock has been created.
659          * PROC_LOCK_ASSERT(p, MA_OWNED);
660          */
661         td->td_state    = TDS_INACTIVE;
662         td->td_proc     = p;
663         td->td_flags    = TDF_INMEM;
664
665         LIST_INIT(&td->td_contested);
666         LIST_INIT(&td->td_lprof[0]);
667         LIST_INIT(&td->td_lprof[1]);
668 #ifdef EPOCH_TRACE
669         SLIST_INIT(&td->td_epochs);
670 #endif
671         sigqueue_init(&td->td_sigqueue, p);
672         callout_init(&td->td_slpcallout, 1);
673         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
674         p->p_numthreads++;
675 }
676
677 /*
678  * Called from:
679  *  thread_exit()
680  */
681 void
682 thread_unlink(struct thread *td)
683 {
684         struct proc *p = td->td_proc;
685
686         PROC_LOCK_ASSERT(p, MA_OWNED);
687 #ifdef EPOCH_TRACE
688         MPASS(SLIST_EMPTY(&td->td_epochs));
689 #endif
690
691         TAILQ_REMOVE(&p->p_threads, td, td_plist);
692         p->p_numthreads--;
693         /* could clear a few other things here */
694         /* Must  NOT clear links to proc! */
695 }
696
697 static int
698 calc_remaining(struct proc *p, int mode)
699 {
700         int remaining;
701
702         PROC_LOCK_ASSERT(p, MA_OWNED);
703         PROC_SLOCK_ASSERT(p, MA_OWNED);
704         if (mode == SINGLE_EXIT)
705                 remaining = p->p_numthreads;
706         else if (mode == SINGLE_BOUNDARY)
707                 remaining = p->p_numthreads - p->p_boundary_count;
708         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
709                 remaining = p->p_numthreads - p->p_suspcount;
710         else
711                 panic("calc_remaining: wrong mode %d", mode);
712         return (remaining);
713 }
714
715 static int
716 remain_for_mode(int mode)
717 {
718
719         return (mode == SINGLE_ALLPROC ? 0 : 1);
720 }
721
722 static int
723 weed_inhib(int mode, struct thread *td2, struct proc *p)
724 {
725         int wakeup_swapper;
726
727         PROC_LOCK_ASSERT(p, MA_OWNED);
728         PROC_SLOCK_ASSERT(p, MA_OWNED);
729         THREAD_LOCK_ASSERT(td2, MA_OWNED);
730
731         wakeup_swapper = 0;
732
733         /*
734          * Since the thread lock is dropped by the scheduler we have
735          * to retry to check for races.
736          */
737 restart:
738         switch (mode) {
739         case SINGLE_EXIT:
740                 if (TD_IS_SUSPENDED(td2)) {
741                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
742                         thread_lock(td2);
743                         goto restart;
744                 }
745                 if (TD_CAN_ABORT(td2)) {
746                         wakeup_swapper |= sleepq_abort(td2, EINTR);
747                         return (wakeup_swapper);
748                 }
749                 break;
750         case SINGLE_BOUNDARY:
751         case SINGLE_NO_EXIT:
752                 if (TD_IS_SUSPENDED(td2) &&
753                     (td2->td_flags & TDF_BOUNDARY) == 0) {
754                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
755                         thread_lock(td2);
756                         goto restart;
757                 }
758                 if (TD_CAN_ABORT(td2)) {
759                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
760                         return (wakeup_swapper);
761                 }
762                 break;
763         case SINGLE_ALLPROC:
764                 /*
765                  * ALLPROC suspend tries to avoid spurious EINTR for
766                  * threads sleeping interruptable, by suspending the
767                  * thread directly, similarly to sig_suspend_threads().
768                  * Since such sleep is not performed at the user
769                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
770                  * is used to avoid immediate un-suspend.
771                  */
772                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
773                     TDF_ALLPROCSUSP)) == 0) {
774                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
775                         thread_lock(td2);
776                         goto restart;
777                 }
778                 if (TD_CAN_ABORT(td2)) {
779                         if ((td2->td_flags & TDF_SBDRY) == 0) {
780                                 thread_suspend_one(td2);
781                                 td2->td_flags |= TDF_ALLPROCSUSP;
782                         } else {
783                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
784                                 return (wakeup_swapper);
785                         }
786                 }
787                 break;
788         default:
789                 break;
790         }
791         thread_unlock(td2);
792         return (wakeup_swapper);
793 }
794
795 /*
796  * Enforce single-threading.
797  *
798  * Returns 1 if the caller must abort (another thread is waiting to
799  * exit the process or similar). Process is locked!
800  * Returns 0 when you are successfully the only thread running.
801  * A process has successfully single threaded in the suspend mode when
802  * There are no threads in user mode. Threads in the kernel must be
803  * allowed to continue until they get to the user boundary. They may even
804  * copy out their return values and data before suspending. They may however be
805  * accelerated in reaching the user boundary as we will wake up
806  * any sleeping threads that are interruptable. (PCATCH).
807  */
808 int
809 thread_single(struct proc *p, int mode)
810 {
811         struct thread *td;
812         struct thread *td2;
813         int remaining, wakeup_swapper;
814
815         td = curthread;
816         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
817             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
818             ("invalid mode %d", mode));
819         /*
820          * If allowing non-ALLPROC singlethreading for non-curproc
821          * callers, calc_remaining() and remain_for_mode() should be
822          * adjusted to also account for td->td_proc != p.  For now
823          * this is not implemented because it is not used.
824          */
825         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
826             (mode != SINGLE_ALLPROC && td->td_proc == p),
827             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
828         mtx_assert(&Giant, MA_NOTOWNED);
829         PROC_LOCK_ASSERT(p, MA_OWNED);
830
831         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
832                 return (0);
833
834         /* Is someone already single threading? */
835         if (p->p_singlethread != NULL && p->p_singlethread != td)
836                 return (1);
837
838         if (mode == SINGLE_EXIT) {
839                 p->p_flag |= P_SINGLE_EXIT;
840                 p->p_flag &= ~P_SINGLE_BOUNDARY;
841         } else {
842                 p->p_flag &= ~P_SINGLE_EXIT;
843                 if (mode == SINGLE_BOUNDARY)
844                         p->p_flag |= P_SINGLE_BOUNDARY;
845                 else
846                         p->p_flag &= ~P_SINGLE_BOUNDARY;
847         }
848         if (mode == SINGLE_ALLPROC)
849                 p->p_flag |= P_TOTAL_STOP;
850         p->p_flag |= P_STOPPED_SINGLE;
851         PROC_SLOCK(p);
852         p->p_singlethread = td;
853         remaining = calc_remaining(p, mode);
854         while (remaining != remain_for_mode(mode)) {
855                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
856                         goto stopme;
857                 wakeup_swapper = 0;
858                 FOREACH_THREAD_IN_PROC(p, td2) {
859                         if (td2 == td)
860                                 continue;
861                         thread_lock(td2);
862                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
863                         if (TD_IS_INHIBITED(td2)) {
864                                 wakeup_swapper |= weed_inhib(mode, td2, p);
865 #ifdef SMP
866                         } else if (TD_IS_RUNNING(td2) && td != td2) {
867                                 forward_signal(td2);
868                                 thread_unlock(td2);
869 #endif
870                         } else
871                                 thread_unlock(td2);
872                 }
873                 if (wakeup_swapper)
874                         kick_proc0();
875                 remaining = calc_remaining(p, mode);
876
877                 /*
878                  * Maybe we suspended some threads.. was it enough?
879                  */
880                 if (remaining == remain_for_mode(mode))
881                         break;
882
883 stopme:
884                 /*
885                  * Wake us up when everyone else has suspended.
886                  * In the mean time we suspend as well.
887                  */
888                 thread_suspend_switch(td, p);
889                 remaining = calc_remaining(p, mode);
890         }
891         if (mode == SINGLE_EXIT) {
892                 /*
893                  * Convert the process to an unthreaded process.  The
894                  * SINGLE_EXIT is called by exit1() or execve(), in
895                  * both cases other threads must be retired.
896                  */
897                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
898                 p->p_singlethread = NULL;
899                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
900
901                 /*
902                  * Wait for any remaining threads to exit cpu_throw().
903                  */
904                 while (p->p_exitthreads != 0) {
905                         PROC_SUNLOCK(p);
906                         PROC_UNLOCK(p);
907                         sched_relinquish(td);
908                         PROC_LOCK(p);
909                         PROC_SLOCK(p);
910                 }
911         } else if (mode == SINGLE_BOUNDARY) {
912                 /*
913                  * Wait until all suspended threads are removed from
914                  * the processors.  The thread_suspend_check()
915                  * increments p_boundary_count while it is still
916                  * running, which makes it possible for the execve()
917                  * to destroy vmspace while our other threads are
918                  * still using the address space.
919                  *
920                  * We lock the thread, which is only allowed to
921                  * succeed after context switch code finished using
922                  * the address space.
923                  */
924                 FOREACH_THREAD_IN_PROC(p, td2) {
925                         if (td2 == td)
926                                 continue;
927                         thread_lock(td2);
928                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
929                             ("td %p not on boundary", td2));
930                         KASSERT(TD_IS_SUSPENDED(td2),
931                             ("td %p is not suspended", td2));
932                         thread_unlock(td2);
933                 }
934         }
935         PROC_SUNLOCK(p);
936         return (0);
937 }
938
939 bool
940 thread_suspend_check_needed(void)
941 {
942         struct proc *p;
943         struct thread *td;
944
945         td = curthread;
946         p = td->td_proc;
947         PROC_LOCK_ASSERT(p, MA_OWNED);
948         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
949             (td->td_dbgflags & TDB_SUSPEND) != 0));
950 }
951
952 /*
953  * Called in from locations that can safely check to see
954  * whether we have to suspend or at least throttle for a
955  * single-thread event (e.g. fork).
956  *
957  * Such locations include userret().
958  * If the "return_instead" argument is non zero, the thread must be able to
959  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
960  *
961  * The 'return_instead' argument tells the function if it may do a
962  * thread_exit() or suspend, or whether the caller must abort and back
963  * out instead.
964  *
965  * If the thread that set the single_threading request has set the
966  * P_SINGLE_EXIT bit in the process flags then this call will never return
967  * if 'return_instead' is false, but will exit.
968  *
969  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
970  *---------------+--------------------+---------------------
971  *       0       | returns 0          |   returns 0 or 1
972  *               | when ST ends       |   immediately
973  *---------------+--------------------+---------------------
974  *       1       | thread exits       |   returns 1
975  *               |                    |  immediately
976  * 0 = thread_exit() or suspension ok,
977  * other = return error instead of stopping the thread.
978  *
979  * While a full suspension is under effect, even a single threading
980  * thread would be suspended if it made this call (but it shouldn't).
981  * This call should only be made from places where
982  * thread_exit() would be safe as that may be the outcome unless
983  * return_instead is set.
984  */
985 int
986 thread_suspend_check(int return_instead)
987 {
988         struct thread *td;
989         struct proc *p;
990         int wakeup_swapper;
991
992         td = curthread;
993         p = td->td_proc;
994         mtx_assert(&Giant, MA_NOTOWNED);
995         PROC_LOCK_ASSERT(p, MA_OWNED);
996         while (thread_suspend_check_needed()) {
997                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
998                         KASSERT(p->p_singlethread != NULL,
999                             ("singlethread not set"));
1000                         /*
1001                          * The only suspension in action is a
1002                          * single-threading. Single threader need not stop.
1003                          * It is safe to access p->p_singlethread unlocked
1004                          * because it can only be set to our address by us.
1005                          */
1006                         if (p->p_singlethread == td)
1007                                 return (0);     /* Exempt from stopping. */
1008                 }
1009                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
1010                         return (EINTR);
1011
1012                 /* Should we goto user boundary if we didn't come from there? */
1013                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1014                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
1015                         return (ERESTART);
1016
1017                 /*
1018                  * Ignore suspend requests if they are deferred.
1019                  */
1020                 if ((td->td_flags & TDF_SBDRY) != 0) {
1021                         KASSERT(return_instead,
1022                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
1023                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1024                             (TDF_SEINTR | TDF_SERESTART),
1025                             ("both TDF_SEINTR and TDF_SERESTART"));
1026                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1027                 }
1028
1029                 /*
1030                  * If the process is waiting for us to exit,
1031                  * this thread should just suicide.
1032                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1033                  */
1034                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1035                         PROC_UNLOCK(p);
1036
1037                         /*
1038                          * Allow Linux emulation layer to do some work
1039                          * before thread suicide.
1040                          */
1041                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1042                                 (p->p_sysent->sv_thread_detach)(td);
1043                         umtx_thread_exit(td);
1044                         kern_thr_exit(td);
1045                         panic("stopped thread did not exit");
1046                 }
1047
1048                 PROC_SLOCK(p);
1049                 thread_stopped(p);
1050                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1051                         if (p->p_numthreads == p->p_suspcount + 1) {
1052                                 thread_lock(p->p_singlethread);
1053                                 wakeup_swapper = thread_unsuspend_one(
1054                                     p->p_singlethread, p, false);
1055                                 if (wakeup_swapper)
1056                                         kick_proc0();
1057                         }
1058                 }
1059                 PROC_UNLOCK(p);
1060                 thread_lock(td);
1061                 /*
1062                  * When a thread suspends, it just
1063                  * gets taken off all queues.
1064                  */
1065                 thread_suspend_one(td);
1066                 if (return_instead == 0) {
1067                         p->p_boundary_count++;
1068                         td->td_flags |= TDF_BOUNDARY;
1069                 }
1070                 PROC_SUNLOCK(p);
1071                 mi_switch(SW_INVOL | SWT_SUSPEND);
1072                 PROC_LOCK(p);
1073         }
1074         return (0);
1075 }
1076
1077 /*
1078  * Check for possible stops and suspensions while executing a
1079  * casueword or similar transiently failing operation.
1080  *
1081  * The sleep argument controls whether the function can handle a stop
1082  * request itself or it should return ERESTART and the request is
1083  * proceed at the kernel/user boundary in ast.
1084  *
1085  * Typically, when retrying due to casueword(9) failure (rv == 1), we
1086  * should handle the stop requests there, with exception of cases when
1087  * the thread owns a kernel resource, for instance busied the umtx
1088  * key, or when functions return immediately if thread_check_susp()
1089  * returned non-zero.  On the other hand, retrying the whole lock
1090  * operation, we better not stop there but delegate the handling to
1091  * ast.
1092  *
1093  * If the request is for thread termination P_SINGLE_EXIT, we cannot
1094  * handle it at all, and simply return EINTR.
1095  */
1096 int
1097 thread_check_susp(struct thread *td, bool sleep)
1098 {
1099         struct proc *p;
1100         int error;
1101
1102         /*
1103          * The check for TDF_NEEDSUSPCHK is racy, but it is enough to
1104          * eventually break the lockstep loop.
1105          */
1106         if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
1107                 return (0);
1108         error = 0;
1109         p = td->td_proc;
1110         PROC_LOCK(p);
1111         if (p->p_flag & P_SINGLE_EXIT)
1112                 error = EINTR;
1113         else if (P_SHOULDSTOP(p) ||
1114             ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND)))
1115                 error = sleep ? thread_suspend_check(0) : ERESTART;
1116         PROC_UNLOCK(p);
1117         return (error);
1118 }
1119
1120 void
1121 thread_suspend_switch(struct thread *td, struct proc *p)
1122 {
1123
1124         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1125         PROC_LOCK_ASSERT(p, MA_OWNED);
1126         PROC_SLOCK_ASSERT(p, MA_OWNED);
1127         /*
1128          * We implement thread_suspend_one in stages here to avoid
1129          * dropping the proc lock while the thread lock is owned.
1130          */
1131         if (p == td->td_proc) {
1132                 thread_stopped(p);
1133                 p->p_suspcount++;
1134         }
1135         PROC_UNLOCK(p);
1136         thread_lock(td);
1137         td->td_flags &= ~TDF_NEEDSUSPCHK;
1138         TD_SET_SUSPENDED(td);
1139         sched_sleep(td, 0);
1140         PROC_SUNLOCK(p);
1141         DROP_GIANT();
1142         mi_switch(SW_VOL | SWT_SUSPEND);
1143         PICKUP_GIANT();
1144         PROC_LOCK(p);
1145         PROC_SLOCK(p);
1146 }
1147
1148 void
1149 thread_suspend_one(struct thread *td)
1150 {
1151         struct proc *p;
1152
1153         p = td->td_proc;
1154         PROC_SLOCK_ASSERT(p, MA_OWNED);
1155         THREAD_LOCK_ASSERT(td, MA_OWNED);
1156         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1157         p->p_suspcount++;
1158         td->td_flags &= ~TDF_NEEDSUSPCHK;
1159         TD_SET_SUSPENDED(td);
1160         sched_sleep(td, 0);
1161 }
1162
1163 static int
1164 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1165 {
1166
1167         THREAD_LOCK_ASSERT(td, MA_OWNED);
1168         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1169         TD_CLR_SUSPENDED(td);
1170         td->td_flags &= ~TDF_ALLPROCSUSP;
1171         if (td->td_proc == p) {
1172                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1173                 p->p_suspcount--;
1174                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1175                         td->td_flags &= ~TDF_BOUNDARY;
1176                         p->p_boundary_count--;
1177                 }
1178         }
1179         return (setrunnable(td, 0));
1180 }
1181
1182 /*
1183  * Allow all threads blocked by single threading to continue running.
1184  */
1185 void
1186 thread_unsuspend(struct proc *p)
1187 {
1188         struct thread *td;
1189         int wakeup_swapper;
1190
1191         PROC_LOCK_ASSERT(p, MA_OWNED);
1192         PROC_SLOCK_ASSERT(p, MA_OWNED);
1193         wakeup_swapper = 0;
1194         if (!P_SHOULDSTOP(p)) {
1195                 FOREACH_THREAD_IN_PROC(p, td) {
1196                         thread_lock(td);
1197                         if (TD_IS_SUSPENDED(td)) {
1198                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1199                                     true);
1200                         } else
1201                                 thread_unlock(td);
1202                 }
1203         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1204             p->p_numthreads == p->p_suspcount) {
1205                 /*
1206                  * Stopping everything also did the job for the single
1207                  * threading request. Now we've downgraded to single-threaded,
1208                  * let it continue.
1209                  */
1210                 if (p->p_singlethread->td_proc == p) {
1211                         thread_lock(p->p_singlethread);
1212                         wakeup_swapper = thread_unsuspend_one(
1213                             p->p_singlethread, p, false);
1214                 }
1215         }
1216         if (wakeup_swapper)
1217                 kick_proc0();
1218 }
1219
1220 /*
1221  * End the single threading mode..
1222  */
1223 void
1224 thread_single_end(struct proc *p, int mode)
1225 {
1226         struct thread *td;
1227         int wakeup_swapper;
1228
1229         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1230             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1231             ("invalid mode %d", mode));
1232         PROC_LOCK_ASSERT(p, MA_OWNED);
1233         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1234             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1235             ("mode %d does not match P_TOTAL_STOP", mode));
1236         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1237             ("thread_single_end from other thread %p %p",
1238             curthread, p->p_singlethread));
1239         KASSERT(mode != SINGLE_BOUNDARY ||
1240             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1241             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1242         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1243             P_TOTAL_STOP);
1244         PROC_SLOCK(p);
1245         p->p_singlethread = NULL;
1246         wakeup_swapper = 0;
1247         /*
1248          * If there are other threads they may now run,
1249          * unless of course there is a blanket 'stop order'
1250          * on the process. The single threader must be allowed
1251          * to continue however as this is a bad place to stop.
1252          */
1253         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1254                 FOREACH_THREAD_IN_PROC(p, td) {
1255                         thread_lock(td);
1256                         if (TD_IS_SUSPENDED(td)) {
1257                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1258                                     mode == SINGLE_BOUNDARY);
1259                         } else
1260                                 thread_unlock(td);
1261                 }
1262         }
1263         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1264             ("inconsistent boundary count %d", p->p_boundary_count));
1265         PROC_SUNLOCK(p);
1266         if (wakeup_swapper)
1267                 kick_proc0();
1268 }
1269
1270 struct thread *
1271 thread_find(struct proc *p, lwpid_t tid)
1272 {
1273         struct thread *td;
1274
1275         PROC_LOCK_ASSERT(p, MA_OWNED);
1276         FOREACH_THREAD_IN_PROC(p, td) {
1277                 if (td->td_tid == tid)
1278                         break;
1279         }
1280         return (td);
1281 }
1282
1283 /* Locate a thread by number; return with proc lock held. */
1284 struct thread *
1285 tdfind(lwpid_t tid, pid_t pid)
1286 {
1287 #define RUN_THRESH      16
1288         struct thread *td;
1289         int run = 0;
1290
1291         rw_rlock(&tidhash_lock);
1292         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1293                 if (td->td_tid == tid) {
1294                         if (pid != -1 && td->td_proc->p_pid != pid) {
1295                                 td = NULL;
1296                                 break;
1297                         }
1298                         PROC_LOCK(td->td_proc);
1299                         if (td->td_proc->p_state == PRS_NEW) {
1300                                 PROC_UNLOCK(td->td_proc);
1301                                 td = NULL;
1302                                 break;
1303                         }
1304                         if (run > RUN_THRESH) {
1305                                 if (rw_try_upgrade(&tidhash_lock)) {
1306                                         LIST_REMOVE(td, td_hash);
1307                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1308                                                 td, td_hash);
1309                                         rw_wunlock(&tidhash_lock);
1310                                         return (td);
1311                                 }
1312                         }
1313                         break;
1314                 }
1315                 run++;
1316         }
1317         rw_runlock(&tidhash_lock);
1318         return (td);
1319 }
1320
1321 void
1322 tidhash_add(struct thread *td)
1323 {
1324         rw_wlock(&tidhash_lock);
1325         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1326         rw_wunlock(&tidhash_lock);
1327 }
1328
1329 void
1330 tidhash_remove(struct thread *td)
1331 {
1332         rw_wlock(&tidhash_lock);
1333         LIST_REMOVE(td, td_hash);
1334         rw_wunlock(&tidhash_lock);
1335 }