]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/uipc_ktls.c
Optionally bind ktls threads to NUMA domains
[FreeBSD/FreeBSD.git] / sys / kern / uipc_ktls.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2014-2019 Netflix Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_rss.h"
34
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/domainset.h>
38 #include <sys/ktls.h>
39 #include <sys/lock.h>
40 #include <sys/mbuf.h>
41 #include <sys/mutex.h>
42 #include <sys/rmlock.h>
43 #include <sys/proc.h>
44 #include <sys/protosw.h>
45 #include <sys/refcount.h>
46 #include <sys/smp.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/sysctl.h>
50 #include <sys/taskqueue.h>
51 #include <sys/kthread.h>
52 #include <sys/uio.h>
53 #include <sys/vmmeter.h>
54 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
55 #include <machine/pcb.h>
56 #endif
57 #include <machine/vmparam.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #ifdef RSS
61 #include <net/netisr.h>
62 #include <net/rss_config.h>
63 #endif
64 #include <net/route.h>
65 #include <net/route/nhop.h>
66 #if defined(INET) || defined(INET6)
67 #include <netinet/in.h>
68 #include <netinet/in_pcb.h>
69 #endif
70 #include <netinet/tcp_var.h>
71 #ifdef TCP_OFFLOAD
72 #include <netinet/tcp_offload.h>
73 #endif
74 #include <opencrypto/xform.h>
75 #include <vm/uma_dbg.h>
76 #include <vm/vm.h>
77 #include <vm/vm_pageout.h>
78 #include <vm/vm_page.h>
79
80 struct ktls_wq {
81         struct mtx      mtx;
82         STAILQ_HEAD(, mbuf) m_head;
83         STAILQ_HEAD(, socket) so_head;
84         bool            running;
85 } __aligned(CACHE_LINE_SIZE);
86
87 struct ktls_domain_info {
88         int count;
89         int cpu[MAXCPU];
90 };
91
92 struct ktls_domain_info ktls_domains[MAXMEMDOM];
93 static struct ktls_wq *ktls_wq;
94 static struct proc *ktls_proc;
95 LIST_HEAD(, ktls_crypto_backend) ktls_backends;
96 static struct rmlock ktls_backends_lock;
97 static uma_zone_t ktls_session_zone;
98 static uint16_t ktls_cpuid_lookup[MAXCPU];
99
100 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
101     "Kernel TLS offload");
102 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
103     "Kernel TLS offload stats");
104
105 static int ktls_allow_unload;
106 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN,
107     &ktls_allow_unload, 0, "Allow software crypto modules to unload");
108
109 #ifdef RSS
110 static int ktls_bind_threads = 1;
111 #else
112 static int ktls_bind_threads;
113 #endif
114 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
115     &ktls_bind_threads, 0,
116     "Bind crypto threads to cores or domains at boot");
117
118 static u_int ktls_maxlen = 16384;
119 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN,
120     &ktls_maxlen, 0, "Maximum TLS record size");
121
122 static int ktls_number_threads;
123 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
124     &ktls_number_threads, 0,
125     "Number of TLS threads in thread-pool");
126
127 static bool ktls_offload_enable;
128 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW,
129     &ktls_offload_enable, 0,
130     "Enable support for kernel TLS offload");
131
132 static bool ktls_cbc_enable = true;
133 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW,
134     &ktls_cbc_enable, 1,
135     "Enable Support of AES-CBC crypto for kernel TLS");
136
137 static counter_u64_t ktls_tasks_active;
138 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
139     &ktls_tasks_active, "Number of active tasks");
140
141 static counter_u64_t ktls_cnt_tx_queued;
142 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
143     &ktls_cnt_tx_queued,
144     "Number of TLS records in queue to tasks for SW encryption");
145
146 static counter_u64_t ktls_cnt_rx_queued;
147 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
148     &ktls_cnt_rx_queued,
149     "Number of TLS sockets in queue to tasks for SW decryption");
150
151 static counter_u64_t ktls_offload_total;
152 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
153     CTLFLAG_RD, &ktls_offload_total,
154     "Total successful TLS setups (parameters set)");
155
156 static counter_u64_t ktls_offload_enable_calls;
157 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
158     CTLFLAG_RD, &ktls_offload_enable_calls,
159     "Total number of TLS enable calls made");
160
161 static counter_u64_t ktls_offload_active;
162 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
163     &ktls_offload_active, "Total Active TLS sessions");
164
165 static counter_u64_t ktls_offload_corrupted_records;
166 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
167     &ktls_offload_corrupted_records, "Total corrupted TLS records received");
168
169 static counter_u64_t ktls_offload_failed_crypto;
170 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
171     &ktls_offload_failed_crypto, "Total TLS crypto failures");
172
173 static counter_u64_t ktls_switch_to_ifnet;
174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
175     &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
176
177 static counter_u64_t ktls_switch_to_sw;
178 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
179     &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
180
181 static counter_u64_t ktls_switch_failed;
182 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
183     &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
184
185 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
186     "Software TLS session stats");
187 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
188     "Hardware (ifnet) TLS session stats");
189 #ifdef TCP_OFFLOAD
190 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
191     "TOE TLS session stats");
192 #endif
193
194 static counter_u64_t ktls_sw_cbc;
195 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
196     "Active number of software TLS sessions using AES-CBC");
197
198 static counter_u64_t ktls_sw_gcm;
199 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
200     "Active number of software TLS sessions using AES-GCM");
201
202 static counter_u64_t ktls_ifnet_cbc;
203 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
204     &ktls_ifnet_cbc,
205     "Active number of ifnet TLS sessions using AES-CBC");
206
207 static counter_u64_t ktls_ifnet_gcm;
208 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
209     &ktls_ifnet_gcm,
210     "Active number of ifnet TLS sessions using AES-GCM");
211
212 static counter_u64_t ktls_ifnet_reset;
213 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
214     &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
215
216 static counter_u64_t ktls_ifnet_reset_dropped;
217 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
218     &ktls_ifnet_reset_dropped,
219     "TLS sessions dropped after failing to update ifnet send tag");
220
221 static counter_u64_t ktls_ifnet_reset_failed;
222 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
223     &ktls_ifnet_reset_failed,
224     "TLS sessions that failed to allocate a new ifnet send tag");
225
226 static int ktls_ifnet_permitted;
227 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
228     &ktls_ifnet_permitted, 1,
229     "Whether to permit hardware (ifnet) TLS sessions");
230
231 #ifdef TCP_OFFLOAD
232 static counter_u64_t ktls_toe_cbc;
233 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
234     &ktls_toe_cbc,
235     "Active number of TOE TLS sessions using AES-CBC");
236
237 static counter_u64_t ktls_toe_gcm;
238 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
239     &ktls_toe_gcm,
240     "Active number of TOE TLS sessions using AES-GCM");
241 #endif
242
243 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
244
245 static void ktls_cleanup(struct ktls_session *tls);
246 #if defined(INET) || defined(INET6)
247 static void ktls_reset_send_tag(void *context, int pending);
248 #endif
249 static void ktls_work_thread(void *ctx);
250
251 int
252 ktls_crypto_backend_register(struct ktls_crypto_backend *be)
253 {
254         struct ktls_crypto_backend *curr_be, *tmp;
255
256         if (be->api_version != KTLS_API_VERSION) {
257                 printf("KTLS: API version mismatch (%d vs %d) for %s\n",
258                     be->api_version, KTLS_API_VERSION,
259                     be->name);
260                 return (EINVAL);
261         }
262
263         rm_wlock(&ktls_backends_lock);
264         printf("KTLS: Registering crypto method %s with prio %d\n",
265                be->name, be->prio);
266         if (LIST_EMPTY(&ktls_backends)) {
267                 LIST_INSERT_HEAD(&ktls_backends, be, next);
268         } else {
269                 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) {
270                         if (curr_be->prio < be->prio) {
271                                 LIST_INSERT_BEFORE(curr_be, be, next);
272                                 break;
273                         }
274                         if (LIST_NEXT(curr_be, next) == NULL) {
275                                 LIST_INSERT_AFTER(curr_be, be, next);
276                                 break;
277                         }
278                 }
279         }
280         rm_wunlock(&ktls_backends_lock);
281         return (0);
282 }
283
284 int
285 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be)
286 {
287         struct ktls_crypto_backend *tmp;
288
289         /*
290          * Don't error if the backend isn't registered.  This permits
291          * MOD_UNLOAD handlers to use this function unconditionally.
292          */
293         rm_wlock(&ktls_backends_lock);
294         LIST_FOREACH(tmp, &ktls_backends, next) {
295                 if (tmp == be)
296                         break;
297         }
298         if (tmp == NULL) {
299                 rm_wunlock(&ktls_backends_lock);
300                 return (0);
301         }
302
303         if (!ktls_allow_unload) {
304                 rm_wunlock(&ktls_backends_lock);
305                 printf(
306                     "KTLS: Deregistering crypto method %s is not supported\n",
307                     be->name);
308                 return (EBUSY);
309         }
310
311         if (be->use_count) {
312                 rm_wunlock(&ktls_backends_lock);
313                 return (EBUSY);
314         }
315
316         LIST_REMOVE(be, next);
317         rm_wunlock(&ktls_backends_lock);
318         return (0);
319 }
320
321 #if defined(INET) || defined(INET6)
322 static u_int
323 ktls_get_cpu(struct socket *so)
324 {
325         struct inpcb *inp;
326 #ifdef NUMA
327         struct ktls_domain_info *di;
328 #endif
329         u_int cpuid;
330
331         inp = sotoinpcb(so);
332 #ifdef RSS
333         cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
334         if (cpuid != NETISR_CPUID_NONE)
335                 return (cpuid);
336 #endif
337         /*
338          * Just use the flowid to shard connections in a repeatable
339          * fashion.  Note that some crypto backends rely on the
340          * serialization provided by having the same connection use
341          * the same queue.
342          */
343 #ifdef NUMA
344         if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
345                 di = &ktls_domains[inp->inp_numa_domain];
346                 cpuid = di->cpu[inp->inp_flowid % di->count];
347         } else
348 #endif
349                 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
350         return (cpuid);
351 }
352 #endif
353
354 static void
355 ktls_init(void *dummy __unused)
356 {
357         struct thread *td;
358         struct pcpu *pc;
359         cpuset_t mask;
360         int count, domain, error, i;
361
362         ktls_tasks_active = counter_u64_alloc(M_WAITOK);
363         ktls_cnt_tx_queued = counter_u64_alloc(M_WAITOK);
364         ktls_cnt_rx_queued = counter_u64_alloc(M_WAITOK);
365         ktls_offload_total = counter_u64_alloc(M_WAITOK);
366         ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK);
367         ktls_offload_active = counter_u64_alloc(M_WAITOK);
368         ktls_offload_corrupted_records = counter_u64_alloc(M_WAITOK);
369         ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK);
370         ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK);
371         ktls_switch_to_sw = counter_u64_alloc(M_WAITOK);
372         ktls_switch_failed = counter_u64_alloc(M_WAITOK);
373         ktls_sw_cbc = counter_u64_alloc(M_WAITOK);
374         ktls_sw_gcm = counter_u64_alloc(M_WAITOK);
375         ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK);
376         ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK);
377         ktls_ifnet_reset = counter_u64_alloc(M_WAITOK);
378         ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK);
379         ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK);
380 #ifdef TCP_OFFLOAD
381         ktls_toe_cbc = counter_u64_alloc(M_WAITOK);
382         ktls_toe_gcm = counter_u64_alloc(M_WAITOK);
383 #endif
384
385         rm_init(&ktls_backends_lock, "ktls backends");
386         LIST_INIT(&ktls_backends);
387
388         ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
389             M_WAITOK | M_ZERO);
390
391         ktls_session_zone = uma_zcreate("ktls_session",
392             sizeof(struct ktls_session),
393             NULL, NULL, NULL, NULL,
394             UMA_ALIGN_CACHE, 0);
395
396         /*
397          * Initialize the workqueues to run the TLS work.  We create a
398          * work queue for each CPU.
399          */
400         CPU_FOREACH(i) {
401                 STAILQ_INIT(&ktls_wq[i].m_head);
402                 STAILQ_INIT(&ktls_wq[i].so_head);
403                 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
404                 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
405                     &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
406                 if (error)
407                         panic("Can't add KTLS thread %d error %d", i, error);
408
409                 /*
410                  * Bind threads to cores.  If ktls_bind_threads is >
411                  * 1, then we bind to the NUMA domain.
412                  */
413                 if (ktls_bind_threads) {
414                         if (ktls_bind_threads > 1) {
415                                 pc = pcpu_find(i);
416                                 domain = pc->pc_domain;
417                                 CPU_COPY(&cpuset_domain[domain], &mask);
418                                 count = ktls_domains[domain].count;
419                                 ktls_domains[domain].cpu[count] = i;
420                                 ktls_domains[domain].count++;
421                         } else {
422                                 CPU_SETOF(i, &mask);
423                         }
424                         error = cpuset_setthread(td->td_tid, &mask);
425                         if (error)
426                                 panic(
427                             "Unable to bind KTLS thread for CPU %d error %d",
428                                      i, error);
429                 }
430                 ktls_cpuid_lookup[ktls_number_threads] = i;
431                 ktls_number_threads++;
432         }
433
434         /*
435          * If we somehow have an empty domain, fall back to choosing
436          * among all KTLS threads.
437          */
438         for (i = 0; i < vm_ndomains; i++) {
439                 if (ktls_domains[i].count == 0) {
440                         ktls_bind_threads = 0;
441                         break;
442                 }
443         }
444
445         printf("KTLS: Initialized %d threads\n", ktls_number_threads);
446 }
447 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL);
448
449 #if defined(INET) || defined(INET6)
450 static int
451 ktls_create_session(struct socket *so, struct tls_enable *en,
452     struct ktls_session **tlsp)
453 {
454         struct ktls_session *tls;
455         int error;
456
457         /* Only TLS 1.0 - 1.3 are supported. */
458         if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
459                 return (EINVAL);
460         if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
461             en->tls_vminor > TLS_MINOR_VER_THREE)
462                 return (EINVAL);
463
464         if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE)
465                 return (EINVAL);
466         if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE)
467                 return (EINVAL);
468         if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv))
469                 return (EINVAL);
470
471         /* All supported algorithms require a cipher key. */
472         if (en->cipher_key_len == 0)
473                 return (EINVAL);
474
475         /* No flags are currently supported. */
476         if (en->flags != 0)
477                 return (EINVAL);
478
479         /* Common checks for supported algorithms. */
480         switch (en->cipher_algorithm) {
481         case CRYPTO_AES_NIST_GCM_16:
482                 /*
483                  * auth_algorithm isn't used, but permit GMAC values
484                  * for compatibility.
485                  */
486                 switch (en->auth_algorithm) {
487                 case 0:
488 #ifdef COMPAT_FREEBSD12
489                 /* XXX: Really 13.0-current COMPAT. */
490                 case CRYPTO_AES_128_NIST_GMAC:
491                 case CRYPTO_AES_192_NIST_GMAC:
492                 case CRYPTO_AES_256_NIST_GMAC:
493 #endif
494                         break;
495                 default:
496                         return (EINVAL);
497                 }
498                 if (en->auth_key_len != 0)
499                         return (EINVAL);
500                 if ((en->tls_vminor == TLS_MINOR_VER_TWO &&
501                         en->iv_len != TLS_AEAD_GCM_LEN) ||
502                     (en->tls_vminor == TLS_MINOR_VER_THREE &&
503                         en->iv_len != TLS_1_3_GCM_IV_LEN))
504                         return (EINVAL);
505                 break;
506         case CRYPTO_AES_CBC:
507                 switch (en->auth_algorithm) {
508                 case CRYPTO_SHA1_HMAC:
509                         /*
510                          * TLS 1.0 requires an implicit IV.  TLS 1.1+
511                          * all use explicit IVs.
512                          */
513                         if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
514                                 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
515                                         return (EINVAL);
516                                 break;
517                         }
518
519                         /* FALLTHROUGH */
520                 case CRYPTO_SHA2_256_HMAC:
521                 case CRYPTO_SHA2_384_HMAC:
522                         /* Ignore any supplied IV. */
523                         en->iv_len = 0;
524                         break;
525                 default:
526                         return (EINVAL);
527                 }
528                 if (en->auth_key_len == 0)
529                         return (EINVAL);
530                 break;
531         default:
532                 return (EINVAL);
533         }
534
535         tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
536
537         counter_u64_add(ktls_offload_active, 1);
538
539         refcount_init(&tls->refcount, 1);
540         TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
541
542         tls->wq_index = ktls_get_cpu(so);
543
544         tls->params.cipher_algorithm = en->cipher_algorithm;
545         tls->params.auth_algorithm = en->auth_algorithm;
546         tls->params.tls_vmajor = en->tls_vmajor;
547         tls->params.tls_vminor = en->tls_vminor;
548         tls->params.flags = en->flags;
549         tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
550
551         /* Set the header and trailer lengths. */
552         tls->params.tls_hlen = sizeof(struct tls_record_layer);
553         switch (en->cipher_algorithm) {
554         case CRYPTO_AES_NIST_GCM_16:
555                 /*
556                  * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
557                  * nonce.  TLS 1.3 uses a 12 byte implicit IV.
558                  */
559                 if (en->tls_vminor < TLS_MINOR_VER_THREE)
560                         tls->params.tls_hlen += sizeof(uint64_t);
561                 tls->params.tls_tlen = AES_GMAC_HASH_LEN;
562
563                 /*
564                  * TLS 1.3 includes optional padding which we
565                  * do not support, and also puts the "real" record
566                  * type at the end of the encrypted data.
567                  */
568                 if (en->tls_vminor == TLS_MINOR_VER_THREE)
569                         tls->params.tls_tlen += sizeof(uint8_t);
570
571                 tls->params.tls_bs = 1;
572                 break;
573         case CRYPTO_AES_CBC:
574                 switch (en->auth_algorithm) {
575                 case CRYPTO_SHA1_HMAC:
576                         if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
577                                 /* Implicit IV, no nonce. */
578                         } else {
579                                 tls->params.tls_hlen += AES_BLOCK_LEN;
580                         }
581                         tls->params.tls_tlen = AES_BLOCK_LEN +
582                             SHA1_HASH_LEN;
583                         break;
584                 case CRYPTO_SHA2_256_HMAC:
585                         tls->params.tls_hlen += AES_BLOCK_LEN;
586                         tls->params.tls_tlen = AES_BLOCK_LEN +
587                             SHA2_256_HASH_LEN;
588                         break;
589                 case CRYPTO_SHA2_384_HMAC:
590                         tls->params.tls_hlen += AES_BLOCK_LEN;
591                         tls->params.tls_tlen = AES_BLOCK_LEN +
592                             SHA2_384_HASH_LEN;
593                         break;
594                 default:
595                         panic("invalid hmac");
596                 }
597                 tls->params.tls_bs = AES_BLOCK_LEN;
598                 break;
599         default:
600                 panic("invalid cipher");
601         }
602
603         KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
604             ("TLS header length too long: %d", tls->params.tls_hlen));
605         KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
606             ("TLS trailer length too long: %d", tls->params.tls_tlen));
607
608         if (en->auth_key_len != 0) {
609                 tls->params.auth_key_len = en->auth_key_len;
610                 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
611                     M_WAITOK);
612                 error = copyin(en->auth_key, tls->params.auth_key,
613                     en->auth_key_len);
614                 if (error)
615                         goto out;
616         }
617
618         tls->params.cipher_key_len = en->cipher_key_len;
619         tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
620         error = copyin(en->cipher_key, tls->params.cipher_key,
621             en->cipher_key_len);
622         if (error)
623                 goto out;
624
625         /*
626          * This holds the implicit portion of the nonce for GCM and
627          * the initial implicit IV for TLS 1.0.  The explicit portions
628          * of the IV are generated in ktls_frame().
629          */
630         if (en->iv_len != 0) {
631                 tls->params.iv_len = en->iv_len;
632                 error = copyin(en->iv, tls->params.iv, en->iv_len);
633                 if (error)
634                         goto out;
635
636                 /*
637                  * For TLS 1.2, generate an 8-byte nonce as a counter
638                  * to generate unique explicit IVs.
639                  *
640                  * Store this counter in the last 8 bytes of the IV
641                  * array so that it is 8-byte aligned.
642                  */
643                 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
644                     en->tls_vminor == TLS_MINOR_VER_TWO)
645                         arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
646         }
647
648         *tlsp = tls;
649         return (0);
650
651 out:
652         ktls_cleanup(tls);
653         return (error);
654 }
655
656 static struct ktls_session *
657 ktls_clone_session(struct ktls_session *tls)
658 {
659         struct ktls_session *tls_new;
660
661         tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
662
663         counter_u64_add(ktls_offload_active, 1);
664
665         refcount_init(&tls_new->refcount, 1);
666
667         /* Copy fields from existing session. */
668         tls_new->params = tls->params;
669         tls_new->wq_index = tls->wq_index;
670
671         /* Deep copy keys. */
672         if (tls_new->params.auth_key != NULL) {
673                 tls_new->params.auth_key = malloc(tls->params.auth_key_len,
674                     M_KTLS, M_WAITOK);
675                 memcpy(tls_new->params.auth_key, tls->params.auth_key,
676                     tls->params.auth_key_len);
677         }
678
679         tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
680             M_WAITOK);
681         memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
682             tls->params.cipher_key_len);
683
684         return (tls_new);
685 }
686 #endif
687
688 static void
689 ktls_cleanup(struct ktls_session *tls)
690 {
691
692         counter_u64_add(ktls_offload_active, -1);
693         switch (tls->mode) {
694         case TCP_TLS_MODE_SW:
695                 MPASS(tls->be != NULL);
696                 switch (tls->params.cipher_algorithm) {
697                 case CRYPTO_AES_CBC:
698                         counter_u64_add(ktls_sw_cbc, -1);
699                         break;
700                 case CRYPTO_AES_NIST_GCM_16:
701                         counter_u64_add(ktls_sw_gcm, -1);
702                         break;
703                 }
704                 tls->free(tls);
705                 break;
706         case TCP_TLS_MODE_IFNET:
707                 switch (tls->params.cipher_algorithm) {
708                 case CRYPTO_AES_CBC:
709                         counter_u64_add(ktls_ifnet_cbc, -1);
710                         break;
711                 case CRYPTO_AES_NIST_GCM_16:
712                         counter_u64_add(ktls_ifnet_gcm, -1);
713                         break;
714                 }
715                 if (tls->snd_tag != NULL)
716                         m_snd_tag_rele(tls->snd_tag);
717                 break;
718 #ifdef TCP_OFFLOAD
719         case TCP_TLS_MODE_TOE:
720                 switch (tls->params.cipher_algorithm) {
721                 case CRYPTO_AES_CBC:
722                         counter_u64_add(ktls_toe_cbc, -1);
723                         break;
724                 case CRYPTO_AES_NIST_GCM_16:
725                         counter_u64_add(ktls_toe_gcm, -1);
726                         break;
727                 }
728                 break;
729 #endif
730         }
731         if (tls->params.auth_key != NULL) {
732                 zfree(tls->params.auth_key, M_KTLS);
733                 tls->params.auth_key = NULL;
734                 tls->params.auth_key_len = 0;
735         }
736         if (tls->params.cipher_key != NULL) {
737                 zfree(tls->params.cipher_key, M_KTLS);
738                 tls->params.cipher_key = NULL;
739                 tls->params.cipher_key_len = 0;
740         }
741         explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
742 }
743
744 #if defined(INET) || defined(INET6)
745
746 #ifdef TCP_OFFLOAD
747 static int
748 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
749 {
750         struct inpcb *inp;
751         struct tcpcb *tp;
752         int error;
753
754         inp = so->so_pcb;
755         INP_WLOCK(inp);
756         if (inp->inp_flags2 & INP_FREED) {
757                 INP_WUNLOCK(inp);
758                 return (ECONNRESET);
759         }
760         if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
761                 INP_WUNLOCK(inp);
762                 return (ECONNRESET);
763         }
764         if (inp->inp_socket == NULL) {
765                 INP_WUNLOCK(inp);
766                 return (ECONNRESET);
767         }
768         tp = intotcpcb(inp);
769         if (!(tp->t_flags & TF_TOE)) {
770                 INP_WUNLOCK(inp);
771                 return (EOPNOTSUPP);
772         }
773
774         error = tcp_offload_alloc_tls_session(tp, tls, direction);
775         INP_WUNLOCK(inp);
776         if (error == 0) {
777                 tls->mode = TCP_TLS_MODE_TOE;
778                 switch (tls->params.cipher_algorithm) {
779                 case CRYPTO_AES_CBC:
780                         counter_u64_add(ktls_toe_cbc, 1);
781                         break;
782                 case CRYPTO_AES_NIST_GCM_16:
783                         counter_u64_add(ktls_toe_gcm, 1);
784                         break;
785                 }
786         }
787         return (error);
788 }
789 #endif
790
791 /*
792  * Common code used when first enabling ifnet TLS on a connection or
793  * when allocating a new ifnet TLS session due to a routing change.
794  * This function allocates a new TLS send tag on whatever interface
795  * the connection is currently routed over.
796  */
797 static int
798 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
799     struct m_snd_tag **mstp)
800 {
801         union if_snd_tag_alloc_params params;
802         struct ifnet *ifp;
803         struct nhop_object *nh;
804         struct tcpcb *tp;
805         int error;
806
807         INP_RLOCK(inp);
808         if (inp->inp_flags2 & INP_FREED) {
809                 INP_RUNLOCK(inp);
810                 return (ECONNRESET);
811         }
812         if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
813                 INP_RUNLOCK(inp);
814                 return (ECONNRESET);
815         }
816         if (inp->inp_socket == NULL) {
817                 INP_RUNLOCK(inp);
818                 return (ECONNRESET);
819         }
820         tp = intotcpcb(inp);
821
822         /*
823          * Check administrative controls on ifnet TLS to determine if
824          * ifnet TLS should be denied.
825          *
826          * - Always permit 'force' requests.
827          * - ktls_ifnet_permitted == 0: always deny.
828          */
829         if (!force && ktls_ifnet_permitted == 0) {
830                 INP_RUNLOCK(inp);
831                 return (ENXIO);
832         }
833
834         /*
835          * XXX: Use the cached route in the inpcb to find the
836          * interface.  This should perhaps instead use
837          * rtalloc1_fib(dst, 0, 0, fibnum).  Since KTLS is only
838          * enabled after a connection has completed key negotiation in
839          * userland, the cached route will be present in practice.
840          */
841         nh = inp->inp_route.ro_nh;
842         if (nh == NULL) {
843                 INP_RUNLOCK(inp);
844                 return (ENXIO);
845         }
846         ifp = nh->nh_ifp;
847         if_ref(ifp);
848
849         /*
850          * Allocate a TLS + ratelimit tag if the connection has an
851          * existing pacing rate.
852          */
853         if (tp->t_pacing_rate != -1 &&
854             (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) {
855                 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
856                 params.tls_rate_limit.inp = inp;
857                 params.tls_rate_limit.tls = tls;
858                 params.tls_rate_limit.max_rate = tp->t_pacing_rate;
859         } else {
860                 params.hdr.type = IF_SND_TAG_TYPE_TLS;
861                 params.tls.inp = inp;
862                 params.tls.tls = tls;
863         }
864         params.hdr.flowid = inp->inp_flowid;
865         params.hdr.flowtype = inp->inp_flowtype;
866         params.hdr.numa_domain = inp->inp_numa_domain;
867         INP_RUNLOCK(inp);
868
869         if ((ifp->if_capenable & IFCAP_NOMAP) == 0) {   
870                 error = EOPNOTSUPP;
871                 goto out;
872         }
873         if (inp->inp_vflag & INP_IPV6) {
874                 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) {
875                         error = EOPNOTSUPP;
876                         goto out;
877                 }
878         } else {
879                 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) {
880                         error = EOPNOTSUPP;
881                         goto out;
882                 }
883         }
884         error = m_snd_tag_alloc(ifp, &params, mstp);
885 out:
886         if_rele(ifp);
887         return (error);
888 }
889
890 static int
891 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force)
892 {
893         struct m_snd_tag *mst;
894         int error;
895
896         error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
897         if (error == 0) {
898                 tls->mode = TCP_TLS_MODE_IFNET;
899                 tls->snd_tag = mst;
900                 switch (tls->params.cipher_algorithm) {
901                 case CRYPTO_AES_CBC:
902                         counter_u64_add(ktls_ifnet_cbc, 1);
903                         break;
904                 case CRYPTO_AES_NIST_GCM_16:
905                         counter_u64_add(ktls_ifnet_gcm, 1);
906                         break;
907                 }
908         }
909         return (error);
910 }
911
912 static int
913 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction)
914 {
915         struct rm_priotracker prio;
916         struct ktls_crypto_backend *be;
917
918         /*
919          * Choose the best software crypto backend.  Backends are
920          * stored in sorted priority order (larget value == most
921          * important at the head of the list), so this just stops on
922          * the first backend that claims the session by returning
923          * success.
924          */
925         if (ktls_allow_unload)
926                 rm_rlock(&ktls_backends_lock, &prio);
927         LIST_FOREACH(be, &ktls_backends, next) {
928                 if (be->try(so, tls, direction) == 0)
929                         break;
930                 KASSERT(tls->cipher == NULL,
931                     ("ktls backend leaked a cipher pointer"));
932         }
933         if (be != NULL) {
934                 if (ktls_allow_unload)
935                         be->use_count++;
936                 tls->be = be;
937         }
938         if (ktls_allow_unload)
939                 rm_runlock(&ktls_backends_lock, &prio);
940         if (be == NULL)
941                 return (EOPNOTSUPP);
942         tls->mode = TCP_TLS_MODE_SW;
943         switch (tls->params.cipher_algorithm) {
944         case CRYPTO_AES_CBC:
945                 counter_u64_add(ktls_sw_cbc, 1);
946                 break;
947         case CRYPTO_AES_NIST_GCM_16:
948                 counter_u64_add(ktls_sw_gcm, 1);
949                 break;
950         }
951         return (0);
952 }
953
954 /*
955  * KTLS RX stores data in the socket buffer as a list of TLS records,
956  * where each record is stored as a control message containg the TLS
957  * header followed by data mbufs containing the decrypted data.  This
958  * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
959  * both encrypted and decrypted data.  TLS records decrypted by a NIC
960  * should be queued to the socket buffer as records, but encrypted
961  * data which needs to be decrypted by software arrives as a stream of
962  * regular mbufs which need to be converted.  In addition, there may
963  * already be pending encrypted data in the socket buffer when KTLS RX
964  * is enabled.
965  *
966  * To manage not-yet-decrypted data for KTLS RX, the following scheme
967  * is used:
968  *
969  * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
970  *
971  * - ktls_check_rx checks this chain of mbufs reading the TLS header
972  *   from the first mbuf.  Once all of the data for that TLS record is
973  *   queued, the socket is queued to a worker thread.
974  *
975  * - The worker thread calls ktls_decrypt to decrypt TLS records in
976  *   the TLS chain.  Each TLS record is detached from the TLS chain,
977  *   decrypted, and inserted into the regular socket buffer chain as
978  *   record starting with a control message holding the TLS header and
979  *   a chain of mbufs holding the encrypted data.
980  */
981
982 static void
983 sb_mark_notready(struct sockbuf *sb)
984 {
985         struct mbuf *m;
986
987         m = sb->sb_mb;
988         sb->sb_mtls = m;
989         sb->sb_mb = NULL;
990         sb->sb_mbtail = NULL;
991         sb->sb_lastrecord = NULL;
992         for (; m != NULL; m = m->m_next) {
993                 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
994                     __func__));
995                 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
996                     __func__));
997                 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
998                     __func__));
999                 m->m_flags |= M_NOTREADY;
1000                 sb->sb_acc -= m->m_len;
1001                 sb->sb_tlscc += m->m_len;
1002                 sb->sb_mtlstail = m;
1003         }
1004         KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
1005             ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
1006             sb->sb_ccc));
1007 }
1008
1009 int
1010 ktls_enable_rx(struct socket *so, struct tls_enable *en)
1011 {
1012         struct ktls_session *tls;
1013         int error;
1014
1015         if (!ktls_offload_enable)
1016                 return (ENOTSUP);
1017
1018         counter_u64_add(ktls_offload_enable_calls, 1);
1019
1020         /*
1021          * This should always be true since only the TCP socket option
1022          * invokes this function.
1023          */
1024         if (so->so_proto->pr_protocol != IPPROTO_TCP)
1025                 return (EINVAL);
1026
1027         /*
1028          * XXX: Don't overwrite existing sessions.  We should permit
1029          * this to support rekeying in the future.
1030          */
1031         if (so->so_rcv.sb_tls_info != NULL)
1032                 return (EALREADY);
1033
1034         if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1035                 return (ENOTSUP);
1036
1037         /* TLS 1.3 is not yet supported. */
1038         if (en->tls_vmajor == TLS_MAJOR_VER_ONE &&
1039             en->tls_vminor == TLS_MINOR_VER_THREE)
1040                 return (ENOTSUP);
1041
1042         error = ktls_create_session(so, en, &tls);
1043         if (error)
1044                 return (error);
1045
1046 #ifdef TCP_OFFLOAD
1047         error = ktls_try_toe(so, tls, KTLS_RX);
1048         if (error)
1049 #endif
1050                 error = ktls_try_sw(so, tls, KTLS_RX);
1051
1052         if (error) {
1053                 ktls_cleanup(tls);
1054                 return (error);
1055         }
1056
1057         /* Mark the socket as using TLS offload. */
1058         SOCKBUF_LOCK(&so->so_rcv);
1059         so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
1060         so->so_rcv.sb_tls_info = tls;
1061         so->so_rcv.sb_flags |= SB_TLS_RX;
1062
1063         /* Mark existing data as not ready until it can be decrypted. */
1064         sb_mark_notready(&so->so_rcv);
1065         ktls_check_rx(&so->so_rcv);
1066         SOCKBUF_UNLOCK(&so->so_rcv);
1067
1068         counter_u64_add(ktls_offload_total, 1);
1069
1070         return (0);
1071 }
1072
1073 int
1074 ktls_enable_tx(struct socket *so, struct tls_enable *en)
1075 {
1076         struct ktls_session *tls;
1077         struct inpcb *inp;
1078         int error;
1079
1080         if (!ktls_offload_enable)
1081                 return (ENOTSUP);
1082
1083         counter_u64_add(ktls_offload_enable_calls, 1);
1084
1085         /*
1086          * This should always be true since only the TCP socket option
1087          * invokes this function.
1088          */
1089         if (so->so_proto->pr_protocol != IPPROTO_TCP)
1090                 return (EINVAL);
1091
1092         /*
1093          * XXX: Don't overwrite existing sessions.  We should permit
1094          * this to support rekeying in the future.
1095          */
1096         if (so->so_snd.sb_tls_info != NULL)
1097                 return (EALREADY);
1098
1099         if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1100                 return (ENOTSUP);
1101
1102         /* TLS requires ext pgs */
1103         if (mb_use_ext_pgs == 0)
1104                 return (ENXIO);
1105
1106         error = ktls_create_session(so, en, &tls);
1107         if (error)
1108                 return (error);
1109
1110         /* Prefer TOE -> ifnet TLS -> software TLS. */
1111 #ifdef TCP_OFFLOAD
1112         error = ktls_try_toe(so, tls, KTLS_TX);
1113         if (error)
1114 #endif
1115                 error = ktls_try_ifnet(so, tls, false);
1116         if (error)
1117                 error = ktls_try_sw(so, tls, KTLS_TX);
1118
1119         if (error) {
1120                 ktls_cleanup(tls);
1121                 return (error);
1122         }
1123
1124         error = sblock(&so->so_snd, SBL_WAIT);
1125         if (error) {
1126                 ktls_cleanup(tls);
1127                 return (error);
1128         }
1129
1130         /*
1131          * Write lock the INP when setting sb_tls_info so that
1132          * routines in tcp_ratelimit.c can read sb_tls_info while
1133          * holding the INP lock.
1134          */
1135         inp = so->so_pcb;
1136         INP_WLOCK(inp);
1137         SOCKBUF_LOCK(&so->so_snd);
1138         so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
1139         so->so_snd.sb_tls_info = tls;
1140         if (tls->mode != TCP_TLS_MODE_SW)
1141                 so->so_snd.sb_flags |= SB_TLS_IFNET;
1142         SOCKBUF_UNLOCK(&so->so_snd);
1143         INP_WUNLOCK(inp);
1144         sbunlock(&so->so_snd);
1145
1146         counter_u64_add(ktls_offload_total, 1);
1147
1148         return (0);
1149 }
1150
1151 int
1152 ktls_get_rx_mode(struct socket *so)
1153 {
1154         struct ktls_session *tls;
1155         struct inpcb *inp;
1156         int mode;
1157
1158         inp = so->so_pcb;
1159         INP_WLOCK_ASSERT(inp);
1160         SOCKBUF_LOCK(&so->so_rcv);
1161         tls = so->so_rcv.sb_tls_info;
1162         if (tls == NULL)
1163                 mode = TCP_TLS_MODE_NONE;
1164         else
1165                 mode = tls->mode;
1166         SOCKBUF_UNLOCK(&so->so_rcv);
1167         return (mode);
1168 }
1169
1170 int
1171 ktls_get_tx_mode(struct socket *so)
1172 {
1173         struct ktls_session *tls;
1174         struct inpcb *inp;
1175         int mode;
1176
1177         inp = so->so_pcb;
1178         INP_WLOCK_ASSERT(inp);
1179         SOCKBUF_LOCK(&so->so_snd);
1180         tls = so->so_snd.sb_tls_info;
1181         if (tls == NULL)
1182                 mode = TCP_TLS_MODE_NONE;
1183         else
1184                 mode = tls->mode;
1185         SOCKBUF_UNLOCK(&so->so_snd);
1186         return (mode);
1187 }
1188
1189 /*
1190  * Switch between SW and ifnet TLS sessions as requested.
1191  */
1192 int
1193 ktls_set_tx_mode(struct socket *so, int mode)
1194 {
1195         struct ktls_session *tls, *tls_new;
1196         struct inpcb *inp;
1197         int error;
1198
1199         switch (mode) {
1200         case TCP_TLS_MODE_SW:
1201         case TCP_TLS_MODE_IFNET:
1202                 break;
1203         default:
1204                 return (EINVAL);
1205         }
1206
1207         inp = so->so_pcb;
1208         INP_WLOCK_ASSERT(inp);
1209         SOCKBUF_LOCK(&so->so_snd);
1210         tls = so->so_snd.sb_tls_info;
1211         if (tls == NULL) {
1212                 SOCKBUF_UNLOCK(&so->so_snd);
1213                 return (0);
1214         }
1215
1216         if (tls->mode == mode) {
1217                 SOCKBUF_UNLOCK(&so->so_snd);
1218                 return (0);
1219         }
1220
1221         tls = ktls_hold(tls);
1222         SOCKBUF_UNLOCK(&so->so_snd);
1223         INP_WUNLOCK(inp);
1224
1225         tls_new = ktls_clone_session(tls);
1226
1227         if (mode == TCP_TLS_MODE_IFNET)
1228                 error = ktls_try_ifnet(so, tls_new, true);
1229         else
1230                 error = ktls_try_sw(so, tls_new, KTLS_TX);
1231         if (error) {
1232                 counter_u64_add(ktls_switch_failed, 1);
1233                 ktls_free(tls_new);
1234                 ktls_free(tls);
1235                 INP_WLOCK(inp);
1236                 return (error);
1237         }
1238
1239         error = sblock(&so->so_snd, SBL_WAIT);
1240         if (error) {
1241                 counter_u64_add(ktls_switch_failed, 1);
1242                 ktls_free(tls_new);
1243                 ktls_free(tls);
1244                 INP_WLOCK(inp);
1245                 return (error);
1246         }
1247
1248         /*
1249          * If we raced with another session change, keep the existing
1250          * session.
1251          */
1252         if (tls != so->so_snd.sb_tls_info) {
1253                 counter_u64_add(ktls_switch_failed, 1);
1254                 sbunlock(&so->so_snd);
1255                 ktls_free(tls_new);
1256                 ktls_free(tls);
1257                 INP_WLOCK(inp);
1258                 return (EBUSY);
1259         }
1260
1261         SOCKBUF_LOCK(&so->so_snd);
1262         so->so_snd.sb_tls_info = tls_new;
1263         if (tls_new->mode != TCP_TLS_MODE_SW)
1264                 so->so_snd.sb_flags |= SB_TLS_IFNET;
1265         SOCKBUF_UNLOCK(&so->so_snd);
1266         sbunlock(&so->so_snd);
1267
1268         /*
1269          * Drop two references on 'tls'.  The first is for the
1270          * ktls_hold() above.  The second drops the reference from the
1271          * socket buffer.
1272          */
1273         KASSERT(tls->refcount >= 2, ("too few references on old session"));
1274         ktls_free(tls);
1275         ktls_free(tls);
1276
1277         if (mode == TCP_TLS_MODE_IFNET)
1278                 counter_u64_add(ktls_switch_to_ifnet, 1);
1279         else
1280                 counter_u64_add(ktls_switch_to_sw, 1);
1281
1282         INP_WLOCK(inp);
1283         return (0);
1284 }
1285
1286 /*
1287  * Try to allocate a new TLS send tag.  This task is scheduled when
1288  * ip_output detects a route change while trying to transmit a packet
1289  * holding a TLS record.  If a new tag is allocated, replace the tag
1290  * in the TLS session.  Subsequent packets on the connection will use
1291  * the new tag.  If a new tag cannot be allocated, drop the
1292  * connection.
1293  */
1294 static void
1295 ktls_reset_send_tag(void *context, int pending)
1296 {
1297         struct epoch_tracker et;
1298         struct ktls_session *tls;
1299         struct m_snd_tag *old, *new;
1300         struct inpcb *inp;
1301         struct tcpcb *tp;
1302         int error;
1303
1304         MPASS(pending == 1);
1305
1306         tls = context;
1307         inp = tls->inp;
1308
1309         /*
1310          * Free the old tag first before allocating a new one.
1311          * ip[6]_output_send() will treat a NULL send tag the same as
1312          * an ifp mismatch and drop packets until a new tag is
1313          * allocated.
1314          *
1315          * Write-lock the INP when changing tls->snd_tag since
1316          * ip[6]_output_send() holds a read-lock when reading the
1317          * pointer.
1318          */
1319         INP_WLOCK(inp);
1320         old = tls->snd_tag;
1321         tls->snd_tag = NULL;
1322         INP_WUNLOCK(inp);
1323         if (old != NULL)
1324                 m_snd_tag_rele(old);
1325
1326         error = ktls_alloc_snd_tag(inp, tls, true, &new);
1327
1328         if (error == 0) {
1329                 INP_WLOCK(inp);
1330                 tls->snd_tag = new;
1331                 mtx_pool_lock(mtxpool_sleep, tls);
1332                 tls->reset_pending = false;
1333                 mtx_pool_unlock(mtxpool_sleep, tls);
1334                 if (!in_pcbrele_wlocked(inp))
1335                         INP_WUNLOCK(inp);
1336
1337                 counter_u64_add(ktls_ifnet_reset, 1);
1338
1339                 /*
1340                  * XXX: Should we kick tcp_output explicitly now that
1341                  * the send tag is fixed or just rely on timers?
1342                  */
1343         } else {
1344                 NET_EPOCH_ENTER(et);
1345                 INP_WLOCK(inp);
1346                 if (!in_pcbrele_wlocked(inp)) {
1347                         if (!(inp->inp_flags & INP_TIMEWAIT) &&
1348                             !(inp->inp_flags & INP_DROPPED)) {
1349                                 tp = intotcpcb(inp);
1350                                 CURVNET_SET(tp->t_vnet);
1351                                 tp = tcp_drop(tp, ECONNABORTED);
1352                                 CURVNET_RESTORE();
1353                                 if (tp != NULL)
1354                                         INP_WUNLOCK(inp);
1355                                 counter_u64_add(ktls_ifnet_reset_dropped, 1);
1356                         } else
1357                                 INP_WUNLOCK(inp);
1358                 }
1359                 NET_EPOCH_EXIT(et);
1360
1361                 counter_u64_add(ktls_ifnet_reset_failed, 1);
1362
1363                 /*
1364                  * Leave reset_pending true to avoid future tasks while
1365                  * the socket goes away.
1366                  */
1367         }
1368
1369         ktls_free(tls);
1370 }
1371
1372 int
1373 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
1374 {
1375
1376         if (inp == NULL)
1377                 return (ENOBUFS);
1378
1379         INP_LOCK_ASSERT(inp);
1380
1381         /*
1382          * See if we should schedule a task to update the send tag for
1383          * this session.
1384          */
1385         mtx_pool_lock(mtxpool_sleep, tls);
1386         if (!tls->reset_pending) {
1387                 (void) ktls_hold(tls);
1388                 in_pcbref(inp);
1389                 tls->inp = inp;
1390                 tls->reset_pending = true;
1391                 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1392         }
1393         mtx_pool_unlock(mtxpool_sleep, tls);
1394         return (ENOBUFS);
1395 }
1396
1397 #ifdef RATELIMIT
1398 int
1399 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
1400 {
1401         union if_snd_tag_modify_params params = {
1402                 .rate_limit.max_rate = max_pacing_rate,
1403                 .rate_limit.flags = M_NOWAIT,
1404         };
1405         struct m_snd_tag *mst;
1406         struct ifnet *ifp;
1407         int error;
1408
1409         /* Can't get to the inp, but it should be locked. */
1410         /* INP_LOCK_ASSERT(inp); */
1411
1412         MPASS(tls->mode == TCP_TLS_MODE_IFNET);
1413
1414         if (tls->snd_tag == NULL) {
1415                 /*
1416                  * Resetting send tag, ignore this change.  The
1417                  * pending reset may or may not see this updated rate
1418                  * in the tcpcb.  If it doesn't, we will just lose
1419                  * this rate change.
1420                  */
1421                 return (0);
1422         }
1423
1424         MPASS(tls->snd_tag != NULL);
1425         MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
1426
1427         mst = tls->snd_tag;
1428         ifp = mst->ifp;
1429         return (ifp->if_snd_tag_modify(mst, &params));
1430 }
1431 #endif
1432 #endif
1433
1434 void
1435 ktls_destroy(struct ktls_session *tls)
1436 {
1437         struct rm_priotracker prio;
1438
1439         ktls_cleanup(tls);
1440         if (tls->be != NULL && ktls_allow_unload) {
1441                 rm_rlock(&ktls_backends_lock, &prio);
1442                 tls->be->use_count--;
1443                 rm_runlock(&ktls_backends_lock, &prio);
1444         }
1445         uma_zfree(ktls_session_zone, tls);
1446 }
1447
1448 void
1449 ktls_seq(struct sockbuf *sb, struct mbuf *m)
1450 {
1451
1452         for (; m != NULL; m = m->m_next) {
1453                 KASSERT((m->m_flags & M_EXTPG) != 0,
1454                     ("ktls_seq: mapped mbuf %p", m));
1455
1456                 m->m_epg_seqno = sb->sb_tls_seqno;
1457                 sb->sb_tls_seqno++;
1458         }
1459 }
1460
1461 /*
1462  * Add TLS framing (headers and trailers) to a chain of mbufs.  Each
1463  * mbuf in the chain must be an unmapped mbuf.  The payload of the
1464  * mbuf must be populated with the payload of each TLS record.
1465  *
1466  * The record_type argument specifies the TLS record type used when
1467  * populating the TLS header.
1468  *
1469  * The enq_count argument on return is set to the number of pages of
1470  * payload data for this entire chain that need to be encrypted via SW
1471  * encryption.  The returned value should be passed to ktls_enqueue
1472  * when scheduling encryption of this chain of mbufs.  To handle the
1473  * special case of empty fragments for TLS 1.0 sessions, an empty
1474  * fragment counts as one page.
1475  */
1476 void
1477 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
1478     uint8_t record_type)
1479 {
1480         struct tls_record_layer *tlshdr;
1481         struct mbuf *m;
1482         uint64_t *noncep;
1483         uint16_t tls_len;
1484         int maxlen;
1485
1486         maxlen = tls->params.max_frame_len;
1487         *enq_cnt = 0;
1488         for (m = top; m != NULL; m = m->m_next) {
1489                 /*
1490                  * All mbufs in the chain should be TLS records whose
1491                  * payload does not exceed the maximum frame length.
1492                  *
1493                  * Empty TLS records are permitted when using CBC.
1494                  */
1495                 KASSERT(m->m_len <= maxlen &&
1496                     (tls->params.cipher_algorithm == CRYPTO_AES_CBC ?
1497                     m->m_len >= 0 : m->m_len > 0),
1498                     ("ktls_frame: m %p len %d\n", m, m->m_len));
1499
1500                 /*
1501                  * TLS frames require unmapped mbufs to store session
1502                  * info.
1503                  */
1504                 KASSERT((m->m_flags & M_EXTPG) != 0,
1505                     ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top));
1506
1507                 tls_len = m->m_len;
1508
1509                 /* Save a reference to the session. */
1510                 m->m_epg_tls = ktls_hold(tls);
1511
1512                 m->m_epg_hdrlen = tls->params.tls_hlen;
1513                 m->m_epg_trllen = tls->params.tls_tlen;
1514                 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
1515                         int bs, delta;
1516
1517                         /*
1518                          * AES-CBC pads messages to a multiple of the
1519                          * block size.  Note that the padding is
1520                          * applied after the digest and the encryption
1521                          * is done on the "plaintext || mac || padding".
1522                          * At least one byte of padding is always
1523                          * present.
1524                          *
1525                          * Compute the final trailer length assuming
1526                          * at most one block of padding.
1527                          * tls->params.sb_tls_tlen is the maximum
1528                          * possible trailer length (padding + digest).
1529                          * delta holds the number of excess padding
1530                          * bytes if the maximum were used.  Those
1531                          * extra bytes are removed.
1532                          */
1533                         bs = tls->params.tls_bs;
1534                         delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
1535                         m->m_epg_trllen -= delta;
1536                 }
1537                 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
1538
1539                 /* Populate the TLS header. */
1540                 tlshdr = (void *)m->m_epg_hdr;
1541                 tlshdr->tls_vmajor = tls->params.tls_vmajor;
1542
1543                 /*
1544                  * TLS 1.3 masquarades as TLS 1.2 with a record type
1545                  * of TLS_RLTYPE_APP.
1546                  */
1547                 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
1548                     tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
1549                         tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
1550                         tlshdr->tls_type = TLS_RLTYPE_APP;
1551                         /* save the real record type for later */
1552                         m->m_epg_record_type = record_type;
1553                         m->m_epg_trail[0] = record_type;
1554                 } else {
1555                         tlshdr->tls_vminor = tls->params.tls_vminor;
1556                         tlshdr->tls_type = record_type;
1557                 }
1558                 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
1559
1560                 /*
1561                  * Store nonces / explicit IVs after the end of the
1562                  * TLS header.
1563                  *
1564                  * For GCM with TLS 1.2, an 8 byte nonce is copied
1565                  * from the end of the IV.  The nonce is then
1566                  * incremented for use by the next record.
1567                  *
1568                  * For CBC, a random nonce is inserted for TLS 1.1+.
1569                  */
1570                 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
1571                     tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
1572                         noncep = (uint64_t *)(tls->params.iv + 8);
1573                         be64enc(tlshdr + 1, *noncep);
1574                         (*noncep)++;
1575                 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
1576                     tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
1577                         arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
1578
1579                 /*
1580                  * When using SW encryption, mark the mbuf not ready.
1581                  * It will be marked ready via sbready() after the
1582                  * record has been encrypted.
1583                  *
1584                  * When using ifnet TLS, unencrypted TLS records are
1585                  * sent down the stack to the NIC.
1586                  */
1587                 if (tls->mode == TCP_TLS_MODE_SW) {
1588                         m->m_flags |= M_NOTREADY;
1589                         m->m_epg_nrdy = m->m_epg_npgs;
1590                         if (__predict_false(tls_len == 0)) {
1591                                 /* TLS 1.0 empty fragment. */
1592                                 *enq_cnt += 1;
1593                         } else
1594                                 *enq_cnt += m->m_epg_npgs;
1595                 }
1596         }
1597 }
1598
1599 void
1600 ktls_check_rx(struct sockbuf *sb)
1601 {
1602         struct tls_record_layer hdr;
1603         struct ktls_wq *wq;
1604         struct socket *so;
1605         bool running;
1606
1607         SOCKBUF_LOCK_ASSERT(sb);
1608         KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
1609             __func__, sb));
1610         so = __containerof(sb, struct socket, so_rcv);
1611
1612         if (sb->sb_flags & SB_TLS_RX_RUNNING)
1613                 return;
1614
1615         /* Is there enough queued for a TLS header? */
1616         if (sb->sb_tlscc < sizeof(hdr)) {
1617                 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
1618                         so->so_error = EMSGSIZE;
1619                 return;
1620         }
1621
1622         m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
1623
1624         /* Is the entire record queued? */
1625         if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
1626                 if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
1627                         so->so_error = EMSGSIZE;
1628                 return;
1629         }
1630
1631         sb->sb_flags |= SB_TLS_RX_RUNNING;
1632
1633         soref(so);
1634         wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
1635         mtx_lock(&wq->mtx);
1636         STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
1637         running = wq->running;
1638         mtx_unlock(&wq->mtx);
1639         if (!running)
1640                 wakeup(wq);
1641         counter_u64_add(ktls_cnt_rx_queued, 1);
1642 }
1643
1644 static struct mbuf *
1645 ktls_detach_record(struct sockbuf *sb, int len)
1646 {
1647         struct mbuf *m, *n, *top;
1648         int remain;
1649
1650         SOCKBUF_LOCK_ASSERT(sb);
1651         MPASS(len <= sb->sb_tlscc);
1652
1653         /*
1654          * If TLS chain is the exact size of the record,
1655          * just grab the whole record.
1656          */
1657         top = sb->sb_mtls;
1658         if (sb->sb_tlscc == len) {
1659                 sb->sb_mtls = NULL;
1660                 sb->sb_mtlstail = NULL;
1661                 goto out;
1662         }
1663
1664         /*
1665          * While it would be nice to use m_split() here, we need
1666          * to know exactly what m_split() allocates to update the
1667          * accounting, so do it inline instead.
1668          */
1669         remain = len;
1670         for (m = top; remain > m->m_len; m = m->m_next)
1671                 remain -= m->m_len;
1672
1673         /* Easy case: don't have to split 'm'. */
1674         if (remain == m->m_len) {
1675                 sb->sb_mtls = m->m_next;
1676                 if (sb->sb_mtls == NULL)
1677                         sb->sb_mtlstail = NULL;
1678                 m->m_next = NULL;
1679                 goto out;
1680         }
1681
1682         /*
1683          * Need to allocate an mbuf to hold the remainder of 'm'.  Try
1684          * with M_NOWAIT first.
1685          */
1686         n = m_get(M_NOWAIT, MT_DATA);
1687         if (n == NULL) {
1688                 /*
1689                  * Use M_WAITOK with socket buffer unlocked.  If
1690                  * 'sb_mtls' changes while the lock is dropped, return
1691                  * NULL to force the caller to retry.
1692                  */
1693                 SOCKBUF_UNLOCK(sb);
1694
1695                 n = m_get(M_WAITOK, MT_DATA);
1696
1697                 SOCKBUF_LOCK(sb);
1698                 if (sb->sb_mtls != top) {
1699                         m_free(n);
1700                         return (NULL);
1701                 }
1702         }
1703         n->m_flags |= M_NOTREADY;
1704
1705         /* Store remainder in 'n'. */
1706         n->m_len = m->m_len - remain;
1707         if (m->m_flags & M_EXT) {
1708                 n->m_data = m->m_data + remain;
1709                 mb_dupcl(n, m);
1710         } else {
1711                 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
1712         }
1713
1714         /* Trim 'm' and update accounting. */
1715         m->m_len -= n->m_len;
1716         sb->sb_tlscc -= n->m_len;
1717         sb->sb_ccc -= n->m_len;
1718
1719         /* Account for 'n'. */
1720         sballoc_ktls_rx(sb, n);
1721
1722         /* Insert 'n' into the TLS chain. */
1723         sb->sb_mtls = n;
1724         n->m_next = m->m_next;
1725         if (sb->sb_mtlstail == m)
1726                 sb->sb_mtlstail = n;
1727
1728         /* Detach the record from the TLS chain. */
1729         m->m_next = NULL;
1730
1731 out:
1732         MPASS(m_length(top, NULL) == len);
1733         for (m = top; m != NULL; m = m->m_next)
1734                 sbfree_ktls_rx(sb, m);
1735         sb->sb_tlsdcc = len;
1736         sb->sb_ccc += len;
1737         SBCHECK(sb);
1738         return (top);
1739 }
1740
1741 static void
1742 ktls_decrypt(struct socket *so)
1743 {
1744         char tls_header[MBUF_PEXT_HDR_LEN];
1745         struct ktls_session *tls;
1746         struct sockbuf *sb;
1747         struct tls_record_layer *hdr;
1748         struct tls_get_record tgr;
1749         struct mbuf *control, *data, *m;
1750         uint64_t seqno;
1751         int error, remain, tls_len, trail_len;
1752
1753         hdr = (struct tls_record_layer *)tls_header;
1754         sb = &so->so_rcv;
1755         SOCKBUF_LOCK(sb);
1756         KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
1757             ("%s: socket %p not running", __func__, so));
1758
1759         tls = sb->sb_tls_info;
1760         MPASS(tls != NULL);
1761
1762         for (;;) {
1763                 /* Is there enough queued for a TLS header? */
1764                 if (sb->sb_tlscc < tls->params.tls_hlen)
1765                         break;
1766
1767                 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
1768                 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
1769
1770                 if (hdr->tls_vmajor != tls->params.tls_vmajor ||
1771                     hdr->tls_vminor != tls->params.tls_vminor)
1772                         error = EINVAL;
1773                 else if (tls_len < tls->params.tls_hlen || tls_len >
1774                     tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
1775                     tls->params.tls_tlen)
1776                         error = EMSGSIZE;
1777                 else
1778                         error = 0;
1779                 if (__predict_false(error != 0)) {
1780                         /*
1781                          * We have a corrupted record and are likely
1782                          * out of sync.  The connection isn't
1783                          * recoverable at this point, so abort it.
1784                          */
1785                         SOCKBUF_UNLOCK(sb);
1786                         counter_u64_add(ktls_offload_corrupted_records, 1);
1787
1788                         CURVNET_SET(so->so_vnet);
1789                         so->so_proto->pr_usrreqs->pru_abort(so);
1790                         so->so_error = error;
1791                         CURVNET_RESTORE();
1792                         goto deref;
1793                 }
1794
1795                 /* Is the entire record queued? */
1796                 if (sb->sb_tlscc < tls_len)
1797                         break;
1798
1799                 /*
1800                  * Split out the portion of the mbuf chain containing
1801                  * this TLS record.
1802                  */
1803                 data = ktls_detach_record(sb, tls_len);
1804                 if (data == NULL)
1805                         continue;
1806                 MPASS(sb->sb_tlsdcc == tls_len);
1807
1808                 seqno = sb->sb_tls_seqno;
1809                 sb->sb_tls_seqno++;
1810                 SBCHECK(sb);
1811                 SOCKBUF_UNLOCK(sb);
1812
1813                 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len);
1814                 if (error) {
1815                         counter_u64_add(ktls_offload_failed_crypto, 1);
1816
1817                         SOCKBUF_LOCK(sb);
1818                         if (sb->sb_tlsdcc == 0) {
1819                                 /*
1820                                  * sbcut/drop/flush discarded these
1821                                  * mbufs.
1822                                  */
1823                                 m_freem(data);
1824                                 break;
1825                         }
1826
1827                         /*
1828                          * Drop this TLS record's data, but keep
1829                          * decrypting subsequent records.
1830                          */
1831                         sb->sb_ccc -= tls_len;
1832                         sb->sb_tlsdcc = 0;
1833
1834                         CURVNET_SET(so->so_vnet);
1835                         so->so_error = EBADMSG;
1836                         sorwakeup_locked(so);
1837                         CURVNET_RESTORE();
1838
1839                         m_freem(data);
1840
1841                         SOCKBUF_LOCK(sb);
1842                         continue;
1843                 }
1844
1845                 /* Allocate the control mbuf. */
1846                 tgr.tls_type = hdr->tls_type;
1847                 tgr.tls_vmajor = hdr->tls_vmajor;
1848                 tgr.tls_vminor = hdr->tls_vminor;
1849                 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
1850                     trail_len);
1851                 control = sbcreatecontrol_how(&tgr, sizeof(tgr),
1852                     TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
1853
1854                 SOCKBUF_LOCK(sb);
1855                 if (sb->sb_tlsdcc == 0) {
1856                         /* sbcut/drop/flush discarded these mbufs. */
1857                         MPASS(sb->sb_tlscc == 0);
1858                         m_freem(data);
1859                         m_freem(control);
1860                         break;
1861                 }
1862
1863                 /*
1864                  * Clear the 'dcc' accounting in preparation for
1865                  * adding the decrypted record.
1866                  */
1867                 sb->sb_ccc -= tls_len;
1868                 sb->sb_tlsdcc = 0;
1869                 SBCHECK(sb);
1870
1871                 /* If there is no payload, drop all of the data. */
1872                 if (tgr.tls_length == htobe16(0)) {
1873                         m_freem(data);
1874                         data = NULL;
1875                 } else {
1876                         /* Trim header. */
1877                         remain = tls->params.tls_hlen;
1878                         while (remain > 0) {
1879                                 if (data->m_len > remain) {
1880                                         data->m_data += remain;
1881                                         data->m_len -= remain;
1882                                         break;
1883                                 }
1884                                 remain -= data->m_len;
1885                                 data = m_free(data);
1886                         }
1887
1888                         /* Trim trailer and clear M_NOTREADY. */
1889                         remain = be16toh(tgr.tls_length);
1890                         m = data;
1891                         for (m = data; remain > m->m_len; m = m->m_next) {
1892                                 m->m_flags &= ~M_NOTREADY;
1893                                 remain -= m->m_len;
1894                         }
1895                         m->m_len = remain;
1896                         m_freem(m->m_next);
1897                         m->m_next = NULL;
1898                         m->m_flags &= ~M_NOTREADY;
1899
1900                         /* Set EOR on the final mbuf. */
1901                         m->m_flags |= M_EOR;
1902                 }
1903
1904                 sbappendcontrol_locked(sb, data, control, 0);
1905         }
1906
1907         sb->sb_flags &= ~SB_TLS_RX_RUNNING;
1908
1909         if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
1910                 so->so_error = EMSGSIZE;
1911
1912         sorwakeup_locked(so);
1913
1914 deref:
1915         SOCKBUF_UNLOCK_ASSERT(sb);
1916
1917         CURVNET_SET(so->so_vnet);
1918         SOCK_LOCK(so);
1919         sorele(so);
1920         CURVNET_RESTORE();
1921 }
1922
1923 void
1924 ktls_enqueue_to_free(struct mbuf *m)
1925 {
1926         struct ktls_wq *wq;
1927         bool running;
1928
1929         /* Mark it for freeing. */
1930         m->m_epg_flags |= EPG_FLAG_2FREE;
1931         wq = &ktls_wq[m->m_epg_tls->wq_index];
1932         mtx_lock(&wq->mtx);
1933         STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
1934         running = wq->running;
1935         mtx_unlock(&wq->mtx);
1936         if (!running)
1937                 wakeup(wq);
1938 }
1939
1940 void
1941 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
1942 {
1943         struct ktls_wq *wq;
1944         bool running;
1945
1946         KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
1947             (M_EXTPG | M_NOTREADY)),
1948             ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
1949         KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
1950
1951         KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
1952
1953         m->m_epg_enc_cnt = page_count;
1954
1955         /*
1956          * Save a pointer to the socket.  The caller is responsible
1957          * for taking an additional reference via soref().
1958          */
1959         m->m_epg_so = so;
1960
1961         wq = &ktls_wq[m->m_epg_tls->wq_index];
1962         mtx_lock(&wq->mtx);
1963         STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
1964         running = wq->running;
1965         mtx_unlock(&wq->mtx);
1966         if (!running)
1967                 wakeup(wq);
1968         counter_u64_add(ktls_cnt_tx_queued, 1);
1969 }
1970
1971 static __noinline void
1972 ktls_encrypt(struct mbuf *top)
1973 {
1974         struct ktls_session *tls;
1975         struct socket *so;
1976         struct mbuf *m;
1977         vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
1978         struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
1979         struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
1980         vm_page_t pg;
1981         int error, i, len, npages, off, total_pages;
1982         bool is_anon;
1983
1984         so = top->m_epg_so;
1985         tls = top->m_epg_tls;
1986         KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
1987         KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
1988 #ifdef INVARIANTS
1989         top->m_epg_so = NULL;
1990 #endif
1991         total_pages = top->m_epg_enc_cnt;
1992         npages = 0;
1993
1994         /*
1995          * Encrypt the TLS records in the chain of mbufs starting with
1996          * 'top'.  'total_pages' gives us a total count of pages and is
1997          * used to know when we have finished encrypting the TLS
1998          * records originally queued with 'top'.
1999          *
2000          * NB: These mbufs are queued in the socket buffer and
2001          * 'm_next' is traversing the mbufs in the socket buffer.  The
2002          * socket buffer lock is not held while traversing this chain.
2003          * Since the mbufs are all marked M_NOTREADY their 'm_next'
2004          * pointers should be stable.  However, the 'm_next' of the
2005          * last mbuf encrypted is not necessarily NULL.  It can point
2006          * to other mbufs appended while 'top' was on the TLS work
2007          * queue.
2008          *
2009          * Each mbuf holds an entire TLS record.
2010          */
2011         error = 0;
2012         for (m = top; npages != total_pages; m = m->m_next) {
2013                 KASSERT(m->m_epg_tls == tls,
2014                     ("different TLS sessions in a single mbuf chain: %p vs %p",
2015                     tls, m->m_epg_tls));
2016                 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
2017                     (M_EXTPG | M_NOTREADY),
2018                     ("%p not unready & nomap mbuf (top = %p)\n", m, top));
2019                 KASSERT(npages + m->m_epg_npgs <= total_pages,
2020                     ("page count mismatch: top %p, total_pages %d, m %p", top,
2021                     total_pages, m));
2022
2023                 /*
2024                  * Generate source and destination ivoecs to pass to
2025                  * the SW encryption backend.  For writable mbufs, the
2026                  * destination iovec is a copy of the source and
2027                  * encryption is done in place.  For file-backed mbufs
2028                  * (from sendfile), anonymous wired pages are
2029                  * allocated and assigned to the destination iovec.
2030                  */
2031                 is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0;
2032
2033                 off = m->m_epg_1st_off;
2034                 for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
2035                         len = m_epg_pagelen(m, i, off);
2036                         src_iov[i].iov_len = len;
2037                         src_iov[i].iov_base =
2038                             (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) +
2039                                 off;
2040
2041                         if (is_anon) {
2042                                 dst_iov[i].iov_base = src_iov[i].iov_base;
2043                                 dst_iov[i].iov_len = src_iov[i].iov_len;
2044                                 continue;
2045                         }
2046 retry_page:
2047                         pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2048                             VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED);
2049                         if (pg == NULL) {
2050                                 vm_wait(NULL);
2051                                 goto retry_page;
2052                         }
2053                         parray[i] = VM_PAGE_TO_PHYS(pg);
2054                         dst_iov[i].iov_base =
2055                             (char *)(void *)PHYS_TO_DMAP(parray[i]) + off;
2056                         dst_iov[i].iov_len = len;
2057                 }
2058
2059                 if (__predict_false(m->m_epg_npgs == 0)) {
2060                         /* TLS 1.0 empty fragment. */
2061                         npages++;
2062                 } else
2063                         npages += i;
2064
2065                 error = (*tls->sw_encrypt)(tls,
2066                     (const struct tls_record_layer *)m->m_epg_hdr,
2067                     m->m_epg_trail, src_iov, dst_iov, i, m->m_epg_seqno,
2068                     m->m_epg_record_type);
2069                 if (error) {
2070                         counter_u64_add(ktls_offload_failed_crypto, 1);
2071                         break;
2072                 }
2073
2074                 /*
2075                  * For file-backed mbufs, release the file-backed
2076                  * pages and replace them in the ext_pgs array with
2077                  * the anonymous wired pages allocated above.
2078                  */
2079                 if (!is_anon) {
2080                         /* Free the old pages. */
2081                         m->m_ext.ext_free(m);
2082
2083                         /* Replace them with the new pages. */
2084                         for (i = 0; i < m->m_epg_npgs; i++)
2085                                 m->m_epg_pa[i] = parray[i];
2086
2087                         /* Use the basic free routine. */
2088                         m->m_ext.ext_free = mb_free_mext_pgs;
2089
2090                         /* Pages are now writable. */
2091                         m->m_epg_flags |= EPG_FLAG_ANON;
2092                 }
2093
2094                 /*
2095                  * Drop a reference to the session now that it is no
2096                  * longer needed.  Existing code depends on encrypted
2097                  * records having no associated session vs
2098                  * yet-to-be-encrypted records having an associated
2099                  * session.
2100                  */
2101                 m->m_epg_tls = NULL;
2102                 ktls_free(tls);
2103         }
2104
2105         CURVNET_SET(so->so_vnet);
2106         if (error == 0) {
2107                 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages);
2108         } else {
2109                 so->so_proto->pr_usrreqs->pru_abort(so);
2110                 so->so_error = EIO;
2111                 mb_free_notready(top, total_pages);
2112         }
2113
2114         SOCK_LOCK(so);
2115         sorele(so);
2116         CURVNET_RESTORE();
2117 }
2118
2119 static void
2120 ktls_work_thread(void *ctx)
2121 {
2122         struct ktls_wq *wq = ctx;
2123         struct mbuf *m, *n;
2124         struct socket *so, *son;
2125         STAILQ_HEAD(, mbuf) local_m_head;
2126         STAILQ_HEAD(, socket) local_so_head;
2127
2128         if (ktls_bind_threads > 1) {
2129                 curthread->td_domain.dr_policy =
2130                         DOMAINSET_PREF(PCPU_GET(domain));
2131         }
2132 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
2133         fpu_kern_thread(0);
2134 #endif
2135         for (;;) {
2136                 mtx_lock(&wq->mtx);
2137                 while (STAILQ_EMPTY(&wq->m_head) &&
2138                     STAILQ_EMPTY(&wq->so_head)) {
2139                         wq->running = false;
2140                         mtx_sleep(wq, &wq->mtx, 0, "-", 0);
2141                         wq->running = true;
2142                 }
2143
2144                 STAILQ_INIT(&local_m_head);
2145                 STAILQ_CONCAT(&local_m_head, &wq->m_head);
2146                 STAILQ_INIT(&local_so_head);
2147                 STAILQ_CONCAT(&local_so_head, &wq->so_head);
2148                 mtx_unlock(&wq->mtx);
2149
2150                 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
2151                         if (m->m_epg_flags & EPG_FLAG_2FREE) {
2152                                 ktls_free(m->m_epg_tls);
2153                                 uma_zfree(zone_mbuf, m);
2154                         } else {
2155                                 ktls_encrypt(m);
2156                                 counter_u64_add(ktls_cnt_tx_queued, -1);
2157                         }
2158                 }
2159
2160                 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
2161                         ktls_decrypt(so);
2162                         counter_u64_add(ktls_cnt_rx_queued, -1);
2163                 }
2164         }
2165 }