]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/opencrypto/crypto.c
ping(8): Fix a mandoc related issue
[FreeBSD/FreeBSD.git] / sys / opencrypto / crypto.c
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27
28 /*
29  * Cryptographic Subsystem.
30  *
31  * This code is derived from the Openbsd Cryptographic Framework (OCF)
32  * that has the copyright shown below.  Very little of the original
33  * code remains.
34  */
35
36 /*-
37  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38  *
39  * This code was written by Angelos D. Keromytis in Athens, Greece, in
40  * February 2000. Network Security Technologies Inc. (NSTI) kindly
41  * supported the development of this code.
42  *
43  * Copyright (c) 2000, 2001 Angelos D. Keromytis
44  *
45  * Permission to use, copy, and modify this software with or without fee
46  * is hereby granted, provided that this entire notice is included in
47  * all source code copies of any software which is or includes a copy or
48  * modification of this software.
49  *
50  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54  * PURPOSE.
55  */
56
57 #include "opt_compat.h"
58 #include "opt_ddb.h"
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/counter.h>
63 #include <sys/kernel.h>
64 #include <sys/kthread.h>
65 #include <sys/linker.h>
66 #include <sys/lock.h>
67 #include <sys/module.h>
68 #include <sys/mutex.h>
69 #include <sys/malloc.h>
70 #include <sys/mbuf.h>
71 #include <sys/proc.h>
72 #include <sys/refcount.h>
73 #include <sys/sdt.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76 #include <sys/taskqueue.h>
77 #include <sys/uio.h>
78
79 #include <ddb/ddb.h>
80
81 #include <machine/vmparam.h>
82 #include <vm/uma.h>
83
84 #include <crypto/intake.h>
85 #include <opencrypto/cryptodev.h>
86 #include <opencrypto/xform_auth.h>
87 #include <opencrypto/xform_enc.h>
88
89 #include <sys/kobj.h>
90 #include <sys/bus.h>
91 #include "cryptodev_if.h"
92
93 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
94 #include <machine/pcb.h>
95 #endif
96
97 SDT_PROVIDER_DEFINE(opencrypto);
98
99 /*
100  * Crypto drivers register themselves by allocating a slot in the
101  * crypto_drivers table with crypto_get_driverid() and then registering
102  * each asym algorithm they support with crypto_kregister().
103  */
104 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
105 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
106 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
107 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
108
109 /*
110  * Crypto device/driver capabilities structure.
111  *
112  * Synchronization:
113  * (d) - protected by CRYPTO_DRIVER_LOCK()
114  * (q) - protected by CRYPTO_Q_LOCK()
115  * Not tagged fields are read-only.
116  */
117 struct cryptocap {
118         device_t        cc_dev;
119         uint32_t        cc_hid;
120         uint32_t        cc_sessions;            /* (d) # of sessions */
121         uint32_t        cc_koperations;         /* (d) # os asym operations */
122         uint8_t         cc_kalg[CRK_ALGORITHM_MAX + 1];
123
124         int             cc_flags;               /* (d) flags */
125 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
126         int             cc_qblocked;            /* (q) symmetric q blocked */
127         int             cc_kqblocked;           /* (q) asymmetric q blocked */
128         size_t          cc_session_size;
129         volatile int    cc_refs;
130 };
131
132 static  struct cryptocap **crypto_drivers = NULL;
133 static  int crypto_drivers_size = 0;
134
135 struct crypto_session {
136         struct cryptocap *cap;
137         void *softc;
138         struct crypto_session_params csp;
139 };
140
141 /*
142  * There are two queues for crypto requests; one for symmetric (e.g.
143  * cipher) operations and one for asymmetric (e.g. MOD)operations.
144  * A single mutex is used to lock access to both queues.  We could
145  * have one per-queue but having one simplifies handling of block/unblock
146  * operations.
147  */
148 static  int crp_sleep = 0;
149 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
150 static  TAILQ_HEAD(,cryptkop) crp_kq;
151 static  struct mtx crypto_q_mtx;
152 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
153 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
154
155 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
156     "In-kernel cryptography");
157
158 /*
159  * Taskqueue used to dispatch the crypto requests
160  * that have the CRYPTO_F_ASYNC flag
161  */
162 static struct taskqueue *crypto_tq;
163
164 /*
165  * Crypto seq numbers are operated on with modular arithmetic
166  */
167 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
168
169 struct crypto_ret_worker {
170         struct mtx crypto_ret_mtx;
171
172         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
173         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
174         TAILQ_HEAD(,cryptkop) crp_ret_kq;       /* callback queue for asym jobs */
175
176         uint32_t reorder_ops;           /* total ordered sym jobs received */
177         uint32_t reorder_cur_seq;       /* current sym job dispatched */
178
179         struct proc *cryptoretproc;
180 };
181 static struct crypto_ret_worker *crypto_ret_workers = NULL;
182
183 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
184 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
185 #define FOREACH_CRYPTO_RETW(w) \
186         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
187
188 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
189 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
190 #define CRYPTO_RETW_EMPTY(w) \
191         (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q))
192
193 static int crypto_workers_num = 0;
194 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
195            &crypto_workers_num, 0,
196            "Number of crypto workers used to dispatch crypto jobs");
197 #ifdef COMPAT_FREEBSD12
198 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
199            &crypto_workers_num, 0,
200            "Number of crypto workers used to dispatch crypto jobs");
201 #endif
202
203 static  uma_zone_t cryptop_zone;
204 static  uma_zone_t cryptoses_zone;
205
206 int     crypto_userasymcrypto = 1;
207 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW,
208            &crypto_userasymcrypto, 0,
209            "Enable user-mode access to asymmetric crypto support");
210 #ifdef COMPAT_FREEBSD12
211 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
212            &crypto_userasymcrypto, 0,
213            "Enable/disable user-mode access to asymmetric crypto support");
214 #endif
215
216 int     crypto_devallowsoft = 0;
217 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
218            &crypto_devallowsoft, 0,
219            "Enable use of software crypto by /dev/crypto");
220 #ifdef COMPAT_FREEBSD12
221 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
222            &crypto_devallowsoft, 0,
223            "Enable/disable use of software crypto by /dev/crypto");
224 #endif
225
226 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
227
228 static  void crypto_proc(void);
229 static  struct proc *cryptoproc;
230 static  void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
231 static  void crypto_destroy(void);
232 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
233 static  int crypto_kinvoke(struct cryptkop *krp);
234 static  void crypto_task_invoke(void *ctx, int pending);
235 static void crypto_batch_enqueue(struct cryptop *crp);
236
237 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
238 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
239     cryptostats, nitems(cryptostats),
240     "Crypto system statistics");
241
242 #define CRYPTOSTAT_INC(stat) do {                                       \
243         counter_u64_add(                                                \
244             cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
245             1);                                                         \
246 } while (0)
247
248 static void
249 cryptostats_init(void *arg __unused)
250 {
251         COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
252 }
253 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
254
255 static void
256 cryptostats_fini(void *arg __unused)
257 {
258         COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
259 }
260 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
261     NULL);
262
263 /* Try to avoid directly exposing the key buffer as a symbol */
264 static struct keybuf *keybuf;
265
266 static struct keybuf empty_keybuf = {
267         .kb_nents = 0
268 };
269
270 /* Obtain the key buffer from boot metadata */
271 static void
272 keybuf_init(void)
273 {
274         caddr_t kmdp;
275
276         kmdp = preload_search_by_type("elf kernel");
277
278         if (kmdp == NULL)
279                 kmdp = preload_search_by_type("elf64 kernel");
280
281         keybuf = (struct keybuf *)preload_search_info(kmdp,
282             MODINFO_METADATA | MODINFOMD_KEYBUF);
283
284         if (keybuf == NULL)
285                 keybuf = &empty_keybuf;
286 }
287
288 /* It'd be nice if we could store these in some kind of secure memory... */
289 struct keybuf *
290 get_keybuf(void)
291 {
292
293         return (keybuf);
294 }
295
296 static struct cryptocap *
297 cap_ref(struct cryptocap *cap)
298 {
299
300         refcount_acquire(&cap->cc_refs);
301         return (cap);
302 }
303
304 static void
305 cap_rele(struct cryptocap *cap)
306 {
307
308         if (refcount_release(&cap->cc_refs) == 0)
309                 return;
310
311         KASSERT(cap->cc_sessions == 0,
312             ("freeing crypto driver with active sessions"));
313         KASSERT(cap->cc_koperations == 0,
314             ("freeing crypto driver with active key operations"));
315
316         free(cap, M_CRYPTO_DATA);
317 }
318
319 static int
320 crypto_init(void)
321 {
322         struct crypto_ret_worker *ret_worker;
323         int error;
324
325         mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
326                 MTX_DEF|MTX_QUIET);
327
328         TAILQ_INIT(&crp_q);
329         TAILQ_INIT(&crp_kq);
330         mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
331
332         cryptop_zone = uma_zcreate("cryptop",
333             sizeof(struct cryptop), NULL, NULL, NULL, NULL,
334             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
335         cryptoses_zone = uma_zcreate("crypto_session",
336             sizeof(struct crypto_session), NULL, NULL, NULL, NULL,
337             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
338
339         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
340         crypto_drivers = malloc(crypto_drivers_size *
341             sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
342
343         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
344                 crypto_workers_num = mp_ncpus;
345
346         crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
347             taskqueue_thread_enqueue, &crypto_tq);
348
349         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
350             "crypto");
351
352         error = kproc_create((void (*)(void *)) crypto_proc, NULL,
353                     &cryptoproc, 0, 0, "crypto");
354         if (error) {
355                 printf("crypto_init: cannot start crypto thread; error %d",
356                         error);
357                 goto bad;
358         }
359
360         crypto_ret_workers = mallocarray(crypto_workers_num,
361             sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
362
363         FOREACH_CRYPTO_RETW(ret_worker) {
364                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
365                 TAILQ_INIT(&ret_worker->crp_ret_q);
366                 TAILQ_INIT(&ret_worker->crp_ret_kq);
367
368                 ret_worker->reorder_ops = 0;
369                 ret_worker->reorder_cur_seq = 0;
370
371                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
372
373                 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
374                                 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
375                 if (error) {
376                         printf("crypto_init: cannot start cryptoret thread; error %d",
377                                 error);
378                         goto bad;
379                 }
380         }
381
382         keybuf_init();
383
384         return 0;
385 bad:
386         crypto_destroy();
387         return error;
388 }
389
390 /*
391  * Signal a crypto thread to terminate.  We use the driver
392  * table lock to synchronize the sleep/wakeups so that we
393  * are sure the threads have terminated before we release
394  * the data structures they use.  See crypto_finis below
395  * for the other half of this song-and-dance.
396  */
397 static void
398 crypto_terminate(struct proc **pp, void *q)
399 {
400         struct proc *p;
401
402         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
403         p = *pp;
404         *pp = NULL;
405         if (p) {
406                 wakeup_one(q);
407                 PROC_LOCK(p);           /* NB: insure we don't miss wakeup */
408                 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
409                 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
410                 PROC_UNLOCK(p);
411                 CRYPTO_DRIVER_LOCK();
412         }
413 }
414
415 static void
416 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
417     void *auth_ctx, uint8_t padval)
418 {
419         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
420         u_int i;
421
422         KASSERT(axf->blocksize <= sizeof(hmac_key),
423             ("Invalid HMAC block size %d", axf->blocksize));
424
425         /*
426          * If the key is larger than the block size, use the digest of
427          * the key as the key instead.
428          */
429         memset(hmac_key, 0, sizeof(hmac_key));
430         if (klen > axf->blocksize) {
431                 axf->Init(auth_ctx);
432                 axf->Update(auth_ctx, key, klen);
433                 axf->Final(hmac_key, auth_ctx);
434                 klen = axf->hashsize;
435         } else
436                 memcpy(hmac_key, key, klen);
437
438         for (i = 0; i < axf->blocksize; i++)
439                 hmac_key[i] ^= padval;
440
441         axf->Init(auth_ctx);
442         axf->Update(auth_ctx, hmac_key, axf->blocksize);
443         explicit_bzero(hmac_key, sizeof(hmac_key));
444 }
445
446 void
447 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
448     void *auth_ctx)
449 {
450
451         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
452 }
453
454 void
455 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
456     void *auth_ctx)
457 {
458
459         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
460 }
461
462 static void
463 crypto_destroy(void)
464 {
465         struct crypto_ret_worker *ret_worker;
466         int i;
467
468         /*
469          * Terminate any crypto threads.
470          */
471         if (crypto_tq != NULL)
472                 taskqueue_drain_all(crypto_tq);
473         CRYPTO_DRIVER_LOCK();
474         crypto_terminate(&cryptoproc, &crp_q);
475         FOREACH_CRYPTO_RETW(ret_worker)
476                 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
477         CRYPTO_DRIVER_UNLOCK();
478
479         /* XXX flush queues??? */
480
481         /*
482          * Reclaim dynamically allocated resources.
483          */
484         for (i = 0; i < crypto_drivers_size; i++) {
485                 if (crypto_drivers[i] != NULL)
486                         cap_rele(crypto_drivers[i]);
487         }
488         free(crypto_drivers, M_CRYPTO_DATA);
489
490         if (cryptoses_zone != NULL)
491                 uma_zdestroy(cryptoses_zone);
492         if (cryptop_zone != NULL)
493                 uma_zdestroy(cryptop_zone);
494         mtx_destroy(&crypto_q_mtx);
495         FOREACH_CRYPTO_RETW(ret_worker)
496                 mtx_destroy(&ret_worker->crypto_ret_mtx);
497         free(crypto_ret_workers, M_CRYPTO_DATA);
498         if (crypto_tq != NULL)
499                 taskqueue_free(crypto_tq);
500         mtx_destroy(&crypto_drivers_mtx);
501 }
502
503 uint32_t
504 crypto_ses2hid(crypto_session_t crypto_session)
505 {
506         return (crypto_session->cap->cc_hid);
507 }
508
509 uint32_t
510 crypto_ses2caps(crypto_session_t crypto_session)
511 {
512         return (crypto_session->cap->cc_flags & 0xff000000);
513 }
514
515 void *
516 crypto_get_driver_session(crypto_session_t crypto_session)
517 {
518         return (crypto_session->softc);
519 }
520
521 const struct crypto_session_params *
522 crypto_get_params(crypto_session_t crypto_session)
523 {
524         return (&crypto_session->csp);
525 }
526
527 struct auth_hash *
528 crypto_auth_hash(const struct crypto_session_params *csp)
529 {
530
531         switch (csp->csp_auth_alg) {
532         case CRYPTO_SHA1_HMAC:
533                 return (&auth_hash_hmac_sha1);
534         case CRYPTO_SHA2_224_HMAC:
535                 return (&auth_hash_hmac_sha2_224);
536         case CRYPTO_SHA2_256_HMAC:
537                 return (&auth_hash_hmac_sha2_256);
538         case CRYPTO_SHA2_384_HMAC:
539                 return (&auth_hash_hmac_sha2_384);
540         case CRYPTO_SHA2_512_HMAC:
541                 return (&auth_hash_hmac_sha2_512);
542         case CRYPTO_NULL_HMAC:
543                 return (&auth_hash_null);
544         case CRYPTO_RIPEMD160_HMAC:
545                 return (&auth_hash_hmac_ripemd_160);
546         case CRYPTO_SHA1:
547                 return (&auth_hash_sha1);
548         case CRYPTO_SHA2_224:
549                 return (&auth_hash_sha2_224);
550         case CRYPTO_SHA2_256:
551                 return (&auth_hash_sha2_256);
552         case CRYPTO_SHA2_384:
553                 return (&auth_hash_sha2_384);
554         case CRYPTO_SHA2_512:
555                 return (&auth_hash_sha2_512);
556         case CRYPTO_AES_NIST_GMAC:
557                 switch (csp->csp_auth_klen) {
558                 case 128 / 8:
559                         return (&auth_hash_nist_gmac_aes_128);
560                 case 192 / 8:
561                         return (&auth_hash_nist_gmac_aes_192);
562                 case 256 / 8:
563                         return (&auth_hash_nist_gmac_aes_256);
564                 default:
565                         return (NULL);
566                 }
567         case CRYPTO_BLAKE2B:
568                 return (&auth_hash_blake2b);
569         case CRYPTO_BLAKE2S:
570                 return (&auth_hash_blake2s);
571         case CRYPTO_POLY1305:
572                 return (&auth_hash_poly1305);
573         case CRYPTO_AES_CCM_CBC_MAC:
574                 switch (csp->csp_auth_klen) {
575                 case 128 / 8:
576                         return (&auth_hash_ccm_cbc_mac_128);
577                 case 192 / 8:
578                         return (&auth_hash_ccm_cbc_mac_192);
579                 case 256 / 8:
580                         return (&auth_hash_ccm_cbc_mac_256);
581                 default:
582                         return (NULL);
583                 }
584         default:
585                 return (NULL);
586         }
587 }
588
589 struct enc_xform *
590 crypto_cipher(const struct crypto_session_params *csp)
591 {
592
593         switch (csp->csp_cipher_alg) {
594         case CRYPTO_RIJNDAEL128_CBC:
595                 return (&enc_xform_rijndael128);
596         case CRYPTO_AES_XTS:
597                 return (&enc_xform_aes_xts);
598         case CRYPTO_AES_ICM:
599                 return (&enc_xform_aes_icm);
600         case CRYPTO_AES_NIST_GCM_16:
601                 return (&enc_xform_aes_nist_gcm);
602         case CRYPTO_CAMELLIA_CBC:
603                 return (&enc_xform_camellia);
604         case CRYPTO_NULL_CBC:
605                 return (&enc_xform_null);
606         case CRYPTO_CHACHA20:
607                 return (&enc_xform_chacha20);
608         case CRYPTO_AES_CCM_16:
609                 return (&enc_xform_ccm);
610         default:
611                 return (NULL);
612         }
613 }
614
615 static struct cryptocap *
616 crypto_checkdriver(uint32_t hid)
617 {
618
619         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
620 }
621
622 /*
623  * Select a driver for a new session that supports the specified
624  * algorithms and, optionally, is constrained according to the flags.
625  */
626 static struct cryptocap *
627 crypto_select_driver(const struct crypto_session_params *csp, int flags)
628 {
629         struct cryptocap *cap, *best;
630         int best_match, error, hid;
631
632         CRYPTO_DRIVER_ASSERT();
633
634         best = NULL;
635         for (hid = 0; hid < crypto_drivers_size; hid++) {
636                 /*
637                  * If there is no driver for this slot, or the driver
638                  * is not appropriate (hardware or software based on
639                  * match), then skip.
640                  */
641                 cap = crypto_drivers[hid];
642                 if (cap == NULL ||
643                     (cap->cc_flags & flags) == 0)
644                         continue;
645
646                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
647                 if (error >= 0)
648                         continue;
649
650                 /*
651                  * Use the driver with the highest probe value.
652                  * Hardware drivers use a higher probe value than
653                  * software.  In case of a tie, prefer the driver with
654                  * the fewest active sessions.
655                  */
656                 if (best == NULL || error > best_match ||
657                     (error == best_match &&
658                     cap->cc_sessions < best->cc_sessions)) {
659                         best = cap;
660                         best_match = error;
661                 }
662         }
663         return best;
664 }
665
666 static enum alg_type {
667         ALG_NONE = 0,
668         ALG_CIPHER,
669         ALG_DIGEST,
670         ALG_KEYED_DIGEST,
671         ALG_COMPRESSION,
672         ALG_AEAD
673 } alg_types[] = {
674         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
675         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
676         [CRYPTO_AES_CBC] = ALG_CIPHER,
677         [CRYPTO_SHA1] = ALG_DIGEST,
678         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
679         [CRYPTO_NULL_CBC] = ALG_CIPHER,
680         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
681         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
682         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
683         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
684         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
685         [CRYPTO_AES_XTS] = ALG_CIPHER,
686         [CRYPTO_AES_ICM] = ALG_CIPHER,
687         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
688         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
689         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
690         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
691         [CRYPTO_CHACHA20] = ALG_CIPHER,
692         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
693         [CRYPTO_RIPEMD160] = ALG_DIGEST,
694         [CRYPTO_SHA2_224] = ALG_DIGEST,
695         [CRYPTO_SHA2_256] = ALG_DIGEST,
696         [CRYPTO_SHA2_384] = ALG_DIGEST,
697         [CRYPTO_SHA2_512] = ALG_DIGEST,
698         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
699         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
700         [CRYPTO_AES_CCM_16] = ALG_AEAD,
701 };
702
703 static enum alg_type
704 alg_type(int alg)
705 {
706
707         if (alg < nitems(alg_types))
708                 return (alg_types[alg]);
709         return (ALG_NONE);
710 }
711
712 static bool
713 alg_is_compression(int alg)
714 {
715
716         return (alg_type(alg) == ALG_COMPRESSION);
717 }
718
719 static bool
720 alg_is_cipher(int alg)
721 {
722
723         return (alg_type(alg) == ALG_CIPHER);
724 }
725
726 static bool
727 alg_is_digest(int alg)
728 {
729
730         return (alg_type(alg) == ALG_DIGEST ||
731             alg_type(alg) == ALG_KEYED_DIGEST);
732 }
733
734 static bool
735 alg_is_keyed_digest(int alg)
736 {
737
738         return (alg_type(alg) == ALG_KEYED_DIGEST);
739 }
740
741 static bool
742 alg_is_aead(int alg)
743 {
744
745         return (alg_type(alg) == ALG_AEAD);
746 }
747
748 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
749
750 /* Various sanity checks on crypto session parameters. */
751 static bool
752 check_csp(const struct crypto_session_params *csp)
753 {
754         struct auth_hash *axf;
755
756         /* Mode-independent checks. */
757         if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
758                 return (false);
759         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
760             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
761                 return (false);
762         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
763                 return (false);
764         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
765                 return (false);
766
767         switch (csp->csp_mode) {
768         case CSP_MODE_COMPRESS:
769                 if (!alg_is_compression(csp->csp_cipher_alg))
770                         return (false);
771                 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
772                         return (false);
773                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
774                         return (false);
775                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
776                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
777                     csp->csp_auth_mlen != 0)
778                         return (false);
779                 break;
780         case CSP_MODE_CIPHER:
781                 if (!alg_is_cipher(csp->csp_cipher_alg))
782                         return (false);
783                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
784                         return (false);
785                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
786                         if (csp->csp_cipher_klen == 0)
787                                 return (false);
788                         if (csp->csp_ivlen == 0)
789                                 return (false);
790                 }
791                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
792                         return (false);
793                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
794                     csp->csp_auth_mlen != 0)
795                         return (false);
796                 break;
797         case CSP_MODE_DIGEST:
798                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
799                         return (false);
800
801                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
802                         return (false);
803
804                 /* IV is optional for digests (e.g. GMAC). */
805                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
806                         return (false);
807                 if (!alg_is_digest(csp->csp_auth_alg))
808                         return (false);
809
810                 /* Key is optional for BLAKE2 digests. */
811                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
812                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
813                         ;
814                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
815                         if (csp->csp_auth_klen == 0)
816                                 return (false);
817                 } else {
818                         if (csp->csp_auth_klen != 0)
819                                 return (false);
820                 }
821                 if (csp->csp_auth_mlen != 0) {
822                         axf = crypto_auth_hash(csp);
823                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
824                                 return (false);
825                 }
826                 break;
827         case CSP_MODE_AEAD:
828                 if (!alg_is_aead(csp->csp_cipher_alg))
829                         return (false);
830                 if (csp->csp_cipher_klen == 0)
831                         return (false);
832                 if (csp->csp_ivlen == 0 ||
833                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
834                         return (false);
835                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
836                         return (false);
837
838                 /*
839                  * XXX: Would be nice to have a better way to get this
840                  * value.
841                  */
842                 switch (csp->csp_cipher_alg) {
843                 case CRYPTO_AES_NIST_GCM_16:
844                 case CRYPTO_AES_CCM_16:
845                         if (csp->csp_auth_mlen > 16)
846                                 return (false);
847                         break;
848                 }
849                 break;
850         case CSP_MODE_ETA:
851                 if (!alg_is_cipher(csp->csp_cipher_alg))
852                         return (false);
853                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
854                         if (csp->csp_cipher_klen == 0)
855                                 return (false);
856                         if (csp->csp_ivlen == 0)
857                                 return (false);
858                 }
859                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
860                         return (false);
861                 if (!alg_is_digest(csp->csp_auth_alg))
862                         return (false);
863
864                 /* Key is optional for BLAKE2 digests. */
865                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
866                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
867                         ;
868                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
869                         if (csp->csp_auth_klen == 0)
870                                 return (false);
871                 } else {
872                         if (csp->csp_auth_klen != 0)
873                                 return (false);
874                 }
875                 if (csp->csp_auth_mlen != 0) {
876                         axf = crypto_auth_hash(csp);
877                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
878                                 return (false);
879                 }
880                 break;
881         default:
882                 return (false);
883         }
884
885         return (true);
886 }
887
888 /*
889  * Delete a session after it has been detached from its driver.
890  */
891 static void
892 crypto_deletesession(crypto_session_t cses)
893 {
894         struct cryptocap *cap;
895
896         cap = cses->cap;
897
898         zfree(cses->softc, M_CRYPTO_DATA);
899         uma_zfree(cryptoses_zone, cses);
900
901         CRYPTO_DRIVER_LOCK();
902         cap->cc_sessions--;
903         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
904                 wakeup(cap);
905         CRYPTO_DRIVER_UNLOCK();
906         cap_rele(cap);
907 }
908
909 /*
910  * Create a new session.  The crid argument specifies a crypto
911  * driver to use or constraints on a driver to select (hardware
912  * only, software only, either).  Whatever driver is selected
913  * must be capable of the requested crypto algorithms.
914  */
915 int
916 crypto_newsession(crypto_session_t *cses,
917     const struct crypto_session_params *csp, int crid)
918 {
919         crypto_session_t res;
920         struct cryptocap *cap;
921         int err;
922
923         if (!check_csp(csp))
924                 return (EINVAL);
925
926         res = NULL;
927
928         CRYPTO_DRIVER_LOCK();
929         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
930                 /*
931                  * Use specified driver; verify it is capable.
932                  */
933                 cap = crypto_checkdriver(crid);
934                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
935                         cap = NULL;
936         } else {
937                 /*
938                  * No requested driver; select based on crid flags.
939                  */
940                 cap = crypto_select_driver(csp, crid);
941         }
942         if (cap == NULL) {
943                 CRYPTO_DRIVER_UNLOCK();
944                 CRYPTDEB("no driver");
945                 return (EOPNOTSUPP);
946         }
947         cap_ref(cap);
948         cap->cc_sessions++;
949         CRYPTO_DRIVER_UNLOCK();
950
951         res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO);
952         res->cap = cap;
953         res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK |
954             M_ZERO);
955         res->csp = *csp;
956
957         /* Call the driver initialization routine. */
958         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
959         if (err != 0) {
960                 CRYPTDEB("dev newsession failed: %d", err);
961                 crypto_deletesession(res);
962                 return (err);
963         }
964
965         *cses = res;
966         return (0);
967 }
968
969 /*
970  * Delete an existing session (or a reserved session on an unregistered
971  * driver).
972  */
973 void
974 crypto_freesession(crypto_session_t cses)
975 {
976         struct cryptocap *cap;
977
978         if (cses == NULL)
979                 return;
980
981         cap = cses->cap;
982
983         /* Call the driver cleanup routine, if available. */
984         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
985
986         crypto_deletesession(cses);
987 }
988
989 /*
990  * Return a new driver id.  Registers a driver with the system so that
991  * it can be probed by subsequent sessions.
992  */
993 int32_t
994 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
995 {
996         struct cryptocap *cap, **newdrv;
997         int i;
998
999         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1000                 device_printf(dev,
1001                     "no flags specified when registering driver\n");
1002                 return -1;
1003         }
1004
1005         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1006         cap->cc_dev = dev;
1007         cap->cc_session_size = sessionsize;
1008         cap->cc_flags = flags;
1009         refcount_init(&cap->cc_refs, 1);
1010
1011         CRYPTO_DRIVER_LOCK();
1012         for (;;) {
1013                 for (i = 0; i < crypto_drivers_size; i++) {
1014                         if (crypto_drivers[i] == NULL)
1015                                 break;
1016                 }
1017
1018                 if (i < crypto_drivers_size)
1019                         break;
1020
1021                 /* Out of entries, allocate some more. */
1022
1023                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1024                         CRYPTO_DRIVER_UNLOCK();
1025                         printf("crypto: driver count wraparound!\n");
1026                         cap_rele(cap);
1027                         return (-1);
1028                 }
1029                 CRYPTO_DRIVER_UNLOCK();
1030
1031                 newdrv = malloc(2 * crypto_drivers_size *
1032                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1033
1034                 CRYPTO_DRIVER_LOCK();
1035                 memcpy(newdrv, crypto_drivers,
1036                     crypto_drivers_size * sizeof(*crypto_drivers));
1037
1038                 crypto_drivers_size *= 2;
1039
1040                 free(crypto_drivers, M_CRYPTO_DATA);
1041                 crypto_drivers = newdrv;
1042         }
1043
1044         cap->cc_hid = i;
1045         crypto_drivers[i] = cap;
1046         CRYPTO_DRIVER_UNLOCK();
1047
1048         if (bootverbose)
1049                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1050                     device_get_nameunit(dev), i, flags);
1051
1052         return i;
1053 }
1054
1055 /*
1056  * Lookup a driver by name.  We match against the full device
1057  * name and unit, and against just the name.  The latter gives
1058  * us a simple widlcarding by device name.  On success return the
1059  * driver/hardware identifier; otherwise return -1.
1060  */
1061 int
1062 crypto_find_driver(const char *match)
1063 {
1064         struct cryptocap *cap;
1065         int i, len = strlen(match);
1066
1067         CRYPTO_DRIVER_LOCK();
1068         for (i = 0; i < crypto_drivers_size; i++) {
1069                 if (crypto_drivers[i] == NULL)
1070                         continue;
1071                 cap = crypto_drivers[i];
1072                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1073                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1074                         CRYPTO_DRIVER_UNLOCK();
1075                         return (i);
1076                 }
1077         }
1078         CRYPTO_DRIVER_UNLOCK();
1079         return (-1);
1080 }
1081
1082 /*
1083  * Return the device_t for the specified driver or NULL
1084  * if the driver identifier is invalid.
1085  */
1086 device_t
1087 crypto_find_device_byhid(int hid)
1088 {
1089         struct cryptocap *cap;
1090         device_t dev;
1091
1092         dev = NULL;
1093         CRYPTO_DRIVER_LOCK();
1094         cap = crypto_checkdriver(hid);
1095         if (cap != NULL)
1096                 dev = cap->cc_dev;
1097         CRYPTO_DRIVER_UNLOCK();
1098         return (dev);
1099 }
1100
1101 /*
1102  * Return the device/driver capabilities.
1103  */
1104 int
1105 crypto_getcaps(int hid)
1106 {
1107         struct cryptocap *cap;
1108         int flags;
1109
1110         flags = 0;
1111         CRYPTO_DRIVER_LOCK();
1112         cap = crypto_checkdriver(hid);
1113         if (cap != NULL)
1114                 flags = cap->cc_flags;
1115         CRYPTO_DRIVER_UNLOCK();
1116         return (flags);
1117 }
1118
1119 /*
1120  * Register support for a key-related algorithm.  This routine
1121  * is called once for each algorithm supported a driver.
1122  */
1123 int
1124 crypto_kregister(uint32_t driverid, int kalg, uint32_t flags)
1125 {
1126         struct cryptocap *cap;
1127         int err;
1128
1129         CRYPTO_DRIVER_LOCK();
1130
1131         cap = crypto_checkdriver(driverid);
1132         if (cap != NULL &&
1133             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1134                 /*
1135                  * XXX Do some performance testing to determine placing.
1136                  * XXX We probably need an auxiliary data structure that
1137                  * XXX describes relative performances.
1138                  */
1139
1140                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1141                 if (bootverbose)
1142                         printf("crypto: %s registers key alg %u flags %u\n"
1143                                 , device_get_nameunit(cap->cc_dev)
1144                                 , kalg
1145                                 , flags
1146                         );
1147                 gone_in_dev(cap->cc_dev, 14, "asymmetric crypto");
1148                 err = 0;
1149         } else
1150                 err = EINVAL;
1151
1152         CRYPTO_DRIVER_UNLOCK();
1153         return err;
1154 }
1155
1156 /*
1157  * Unregister all algorithms associated with a crypto driver.
1158  * If there are pending sessions using it, leave enough information
1159  * around so that subsequent calls using those sessions will
1160  * correctly detect the driver has been unregistered and reroute
1161  * requests.
1162  */
1163 int
1164 crypto_unregister_all(uint32_t driverid)
1165 {
1166         struct cryptocap *cap;
1167
1168         CRYPTO_DRIVER_LOCK();
1169         cap = crypto_checkdriver(driverid);
1170         if (cap == NULL) {
1171                 CRYPTO_DRIVER_UNLOCK();
1172                 return (EINVAL);
1173         }
1174
1175         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1176         crypto_drivers[driverid] = NULL;
1177
1178         /*
1179          * XXX: This doesn't do anything to kick sessions that
1180          * have no pending operations.
1181          */
1182         while (cap->cc_sessions != 0 || cap->cc_koperations != 0)
1183                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1184         CRYPTO_DRIVER_UNLOCK();
1185         cap_rele(cap);
1186
1187         return (0);
1188 }
1189
1190 /*
1191  * Clear blockage on a driver.  The what parameter indicates whether
1192  * the driver is now ready for cryptop's and/or cryptokop's.
1193  */
1194 int
1195 crypto_unblock(uint32_t driverid, int what)
1196 {
1197         struct cryptocap *cap;
1198         int err;
1199
1200         CRYPTO_Q_LOCK();
1201         cap = crypto_checkdriver(driverid);
1202         if (cap != NULL) {
1203                 if (what & CRYPTO_SYMQ)
1204                         cap->cc_qblocked = 0;
1205                 if (what & CRYPTO_ASYMQ)
1206                         cap->cc_kqblocked = 0;
1207                 if (crp_sleep)
1208                         wakeup_one(&crp_q);
1209                 err = 0;
1210         } else
1211                 err = EINVAL;
1212         CRYPTO_Q_UNLOCK();
1213
1214         return err;
1215 }
1216
1217 size_t
1218 crypto_buffer_len(struct crypto_buffer *cb)
1219 {
1220         switch (cb->cb_type) {
1221         case CRYPTO_BUF_CONTIG:
1222                 return (cb->cb_buf_len);
1223         case CRYPTO_BUF_MBUF:
1224                 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1225                         return (cb->cb_mbuf->m_pkthdr.len);
1226                 return (m_length(cb->cb_mbuf, NULL));
1227         case CRYPTO_BUF_VMPAGE:
1228                 return (cb->cb_vm_page_len);
1229         case CRYPTO_BUF_UIO:
1230                 return (cb->cb_uio->uio_resid);
1231         default:
1232                 return (0);
1233         }
1234 }
1235
1236 #ifdef INVARIANTS
1237 /* Various sanity checks on crypto requests. */
1238 static void
1239 cb_sanity(struct crypto_buffer *cb, const char *name)
1240 {
1241         KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1242             ("incoming crp with invalid %s buffer type", name));
1243         switch (cb->cb_type) {
1244         case CRYPTO_BUF_CONTIG:
1245                 KASSERT(cb->cb_buf_len >= 0,
1246                     ("incoming crp with -ve %s buffer length", name));
1247                 break;
1248         case CRYPTO_BUF_VMPAGE:
1249                 KASSERT(CRYPTO_HAS_VMPAGE,
1250                     ("incoming crp uses dmap on supported arch"));
1251                 KASSERT(cb->cb_vm_page_len >= 0,
1252                     ("incoming crp with -ve %s buffer length", name));
1253                 KASSERT(cb->cb_vm_page_offset >= 0,
1254                     ("incoming crp with -ve %s buffer offset", name));
1255                 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1256                     ("incoming crp with %s buffer offset greater than page size"
1257                      , name));
1258                 break;
1259         default:
1260                 break;
1261         }
1262 }
1263
1264 static void
1265 crp_sanity(struct cryptop *crp)
1266 {
1267         struct crypto_session_params *csp;
1268         struct crypto_buffer *out;
1269         size_t ilen, len, olen;
1270
1271         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1272         KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1273             crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1274             ("incoming crp with invalid output buffer type"));
1275         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1276         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1277             ("incoming crp already done"));
1278
1279         csp = &crp->crp_session->csp;
1280         cb_sanity(&crp->crp_buf, "input");
1281         ilen = crypto_buffer_len(&crp->crp_buf);
1282         olen = ilen;
1283         out = NULL;
1284         if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1285                 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1286                         cb_sanity(&crp->crp_obuf, "output");
1287                         out = &crp->crp_obuf;
1288                         olen = crypto_buffer_len(out);
1289                 }
1290         } else
1291                 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1292                     ("incoming crp with separate output buffer "
1293                     "but no session support"));
1294
1295         switch (csp->csp_mode) {
1296         case CSP_MODE_COMPRESS:
1297                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1298                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
1299                     ("invalid compression op %x", crp->crp_op));
1300                 break;
1301         case CSP_MODE_CIPHER:
1302                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1303                     crp->crp_op == CRYPTO_OP_DECRYPT,
1304                     ("invalid cipher op %x", crp->crp_op));
1305                 break;
1306         case CSP_MODE_DIGEST:
1307                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1308                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1309                     ("invalid digest op %x", crp->crp_op));
1310                 break;
1311         case CSP_MODE_AEAD:
1312                 KASSERT(crp->crp_op ==
1313                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1314                     crp->crp_op ==
1315                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1316                     ("invalid AEAD op %x", crp->crp_op));
1317                 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16)
1318                         KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1319                             ("GCM without a separate IV"));
1320                 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16)
1321                         KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1322                             ("CCM without a separate IV"));
1323                 break;
1324         case CSP_MODE_ETA:
1325                 KASSERT(crp->crp_op ==
1326                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1327                     crp->crp_op ==
1328                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1329                     ("invalid ETA op %x", crp->crp_op));
1330                 break;
1331         }
1332         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1333                 if (crp->crp_aad == NULL) {
1334                         KASSERT(crp->crp_aad_start == 0 ||
1335                             crp->crp_aad_start < ilen,
1336                             ("invalid AAD start"));
1337                         KASSERT(crp->crp_aad_length != 0 ||
1338                             crp->crp_aad_start == 0,
1339                             ("AAD with zero length and non-zero start"));
1340                         KASSERT(crp->crp_aad_length == 0 ||
1341                             crp->crp_aad_start + crp->crp_aad_length <= ilen,
1342                             ("AAD outside input length"));
1343                 } else {
1344                         KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1345                             ("session doesn't support separate AAD buffer"));
1346                         KASSERT(crp->crp_aad_start == 0,
1347                             ("separate AAD buffer with non-zero AAD start"));
1348                         KASSERT(crp->crp_aad_length != 0,
1349                             ("separate AAD buffer with zero length"));
1350                 }
1351         } else {
1352                 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1353                     crp->crp_aad_length == 0,
1354                     ("AAD region in request not supporting AAD"));
1355         }
1356         if (csp->csp_ivlen == 0) {
1357                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1358                     ("IV_SEPARATE set when IV isn't used"));
1359                 KASSERT(crp->crp_iv_start == 0,
1360                     ("crp_iv_start set when IV isn't used"));
1361         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1362                 KASSERT(crp->crp_iv_start == 0,
1363                     ("IV_SEPARATE used with non-zero IV start"));
1364         } else {
1365                 KASSERT(crp->crp_iv_start < ilen,
1366                     ("invalid IV start"));
1367                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1368                     ("IV outside buffer length"));
1369         }
1370         /* XXX: payload_start of 0 should always be < ilen? */
1371         KASSERT(crp->crp_payload_start == 0 ||
1372             crp->crp_payload_start < ilen,
1373             ("invalid payload start"));
1374         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1375             ilen, ("payload outside input buffer"));
1376         if (out == NULL) {
1377                 KASSERT(crp->crp_payload_output_start == 0,
1378                     ("payload output start non-zero without output buffer"));
1379         } else {
1380                 KASSERT(crp->crp_payload_output_start < olen,
1381                     ("invalid payload output start"));
1382                 KASSERT(crp->crp_payload_output_start +
1383                     crp->crp_payload_length <= olen,
1384                     ("payload outside output buffer"));
1385         }
1386         if (csp->csp_mode == CSP_MODE_DIGEST ||
1387             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1388                 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1389                         len = ilen;
1390                 else
1391                         len = olen;
1392                 KASSERT(crp->crp_digest_start == 0 ||
1393                     crp->crp_digest_start < len,
1394                     ("invalid digest start"));
1395                 /* XXX: For the mlen == 0 case this check isn't perfect. */
1396                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1397                     ("digest outside buffer"));
1398         } else {
1399                 KASSERT(crp->crp_digest_start == 0,
1400                     ("non-zero digest start for request without a digest"));
1401         }
1402         if (csp->csp_cipher_klen != 0)
1403                 KASSERT(csp->csp_cipher_key != NULL ||
1404                     crp->crp_cipher_key != NULL,
1405                     ("cipher request without a key"));
1406         if (csp->csp_auth_klen != 0)
1407                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1408                     ("auth request without a key"));
1409         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1410 }
1411 #endif
1412
1413 /*
1414  * Add a crypto request to a queue, to be processed by the kernel thread.
1415  */
1416 int
1417 crypto_dispatch(struct cryptop *crp)
1418 {
1419         struct cryptocap *cap;
1420         int result;
1421
1422 #ifdef INVARIANTS
1423         crp_sanity(crp);
1424 #endif
1425
1426         CRYPTOSTAT_INC(cs_ops);
1427
1428         crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num;
1429
1430         if (CRYPTOP_ASYNC(crp)) {
1431                 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) {
1432                         struct crypto_ret_worker *ret_worker;
1433
1434                         ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1435
1436                         CRYPTO_RETW_LOCK(ret_worker);
1437                         crp->crp_seq = ret_worker->reorder_ops++;
1438                         CRYPTO_RETW_UNLOCK(ret_worker);
1439                 }
1440
1441                 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1442                 taskqueue_enqueue(crypto_tq, &crp->crp_task);
1443                 return (0);
1444         }
1445
1446         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
1447                 /*
1448                  * Caller marked the request to be processed
1449                  * immediately; dispatch it directly to the
1450                  * driver unless the driver is currently blocked.
1451                  */
1452                 cap = crp->crp_session->cap;
1453                 if (!cap->cc_qblocked) {
1454                         result = crypto_invoke(cap, crp, 0);
1455                         if (result != ERESTART)
1456                                 return (result);
1457                         /*
1458                          * The driver ran out of resources, put the request on
1459                          * the queue.
1460                          */
1461                 }
1462         }
1463         crypto_batch_enqueue(crp);
1464         return 0;
1465 }
1466
1467 void
1468 crypto_batch_enqueue(struct cryptop *crp)
1469 {
1470
1471         CRYPTO_Q_LOCK();
1472         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1473         if (crp_sleep)
1474                 wakeup_one(&crp_q);
1475         CRYPTO_Q_UNLOCK();
1476 }
1477
1478 /*
1479  * Add an asymetric crypto request to a queue,
1480  * to be processed by the kernel thread.
1481  */
1482 int
1483 crypto_kdispatch(struct cryptkop *krp)
1484 {
1485         int error;
1486
1487         CRYPTOSTAT_INC(cs_kops);
1488
1489         krp->krp_cap = NULL;
1490         error = crypto_kinvoke(krp);
1491         if (error == ERESTART) {
1492                 CRYPTO_Q_LOCK();
1493                 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1494                 if (crp_sleep)
1495                         wakeup_one(&crp_q);
1496                 CRYPTO_Q_UNLOCK();
1497                 error = 0;
1498         }
1499         return error;
1500 }
1501
1502 /*
1503  * Verify a driver is suitable for the specified operation.
1504  */
1505 static __inline int
1506 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
1507 {
1508         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
1509 }
1510
1511 /*
1512  * Select a driver for an asym operation.  The driver must
1513  * support the necessary algorithm.  The caller can constrain
1514  * which device is selected with the flags parameter.  The
1515  * algorithm we use here is pretty stupid; just use the first
1516  * driver that supports the algorithms we need. If there are
1517  * multiple suitable drivers we choose the driver with the
1518  * fewest active operations.  We prefer hardware-backed
1519  * drivers to software ones when either may be used.
1520  */
1521 static struct cryptocap *
1522 crypto_select_kdriver(const struct cryptkop *krp, int flags)
1523 {
1524         struct cryptocap *cap, *best;
1525         int match, hid;
1526
1527         CRYPTO_DRIVER_ASSERT();
1528
1529         /*
1530          * Look first for hardware crypto devices if permitted.
1531          */
1532         if (flags & CRYPTOCAP_F_HARDWARE)
1533                 match = CRYPTOCAP_F_HARDWARE;
1534         else
1535                 match = CRYPTOCAP_F_SOFTWARE;
1536         best = NULL;
1537 again:
1538         for (hid = 0; hid < crypto_drivers_size; hid++) {
1539                 /*
1540                  * If there is no driver for this slot, or the driver
1541                  * is not appropriate (hardware or software based on
1542                  * match), then skip.
1543                  */
1544                 cap = crypto_drivers[hid];
1545                 if (cap == NULL ||
1546                     (cap->cc_flags & match) == 0)
1547                         continue;
1548
1549                 /* verify all the algorithms are supported. */
1550                 if (kdriver_suitable(cap, krp)) {
1551                         if (best == NULL ||
1552                             cap->cc_koperations < best->cc_koperations)
1553                                 best = cap;
1554                 }
1555         }
1556         if (best != NULL)
1557                 return best;
1558         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
1559                 /* sort of an Algol 68-style for loop */
1560                 match = CRYPTOCAP_F_SOFTWARE;
1561                 goto again;
1562         }
1563         return best;
1564 }
1565
1566 /*
1567  * Choose a driver for an asymmetric crypto request.
1568  */
1569 static struct cryptocap *
1570 crypto_lookup_kdriver(struct cryptkop *krp)
1571 {
1572         struct cryptocap *cap;
1573         uint32_t crid;
1574
1575         /* If this request is requeued, it might already have a driver. */
1576         cap = krp->krp_cap;
1577         if (cap != NULL)
1578                 return (cap);
1579
1580         /* Use krp_crid to choose a driver. */
1581         crid = krp->krp_crid;
1582         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1583                 cap = crypto_checkdriver(crid);
1584                 if (cap != NULL) {
1585                         /*
1586                          * Driver present, it must support the
1587                          * necessary algorithm and, if s/w drivers are
1588                          * excluded, it must be registered as
1589                          * hardware-backed.
1590                          */
1591                         if (!kdriver_suitable(cap, krp) ||
1592                             (!crypto_devallowsoft &&
1593                             (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
1594                                 cap = NULL;
1595                 }
1596         } else {
1597                 /*
1598                  * No requested driver; select based on crid flags.
1599                  */
1600                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
1601                         crid &= ~CRYPTOCAP_F_SOFTWARE;
1602                 cap = crypto_select_kdriver(krp, crid);
1603         }
1604
1605         if (cap != NULL) {
1606                 krp->krp_cap = cap_ref(cap);
1607                 krp->krp_hid = cap->cc_hid;
1608         }
1609         return (cap);
1610 }
1611
1612 /*
1613  * Dispatch an asymmetric crypto request.
1614  */
1615 static int
1616 crypto_kinvoke(struct cryptkop *krp)
1617 {
1618         struct cryptocap *cap = NULL;
1619         int error;
1620
1621         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
1622         KASSERT(krp->krp_callback != NULL,
1623             ("%s: krp->crp_callback == NULL", __func__));
1624
1625         CRYPTO_DRIVER_LOCK();
1626         cap = crypto_lookup_kdriver(krp);
1627         if (cap == NULL) {
1628                 CRYPTO_DRIVER_UNLOCK();
1629                 krp->krp_status = ENODEV;
1630                 crypto_kdone(krp);
1631                 return (0);
1632         }
1633
1634         /*
1635          * If the device is blocked, return ERESTART to requeue it.
1636          */
1637         if (cap->cc_kqblocked) {
1638                 /*
1639                  * XXX: Previously this set krp_status to ERESTART and
1640                  * invoked crypto_kdone but the caller would still
1641                  * requeue it.
1642                  */
1643                 CRYPTO_DRIVER_UNLOCK();
1644                 return (ERESTART);
1645         }
1646
1647         cap->cc_koperations++;
1648         CRYPTO_DRIVER_UNLOCK();
1649         error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1650         if (error == ERESTART) {
1651                 CRYPTO_DRIVER_LOCK();
1652                 cap->cc_koperations--;
1653                 CRYPTO_DRIVER_UNLOCK();
1654                 return (error);
1655         }
1656
1657         KASSERT(error == 0, ("error %d returned from crypto_kprocess", error));
1658         return (0);
1659 }
1660
1661 static void
1662 crypto_task_invoke(void *ctx, int pending)
1663 {
1664         struct cryptocap *cap;
1665         struct cryptop *crp;
1666         int result;
1667
1668         crp = (struct cryptop *)ctx;
1669         cap = crp->crp_session->cap;
1670         result = crypto_invoke(cap, crp, 0);
1671         if (result == ERESTART)
1672                 crypto_batch_enqueue(crp);
1673 }
1674
1675 /*
1676  * Dispatch a crypto request to the appropriate crypto devices.
1677  */
1678 static int
1679 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1680 {
1681
1682         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1683         KASSERT(crp->crp_callback != NULL,
1684             ("%s: crp->crp_callback == NULL", __func__));
1685         KASSERT(crp->crp_session != NULL,
1686             ("%s: crp->crp_session == NULL", __func__));
1687
1688         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1689                 struct crypto_session_params csp;
1690                 crypto_session_t nses;
1691
1692                 /*
1693                  * Driver has unregistered; migrate the session and return
1694                  * an error to the caller so they'll resubmit the op.
1695                  *
1696                  * XXX: What if there are more already queued requests for this
1697                  *      session?
1698                  *
1699                  * XXX: Real solution is to make sessions refcounted
1700                  * and force callers to hold a reference when
1701                  * assigning to crp_session.  Could maybe change
1702                  * crypto_getreq to accept a session pointer to make
1703                  * that work.  Alternatively, we could abandon the
1704                  * notion of rewriting crp_session in requests forcing
1705                  * the caller to deal with allocating a new session.
1706                  * Perhaps provide a method to allow a crp's session to
1707                  * be swapped that callers could use.
1708                  */
1709                 csp = crp->crp_session->csp;
1710                 crypto_freesession(crp->crp_session);
1711
1712                 /*
1713                  * XXX: Key pointers may no longer be valid.  If we
1714                  * really want to support this we need to define the
1715                  * KPI such that 'csp' is required to be valid for the
1716                  * duration of a session by the caller perhaps.
1717                  *
1718                  * XXX: If the keys have been changed this will reuse
1719                  * the old keys.  This probably suggests making
1720                  * rekeying more explicit and updating the key
1721                  * pointers in 'csp' when the keys change.
1722                  */
1723                 if (crypto_newsession(&nses, &csp,
1724                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1725                         crp->crp_session = nses;
1726
1727                 crp->crp_etype = EAGAIN;
1728                 crypto_done(crp);
1729                 return 0;
1730         } else {
1731                 /*
1732                  * Invoke the driver to process the request.
1733                  */
1734                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1735         }
1736 }
1737
1738 void
1739 crypto_destroyreq(struct cryptop *crp)
1740 {
1741 #ifdef DIAGNOSTIC
1742         {
1743                 struct cryptop *crp2;
1744                 struct crypto_ret_worker *ret_worker;
1745
1746                 CRYPTO_Q_LOCK();
1747                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1748                         KASSERT(crp2 != crp,
1749                             ("Freeing cryptop from the crypto queue (%p).",
1750                             crp));
1751                 }
1752                 CRYPTO_Q_UNLOCK();
1753
1754                 FOREACH_CRYPTO_RETW(ret_worker) {
1755                         CRYPTO_RETW_LOCK(ret_worker);
1756                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1757                                 KASSERT(crp2 != crp,
1758                                     ("Freeing cryptop from the return queue (%p).",
1759                                     crp));
1760                         }
1761                         CRYPTO_RETW_UNLOCK(ret_worker);
1762                 }
1763         }
1764 #endif
1765 }
1766
1767 void
1768 crypto_freereq(struct cryptop *crp)
1769 {
1770         if (crp == NULL)
1771                 return;
1772
1773         crypto_destroyreq(crp);
1774         uma_zfree(cryptop_zone, crp);
1775 }
1776
1777 static void
1778 _crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1779 {
1780         crp->crp_session = cses;
1781 }
1782
1783 void
1784 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1785 {
1786         memset(crp, 0, sizeof(*crp));
1787         _crypto_initreq(crp, cses);
1788 }
1789
1790 struct cryptop *
1791 crypto_getreq(crypto_session_t cses, int how)
1792 {
1793         struct cryptop *crp;
1794
1795         MPASS(how == M_WAITOK || how == M_NOWAIT);
1796         crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1797         if (crp != NULL)
1798                 _crypto_initreq(crp, cses);
1799         return (crp);
1800 }
1801
1802 /*
1803  * Invoke the callback on behalf of the driver.
1804  */
1805 void
1806 crypto_done(struct cryptop *crp)
1807 {
1808         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1809                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1810         crp->crp_flags |= CRYPTO_F_DONE;
1811         if (crp->crp_etype != 0)
1812                 CRYPTOSTAT_INC(cs_errs);
1813
1814         /*
1815          * CBIMM means unconditionally do the callback immediately;
1816          * CBIFSYNC means do the callback immediately only if the
1817          * operation was done synchronously.  Both are used to avoid
1818          * doing extraneous context switches; the latter is mostly
1819          * used with the software crypto driver.
1820          */
1821         if (!CRYPTOP_ASYNC_KEEPORDER(crp) &&
1822             ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1823             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1824              (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) {
1825                 /*
1826                  * Do the callback directly.  This is ok when the
1827                  * callback routine does very little (e.g. the
1828                  * /dev/crypto callback method just does a wakeup).
1829                  */
1830                 crp->crp_callback(crp);
1831         } else {
1832                 struct crypto_ret_worker *ret_worker;
1833                 bool wake;
1834
1835                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1836                 wake = false;
1837
1838                 /*
1839                  * Normal case; queue the callback for the thread.
1840                  */
1841                 CRYPTO_RETW_LOCK(ret_worker);
1842                 if (CRYPTOP_ASYNC_KEEPORDER(crp)) {
1843                         struct cryptop *tmp;
1844
1845                         TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q,
1846                                         cryptop_q, crp_next) {
1847                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1848                                         TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q,
1849                                                         tmp, crp, crp_next);
1850                                         break;
1851                                 }
1852                         }
1853                         if (tmp == NULL) {
1854                                 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q,
1855                                                 crp, crp_next);
1856                         }
1857
1858                         if (crp->crp_seq == ret_worker->reorder_cur_seq)
1859                                 wake = true;
1860                 }
1861                 else {
1862                         if (CRYPTO_RETW_EMPTY(ret_worker))
1863                                 wake = true;
1864
1865                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next);
1866                 }
1867
1868                 if (wake)
1869                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
1870                 CRYPTO_RETW_UNLOCK(ret_worker);
1871         }
1872 }
1873
1874 /*
1875  * Invoke the callback on behalf of the driver.
1876  */
1877 void
1878 crypto_kdone(struct cryptkop *krp)
1879 {
1880         struct crypto_ret_worker *ret_worker;
1881         struct cryptocap *cap;
1882
1883         if (krp->krp_status != 0)
1884                 CRYPTOSTAT_INC(cs_kerrs);
1885         cap = krp->krp_cap;
1886         if (cap != NULL) {
1887                 CRYPTO_DRIVER_LOCK();
1888                 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1889                 cap->cc_koperations--;
1890                 if (cap->cc_koperations == 0 &&
1891                     cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1892                         wakeup(cap);
1893                 CRYPTO_DRIVER_UNLOCK();
1894                 krp->krp_cap = NULL;
1895                 cap_rele(cap);
1896         }
1897
1898         ret_worker = CRYPTO_RETW(0);
1899
1900         CRYPTO_RETW_LOCK(ret_worker);
1901         if (CRYPTO_RETW_EMPTY(ret_worker))
1902                 wakeup_one(&ret_worker->crp_ret_q);             /* shared wait channel */
1903         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
1904         CRYPTO_RETW_UNLOCK(ret_worker);
1905 }
1906
1907 int
1908 crypto_getfeat(int *featp)
1909 {
1910         int hid, kalg, feat = 0;
1911
1912         CRYPTO_DRIVER_LOCK();
1913         for (hid = 0; hid < crypto_drivers_size; hid++) {
1914                 const struct cryptocap *cap = crypto_drivers[hid];
1915
1916                 if (cap == NULL ||
1917                     ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1918                     !crypto_devallowsoft)) {
1919                         continue;
1920                 }
1921                 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1922                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1923                                 feat |=  1 << kalg;
1924         }
1925         CRYPTO_DRIVER_UNLOCK();
1926         *featp = feat;
1927         return (0);
1928 }
1929
1930 /*
1931  * Terminate a thread at module unload.  The process that
1932  * initiated this is waiting for us to signal that we're gone;
1933  * wake it up and exit.  We use the driver table lock to insure
1934  * we don't do the wakeup before they're waiting.  There is no
1935  * race here because the waiter sleeps on the proc lock for the
1936  * thread so it gets notified at the right time because of an
1937  * extra wakeup that's done in exit1().
1938  */
1939 static void
1940 crypto_finis(void *chan)
1941 {
1942         CRYPTO_DRIVER_LOCK();
1943         wakeup_one(chan);
1944         CRYPTO_DRIVER_UNLOCK();
1945         kproc_exit(0);
1946 }
1947
1948 /*
1949  * Crypto thread, dispatches crypto requests.
1950  */
1951 static void
1952 crypto_proc(void)
1953 {
1954         struct cryptop *crp, *submit;
1955         struct cryptkop *krp;
1956         struct cryptocap *cap;
1957         int result, hint;
1958
1959 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1960         fpu_kern_thread(FPU_KERN_NORMAL);
1961 #endif
1962
1963         CRYPTO_Q_LOCK();
1964         for (;;) {
1965                 /*
1966                  * Find the first element in the queue that can be
1967                  * processed and look-ahead to see if multiple ops
1968                  * are ready for the same driver.
1969                  */
1970                 submit = NULL;
1971                 hint = 0;
1972                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1973                         cap = crp->crp_session->cap;
1974                         /*
1975                          * Driver cannot disappeared when there is an active
1976                          * session.
1977                          */
1978                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1979                             __func__, __LINE__));
1980                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1981                                 /* Op needs to be migrated, process it. */
1982                                 if (submit == NULL)
1983                                         submit = crp;
1984                                 break;
1985                         }
1986                         if (!cap->cc_qblocked) {
1987                                 if (submit != NULL) {
1988                                         /*
1989                                          * We stop on finding another op,
1990                                          * regardless whether its for the same
1991                                          * driver or not.  We could keep
1992                                          * searching the queue but it might be
1993                                          * better to just use a per-driver
1994                                          * queue instead.
1995                                          */
1996                                         if (submit->crp_session->cap == cap)
1997                                                 hint = CRYPTO_HINT_MORE;
1998                                         break;
1999                                 } else {
2000                                         submit = crp;
2001                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
2002                                                 break;
2003                                         /* keep scanning for more are q'd */
2004                                 }
2005                         }
2006                 }
2007                 if (submit != NULL) {
2008                         TAILQ_REMOVE(&crp_q, submit, crp_next);
2009                         cap = submit->crp_session->cap;
2010                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
2011                             __func__, __LINE__));
2012                         CRYPTO_Q_UNLOCK();
2013                         result = crypto_invoke(cap, submit, hint);
2014                         CRYPTO_Q_LOCK();
2015                         if (result == ERESTART) {
2016                                 /*
2017                                  * The driver ran out of resources, mark the
2018                                  * driver ``blocked'' for cryptop's and put
2019                                  * the request back in the queue.  It would
2020                                  * best to put the request back where we got
2021                                  * it but that's hard so for now we put it
2022                                  * at the front.  This should be ok; putting
2023                                  * it at the end does not work.
2024                                  */
2025                                 cap->cc_qblocked = 1;
2026                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
2027                                 CRYPTOSTAT_INC(cs_blocks);
2028                         }
2029                 }
2030
2031                 /* As above, but for key ops */
2032                 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2033                         cap = krp->krp_cap;
2034                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
2035                                 /*
2036                                  * Operation needs to be migrated,
2037                                  * clear krp_cap so a new driver is
2038                                  * selected.
2039                                  */
2040                                 krp->krp_cap = NULL;
2041                                 cap_rele(cap);
2042                                 break;
2043                         }
2044                         if (!cap->cc_kqblocked)
2045                                 break;
2046                 }
2047                 if (krp != NULL) {
2048                         TAILQ_REMOVE(&crp_kq, krp, krp_next);
2049                         CRYPTO_Q_UNLOCK();
2050                         result = crypto_kinvoke(krp);
2051                         CRYPTO_Q_LOCK();
2052                         if (result == ERESTART) {
2053                                 /*
2054                                  * The driver ran out of resources, mark the
2055                                  * driver ``blocked'' for cryptkop's and put
2056                                  * the request back in the queue.  It would
2057                                  * best to put the request back where we got
2058                                  * it but that's hard so for now we put it
2059                                  * at the front.  This should be ok; putting
2060                                  * it at the end does not work.
2061                                  */
2062                                 krp->krp_cap->cc_kqblocked = 1;
2063                                 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
2064                                 CRYPTOSTAT_INC(cs_kblocks);
2065                         }
2066                 }
2067
2068                 if (submit == NULL && krp == NULL) {
2069                         /*
2070                          * Nothing more to be processed.  Sleep until we're
2071                          * woken because there are more ops to process.
2072                          * This happens either by submission or by a driver
2073                          * becoming unblocked and notifying us through
2074                          * crypto_unblock.  Note that when we wakeup we
2075                          * start processing each queue again from the
2076                          * front. It's not clear that it's important to
2077                          * preserve this ordering since ops may finish
2078                          * out of order if dispatched to different devices
2079                          * and some become blocked while others do not.
2080                          */
2081                         crp_sleep = 1;
2082                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
2083                         crp_sleep = 0;
2084                         if (cryptoproc == NULL)
2085                                 break;
2086                         CRYPTOSTAT_INC(cs_intrs);
2087                 }
2088         }
2089         CRYPTO_Q_UNLOCK();
2090
2091         crypto_finis(&crp_q);
2092 }
2093
2094 /*
2095  * Crypto returns thread, does callbacks for processed crypto requests.
2096  * Callbacks are done here, rather than in the crypto drivers, because
2097  * callbacks typically are expensive and would slow interrupt handling.
2098  */
2099 static void
2100 crypto_ret_proc(struct crypto_ret_worker *ret_worker)
2101 {
2102         struct cryptop *crpt;
2103         struct cryptkop *krpt;
2104
2105         CRYPTO_RETW_LOCK(ret_worker);
2106         for (;;) {
2107                 /* Harvest return q's for completed ops */
2108                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
2109                 if (crpt != NULL) {
2110                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
2111                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
2112                                 ret_worker->reorder_cur_seq++;
2113                         } else {
2114                                 crpt = NULL;
2115                         }
2116                 }
2117
2118                 if (crpt == NULL) {
2119                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
2120                         if (crpt != NULL)
2121                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
2122                 }
2123
2124                 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
2125                 if (krpt != NULL)
2126                         TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
2127
2128                 if (crpt != NULL || krpt != NULL) {
2129                         CRYPTO_RETW_UNLOCK(ret_worker);
2130                         /*
2131                          * Run callbacks unlocked.
2132                          */
2133                         if (crpt != NULL)
2134                                 crpt->crp_callback(crpt);
2135                         if (krpt != NULL)
2136                                 krpt->krp_callback(krpt);
2137                         CRYPTO_RETW_LOCK(ret_worker);
2138                 } else {
2139                         /*
2140                          * Nothing more to be processed.  Sleep until we're
2141                          * woken because there are more returns to process.
2142                          */
2143                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
2144                                 "crypto_ret_wait", 0);
2145                         if (ret_worker->cryptoretproc == NULL)
2146                                 break;
2147                         CRYPTOSTAT_INC(cs_rets);
2148                 }
2149         }
2150         CRYPTO_RETW_UNLOCK(ret_worker);
2151
2152         crypto_finis(&ret_worker->crp_ret_q);
2153 }
2154
2155 #ifdef DDB
2156 static void
2157 db_show_drivers(void)
2158 {
2159         int hid;
2160
2161         db_printf("%12s %4s %4s %8s %2s %2s\n"
2162                 , "Device"
2163                 , "Ses"
2164                 , "Kops"
2165                 , "Flags"
2166                 , "QB"
2167                 , "KB"
2168         );
2169         for (hid = 0; hid < crypto_drivers_size; hid++) {
2170                 const struct cryptocap *cap = crypto_drivers[hid];
2171                 if (cap == NULL)
2172                         continue;
2173                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
2174                     , device_get_nameunit(cap->cc_dev)
2175                     , cap->cc_sessions
2176                     , cap->cc_koperations
2177                     , cap->cc_flags
2178                     , cap->cc_qblocked
2179                     , cap->cc_kqblocked
2180                 );
2181         }
2182 }
2183
2184 DB_SHOW_COMMAND(crypto, db_show_crypto)
2185 {
2186         struct cryptop *crp;
2187         struct crypto_ret_worker *ret_worker;
2188
2189         db_show_drivers();
2190         db_printf("\n");
2191
2192         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
2193             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
2194             "Device", "Callback");
2195         TAILQ_FOREACH(crp, &crp_q, crp_next) {
2196                 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
2197                     , crp->crp_session->cap->cc_hid
2198                     , (int) crypto_ses2caps(crp->crp_session)
2199                     , crp->crp_olen
2200                     , crp->crp_etype
2201                     , crp->crp_flags
2202                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
2203                     , crp->crp_callback
2204                 );
2205         }
2206         FOREACH_CRYPTO_RETW(ret_worker) {
2207                 db_printf("\n%8s %4s %4s %4s %8s\n",
2208                     "ret_worker", "HID", "Etype", "Flags", "Callback");
2209                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2210                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
2211                                 db_printf("%8td %4u %4u %04x %8p\n"
2212                                     , CRYPTO_RETW_ID(ret_worker)
2213                                     , crp->crp_session->cap->cc_hid
2214                                     , crp->crp_etype
2215                                     , crp->crp_flags
2216                                     , crp->crp_callback
2217                                 );
2218                         }
2219                 }
2220         }
2221 }
2222
2223 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
2224 {
2225         struct cryptkop *krp;
2226         struct crypto_ret_worker *ret_worker;
2227
2228         db_show_drivers();
2229         db_printf("\n");
2230
2231         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
2232             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
2233         TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2234                 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
2235                     , krp->krp_op
2236                     , krp->krp_status
2237                     , krp->krp_iparams, krp->krp_oparams
2238                     , krp->krp_crid, krp->krp_hid
2239                     , krp->krp_callback
2240                 );
2241         }
2242
2243         ret_worker = CRYPTO_RETW(0);
2244         if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2245                 db_printf("%4s %5s %8s %4s %8s\n",
2246                     "Op", "Status", "CRID", "HID", "Callback");
2247                 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
2248                         db_printf("%4u %5u %08x %4u %8p\n"
2249                             , krp->krp_op
2250                             , krp->krp_status
2251                             , krp->krp_crid, krp->krp_hid
2252                             , krp->krp_callback
2253                         );
2254                 }
2255         }
2256 }
2257 #endif
2258
2259 int crypto_modevent(module_t mod, int type, void *unused);
2260
2261 /*
2262  * Initialization code, both for static and dynamic loading.
2263  * Note this is not invoked with the usual MODULE_DECLARE
2264  * mechanism but instead is listed as a dependency by the
2265  * cryptosoft driver.  This guarantees proper ordering of
2266  * calls on module load/unload.
2267  */
2268 int
2269 crypto_modevent(module_t mod, int type, void *unused)
2270 {
2271         int error = EINVAL;
2272
2273         switch (type) {
2274         case MOD_LOAD:
2275                 error = crypto_init();
2276                 if (error == 0 && bootverbose)
2277                         printf("crypto: <crypto core>\n");
2278                 break;
2279         case MOD_UNLOAD:
2280                 /*XXX disallow if active sessions */
2281                 error = 0;
2282                 crypto_destroy();
2283                 return 0;
2284         }
2285         return error;
2286 }
2287 MODULE_VERSION(crypto, 1);
2288 MODULE_DEPEND(crypto, zlib, 1, 1, 1);