]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
vm_fault: Shoot down shared mappings in vm_fault_copy_entry()
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/refcount.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/sysent.h>
96 #include <sys/vmmeter.h>
97 #include <sys/vnode.h>
98 #ifdef KTRACE
99 #include <sys/ktrace.h>
100 #endif
101
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_reserv.h>
113
114 #define PFBAK 4
115 #define PFFOR 4
116
117 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
118
119 #define VM_FAULT_DONTNEED_MIN   1048576
120
121 struct faultstate {
122         /* Fault parameters. */
123         vm_offset_t     vaddr;
124         vm_page_t       *m_hold;
125         vm_prot_t       fault_type;
126         vm_prot_t       prot;
127         int             fault_flags;
128         int             oom;
129         boolean_t       wired;
130
131         /* Page reference for cow. */
132         vm_page_t m_cow;
133
134         /* Current object. */
135         vm_object_t     object;
136         vm_pindex_t     pindex;
137         vm_page_t       m;
138
139         /* Top-level map object. */
140         vm_object_t     first_object;
141         vm_pindex_t     first_pindex;
142         vm_page_t       first_m;
143
144         /* Map state. */
145         vm_map_t        map;
146         vm_map_entry_t  entry;
147         int             map_generation;
148         bool            lookup_still_valid;
149
150         /* Vnode if locked. */
151         struct vnode    *vp;
152 };
153
154 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
155             int ahead);
156 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
157             int backward, int forward, bool obj_locked);
158
159 static int vm_pfault_oom_attempts = 3;
160 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
161     &vm_pfault_oom_attempts, 0,
162     "Number of page allocation attempts in page fault handler before it "
163     "triggers OOM handling");
164
165 static int vm_pfault_oom_wait = 10;
166 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
167     &vm_pfault_oom_wait, 0,
168     "Number of seconds to wait for free pages before retrying "
169     "the page fault handler");
170
171 static inline void
172 fault_page_release(vm_page_t *mp)
173 {
174         vm_page_t m;
175
176         m = *mp;
177         if (m != NULL) {
178                 /*
179                  * We are likely to loop around again and attempt to busy
180                  * this page.  Deactivating it leaves it available for
181                  * pageout while optimizing fault restarts.
182                  */
183                 vm_page_deactivate(m);
184                 vm_page_xunbusy(m);
185                 *mp = NULL;
186         }
187 }
188
189 static inline void
190 fault_page_free(vm_page_t *mp)
191 {
192         vm_page_t m;
193
194         m = *mp;
195         if (m != NULL) {
196                 VM_OBJECT_ASSERT_WLOCKED(m->object);
197                 if (!vm_page_wired(m))
198                         vm_page_free(m);
199                 else
200                         vm_page_xunbusy(m);
201                 *mp = NULL;
202         }
203 }
204
205 static inline void
206 unlock_map(struct faultstate *fs)
207 {
208
209         if (fs->lookup_still_valid) {
210                 vm_map_lookup_done(fs->map, fs->entry);
211                 fs->lookup_still_valid = false;
212         }
213 }
214
215 static void
216 unlock_vp(struct faultstate *fs)
217 {
218
219         if (fs->vp != NULL) {
220                 vput(fs->vp);
221                 fs->vp = NULL;
222         }
223 }
224
225 static void
226 fault_deallocate(struct faultstate *fs)
227 {
228
229         fault_page_release(&fs->m_cow);
230         fault_page_release(&fs->m);
231         vm_object_pip_wakeup(fs->object);
232         if (fs->object != fs->first_object) {
233                 VM_OBJECT_WLOCK(fs->first_object);
234                 fault_page_free(&fs->first_m);
235                 VM_OBJECT_WUNLOCK(fs->first_object);
236                 vm_object_pip_wakeup(fs->first_object);
237         }
238         vm_object_deallocate(fs->first_object);
239         unlock_map(fs);
240         unlock_vp(fs);
241 }
242
243 static void
244 unlock_and_deallocate(struct faultstate *fs)
245 {
246
247         VM_OBJECT_WUNLOCK(fs->object);
248         fault_deallocate(fs);
249 }
250
251 static void
252 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
253 {
254         bool need_dirty;
255
256         if (((fs->prot & VM_PROT_WRITE) == 0 &&
257             (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
258             (m->oflags & VPO_UNMANAGED) != 0)
259                 return;
260
261         VM_PAGE_OBJECT_BUSY_ASSERT(m);
262
263         need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
264             (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
265             (fs->fault_flags & VM_FAULT_DIRTY) != 0;
266
267         vm_object_set_writeable_dirty(m->object);
268
269         /*
270          * If the fault is a write, we know that this page is being
271          * written NOW so dirty it explicitly to save on
272          * pmap_is_modified() calls later.
273          *
274          * Also, since the page is now dirty, we can possibly tell
275          * the pager to release any swap backing the page.
276          */
277         if (need_dirty && vm_page_set_dirty(m) == 0) {
278                 /*
279                  * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
280                  * if the page is already dirty to prevent data written with
281                  * the expectation of being synced from not being synced.
282                  * Likewise if this entry does not request NOSYNC then make
283                  * sure the page isn't marked NOSYNC.  Applications sharing
284                  * data should use the same flags to avoid ping ponging.
285                  */
286                 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
287                         vm_page_aflag_set(m, PGA_NOSYNC);
288                 else
289                         vm_page_aflag_clear(m, PGA_NOSYNC);
290         }
291
292 }
293
294 /*
295  * Unlocks fs.first_object and fs.map on success.
296  */
297 static int
298 vm_fault_soft_fast(struct faultstate *fs)
299 {
300         vm_page_t m, m_map;
301 #if VM_NRESERVLEVEL > 0
302         vm_page_t m_super;
303         int flags;
304 #endif
305         int psind, rv;
306         vm_offset_t vaddr;
307
308         MPASS(fs->vp == NULL);
309         vaddr = fs->vaddr;
310         vm_object_busy(fs->first_object);
311         m = vm_page_lookup(fs->first_object, fs->first_pindex);
312         /* A busy page can be mapped for read|execute access. */
313         if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
314             vm_page_busied(m)) || !vm_page_all_valid(m)) {
315                 rv = KERN_FAILURE;
316                 goto out;
317         }
318         m_map = m;
319         psind = 0;
320 #if VM_NRESERVLEVEL > 0
321         if ((m->flags & PG_FICTITIOUS) == 0 &&
322             (m_super = vm_reserv_to_superpage(m)) != NULL &&
323             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
324             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
325             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
326             (pagesizes[m_super->psind] - 1)) && !fs->wired &&
327             pmap_ps_enabled(fs->map->pmap)) {
328                 flags = PS_ALL_VALID;
329                 if ((fs->prot & VM_PROT_WRITE) != 0) {
330                         /*
331                          * Create a superpage mapping allowing write access
332                          * only if none of the constituent pages are busy and
333                          * all of them are already dirty (except possibly for
334                          * the page that was faulted on).
335                          */
336                         flags |= PS_NONE_BUSY;
337                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
338                                 flags |= PS_ALL_DIRTY;
339                 }
340                 if (vm_page_ps_test(m_super, flags, m)) {
341                         m_map = m_super;
342                         psind = m_super->psind;
343                         vaddr = rounddown2(vaddr, pagesizes[psind]);
344                         /* Preset the modified bit for dirty superpages. */
345                         if ((flags & PS_ALL_DIRTY) != 0)
346                                 fs->fault_type |= VM_PROT_WRITE;
347                 }
348         }
349 #endif
350         rv = pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
351             PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
352         if (rv != KERN_SUCCESS)
353                 goto out;
354         if (fs->m_hold != NULL) {
355                 (*fs->m_hold) = m;
356                 vm_page_wire(m);
357         }
358         if (psind == 0 && !fs->wired)
359                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
360         VM_OBJECT_RUNLOCK(fs->first_object);
361         vm_fault_dirty(fs, m);
362         vm_map_lookup_done(fs->map, fs->entry);
363         curthread->td_ru.ru_minflt++;
364
365 out:
366         vm_object_unbusy(fs->first_object);
367         return (rv);
368 }
369
370 static void
371 vm_fault_restore_map_lock(struct faultstate *fs)
372 {
373
374         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
375         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
376
377         if (!vm_map_trylock_read(fs->map)) {
378                 VM_OBJECT_WUNLOCK(fs->first_object);
379                 vm_map_lock_read(fs->map);
380                 VM_OBJECT_WLOCK(fs->first_object);
381         }
382         fs->lookup_still_valid = true;
383 }
384
385 static void
386 vm_fault_populate_check_page(vm_page_t m)
387 {
388
389         /*
390          * Check each page to ensure that the pager is obeying the
391          * interface: the page must be installed in the object, fully
392          * valid, and exclusively busied.
393          */
394         MPASS(m != NULL);
395         MPASS(vm_page_all_valid(m));
396         MPASS(vm_page_xbusied(m));
397 }
398
399 static void
400 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
401     vm_pindex_t last)
402 {
403         vm_page_t m;
404         vm_pindex_t pidx;
405
406         VM_OBJECT_ASSERT_WLOCKED(object);
407         MPASS(first <= last);
408         for (pidx = first, m = vm_page_lookup(object, pidx);
409             pidx <= last; pidx++, m = vm_page_next(m)) {
410                 vm_fault_populate_check_page(m);
411                 vm_page_deactivate(m);
412                 vm_page_xunbusy(m);
413         }
414 }
415
416 static int
417 vm_fault_populate(struct faultstate *fs)
418 {
419         vm_offset_t vaddr;
420         vm_page_t m;
421         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
422         int bdry_idx, i, npages, psind, rv;
423
424         MPASS(fs->object == fs->first_object);
425         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
426         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
427         MPASS(fs->first_object->backing_object == NULL);
428         MPASS(fs->lookup_still_valid);
429
430         pager_first = OFF_TO_IDX(fs->entry->offset);
431         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
432         unlock_map(fs);
433         unlock_vp(fs);
434
435         /*
436          * Call the pager (driver) populate() method.
437          *
438          * There is no guarantee that the method will be called again
439          * if the current fault is for read, and a future fault is
440          * for write.  Report the entry's maximum allowed protection
441          * to the driver.
442          */
443         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
444             fs->fault_type, fs->entry->max_protection, &pager_first,
445             &pager_last);
446
447         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
448         if (rv == VM_PAGER_BAD) {
449                 /*
450                  * VM_PAGER_BAD is the backdoor for a pager to request
451                  * normal fault handling.
452                  */
453                 vm_fault_restore_map_lock(fs);
454                 if (fs->map->timestamp != fs->map_generation)
455                         return (KERN_RESTART);
456                 return (KERN_NOT_RECEIVER);
457         }
458         if (rv != VM_PAGER_OK)
459                 return (KERN_FAILURE); /* AKA SIGSEGV */
460
461         /* Ensure that the driver is obeying the interface. */
462         MPASS(pager_first <= pager_last);
463         MPASS(fs->first_pindex <= pager_last);
464         MPASS(fs->first_pindex >= pager_first);
465         MPASS(pager_last < fs->first_object->size);
466
467         vm_fault_restore_map_lock(fs);
468         bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
469             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
470         if (fs->map->timestamp != fs->map_generation) {
471                 if (bdry_idx == 0) {
472                         vm_fault_populate_cleanup(fs->first_object, pager_first,
473                             pager_last);
474                 } else {
475                         m = vm_page_lookup(fs->first_object, pager_first);
476                         if (m != fs->m)
477                                 vm_page_xunbusy(m);
478                 }
479                 return (KERN_RESTART);
480         }
481
482         /*
483          * The map is unchanged after our last unlock.  Process the fault.
484          *
485          * First, the special case of largepage mappings, where
486          * populate only busies the first page in superpage run.
487          */
488         if (bdry_idx != 0) {
489                 KASSERT(PMAP_HAS_LARGEPAGES,
490                     ("missing pmap support for large pages"));
491                 m = vm_page_lookup(fs->first_object, pager_first);
492                 vm_fault_populate_check_page(m);
493                 VM_OBJECT_WUNLOCK(fs->first_object);
494                 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
495                     fs->entry->offset;
496                 /* assert alignment for entry */
497                 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
498     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
499                     (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
500                     (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
501                 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
502                     ("unaligned superpage m %p %#jx", m,
503                     (uintmax_t)VM_PAGE_TO_PHYS(m)));
504                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
505                     fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
506                     PMAP_ENTER_LARGEPAGE, bdry_idx);
507                 VM_OBJECT_WLOCK(fs->first_object);
508                 vm_page_xunbusy(m);
509                 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
510                         for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
511                                 vm_page_wire(m + i);
512                 }
513                 if (fs->m_hold != NULL) {
514                         *fs->m_hold = m + (fs->first_pindex - pager_first);
515                         vm_page_wire(*fs->m_hold);
516                 }
517                 goto out;
518         }
519
520         /*
521          * The range [pager_first, pager_last] that is given to the
522          * pager is only a hint.  The pager may populate any range
523          * within the object that includes the requested page index.
524          * In case the pager expanded the range, clip it to fit into
525          * the map entry.
526          */
527         map_first = OFF_TO_IDX(fs->entry->offset);
528         if (map_first > pager_first) {
529                 vm_fault_populate_cleanup(fs->first_object, pager_first,
530                     map_first - 1);
531                 pager_first = map_first;
532         }
533         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
534         if (map_last < pager_last) {
535                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
536                     pager_last);
537                 pager_last = map_last;
538         }
539         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
540             pidx <= pager_last;
541             pidx += npages, m = vm_page_next(&m[npages - 1])) {
542                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
543 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
544     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv) || \
545     defined(__powerpc64__)
546                 psind = m->psind;
547                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
548                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
549                     !pmap_ps_enabled(fs->map->pmap) || fs->wired))
550                         psind = 0;
551 #else
552                 psind = 0;
553 #endif          
554                 npages = atop(pagesizes[psind]);
555                 for (i = 0; i < npages; i++) {
556                         vm_fault_populate_check_page(&m[i]);
557                         vm_fault_dirty(fs, &m[i]);
558                 }
559                 VM_OBJECT_WUNLOCK(fs->first_object);
560                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
561                     (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
562 #if defined(__amd64__)
563                 if (psind > 0 && rv == KERN_FAILURE) {
564                         for (i = 0; i < npages; i++) {
565                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
566                                     &m[i], fs->prot, fs->fault_type |
567                                     (fs->wired ? PMAP_ENTER_WIRED : 0), 0);
568                                 MPASS(rv == KERN_SUCCESS);
569                         }
570                 }
571 #else
572                 MPASS(rv == KERN_SUCCESS);
573 #endif
574                 VM_OBJECT_WLOCK(fs->first_object);
575                 for (i = 0; i < npages; i++) {
576                         if ((fs->fault_flags & VM_FAULT_WIRE) != 0)
577                                 vm_page_wire(&m[i]);
578                         else
579                                 vm_page_activate(&m[i]);
580                         if (fs->m_hold != NULL && m[i].pindex == fs->first_pindex) {
581                                 (*fs->m_hold) = &m[i];
582                                 vm_page_wire(&m[i]);
583                         }
584                         vm_page_xunbusy(&m[i]);
585                 }
586         }
587 out:
588         curthread->td_ru.ru_majflt++;
589         return (KERN_SUCCESS);
590 }
591
592 static int prot_fault_translation;
593 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
594     &prot_fault_translation, 0,
595     "Control signal to deliver on protection fault");
596
597 /* compat definition to keep common code for signal translation */
598 #define UCODE_PAGEFLT   12
599 #ifdef T_PAGEFLT
600 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
601 #endif
602
603 /*
604  *      vm_fault_trap:
605  *
606  *      Handle a page fault occurring at the given address,
607  *      requiring the given permissions, in the map specified.
608  *      If successful, the page is inserted into the
609  *      associated physical map.
610  *
611  *      NOTE: the given address should be truncated to the
612  *      proper page address.
613  *
614  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
615  *      a standard error specifying why the fault is fatal is returned.
616  *
617  *      The map in question must be referenced, and remains so.
618  *      Caller may hold no locks.
619  */
620 int
621 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
622     int fault_flags, int *signo, int *ucode)
623 {
624         int result;
625
626         MPASS(signo == NULL || ucode != NULL);
627 #ifdef KTRACE
628         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
629                 ktrfault(vaddr, fault_type);
630 #endif
631         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
632             NULL);
633         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
634             result == KERN_INVALID_ADDRESS ||
635             result == KERN_RESOURCE_SHORTAGE ||
636             result == KERN_PROTECTION_FAILURE ||
637             result == KERN_OUT_OF_BOUNDS,
638             ("Unexpected Mach error %d from vm_fault()", result));
639 #ifdef KTRACE
640         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
641                 ktrfaultend(result);
642 #endif
643         if (result != KERN_SUCCESS && signo != NULL) {
644                 switch (result) {
645                 case KERN_FAILURE:
646                 case KERN_INVALID_ADDRESS:
647                         *signo = SIGSEGV;
648                         *ucode = SEGV_MAPERR;
649                         break;
650                 case KERN_RESOURCE_SHORTAGE:
651                         *signo = SIGBUS;
652                         *ucode = BUS_OOMERR;
653                         break;
654                 case KERN_OUT_OF_BOUNDS:
655                         *signo = SIGBUS;
656                         *ucode = BUS_OBJERR;
657                         break;
658                 case KERN_PROTECTION_FAILURE:
659                         if (prot_fault_translation == 0) {
660                                 /*
661                                  * Autodetect.  This check also covers
662                                  * the images without the ABI-tag ELF
663                                  * note.
664                                  */
665                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
666                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
667                                         *signo = SIGSEGV;
668                                         *ucode = SEGV_ACCERR;
669                                 } else {
670                                         *signo = SIGBUS;
671                                         *ucode = UCODE_PAGEFLT;
672                                 }
673                         } else if (prot_fault_translation == 1) {
674                                 /* Always compat mode. */
675                                 *signo = SIGBUS;
676                                 *ucode = UCODE_PAGEFLT;
677                         } else {
678                                 /* Always SIGSEGV mode. */
679                                 *signo = SIGSEGV;
680                                 *ucode = SEGV_ACCERR;
681                         }
682                         break;
683                 default:
684                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
685                             result));
686                         break;
687                 }
688         }
689         return (result);
690 }
691
692 static int
693 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
694 {
695         struct vnode *vp;
696         int error, locked;
697
698         if (fs->object->type != OBJT_VNODE)
699                 return (KERN_SUCCESS);
700         vp = fs->object->handle;
701         if (vp == fs->vp) {
702                 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
703                 return (KERN_SUCCESS);
704         }
705
706         /*
707          * Perform an unlock in case the desired vnode changed while
708          * the map was unlocked during a retry.
709          */
710         unlock_vp(fs);
711
712         locked = VOP_ISLOCKED(vp);
713         if (locked != LK_EXCLUSIVE)
714                 locked = LK_SHARED;
715
716         /*
717          * We must not sleep acquiring the vnode lock while we have
718          * the page exclusive busied or the object's
719          * paging-in-progress count incremented.  Otherwise, we could
720          * deadlock.
721          */
722         error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
723         if (error == 0) {
724                 fs->vp = vp;
725                 return (KERN_SUCCESS);
726         }
727
728         vhold(vp);
729         if (objlocked)
730                 unlock_and_deallocate(fs);
731         else
732                 fault_deallocate(fs);
733         error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
734         vdrop(vp);
735         fs->vp = vp;
736         KASSERT(error == 0, ("vm_fault: vget failed %d", error));
737         return (KERN_RESOURCE_SHORTAGE);
738 }
739
740 /*
741  * Calculate the desired readahead.  Handle drop-behind.
742  *
743  * Returns the number of readahead blocks to pass to the pager.
744  */
745 static int
746 vm_fault_readahead(struct faultstate *fs)
747 {
748         int era, nera;
749         u_char behavior;
750
751         KASSERT(fs->lookup_still_valid, ("map unlocked"));
752         era = fs->entry->read_ahead;
753         behavior = vm_map_entry_behavior(fs->entry);
754         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
755                 nera = 0;
756         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
757                 nera = VM_FAULT_READ_AHEAD_MAX;
758                 if (fs->vaddr == fs->entry->next_read)
759                         vm_fault_dontneed(fs, fs->vaddr, nera);
760         } else if (fs->vaddr == fs->entry->next_read) {
761                 /*
762                  * This is a sequential fault.  Arithmetically
763                  * increase the requested number of pages in
764                  * the read-ahead window.  The requested
765                  * number of pages is "# of sequential faults
766                  * x (read ahead min + 1) + read ahead min"
767                  */
768                 nera = VM_FAULT_READ_AHEAD_MIN;
769                 if (era > 0) {
770                         nera += era + 1;
771                         if (nera > VM_FAULT_READ_AHEAD_MAX)
772                                 nera = VM_FAULT_READ_AHEAD_MAX;
773                 }
774                 if (era == VM_FAULT_READ_AHEAD_MAX)
775                         vm_fault_dontneed(fs, fs->vaddr, nera);
776         } else {
777                 /*
778                  * This is a non-sequential fault.
779                  */
780                 nera = 0;
781         }
782         if (era != nera) {
783                 /*
784                  * A read lock on the map suffices to update
785                  * the read ahead count safely.
786                  */
787                 fs->entry->read_ahead = nera;
788         }
789
790         return (nera);
791 }
792
793 static int
794 vm_fault_lookup(struct faultstate *fs)
795 {
796         int result;
797
798         KASSERT(!fs->lookup_still_valid,
799            ("vm_fault_lookup: Map already locked."));
800         result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
801             VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
802             &fs->first_pindex, &fs->prot, &fs->wired);
803         if (result != KERN_SUCCESS) {
804                 unlock_vp(fs);
805                 return (result);
806         }
807
808         fs->map_generation = fs->map->timestamp;
809
810         if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
811                 panic("%s: fault on nofault entry, addr: %#lx",
812                     __func__, (u_long)fs->vaddr);
813         }
814
815         if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
816             fs->entry->wiring_thread != curthread) {
817                 vm_map_unlock_read(fs->map);
818                 vm_map_lock(fs->map);
819                 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
820                     (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
821                         unlock_vp(fs);
822                         fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
823                         vm_map_unlock_and_wait(fs->map, 0);
824                 } else
825                         vm_map_unlock(fs->map);
826                 return (KERN_RESOURCE_SHORTAGE);
827         }
828
829         MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
830
831         if (fs->wired)
832                 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
833         else
834                 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
835                     ("!fs->wired && VM_FAULT_WIRE"));
836         fs->lookup_still_valid = true;
837
838         return (KERN_SUCCESS);
839 }
840
841 static int
842 vm_fault_relookup(struct faultstate *fs)
843 {
844         vm_object_t retry_object;
845         vm_pindex_t retry_pindex;
846         vm_prot_t retry_prot;
847         int result;
848
849         if (!vm_map_trylock_read(fs->map))
850                 return (KERN_RESTART);
851
852         fs->lookup_still_valid = true;
853         if (fs->map->timestamp == fs->map_generation)
854                 return (KERN_SUCCESS);
855
856         result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
857             &fs->entry, &retry_object, &retry_pindex, &retry_prot,
858             &fs->wired);
859         if (result != KERN_SUCCESS) {
860                 /*
861                  * If retry of map lookup would have blocked then
862                  * retry fault from start.
863                  */
864                 if (result == KERN_FAILURE)
865                         return (KERN_RESTART);
866                 return (result);
867         }
868         if (retry_object != fs->first_object ||
869             retry_pindex != fs->first_pindex)
870                 return (KERN_RESTART);
871
872         /*
873          * Check whether the protection has changed or the object has
874          * been copied while we left the map unlocked. Changing from
875          * read to write permission is OK - we leave the page
876          * write-protected, and catch the write fault. Changing from
877          * write to read permission means that we can't mark the page
878          * write-enabled after all.
879          */
880         fs->prot &= retry_prot;
881         fs->fault_type &= retry_prot;
882         if (fs->prot == 0)
883                 return (KERN_RESTART);
884
885         /* Reassert because wired may have changed. */
886         KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
887             ("!wired && VM_FAULT_WIRE"));
888
889         return (KERN_SUCCESS);
890 }
891
892 static void
893 vm_fault_cow(struct faultstate *fs)
894 {
895         bool is_first_object_locked;
896
897         KASSERT(fs->object != fs->first_object,
898             ("source and target COW objects are identical"));
899
900         /*
901          * This allows pages to be virtually copied from a backing_object
902          * into the first_object, where the backing object has no other
903          * refs to it, and cannot gain any more refs.  Instead of a bcopy,
904          * we just move the page from the backing object to the first
905          * object.  Note that we must mark the page dirty in the first
906          * object so that it will go out to swap when needed.
907          */
908         is_first_object_locked = false;
909         if (
910             /*
911              * Only one shadow object and no other refs.
912              */
913             fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
914             /*
915              * No other ways to look the object up
916              */
917             fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
918             /*
919              * We don't chase down the shadow chain and we can acquire locks.
920              */
921             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
922             fs->object == fs->first_object->backing_object &&
923             VM_OBJECT_TRYWLOCK(fs->object)) {
924                 /*
925                  * Remove but keep xbusy for replace.  fs->m is moved into
926                  * fs->first_object and left busy while fs->first_m is
927                  * conditionally freed.
928                  */
929                 vm_page_remove_xbusy(fs->m);
930                 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
931                     fs->first_m);
932                 vm_page_dirty(fs->m);
933 #if VM_NRESERVLEVEL > 0
934                 /*
935                  * Rename the reservation.
936                  */
937                 vm_reserv_rename(fs->m, fs->first_object, fs->object,
938                     OFF_TO_IDX(fs->first_object->backing_object_offset));
939 #endif
940                 VM_OBJECT_WUNLOCK(fs->object);
941                 VM_OBJECT_WUNLOCK(fs->first_object);
942                 fs->first_m = fs->m;
943                 fs->m = NULL;
944                 VM_CNT_INC(v_cow_optim);
945         } else {
946                 if (is_first_object_locked)
947                         VM_OBJECT_WUNLOCK(fs->first_object);
948                 /*
949                  * Oh, well, lets copy it.
950                  */
951                 pmap_copy_page(fs->m, fs->first_m);
952                 vm_page_valid(fs->first_m);
953                 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
954                         vm_page_wire(fs->first_m);
955                         vm_page_unwire(fs->m, PQ_INACTIVE);
956                 }
957                 /*
958                  * Save the cow page to be released after
959                  * pmap_enter is complete.
960                  */
961                 fs->m_cow = fs->m;
962                 fs->m = NULL;
963
964                 /*
965                  * Typically, the shadow object is either private to this
966                  * address space (OBJ_ONEMAPPING) or its pages are read only.
967                  * In the highly unusual case where the pages of a shadow object
968                  * are read/write shared between this and other address spaces,
969                  * we need to ensure that any pmap-level mappings to the
970                  * original, copy-on-write page from the backing object are
971                  * removed from those other address spaces.
972                  *
973                  * The flag check is racy, but this is tolerable: if
974                  * OBJ_ONEMAPPING is cleared after the check, the busy state
975                  * ensures that new mappings of m_cow can't be created.
976                  * pmap_enter() will replace an existing mapping in the current
977                  * address space.  If OBJ_ONEMAPPING is set after the check,
978                  * removing mappings will at worse trigger some unnecessary page
979                  * faults.
980                  */
981                 vm_page_assert_xbusied(fs->m_cow);
982                 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
983                         pmap_remove_all(fs->m_cow);
984         }
985
986         vm_object_pip_wakeup(fs->object);
987
988         /*
989          * Only use the new page below...
990          */
991         fs->object = fs->first_object;
992         fs->pindex = fs->first_pindex;
993         fs->m = fs->first_m;
994         VM_CNT_INC(v_cow_faults);
995         curthread->td_cow++;
996 }
997
998 static bool
999 vm_fault_next(struct faultstate *fs)
1000 {
1001         vm_object_t next_object;
1002
1003         /*
1004          * The requested page does not exist at this object/
1005          * offset.  Remove the invalid page from the object,
1006          * waking up anyone waiting for it, and continue on to
1007          * the next object.  However, if this is the top-level
1008          * object, we must leave the busy page in place to
1009          * prevent another process from rushing past us, and
1010          * inserting the page in that object at the same time
1011          * that we are.
1012          */
1013         if (fs->object == fs->first_object) {
1014                 fs->first_m = fs->m;
1015                 fs->m = NULL;
1016         } else
1017                 fault_page_free(&fs->m);
1018
1019         /*
1020          * Move on to the next object.  Lock the next object before
1021          * unlocking the current one.
1022          */
1023         VM_OBJECT_ASSERT_WLOCKED(fs->object);
1024         next_object = fs->object->backing_object;
1025         if (next_object == NULL)
1026                 return (false);
1027         MPASS(fs->first_m != NULL);
1028         KASSERT(fs->object != next_object, ("object loop %p", next_object));
1029         VM_OBJECT_WLOCK(next_object);
1030         vm_object_pip_add(next_object, 1);
1031         if (fs->object != fs->first_object)
1032                 vm_object_pip_wakeup(fs->object);
1033         fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1034         VM_OBJECT_WUNLOCK(fs->object);
1035         fs->object = next_object;
1036
1037         return (true);
1038 }
1039
1040 static void
1041 vm_fault_zerofill(struct faultstate *fs)
1042 {
1043
1044         /*
1045          * If there's no object left, fill the page in the top
1046          * object with zeros.
1047          */
1048         if (fs->object != fs->first_object) {
1049                 vm_object_pip_wakeup(fs->object);
1050                 fs->object = fs->first_object;
1051                 fs->pindex = fs->first_pindex;
1052         }
1053         MPASS(fs->first_m != NULL);
1054         MPASS(fs->m == NULL);
1055         fs->m = fs->first_m;
1056         fs->first_m = NULL;
1057
1058         /*
1059          * Zero the page if necessary and mark it valid.
1060          */
1061         if ((fs->m->flags & PG_ZERO) == 0) {
1062                 pmap_zero_page(fs->m);
1063         } else {
1064                 VM_CNT_INC(v_ozfod);
1065         }
1066         VM_CNT_INC(v_zfod);
1067         vm_page_valid(fs->m);
1068 }
1069
1070 /*
1071  * Allocate a page directly or via the object populate method.
1072  */
1073 static int
1074 vm_fault_allocate(struct faultstate *fs)
1075 {
1076         struct domainset *dset;
1077         int alloc_req;
1078         int rv;
1079
1080         if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1081                 rv = vm_fault_lock_vnode(fs, true);
1082                 MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1083                 if (rv == KERN_RESOURCE_SHORTAGE)
1084                         return (rv);
1085         }
1086
1087         if (fs->pindex >= fs->object->size)
1088                 return (KERN_OUT_OF_BOUNDS);
1089
1090         if (fs->object == fs->first_object &&
1091             (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1092             fs->first_object->shadow_count == 0) {
1093                 rv = vm_fault_populate(fs);
1094                 switch (rv) {
1095                 case KERN_SUCCESS:
1096                 case KERN_FAILURE:
1097                 case KERN_RESTART:
1098                         return (rv);
1099                 case KERN_NOT_RECEIVER:
1100                         /*
1101                          * Pager's populate() method
1102                          * returned VM_PAGER_BAD.
1103                          */
1104                         break;
1105                 default:
1106                         panic("inconsistent return codes");
1107                 }
1108         }
1109
1110         /*
1111          * Allocate a new page for this object/offset pair.
1112          *
1113          * Unlocked read of the p_flag is harmless. At worst, the P_KILLED
1114          * might be not observed there, and allocation can fail, causing
1115          * restart and new reading of the p_flag.
1116          */
1117         dset = fs->object->domain.dr_policy;
1118         if (dset == NULL)
1119                 dset = curthread->td_domain.dr_policy;
1120         if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1121 #if VM_NRESERVLEVEL > 0
1122                 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1123 #endif
1124                 alloc_req = P_KILLED(curproc) ?
1125                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
1126                 if (fs->object->type != OBJT_VNODE &&
1127                     fs->object->backing_object == NULL)
1128                         alloc_req |= VM_ALLOC_ZERO;
1129                 fs->m = vm_page_alloc(fs->object, fs->pindex, alloc_req);
1130         }
1131         if (fs->m == NULL) {
1132                 unlock_and_deallocate(fs);
1133                 if (vm_pfault_oom_attempts < 0 ||
1134                     fs->oom < vm_pfault_oom_attempts) {
1135                         fs->oom++;
1136                         vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1137                 } else  {
1138                         if (bootverbose)
1139                                 printf(
1140                 "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1141                                     curproc->p_pid, curproc->p_comm);
1142                         vm_pageout_oom(VM_OOM_MEM_PF);
1143                         fs->oom = 0;
1144                 }
1145                 return (KERN_RESOURCE_SHORTAGE);
1146         }
1147         fs->oom = 0;
1148
1149         return (KERN_NOT_RECEIVER);
1150 }
1151
1152 /*
1153  * Call the pager to retrieve the page if there is a chance
1154  * that the pager has it, and potentially retrieve additional
1155  * pages at the same time.
1156  */
1157 static int
1158 vm_fault_getpages(struct faultstate *fs, int nera, int *behindp, int *aheadp)
1159 {
1160         vm_offset_t e_end, e_start;
1161         int ahead, behind, cluster_offset, rv;
1162         u_char behavior;
1163
1164         /*
1165          * Prepare for unlocking the map.  Save the map
1166          * entry's start and end addresses, which are used to
1167          * optimize the size of the pager operation below.
1168          * Even if the map entry's addresses change after
1169          * unlocking the map, using the saved addresses is
1170          * safe.
1171          */
1172         e_start = fs->entry->start;
1173         e_end = fs->entry->end;
1174         behavior = vm_map_entry_behavior(fs->entry);
1175
1176         /*
1177          * Release the map lock before locking the vnode or
1178          * sleeping in the pager.  (If the current object has
1179          * a shadow, then an earlier iteration of this loop
1180          * may have already unlocked the map.)
1181          */
1182         unlock_map(fs);
1183
1184         rv = vm_fault_lock_vnode(fs, false);
1185         MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1186         if (rv == KERN_RESOURCE_SHORTAGE)
1187                 return (rv);
1188         KASSERT(fs->vp == NULL || !fs->map->system_map,
1189             ("vm_fault: vnode-backed object mapped by system map"));
1190
1191         /*
1192          * Page in the requested page and hint the pager,
1193          * that it may bring up surrounding pages.
1194          */
1195         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1196             P_KILLED(curproc)) {
1197                 behind = 0;
1198                 ahead = 0;
1199         } else {
1200                 /* Is this a sequential fault? */
1201                 if (nera > 0) {
1202                         behind = 0;
1203                         ahead = nera;
1204                 } else {
1205                         /*
1206                          * Request a cluster of pages that is
1207                          * aligned to a VM_FAULT_READ_DEFAULT
1208                          * page offset boundary within the
1209                          * object.  Alignment to a page offset
1210                          * boundary is more likely to coincide
1211                          * with the underlying file system
1212                          * block than alignment to a virtual
1213                          * address boundary.
1214                          */
1215                         cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1216                         behind = ulmin(cluster_offset,
1217                             atop(fs->vaddr - e_start));
1218                         ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1219                 }
1220                 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1221         }
1222         *behindp = behind;
1223         *aheadp = ahead;
1224         rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1225         if (rv == VM_PAGER_OK)
1226                 return (KERN_SUCCESS);
1227         if (rv == VM_PAGER_ERROR)
1228                 printf("vm_fault: pager read error, pid %d (%s)\n",
1229                     curproc->p_pid, curproc->p_comm);
1230         /*
1231          * If an I/O error occurred or the requested page was
1232          * outside the range of the pager, clean up and return
1233          * an error.
1234          */
1235         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD)
1236                 return (KERN_OUT_OF_BOUNDS);
1237         return (KERN_NOT_RECEIVER);
1238 }
1239
1240 /*
1241  * Wait/Retry if the page is busy.  We have to do this if the page is
1242  * either exclusive or shared busy because the vm_pager may be using
1243  * read busy for pageouts (and even pageins if it is the vnode pager),
1244  * and we could end up trying to pagein and pageout the same page
1245  * simultaneously.
1246  *
1247  * We can theoretically allow the busy case on a read fault if the page
1248  * is marked valid, but since such pages are typically already pmap'd,
1249  * putting that special case in might be more effort then it is worth.
1250  * We cannot under any circumstances mess around with a shared busied
1251  * page except, perhaps, to pmap it.
1252  */
1253 static void
1254 vm_fault_busy_sleep(struct faultstate *fs)
1255 {
1256         /*
1257          * Reference the page before unlocking and
1258          * sleeping so that the page daemon is less
1259          * likely to reclaim it.
1260          */
1261         vm_page_aflag_set(fs->m, PGA_REFERENCED);
1262         if (fs->object != fs->first_object) {
1263                 fault_page_release(&fs->first_m);
1264                 vm_object_pip_wakeup(fs->first_object);
1265         }
1266         vm_object_pip_wakeup(fs->object);
1267         unlock_map(fs);
1268         if (fs->m == vm_page_lookup(fs->object, fs->pindex))
1269                 vm_page_busy_sleep(fs->m, "vmpfw", false);
1270         else
1271                 VM_OBJECT_WUNLOCK(fs->object);
1272         VM_CNT_INC(v_intrans);
1273         vm_object_deallocate(fs->first_object);
1274 }
1275
1276 int
1277 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1278     int fault_flags, vm_page_t *m_hold)
1279 {
1280         struct faultstate fs;
1281         int ahead, behind, faultcount;
1282         int nera, result, rv;
1283         bool dead, hardfault;
1284
1285         VM_CNT_INC(v_vm_faults);
1286
1287         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1288                 return (KERN_PROTECTION_FAILURE);
1289
1290         fs.vp = NULL;
1291         fs.vaddr = vaddr;
1292         fs.m_hold = m_hold;
1293         fs.fault_flags = fault_flags;
1294         fs.map = map;
1295         fs.lookup_still_valid = false;
1296         fs.oom = 0;
1297         faultcount = 0;
1298         nera = -1;
1299         hardfault = false;
1300
1301 RetryFault:
1302         fs.fault_type = fault_type;
1303
1304         /*
1305          * Find the backing store object and offset into it to begin the
1306          * search.
1307          */
1308         result = vm_fault_lookup(&fs);
1309         if (result != KERN_SUCCESS) {
1310                 if (result == KERN_RESOURCE_SHORTAGE)
1311                         goto RetryFault;
1312                 return (result);
1313         }
1314
1315         /*
1316          * Try to avoid lock contention on the top-level object through
1317          * special-case handling of some types of page faults, specifically,
1318          * those that are mapping an existing page from the top-level object.
1319          * Under this condition, a read lock on the object suffices, allowing
1320          * multiple page faults of a similar type to run in parallel.
1321          */
1322         if (fs.vp == NULL /* avoid locked vnode leak */ &&
1323             (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1324             (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1325                 VM_OBJECT_RLOCK(fs.first_object);
1326                 rv = vm_fault_soft_fast(&fs);
1327                 if (rv == KERN_SUCCESS)
1328                         return (rv);
1329                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
1330                         VM_OBJECT_RUNLOCK(fs.first_object);
1331                         VM_OBJECT_WLOCK(fs.first_object);
1332                 }
1333         } else {
1334                 VM_OBJECT_WLOCK(fs.first_object);
1335         }
1336
1337         /*
1338          * Make a reference to this object to prevent its disposal while we
1339          * are messing with it.  Once we have the reference, the map is free
1340          * to be diddled.  Since objects reference their shadows (and copies),
1341          * they will stay around as well.
1342          *
1343          * Bump the paging-in-progress count to prevent size changes (e.g. 
1344          * truncation operations) during I/O.
1345          */
1346         vm_object_reference_locked(fs.first_object);
1347         vm_object_pip_add(fs.first_object, 1);
1348
1349         fs.m_cow = fs.m = fs.first_m = NULL;
1350
1351         /*
1352          * Search for the page at object/offset.
1353          */
1354         fs.object = fs.first_object;
1355         fs.pindex = fs.first_pindex;
1356
1357         if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1358                 rv = vm_fault_allocate(&fs);
1359                 switch (rv) {
1360                 case KERN_RESTART:
1361                         unlock_and_deallocate(&fs);
1362                         /* FALLTHROUGH */
1363                 case KERN_RESOURCE_SHORTAGE:
1364                         goto RetryFault;
1365                 case KERN_SUCCESS:
1366                 case KERN_FAILURE:
1367                 case KERN_OUT_OF_BOUNDS:
1368                         unlock_and_deallocate(&fs);
1369                         return (rv);
1370                 case KERN_NOT_RECEIVER:
1371                         break;
1372                 default:
1373                         panic("vm_fault: Unhandled rv %d", rv);
1374                 }
1375         }
1376
1377         while (TRUE) {
1378                 KASSERT(fs.m == NULL,
1379                     ("page still set %p at loop start", fs.m));
1380                 /*
1381                  * If the object is marked for imminent termination,
1382                  * we retry here, since the collapse pass has raced
1383                  * with us.  Otherwise, if we see terminally dead
1384                  * object, return fail.
1385                  */
1386                 if ((fs.object->flags & OBJ_DEAD) != 0) {
1387                         dead = fs.object->type == OBJT_DEAD;
1388                         unlock_and_deallocate(&fs);
1389                         if (dead)
1390                                 return (KERN_PROTECTION_FAILURE);
1391                         pause("vmf_de", 1);
1392                         goto RetryFault;
1393                 }
1394
1395                 /*
1396                  * See if page is resident
1397                  */
1398                 fs.m = vm_page_lookup(fs.object, fs.pindex);
1399                 if (fs.m != NULL) {
1400                         if (vm_page_tryxbusy(fs.m) == 0) {
1401                                 vm_fault_busy_sleep(&fs);
1402                                 goto RetryFault;
1403                         }
1404
1405                         /*
1406                          * The page is marked busy for other processes and the
1407                          * pagedaemon.  If it still is completely valid we
1408                          * are done.
1409                          */
1410                         if (vm_page_all_valid(fs.m)) {
1411                                 VM_OBJECT_WUNLOCK(fs.object);
1412                                 break; /* break to PAGE HAS BEEN FOUND. */
1413                         }
1414                 }
1415                 VM_OBJECT_ASSERT_WLOCKED(fs.object);
1416
1417                 /*
1418                  * Page is not resident.  If the pager might contain the page
1419                  * or this is the beginning of the search, allocate a new
1420                  * page.  (Default objects are zero-fill, so there is no real
1421                  * pager for them.)
1422                  */
1423                 if (fs.m == NULL && (fs.object->type != OBJT_DEFAULT ||
1424                     fs.object == fs.first_object)) {
1425                         rv = vm_fault_allocate(&fs);
1426                         switch (rv) {
1427                         case KERN_RESTART:
1428                                 unlock_and_deallocate(&fs);
1429                                 /* FALLTHROUGH */
1430                         case KERN_RESOURCE_SHORTAGE:
1431                                 goto RetryFault;
1432                         case KERN_SUCCESS:
1433                         case KERN_FAILURE:
1434                         case KERN_OUT_OF_BOUNDS:
1435                                 unlock_and_deallocate(&fs);
1436                                 return (rv);
1437                         case KERN_NOT_RECEIVER:
1438                                 break;
1439                         default:
1440                                 panic("vm_fault: Unhandled rv %d", rv);
1441                         }
1442                 }
1443
1444                 /*
1445                  * Default objects have no pager so no exclusive busy exists
1446                  * to protect this page in the chain.  Skip to the next
1447                  * object without dropping the lock to preserve atomicity of
1448                  * shadow faults.
1449                  */
1450                 if (fs.object->type != OBJT_DEFAULT) {
1451                         /*
1452                          * At this point, we have either allocated a new page
1453                          * or found an existing page that is only partially
1454                          * valid.
1455                          *
1456                          * We hold a reference on the current object and the
1457                          * page is exclusive busied.  The exclusive busy
1458                          * prevents simultaneous faults and collapses while
1459                          * the object lock is dropped.
1460                          */
1461                         VM_OBJECT_WUNLOCK(fs.object);
1462
1463                         /*
1464                          * If the pager for the current object might have
1465                          * the page, then determine the number of additional
1466                          * pages to read and potentially reprioritize
1467                          * previously read pages for earlier reclamation.
1468                          * These operations should only be performed once per
1469                          * page fault.  Even if the current pager doesn't
1470                          * have the page, the number of additional pages to
1471                          * read will apply to subsequent objects in the
1472                          * shadow chain.
1473                          */
1474                         if (nera == -1 && !P_KILLED(curproc))
1475                                 nera = vm_fault_readahead(&fs);
1476
1477                         rv = vm_fault_getpages(&fs, nera, &behind, &ahead);
1478                         if (rv == KERN_SUCCESS) {
1479                                 faultcount = behind + 1 + ahead;
1480                                 hardfault = true;
1481                                 break; /* break to PAGE HAS BEEN FOUND. */
1482                         }
1483                         if (rv == KERN_RESOURCE_SHORTAGE)
1484                                 goto RetryFault;
1485                         VM_OBJECT_WLOCK(fs.object);
1486                         if (rv == KERN_OUT_OF_BOUNDS) {
1487                                 fault_page_free(&fs.m);
1488                                 unlock_and_deallocate(&fs);
1489                                 return (rv);
1490                         }
1491                 }
1492
1493                 /*
1494                  * The page was not found in the current object.  Try to
1495                  * traverse into a backing object or zero fill if none is
1496                  * found.
1497                  */
1498                 if (vm_fault_next(&fs))
1499                         continue;
1500                 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1501                         if (fs.first_object == fs.object)
1502                                 fault_page_free(&fs.first_m);
1503                         unlock_and_deallocate(&fs);
1504                         return (KERN_OUT_OF_BOUNDS);
1505                 }
1506                 VM_OBJECT_WUNLOCK(fs.object);
1507                 vm_fault_zerofill(&fs);
1508                 /* Don't try to prefault neighboring pages. */
1509                 faultcount = 1;
1510                 break;  /* break to PAGE HAS BEEN FOUND. */
1511         }
1512
1513         /*
1514          * PAGE HAS BEEN FOUND.  A valid page has been found and exclusively
1515          * busied.  The object lock must no longer be held.
1516          */
1517         vm_page_assert_xbusied(fs.m);
1518         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1519
1520         /*
1521          * If the page is being written, but isn't already owned by the
1522          * top-level object, we have to copy it into a new page owned by the
1523          * top-level object.
1524          */
1525         if (fs.object != fs.first_object) {
1526                 /*
1527                  * We only really need to copy if we want to write it.
1528                  */
1529                 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1530                         vm_fault_cow(&fs);
1531                         /*
1532                          * We only try to prefault read-only mappings to the
1533                          * neighboring pages when this copy-on-write fault is
1534                          * a hard fault.  In other cases, trying to prefault
1535                          * is typically wasted effort.
1536                          */
1537                         if (faultcount == 0)
1538                                 faultcount = 1;
1539
1540                 } else {
1541                         fs.prot &= ~VM_PROT_WRITE;
1542                 }
1543         }
1544
1545         /*
1546          * We must verify that the maps have not changed since our last
1547          * lookup.
1548          */
1549         if (!fs.lookup_still_valid) {
1550                 result = vm_fault_relookup(&fs);
1551                 if (result != KERN_SUCCESS) {
1552                         fault_deallocate(&fs);
1553                         if (result == KERN_RESTART)
1554                                 goto RetryFault;
1555                         return (result);
1556                 }
1557         }
1558         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1559
1560         /*
1561          * If the page was filled by a pager, save the virtual address that
1562          * should be faulted on next under a sequential access pattern to the
1563          * map entry.  A read lock on the map suffices to update this address
1564          * safely.
1565          */
1566         if (hardfault)
1567                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1568
1569         /*
1570          * Page must be completely valid or it is not fit to
1571          * map into user space.  vm_pager_get_pages() ensures this.
1572          */
1573         vm_page_assert_xbusied(fs.m);
1574         KASSERT(vm_page_all_valid(fs.m),
1575             ("vm_fault: page %p partially invalid", fs.m));
1576
1577         vm_fault_dirty(&fs, fs.m);
1578
1579         /*
1580          * Put this page into the physical map.  We had to do the unlock above
1581          * because pmap_enter() may sleep.  We don't put the page
1582          * back on the active queue until later so that the pageout daemon
1583          * won't find it (yet).
1584          */
1585         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1586             fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1587         if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1588             fs.wired == 0)
1589                 vm_fault_prefault(&fs, vaddr,
1590                     faultcount > 0 ? behind : PFBAK,
1591                     faultcount > 0 ? ahead : PFFOR, false);
1592
1593         /*
1594          * If the page is not wired down, then put it where the pageout daemon
1595          * can find it.
1596          */
1597         if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1598                 vm_page_wire(fs.m);
1599         else
1600                 vm_page_activate(fs.m);
1601         if (fs.m_hold != NULL) {
1602                 (*fs.m_hold) = fs.m;
1603                 vm_page_wire(fs.m);
1604         }
1605         vm_page_xunbusy(fs.m);
1606         fs.m = NULL;
1607
1608         /*
1609          * Unlock everything, and return
1610          */
1611         fault_deallocate(&fs);
1612         if (hardfault) {
1613                 VM_CNT_INC(v_io_faults);
1614                 curthread->td_ru.ru_majflt++;
1615 #ifdef RACCT
1616                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1617                         PROC_LOCK(curproc);
1618                         if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1619                                 racct_add_force(curproc, RACCT_WRITEBPS,
1620                                     PAGE_SIZE + behind * PAGE_SIZE);
1621                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1622                         } else {
1623                                 racct_add_force(curproc, RACCT_READBPS,
1624                                     PAGE_SIZE + ahead * PAGE_SIZE);
1625                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1626                         }
1627                         PROC_UNLOCK(curproc);
1628                 }
1629 #endif
1630         } else 
1631                 curthread->td_ru.ru_minflt++;
1632
1633         return (KERN_SUCCESS);
1634 }
1635
1636 /*
1637  * Speed up the reclamation of pages that precede the faulting pindex within
1638  * the first object of the shadow chain.  Essentially, perform the equivalent
1639  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1640  * the faulting pindex by the cluster size when the pages read by vm_fault()
1641  * cross a cluster-size boundary.  The cluster size is the greater of the
1642  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1643  *
1644  * When "fs->first_object" is a shadow object, the pages in the backing object
1645  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1646  * function must only be concerned with pages in the first object.
1647  */
1648 static void
1649 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1650 {
1651         vm_map_entry_t entry;
1652         vm_object_t first_object, object;
1653         vm_offset_t end, start;
1654         vm_page_t m, m_next;
1655         vm_pindex_t pend, pstart;
1656         vm_size_t size;
1657
1658         object = fs->object;
1659         VM_OBJECT_ASSERT_UNLOCKED(object);
1660         first_object = fs->first_object;
1661         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1662         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1663                 VM_OBJECT_RLOCK(first_object);
1664                 size = VM_FAULT_DONTNEED_MIN;
1665                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1666                         size = pagesizes[1];
1667                 end = rounddown2(vaddr, size);
1668                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1669                     (entry = fs->entry)->start < end) {
1670                         if (end - entry->start < size)
1671                                 start = entry->start;
1672                         else
1673                                 start = end - size;
1674                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1675                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1676                             entry->start);
1677                         m_next = vm_page_find_least(first_object, pstart);
1678                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1679                             entry->start);
1680                         while ((m = m_next) != NULL && m->pindex < pend) {
1681                                 m_next = TAILQ_NEXT(m, listq);
1682                                 if (!vm_page_all_valid(m) ||
1683                                     vm_page_busied(m))
1684                                         continue;
1685
1686                                 /*
1687                                  * Don't clear PGA_REFERENCED, since it would
1688                                  * likely represent a reference by a different
1689                                  * process.
1690                                  *
1691                                  * Typically, at this point, prefetched pages
1692                                  * are still in the inactive queue.  Only
1693                                  * pages that triggered page faults are in the
1694                                  * active queue.  The test for whether the page
1695                                  * is in the inactive queue is racy; in the
1696                                  * worst case we will requeue the page
1697                                  * unnecessarily.
1698                                  */
1699                                 if (!vm_page_inactive(m))
1700                                         vm_page_deactivate(m);
1701                         }
1702                 }
1703                 VM_OBJECT_RUNLOCK(first_object);
1704         }
1705 }
1706
1707 /*
1708  * vm_fault_prefault provides a quick way of clustering
1709  * pagefaults into a processes address space.  It is a "cousin"
1710  * of vm_map_pmap_enter, except it runs at page fault time instead
1711  * of mmap time.
1712  */
1713 static void
1714 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1715     int backward, int forward, bool obj_locked)
1716 {
1717         pmap_t pmap;
1718         vm_map_entry_t entry;
1719         vm_object_t backing_object, lobject;
1720         vm_offset_t addr, starta;
1721         vm_pindex_t pindex;
1722         vm_page_t m;
1723         int i;
1724
1725         pmap = fs->map->pmap;
1726         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1727                 return;
1728
1729         entry = fs->entry;
1730
1731         if (addra < backward * PAGE_SIZE) {
1732                 starta = entry->start;
1733         } else {
1734                 starta = addra - backward * PAGE_SIZE;
1735                 if (starta < entry->start)
1736                         starta = entry->start;
1737         }
1738
1739         /*
1740          * Generate the sequence of virtual addresses that are candidates for
1741          * prefaulting in an outward spiral from the faulting virtual address,
1742          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1743          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1744          * If the candidate address doesn't have a backing physical page, then
1745          * the loop immediately terminates.
1746          */
1747         for (i = 0; i < 2 * imax(backward, forward); i++) {
1748                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1749                     PAGE_SIZE);
1750                 if (addr > addra + forward * PAGE_SIZE)
1751                         addr = 0;
1752
1753                 if (addr < starta || addr >= entry->end)
1754                         continue;
1755
1756                 if (!pmap_is_prefaultable(pmap, addr))
1757                         continue;
1758
1759                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1760                 lobject = entry->object.vm_object;
1761                 if (!obj_locked)
1762                         VM_OBJECT_RLOCK(lobject);
1763                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1764                     lobject->type == OBJT_DEFAULT &&
1765                     (backing_object = lobject->backing_object) != NULL) {
1766                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1767                             0, ("vm_fault_prefault: unaligned object offset"));
1768                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1769                         VM_OBJECT_RLOCK(backing_object);
1770                         if (!obj_locked || lobject != entry->object.vm_object)
1771                                 VM_OBJECT_RUNLOCK(lobject);
1772                         lobject = backing_object;
1773                 }
1774                 if (m == NULL) {
1775                         if (!obj_locked || lobject != entry->object.vm_object)
1776                                 VM_OBJECT_RUNLOCK(lobject);
1777                         break;
1778                 }
1779                 if (vm_page_all_valid(m) &&
1780                     (m->flags & PG_FICTITIOUS) == 0)
1781                         pmap_enter_quick(pmap, addr, m, entry->protection);
1782                 if (!obj_locked || lobject != entry->object.vm_object)
1783                         VM_OBJECT_RUNLOCK(lobject);
1784         }
1785 }
1786
1787 /*
1788  * Hold each of the physical pages that are mapped by the specified range of
1789  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1790  * and allow the specified types of access, "prot".  If all of the implied
1791  * pages are successfully held, then the number of held pages is returned
1792  * together with pointers to those pages in the array "ma".  However, if any
1793  * of the pages cannot be held, -1 is returned.
1794  */
1795 int
1796 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1797     vm_prot_t prot, vm_page_t *ma, int max_count)
1798 {
1799         vm_offset_t end, va;
1800         vm_page_t *mp;
1801         int count;
1802         boolean_t pmap_failed;
1803
1804         if (len == 0)
1805                 return (0);
1806         end = round_page(addr + len);
1807         addr = trunc_page(addr);
1808
1809         if (!vm_map_range_valid(map, addr, end))
1810                 return (-1);
1811
1812         if (atop(end - addr) > max_count)
1813                 panic("vm_fault_quick_hold_pages: count > max_count");
1814         count = atop(end - addr);
1815
1816         /*
1817          * Most likely, the physical pages are resident in the pmap, so it is
1818          * faster to try pmap_extract_and_hold() first.
1819          */
1820         pmap_failed = FALSE;
1821         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1822                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1823                 if (*mp == NULL)
1824                         pmap_failed = TRUE;
1825                 else if ((prot & VM_PROT_WRITE) != 0 &&
1826                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1827                         /*
1828                          * Explicitly dirty the physical page.  Otherwise, the
1829                          * caller's changes may go unnoticed because they are
1830                          * performed through an unmanaged mapping or by a DMA
1831                          * operation.
1832                          *
1833                          * The object lock is not held here.
1834                          * See vm_page_clear_dirty_mask().
1835                          */
1836                         vm_page_dirty(*mp);
1837                 }
1838         }
1839         if (pmap_failed) {
1840                 /*
1841                  * One or more pages could not be held by the pmap.  Either no
1842                  * page was mapped at the specified virtual address or that
1843                  * mapping had insufficient permissions.  Attempt to fault in
1844                  * and hold these pages.
1845                  *
1846                  * If vm_fault_disable_pagefaults() was called,
1847                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1848                  * acquire MD VM locks, which means we must not call
1849                  * vm_fault().  Some (out of tree) callers mark
1850                  * too wide a code area with vm_fault_disable_pagefaults()
1851                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1852                  * the proper behaviour explicitly.
1853                  */
1854                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1855                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1856                         goto error;
1857                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1858                         if (*mp == NULL && vm_fault(map, va, prot,
1859                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1860                                 goto error;
1861         }
1862         return (count);
1863 error:  
1864         for (mp = ma; mp < ma + count; mp++)
1865                 if (*mp != NULL)
1866                         vm_page_unwire(*mp, PQ_INACTIVE);
1867         return (-1);
1868 }
1869
1870 /*
1871  *      Routine:
1872  *              vm_fault_copy_entry
1873  *      Function:
1874  *              Create new shadow object backing dst_entry with private copy of
1875  *              all underlying pages. When src_entry is equal to dst_entry,
1876  *              function implements COW for wired-down map entry. Otherwise,
1877  *              it forks wired entry into dst_map.
1878  *
1879  *      In/out conditions:
1880  *              The source and destination maps must be locked for write.
1881  *              The source map entry must be wired down (or be a sharing map
1882  *              entry corresponding to a main map entry that is wired down).
1883  */
1884 void
1885 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1886     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1887     vm_ooffset_t *fork_charge)
1888 {
1889         vm_object_t backing_object, dst_object, object, src_object;
1890         vm_pindex_t dst_pindex, pindex, src_pindex;
1891         vm_prot_t access, prot;
1892         vm_offset_t vaddr;
1893         vm_page_t dst_m;
1894         vm_page_t src_m;
1895         boolean_t upgrade;
1896
1897 #ifdef  lint
1898         src_map++;
1899 #endif  /* lint */
1900
1901         upgrade = src_entry == dst_entry;
1902         access = prot = dst_entry->protection;
1903
1904         src_object = src_entry->object.vm_object;
1905         src_pindex = OFF_TO_IDX(src_entry->offset);
1906
1907         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1908                 dst_object = src_object;
1909                 vm_object_reference(dst_object);
1910         } else {
1911                 /*
1912                  * Create the top-level object for the destination entry.
1913                  * Doesn't actually shadow anything - we copy the pages
1914                  * directly.
1915                  */
1916                 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
1917                     dst_entry->start), NULL, NULL, 0);
1918 #if VM_NRESERVLEVEL > 0
1919                 dst_object->flags |= OBJ_COLORED;
1920                 dst_object->pg_color = atop(dst_entry->start);
1921 #endif
1922                 dst_object->domain = src_object->domain;
1923                 dst_object->charge = dst_entry->end - dst_entry->start;
1924         }
1925
1926         VM_OBJECT_WLOCK(dst_object);
1927         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1928             ("vm_fault_copy_entry: vm_object not NULL"));
1929         if (src_object != dst_object) {
1930                 dst_entry->object.vm_object = dst_object;
1931                 dst_entry->offset = 0;
1932                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1933         }
1934         if (fork_charge != NULL) {
1935                 KASSERT(dst_entry->cred == NULL,
1936                     ("vm_fault_copy_entry: leaked swp charge"));
1937                 dst_object->cred = curthread->td_ucred;
1938                 crhold(dst_object->cred);
1939                 *fork_charge += dst_object->charge;
1940         } else if ((dst_object->type == OBJT_DEFAULT ||
1941             dst_object->type == OBJT_SWAP) &&
1942             dst_object->cred == NULL) {
1943                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1944                     dst_entry));
1945                 dst_object->cred = dst_entry->cred;
1946                 dst_entry->cred = NULL;
1947         }
1948
1949         /*
1950          * If not an upgrade, then enter the mappings in the pmap as
1951          * read and/or execute accesses.  Otherwise, enter them as
1952          * write accesses.
1953          *
1954          * A writeable large page mapping is only created if all of
1955          * the constituent small page mappings are modified. Marking
1956          * PTEs as modified on inception allows promotion to happen
1957          * without taking potentially large number of soft faults.
1958          */
1959         if (!upgrade)
1960                 access &= ~VM_PROT_WRITE;
1961
1962         /*
1963          * Loop through all of the virtual pages within the entry's
1964          * range, copying each page from the source object to the
1965          * destination object.  Since the source is wired, those pages
1966          * must exist.  In contrast, the destination is pageable.
1967          * Since the destination object doesn't share any backing storage
1968          * with the source object, all of its pages must be dirtied,
1969          * regardless of whether they can be written.
1970          */
1971         for (vaddr = dst_entry->start, dst_pindex = 0;
1972             vaddr < dst_entry->end;
1973             vaddr += PAGE_SIZE, dst_pindex++) {
1974 again:
1975                 /*
1976                  * Find the page in the source object, and copy it in.
1977                  * Because the source is wired down, the page will be
1978                  * in memory.
1979                  */
1980                 if (src_object != dst_object)
1981                         VM_OBJECT_RLOCK(src_object);
1982                 object = src_object;
1983                 pindex = src_pindex + dst_pindex;
1984                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1985                     (backing_object = object->backing_object) != NULL) {
1986                         /*
1987                          * Unless the source mapping is read-only or
1988                          * it is presently being upgraded from
1989                          * read-only, the first object in the shadow
1990                          * chain should provide all of the pages.  In
1991                          * other words, this loop body should never be
1992                          * executed when the source mapping is already
1993                          * read/write.
1994                          */
1995                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1996                             upgrade,
1997                             ("vm_fault_copy_entry: main object missing page"));
1998
1999                         VM_OBJECT_RLOCK(backing_object);
2000                         pindex += OFF_TO_IDX(object->backing_object_offset);
2001                         if (object != dst_object)
2002                                 VM_OBJECT_RUNLOCK(object);
2003                         object = backing_object;
2004                 }
2005                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2006
2007                 if (object != dst_object) {
2008                         /*
2009                          * Allocate a page in the destination object.
2010                          */
2011                         dst_m = vm_page_alloc(dst_object, (src_object ==
2012                             dst_object ? src_pindex : 0) + dst_pindex,
2013                             VM_ALLOC_NORMAL);
2014                         if (dst_m == NULL) {
2015                                 VM_OBJECT_WUNLOCK(dst_object);
2016                                 VM_OBJECT_RUNLOCK(object);
2017                                 vm_wait(dst_object);
2018                                 VM_OBJECT_WLOCK(dst_object);
2019                                 goto again;
2020                         }
2021
2022                         /*
2023                          * See the comment in vm_fault_cow().
2024                          */
2025                         if (src_object == dst_object &&
2026                             (object->flags & OBJ_ONEMAPPING) == 0)
2027                                 pmap_remove_all(src_m);
2028                         pmap_copy_page(src_m, dst_m);
2029                         VM_OBJECT_RUNLOCK(object);
2030                         dst_m->dirty = dst_m->valid = src_m->valid;
2031                 } else {
2032                         dst_m = src_m;
2033                         if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2034                                 goto again;
2035                         if (dst_m->pindex >= dst_object->size) {
2036                                 /*
2037                                  * We are upgrading.  Index can occur
2038                                  * out of bounds if the object type is
2039                                  * vnode and the file was truncated.
2040                                  */
2041                                 vm_page_xunbusy(dst_m);
2042                                 break;
2043                         }
2044                 }
2045                 VM_OBJECT_WUNLOCK(dst_object);
2046
2047                 /*
2048                  * Enter it in the pmap. If a wired, copy-on-write
2049                  * mapping is being replaced by a write-enabled
2050                  * mapping, then wire that new mapping.
2051                  *
2052                  * The page can be invalid if the user called
2053                  * msync(MS_INVALIDATE) or truncated the backing vnode
2054                  * or shared memory object.  In this case, do not
2055                  * insert it into pmap, but still do the copy so that
2056                  * all copies of the wired map entry have similar
2057                  * backing pages.
2058                  */
2059                 if (vm_page_all_valid(dst_m)) {
2060                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2061                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2062                 }
2063
2064                 /*
2065                  * Mark it no longer busy, and put it on the active list.
2066                  */
2067                 VM_OBJECT_WLOCK(dst_object);
2068                 
2069                 if (upgrade) {
2070                         if (src_m != dst_m) {
2071                                 vm_page_unwire(src_m, PQ_INACTIVE);
2072                                 vm_page_wire(dst_m);
2073                         } else {
2074                                 KASSERT(vm_page_wired(dst_m),
2075                                     ("dst_m %p is not wired", dst_m));
2076                         }
2077                 } else {
2078                         vm_page_activate(dst_m);
2079                 }
2080                 vm_page_xunbusy(dst_m);
2081         }
2082         VM_OBJECT_WUNLOCK(dst_object);
2083         if (upgrade) {
2084                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2085                 vm_object_deallocate(src_object);
2086         }
2087 }
2088
2089 /*
2090  * Block entry into the machine-independent layer's page fault handler by
2091  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2092  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2093  * spurious page faults. 
2094  */
2095 int
2096 vm_fault_disable_pagefaults(void)
2097 {
2098
2099         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2100 }
2101
2102 void
2103 vm_fault_enable_pagefaults(int save)
2104 {
2105
2106         curthread_pflags_restore(save);
2107 }