]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Switch to use shared vnode locks for text files during image activation.
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/proc.h>
88 #include <sys/racct.h>
89 #include <sys/resourcevar.h>
90 #include <sys/rwlock.h>
91 #include <sys/sysctl.h>
92 #include <sys/vmmeter.h>
93 #include <sys/vnode.h>
94 #ifdef KTRACE
95 #include <sys/ktrace.h>
96 #endif
97
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/pmap.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_pager.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_reserv.h>
109
110 #define PFBAK 4
111 #define PFFOR 4
112
113 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
114 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
115
116 #define VM_FAULT_DONTNEED_MIN   1048576
117
118 struct faultstate {
119         vm_page_t m;
120         vm_object_t object;
121         vm_pindex_t pindex;
122         vm_page_t first_m;
123         vm_object_t     first_object;
124         vm_pindex_t first_pindex;
125         vm_map_t map;
126         vm_map_entry_t entry;
127         int map_generation;
128         bool lookup_still_valid;
129         struct vnode *vp;
130 };
131
132 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
133             int ahead);
134 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
135             int backward, int forward, bool obj_locked);
136
137 static inline void
138 release_page(struct faultstate *fs)
139 {
140
141         vm_page_xunbusy(fs->m);
142         vm_page_lock(fs->m);
143         vm_page_deactivate(fs->m);
144         vm_page_unlock(fs->m);
145         fs->m = NULL;
146 }
147
148 static inline void
149 unlock_map(struct faultstate *fs)
150 {
151
152         if (fs->lookup_still_valid) {
153                 vm_map_lookup_done(fs->map, fs->entry);
154                 fs->lookup_still_valid = false;
155         }
156 }
157
158 static void
159 unlock_vp(struct faultstate *fs)
160 {
161
162         if (fs->vp != NULL) {
163                 vput(fs->vp);
164                 fs->vp = NULL;
165         }
166 }
167
168 static void
169 unlock_and_deallocate(struct faultstate *fs)
170 {
171
172         vm_object_pip_wakeup(fs->object);
173         VM_OBJECT_WUNLOCK(fs->object);
174         if (fs->object != fs->first_object) {
175                 VM_OBJECT_WLOCK(fs->first_object);
176                 vm_page_lock(fs->first_m);
177                 vm_page_free(fs->first_m);
178                 vm_page_unlock(fs->first_m);
179                 vm_object_pip_wakeup(fs->first_object);
180                 VM_OBJECT_WUNLOCK(fs->first_object);
181                 fs->first_m = NULL;
182         }
183         vm_object_deallocate(fs->first_object);
184         unlock_map(fs);
185         unlock_vp(fs);
186 }
187
188 static void
189 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
190     vm_prot_t fault_type, int fault_flags, bool set_wd)
191 {
192         bool need_dirty;
193
194         if (((prot & VM_PROT_WRITE) == 0 &&
195             (fault_flags & VM_FAULT_DIRTY) == 0) ||
196             (m->oflags & VPO_UNMANAGED) != 0)
197                 return;
198
199         VM_OBJECT_ASSERT_LOCKED(m->object);
200
201         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
202             (fault_flags & VM_FAULT_WIRE) == 0) ||
203             (fault_flags & VM_FAULT_DIRTY) != 0;
204
205         if (set_wd)
206                 vm_object_set_writeable_dirty(m->object);
207         else
208                 /*
209                  * If two callers of vm_fault_dirty() with set_wd ==
210                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
211                  * flag set, other with flag clear, race, it is
212                  * possible for the no-NOSYNC thread to see m->dirty
213                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
214                  * around manipulation of VPO_NOSYNC and
215                  * vm_page_dirty() call, to avoid the race and keep
216                  * m->oflags consistent.
217                  */
218                 vm_page_lock(m);
219
220         /*
221          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
222          * if the page is already dirty to prevent data written with
223          * the expectation of being synced from not being synced.
224          * Likewise if this entry does not request NOSYNC then make
225          * sure the page isn't marked NOSYNC.  Applications sharing
226          * data should use the same flags to avoid ping ponging.
227          */
228         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
229                 if (m->dirty == 0) {
230                         m->oflags |= VPO_NOSYNC;
231                 }
232         } else {
233                 m->oflags &= ~VPO_NOSYNC;
234         }
235
236         /*
237          * If the fault is a write, we know that this page is being
238          * written NOW so dirty it explicitly to save on
239          * pmap_is_modified() calls later.
240          *
241          * Also, since the page is now dirty, we can possibly tell
242          * the pager to release any swap backing the page.  Calling
243          * the pager requires a write lock on the object.
244          */
245         if (need_dirty)
246                 vm_page_dirty(m);
247         if (!set_wd)
248                 vm_page_unlock(m);
249         else if (need_dirty)
250                 vm_pager_page_unswapped(m);
251 }
252
253 static void
254 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
255 {
256
257         if (m_hold != NULL) {
258                 *m_hold = m;
259                 vm_page_lock(m);
260                 vm_page_hold(m);
261                 vm_page_unlock(m);
262         }
263 }
264
265 /*
266  * Unlocks fs.first_object and fs.map on success.
267  */
268 static int
269 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
270     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
271 {
272         vm_page_t m, m_map;
273 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
274     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
275     VM_NRESERVLEVEL > 0
276         vm_page_t m_super;
277         int flags;
278 #endif
279         int psind, rv;
280
281         MPASS(fs->vp == NULL);
282         m = vm_page_lookup(fs->first_object, fs->first_pindex);
283         /* A busy page can be mapped for read|execute access. */
284         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
285             vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
286                 return (KERN_FAILURE);
287         m_map = m;
288         psind = 0;
289 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
290     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
291     VM_NRESERVLEVEL > 0
292         if ((m->flags & PG_FICTITIOUS) == 0 &&
293             (m_super = vm_reserv_to_superpage(m)) != NULL &&
294             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
295             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
296             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
297             (pagesizes[m_super->psind] - 1)) && !wired &&
298             pmap_ps_enabled(fs->map->pmap)) {
299                 flags = PS_ALL_VALID;
300                 if ((prot & VM_PROT_WRITE) != 0) {
301                         /*
302                          * Create a superpage mapping allowing write access
303                          * only if none of the constituent pages are busy and
304                          * all of them are already dirty (except possibly for
305                          * the page that was faulted on).
306                          */
307                         flags |= PS_NONE_BUSY;
308                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
309                                 flags |= PS_ALL_DIRTY;
310                 }
311                 if (vm_page_ps_test(m_super, flags, m)) {
312                         m_map = m_super;
313                         psind = m_super->psind;
314                         vaddr = rounddown2(vaddr, pagesizes[psind]);
315                         /* Preset the modified bit for dirty superpages. */
316                         if ((flags & PS_ALL_DIRTY) != 0)
317                                 fault_type |= VM_PROT_WRITE;
318                 }
319         }
320 #endif
321         rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
322             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
323         if (rv != KERN_SUCCESS)
324                 return (rv);
325         vm_fault_fill_hold(m_hold, m);
326         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
327         if (psind == 0 && !wired)
328                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
329         VM_OBJECT_RUNLOCK(fs->first_object);
330         vm_map_lookup_done(fs->map, fs->entry);
331         curthread->td_ru.ru_minflt++;
332         return (KERN_SUCCESS);
333 }
334
335 static void
336 vm_fault_restore_map_lock(struct faultstate *fs)
337 {
338
339         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
340         MPASS(fs->first_object->paging_in_progress > 0);
341
342         if (!vm_map_trylock_read(fs->map)) {
343                 VM_OBJECT_WUNLOCK(fs->first_object);
344                 vm_map_lock_read(fs->map);
345                 VM_OBJECT_WLOCK(fs->first_object);
346         }
347         fs->lookup_still_valid = true;
348 }
349
350 static void
351 vm_fault_populate_check_page(vm_page_t m)
352 {
353
354         /*
355          * Check each page to ensure that the pager is obeying the
356          * interface: the page must be installed in the object, fully
357          * valid, and exclusively busied.
358          */
359         MPASS(m != NULL);
360         MPASS(m->valid == VM_PAGE_BITS_ALL);
361         MPASS(vm_page_xbusied(m));
362 }
363
364 static void
365 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
366     vm_pindex_t last)
367 {
368         vm_page_t m;
369         vm_pindex_t pidx;
370
371         VM_OBJECT_ASSERT_WLOCKED(object);
372         MPASS(first <= last);
373         for (pidx = first, m = vm_page_lookup(object, pidx);
374             pidx <= last; pidx++, m = vm_page_next(m)) {
375                 vm_fault_populate_check_page(m);
376                 vm_page_lock(m);
377                 vm_page_deactivate(m);
378                 vm_page_unlock(m);
379                 vm_page_xunbusy(m);
380         }
381 }
382
383 static int
384 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type,
385     int fault_flags, boolean_t wired, vm_page_t *m_hold)
386 {
387         struct mtx *m_mtx;
388         vm_offset_t vaddr;
389         vm_page_t m;
390         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
391         int i, npages, psind, rv;
392
393         MPASS(fs->object == fs->first_object);
394         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
395         MPASS(fs->first_object->paging_in_progress > 0);
396         MPASS(fs->first_object->backing_object == NULL);
397         MPASS(fs->lookup_still_valid);
398
399         pager_first = OFF_TO_IDX(fs->entry->offset);
400         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
401         unlock_map(fs);
402         unlock_vp(fs);
403
404         /*
405          * Call the pager (driver) populate() method.
406          *
407          * There is no guarantee that the method will be called again
408          * if the current fault is for read, and a future fault is
409          * for write.  Report the entry's maximum allowed protection
410          * to the driver.
411          */
412         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
413             fault_type, fs->entry->max_protection, &pager_first, &pager_last);
414
415         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
416         if (rv == VM_PAGER_BAD) {
417                 /*
418                  * VM_PAGER_BAD is the backdoor for a pager to request
419                  * normal fault handling.
420                  */
421                 vm_fault_restore_map_lock(fs);
422                 if (fs->map->timestamp != fs->map_generation)
423                         return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
424                 return (KERN_NOT_RECEIVER);
425         }
426         if (rv != VM_PAGER_OK)
427                 return (KERN_FAILURE); /* AKA SIGSEGV */
428
429         /* Ensure that the driver is obeying the interface. */
430         MPASS(pager_first <= pager_last);
431         MPASS(fs->first_pindex <= pager_last);
432         MPASS(fs->first_pindex >= pager_first);
433         MPASS(pager_last < fs->first_object->size);
434
435         vm_fault_restore_map_lock(fs);
436         if (fs->map->timestamp != fs->map_generation) {
437                 vm_fault_populate_cleanup(fs->first_object, pager_first,
438                     pager_last);
439                 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
440         }
441
442         /*
443          * The map is unchanged after our last unlock.  Process the fault.
444          *
445          * The range [pager_first, pager_last] that is given to the
446          * pager is only a hint.  The pager may populate any range
447          * within the object that includes the requested page index.
448          * In case the pager expanded the range, clip it to fit into
449          * the map entry.
450          */
451         map_first = OFF_TO_IDX(fs->entry->offset);
452         if (map_first > pager_first) {
453                 vm_fault_populate_cleanup(fs->first_object, pager_first,
454                     map_first - 1);
455                 pager_first = map_first;
456         }
457         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
458         if (map_last < pager_last) {
459                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
460                     pager_last);
461                 pager_last = map_last;
462         }
463         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
464             pidx <= pager_last;
465             pidx += npages, m = vm_page_next(&m[npages - 1])) {
466                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
467 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
468     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)
469                 psind = m->psind;
470                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
471                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
472                     !pmap_ps_enabled(fs->map->pmap) || wired))
473                         psind = 0;
474 #else
475                 psind = 0;
476 #endif          
477                 npages = atop(pagesizes[psind]);
478                 for (i = 0; i < npages; i++) {
479                         vm_fault_populate_check_page(&m[i]);
480                         vm_fault_dirty(fs->entry, &m[i], prot, fault_type,
481                             fault_flags, true);
482                 }
483                 VM_OBJECT_WUNLOCK(fs->first_object);
484                 rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
485                     (wired ? PMAP_ENTER_WIRED : 0), psind);
486 #if defined(__amd64__)
487                 if (psind > 0 && rv == KERN_FAILURE) {
488                         for (i = 0; i < npages; i++) {
489                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
490                                     &m[i], prot, fault_type |
491                                     (wired ? PMAP_ENTER_WIRED : 0), 0);
492                                 MPASS(rv == KERN_SUCCESS);
493                         }
494                 }
495 #else
496                 MPASS(rv == KERN_SUCCESS);
497 #endif
498                 VM_OBJECT_WLOCK(fs->first_object);
499                 m_mtx = NULL;
500                 for (i = 0; i < npages; i++) {
501                         vm_page_change_lock(&m[i], &m_mtx);
502                         if ((fault_flags & VM_FAULT_WIRE) != 0)
503                                 vm_page_wire(&m[i]);
504                         else
505                                 vm_page_activate(&m[i]);
506                         if (m_hold != NULL && m[i].pindex == fs->first_pindex) {
507                                 *m_hold = &m[i];
508                                 vm_page_hold(&m[i]);
509                         }
510                         vm_page_xunbusy_maybelocked(&m[i]);
511                 }
512                 if (m_mtx != NULL)
513                         mtx_unlock(m_mtx);
514         }
515         curthread->td_ru.ru_majflt++;
516         return (KERN_SUCCESS);
517 }
518
519 /*
520  *      vm_fault:
521  *
522  *      Handle a page fault occurring at the given address,
523  *      requiring the given permissions, in the map specified.
524  *      If successful, the page is inserted into the
525  *      associated physical map.
526  *
527  *      NOTE: the given address should be truncated to the
528  *      proper page address.
529  *
530  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
531  *      a standard error specifying why the fault is fatal is returned.
532  *
533  *      The map in question must be referenced, and remains so.
534  *      Caller may hold no locks.
535  */
536 int
537 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
538     int fault_flags)
539 {
540         struct thread *td;
541         int result;
542
543         td = curthread;
544         if ((td->td_pflags & TDP_NOFAULTING) != 0)
545                 return (KERN_PROTECTION_FAILURE);
546 #ifdef KTRACE
547         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
548                 ktrfault(vaddr, fault_type);
549 #endif
550         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
551             NULL);
552 #ifdef KTRACE
553         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
554                 ktrfaultend(result);
555 #endif
556         return (result);
557 }
558
559 int
560 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
561     int fault_flags, vm_page_t *m_hold)
562 {
563         struct faultstate fs;
564         struct vnode *vp;
565         struct domainset *dset;
566         vm_object_t next_object, retry_object;
567         vm_offset_t e_end, e_start;
568         vm_pindex_t retry_pindex;
569         vm_prot_t prot, retry_prot;
570         int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
571         int locked, nera, result, rv;
572         u_char behavior;
573         boolean_t wired;        /* Passed by reference. */
574         bool dead, hardfault, is_first_object_locked;
575
576         VM_CNT_INC(v_vm_faults);
577         fs.vp = NULL;
578         faultcount = 0;
579         nera = -1;
580         hardfault = false;
581
582 RetryFault:;
583
584         /*
585          * Find the backing store object and offset into it to begin the
586          * search.
587          */
588         fs.map = map;
589         result = vm_map_lookup(&fs.map, vaddr, fault_type |
590             VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
591             &fs.first_pindex, &prot, &wired);
592         if (result != KERN_SUCCESS) {
593                 unlock_vp(&fs);
594                 return (result);
595         }
596
597         fs.map_generation = fs.map->timestamp;
598
599         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
600                 panic("%s: fault on nofault entry, addr: %#lx",
601                     __func__, (u_long)vaddr);
602         }
603
604         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
605             fs.entry->wiring_thread != curthread) {
606                 vm_map_unlock_read(fs.map);
607                 vm_map_lock(fs.map);
608                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
609                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
610                         unlock_vp(&fs);
611                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
612                         vm_map_unlock_and_wait(fs.map, 0);
613                 } else
614                         vm_map_unlock(fs.map);
615                 goto RetryFault;
616         }
617
618         MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
619
620         if (wired)
621                 fault_type = prot | (fault_type & VM_PROT_COPY);
622         else
623                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
624                     ("!wired && VM_FAULT_WIRE"));
625
626         /*
627          * Try to avoid lock contention on the top-level object through
628          * special-case handling of some types of page faults, specifically,
629          * those that are both (1) mapping an existing page from the top-
630          * level object and (2) not having to mark that object as containing
631          * dirty pages.  Under these conditions, a read lock on the top-level
632          * object suffices, allowing multiple page faults of a similar type to
633          * run in parallel on the same top-level object.
634          */
635         if (fs.vp == NULL /* avoid locked vnode leak */ &&
636             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
637             /* avoid calling vm_object_set_writeable_dirty() */
638             ((prot & VM_PROT_WRITE) == 0 ||
639             (fs.first_object->type != OBJT_VNODE &&
640             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
641             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
642                 VM_OBJECT_RLOCK(fs.first_object);
643                 if ((prot & VM_PROT_WRITE) == 0 ||
644                     (fs.first_object->type != OBJT_VNODE &&
645                     (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
646                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
647                         rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
648                             fault_flags, wired, m_hold);
649                         if (rv == KERN_SUCCESS)
650                                 return (rv);
651                 }
652                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
653                         VM_OBJECT_RUNLOCK(fs.first_object);
654                         VM_OBJECT_WLOCK(fs.first_object);
655                 }
656         } else {
657                 VM_OBJECT_WLOCK(fs.first_object);
658         }
659
660         /*
661          * Make a reference to this object to prevent its disposal while we
662          * are messing with it.  Once we have the reference, the map is free
663          * to be diddled.  Since objects reference their shadows (and copies),
664          * they will stay around as well.
665          *
666          * Bump the paging-in-progress count to prevent size changes (e.g. 
667          * truncation operations) during I/O.
668          */
669         vm_object_reference_locked(fs.first_object);
670         vm_object_pip_add(fs.first_object, 1);
671
672         fs.lookup_still_valid = true;
673
674         fs.first_m = NULL;
675
676         /*
677          * Search for the page at object/offset.
678          */
679         fs.object = fs.first_object;
680         fs.pindex = fs.first_pindex;
681         while (TRUE) {
682                 /*
683                  * If the object is marked for imminent termination,
684                  * we retry here, since the collapse pass has raced
685                  * with us.  Otherwise, if we see terminally dead
686                  * object, return fail.
687                  */
688                 if ((fs.object->flags & OBJ_DEAD) != 0) {
689                         dead = fs.object->type == OBJT_DEAD;
690                         unlock_and_deallocate(&fs);
691                         if (dead)
692                                 return (KERN_PROTECTION_FAILURE);
693                         pause("vmf_de", 1);
694                         goto RetryFault;
695                 }
696
697                 /*
698                  * See if page is resident
699                  */
700                 fs.m = vm_page_lookup(fs.object, fs.pindex);
701                 if (fs.m != NULL) {
702                         /*
703                          * Wait/Retry if the page is busy.  We have to do this
704                          * if the page is either exclusive or shared busy
705                          * because the vm_pager may be using read busy for
706                          * pageouts (and even pageins if it is the vnode
707                          * pager), and we could end up trying to pagein and
708                          * pageout the same page simultaneously.
709                          *
710                          * We can theoretically allow the busy case on a read
711                          * fault if the page is marked valid, but since such
712                          * pages are typically already pmap'd, putting that
713                          * special case in might be more effort then it is 
714                          * worth.  We cannot under any circumstances mess
715                          * around with a shared busied page except, perhaps,
716                          * to pmap it.
717                          */
718                         if (vm_page_busied(fs.m)) {
719                                 /*
720                                  * Reference the page before unlocking and
721                                  * sleeping so that the page daemon is less
722                                  * likely to reclaim it.
723                                  */
724                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
725                                 if (fs.object != fs.first_object) {
726                                         if (!VM_OBJECT_TRYWLOCK(
727                                             fs.first_object)) {
728                                                 VM_OBJECT_WUNLOCK(fs.object);
729                                                 VM_OBJECT_WLOCK(fs.first_object);
730                                                 VM_OBJECT_WLOCK(fs.object);
731                                         }
732                                         vm_page_lock(fs.first_m);
733                                         vm_page_free(fs.first_m);
734                                         vm_page_unlock(fs.first_m);
735                                         vm_object_pip_wakeup(fs.first_object);
736                                         VM_OBJECT_WUNLOCK(fs.first_object);
737                                         fs.first_m = NULL;
738                                 }
739                                 unlock_map(&fs);
740                                 if (fs.m == vm_page_lookup(fs.object,
741                                     fs.pindex)) {
742                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
743                                 }
744                                 vm_object_pip_wakeup(fs.object);
745                                 VM_OBJECT_WUNLOCK(fs.object);
746                                 VM_CNT_INC(v_intrans);
747                                 vm_object_deallocate(fs.first_object);
748                                 goto RetryFault;
749                         }
750
751                         /*
752                          * Mark page busy for other processes, and the 
753                          * pagedaemon.  If it still isn't completely valid
754                          * (readable), jump to readrest, else break-out ( we
755                          * found the page ).
756                          */
757                         vm_page_xbusy(fs.m);
758                         if (fs.m->valid != VM_PAGE_BITS_ALL)
759                                 goto readrest;
760                         break; /* break to PAGE HAS BEEN FOUND */
761                 }
762                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
763
764                 /*
765                  * Page is not resident.  If the pager might contain the page
766                  * or this is the beginning of the search, allocate a new
767                  * page.  (Default objects are zero-fill, so there is no real
768                  * pager for them.)
769                  */
770                 if (fs.object->type != OBJT_DEFAULT ||
771                     fs.object == fs.first_object) {
772                         if (fs.pindex >= fs.object->size) {
773                                 unlock_and_deallocate(&fs);
774                                 return (KERN_PROTECTION_FAILURE);
775                         }
776
777                         if (fs.object == fs.first_object &&
778                             (fs.first_object->flags & OBJ_POPULATE) != 0 &&
779                             fs.first_object->shadow_count == 0) {
780                                 rv = vm_fault_populate(&fs, prot, fault_type,
781                                     fault_flags, wired, m_hold);
782                                 switch (rv) {
783                                 case KERN_SUCCESS:
784                                 case KERN_FAILURE:
785                                         unlock_and_deallocate(&fs);
786                                         return (rv);
787                                 case KERN_RESOURCE_SHORTAGE:
788                                         unlock_and_deallocate(&fs);
789                                         goto RetryFault;
790                                 case KERN_NOT_RECEIVER:
791                                         /*
792                                          * Pager's populate() method
793                                          * returned VM_PAGER_BAD.
794                                          */
795                                         break;
796                                 default:
797                                         panic("inconsistent return codes");
798                                 }
799                         }
800
801                         /*
802                          * Allocate a new page for this object/offset pair.
803                          *
804                          * Unlocked read of the p_flag is harmless. At
805                          * worst, the P_KILLED might be not observed
806                          * there, and allocation can fail, causing
807                          * restart and new reading of the p_flag.
808                          */
809                         dset = fs.object->domain.dr_policy;
810                         if (dset == NULL)
811                                 dset = curthread->td_domain.dr_policy;
812                         if (!vm_page_count_severe_set(&dset->ds_mask) ||
813                             P_KILLED(curproc)) {
814 #if VM_NRESERVLEVEL > 0
815                                 vm_object_color(fs.object, atop(vaddr) -
816                                     fs.pindex);
817 #endif
818                                 alloc_req = P_KILLED(curproc) ?
819                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
820                                 if (fs.object->type != OBJT_VNODE &&
821                                     fs.object->backing_object == NULL)
822                                         alloc_req |= VM_ALLOC_ZERO;
823                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
824                                     alloc_req);
825                         }
826                         if (fs.m == NULL) {
827                                 unlock_and_deallocate(&fs);
828                                 vm_waitpfault(dset);
829                                 goto RetryFault;
830                         }
831                 }
832
833 readrest:
834                 /*
835                  * At this point, we have either allocated a new page or found
836                  * an existing page that is only partially valid.
837                  *
838                  * We hold a reference on the current object and the page is
839                  * exclusive busied.
840                  */
841
842                 /*
843                  * If the pager for the current object might have the page,
844                  * then determine the number of additional pages to read and
845                  * potentially reprioritize previously read pages for earlier
846                  * reclamation.  These operations should only be performed
847                  * once per page fault.  Even if the current pager doesn't
848                  * have the page, the number of additional pages to read will
849                  * apply to subsequent objects in the shadow chain.
850                  */
851                 if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
852                     !P_KILLED(curproc)) {
853                         KASSERT(fs.lookup_still_valid, ("map unlocked"));
854                         era = fs.entry->read_ahead;
855                         behavior = vm_map_entry_behavior(fs.entry);
856                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
857                                 nera = 0;
858                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
859                                 nera = VM_FAULT_READ_AHEAD_MAX;
860                                 if (vaddr == fs.entry->next_read)
861                                         vm_fault_dontneed(&fs, vaddr, nera);
862                         } else if (vaddr == fs.entry->next_read) {
863                                 /*
864                                  * This is a sequential fault.  Arithmetically
865                                  * increase the requested number of pages in
866                                  * the read-ahead window.  The requested
867                                  * number of pages is "# of sequential faults
868                                  * x (read ahead min + 1) + read ahead min"
869                                  */
870                                 nera = VM_FAULT_READ_AHEAD_MIN;
871                                 if (era > 0) {
872                                         nera += era + 1;
873                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
874                                                 nera = VM_FAULT_READ_AHEAD_MAX;
875                                 }
876                                 if (era == VM_FAULT_READ_AHEAD_MAX)
877                                         vm_fault_dontneed(&fs, vaddr, nera);
878                         } else {
879                                 /*
880                                  * This is a non-sequential fault.
881                                  */
882                                 nera = 0;
883                         }
884                         if (era != nera) {
885                                 /*
886                                  * A read lock on the map suffices to update
887                                  * the read ahead count safely.
888                                  */
889                                 fs.entry->read_ahead = nera;
890                         }
891
892                         /*
893                          * Prepare for unlocking the map.  Save the map
894                          * entry's start and end addresses, which are used to
895                          * optimize the size of the pager operation below.
896                          * Even if the map entry's addresses change after
897                          * unlocking the map, using the saved addresses is
898                          * safe.
899                          */
900                         e_start = fs.entry->start;
901                         e_end = fs.entry->end;
902                 }
903
904                 /*
905                  * Call the pager to retrieve the page if there is a chance
906                  * that the pager has it, and potentially retrieve additional
907                  * pages at the same time.
908                  */
909                 if (fs.object->type != OBJT_DEFAULT) {
910                         /*
911                          * Release the map lock before locking the vnode or
912                          * sleeping in the pager.  (If the current object has
913                          * a shadow, then an earlier iteration of this loop
914                          * may have already unlocked the map.)
915                          */
916                         unlock_map(&fs);
917
918                         if (fs.object->type == OBJT_VNODE &&
919                             (vp = fs.object->handle) != fs.vp) {
920                                 /*
921                                  * Perform an unlock in case the desired vnode
922                                  * changed while the map was unlocked during a
923                                  * retry.
924                                  */
925                                 unlock_vp(&fs);
926
927                                 locked = VOP_ISLOCKED(vp);
928                                 if (locked != LK_EXCLUSIVE)
929                                         locked = LK_SHARED;
930
931                                 /*
932                                  * We must not sleep acquiring the vnode lock
933                                  * while we have the page exclusive busied or
934                                  * the object's paging-in-progress count
935                                  * incremented.  Otherwise, we could deadlock.
936                                  */
937                                 error = vget(vp, locked | LK_CANRECURSE |
938                                     LK_NOWAIT, curthread);
939                                 if (error != 0) {
940                                         vhold(vp);
941                                         release_page(&fs);
942                                         unlock_and_deallocate(&fs);
943                                         error = vget(vp, locked | LK_RETRY |
944                                             LK_CANRECURSE, curthread);
945                                         vdrop(vp);
946                                         fs.vp = vp;
947                                         KASSERT(error == 0,
948                                             ("vm_fault: vget failed"));
949                                         goto RetryFault;
950                                 }
951                                 fs.vp = vp;
952                         }
953                         KASSERT(fs.vp == NULL || !fs.map->system_map,
954                             ("vm_fault: vnode-backed object mapped by system map"));
955
956                         /*
957                          * Page in the requested page and hint the pager,
958                          * that it may bring up surrounding pages.
959                          */
960                         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
961                             P_KILLED(curproc)) {
962                                 behind = 0;
963                                 ahead = 0;
964                         } else {
965                                 /* Is this a sequential fault? */
966                                 if (nera > 0) {
967                                         behind = 0;
968                                         ahead = nera;
969                                 } else {
970                                         /*
971                                          * Request a cluster of pages that is
972                                          * aligned to a VM_FAULT_READ_DEFAULT
973                                          * page offset boundary within the
974                                          * object.  Alignment to a page offset
975                                          * boundary is more likely to coincide
976                                          * with the underlying file system
977                                          * block than alignment to a virtual
978                                          * address boundary.
979                                          */
980                                         cluster_offset = fs.pindex %
981                                             VM_FAULT_READ_DEFAULT;
982                                         behind = ulmin(cluster_offset,
983                                             atop(vaddr - e_start));
984                                         ahead = VM_FAULT_READ_DEFAULT - 1 -
985                                             cluster_offset;
986                                 }
987                                 ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
988                         }
989                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
990                             &behind, &ahead);
991                         if (rv == VM_PAGER_OK) {
992                                 faultcount = behind + 1 + ahead;
993                                 hardfault = true;
994                                 break; /* break to PAGE HAS BEEN FOUND */
995                         }
996                         if (rv == VM_PAGER_ERROR)
997                                 printf("vm_fault: pager read error, pid %d (%s)\n",
998                                     curproc->p_pid, curproc->p_comm);
999
1000                         /*
1001                          * If an I/O error occurred or the requested page was
1002                          * outside the range of the pager, clean up and return
1003                          * an error.
1004                          */
1005                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1006                                 vm_page_lock(fs.m);
1007                                 if (fs.m->wire_count == 0)
1008                                         vm_page_free(fs.m);
1009                                 else
1010                                         vm_page_xunbusy_maybelocked(fs.m);
1011                                 vm_page_unlock(fs.m);
1012                                 fs.m = NULL;
1013                                 unlock_and_deallocate(&fs);
1014                                 return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
1015                                     KERN_PROTECTION_FAILURE);
1016                         }
1017
1018                         /*
1019                          * The requested page does not exist at this object/
1020                          * offset.  Remove the invalid page from the object,
1021                          * waking up anyone waiting for it, and continue on to
1022                          * the next object.  However, if this is the top-level
1023                          * object, we must leave the busy page in place to
1024                          * prevent another process from rushing past us, and
1025                          * inserting the page in that object at the same time
1026                          * that we are.
1027                          */
1028                         if (fs.object != fs.first_object) {
1029                                 vm_page_lock(fs.m);
1030                                 if (fs.m->wire_count == 0)
1031                                         vm_page_free(fs.m);
1032                                 else
1033                                         vm_page_xunbusy_maybelocked(fs.m);
1034                                 vm_page_unlock(fs.m);
1035                                 fs.m = NULL;
1036                         }
1037                 }
1038
1039                 /*
1040                  * We get here if the object has default pager (or unwiring) 
1041                  * or the pager doesn't have the page.
1042                  */
1043                 if (fs.object == fs.first_object)
1044                         fs.first_m = fs.m;
1045
1046                 /*
1047                  * Move on to the next object.  Lock the next object before
1048                  * unlocking the current one.
1049                  */
1050                 next_object = fs.object->backing_object;
1051                 if (next_object == NULL) {
1052                         /*
1053                          * If there's no object left, fill the page in the top
1054                          * object with zeros.
1055                          */
1056                         if (fs.object != fs.first_object) {
1057                                 vm_object_pip_wakeup(fs.object);
1058                                 VM_OBJECT_WUNLOCK(fs.object);
1059
1060                                 fs.object = fs.first_object;
1061                                 fs.pindex = fs.first_pindex;
1062                                 fs.m = fs.first_m;
1063                                 VM_OBJECT_WLOCK(fs.object);
1064                         }
1065                         fs.first_m = NULL;
1066
1067                         /*
1068                          * Zero the page if necessary and mark it valid.
1069                          */
1070                         if ((fs.m->flags & PG_ZERO) == 0) {
1071                                 pmap_zero_page(fs.m);
1072                         } else {
1073                                 VM_CNT_INC(v_ozfod);
1074                         }
1075                         VM_CNT_INC(v_zfod);
1076                         fs.m->valid = VM_PAGE_BITS_ALL;
1077                         /* Don't try to prefault neighboring pages. */
1078                         faultcount = 1;
1079                         break;  /* break to PAGE HAS BEEN FOUND */
1080                 } else {
1081                         KASSERT(fs.object != next_object,
1082                             ("object loop %p", next_object));
1083                         VM_OBJECT_WLOCK(next_object);
1084                         vm_object_pip_add(next_object, 1);
1085                         if (fs.object != fs.first_object)
1086                                 vm_object_pip_wakeup(fs.object);
1087                         fs.pindex +=
1088                             OFF_TO_IDX(fs.object->backing_object_offset);
1089                         VM_OBJECT_WUNLOCK(fs.object);
1090                         fs.object = next_object;
1091                 }
1092         }
1093
1094         vm_page_assert_xbusied(fs.m);
1095
1096         /*
1097          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1098          * is held.]
1099          */
1100
1101         /*
1102          * If the page is being written, but isn't already owned by the
1103          * top-level object, we have to copy it into a new page owned by the
1104          * top-level object.
1105          */
1106         if (fs.object != fs.first_object) {
1107                 /*
1108                  * We only really need to copy if we want to write it.
1109                  */
1110                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1111                         /*
1112                          * This allows pages to be virtually copied from a 
1113                          * backing_object into the first_object, where the 
1114                          * backing object has no other refs to it, and cannot
1115                          * gain any more refs.  Instead of a bcopy, we just 
1116                          * move the page from the backing object to the 
1117                          * first object.  Note that we must mark the page 
1118                          * dirty in the first object so that it will go out 
1119                          * to swap when needed.
1120                          */
1121                         is_first_object_locked = false;
1122                         if (
1123                                 /*
1124                                  * Only one shadow object
1125                                  */
1126                                 (fs.object->shadow_count == 1) &&
1127                                 /*
1128                                  * No COW refs, except us
1129                                  */
1130                                 (fs.object->ref_count == 1) &&
1131                                 /*
1132                                  * No one else can look this object up
1133                                  */
1134                                 (fs.object->handle == NULL) &&
1135                                 /*
1136                                  * No other ways to look the object up
1137                                  */
1138                                 ((fs.object->type == OBJT_DEFAULT) ||
1139                                  (fs.object->type == OBJT_SWAP)) &&
1140                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1141                                 /*
1142                                  * We don't chase down the shadow chain
1143                                  */
1144                             fs.object == fs.first_object->backing_object) {
1145                                 vm_page_lock(fs.m);
1146                                 vm_page_dequeue(fs.m);
1147                                 vm_page_remove(fs.m);
1148                                 vm_page_unlock(fs.m);
1149                                 vm_page_lock(fs.first_m);
1150                                 vm_page_replace_checked(fs.m, fs.first_object,
1151                                     fs.first_pindex, fs.first_m);
1152                                 vm_page_free(fs.first_m);
1153                                 vm_page_unlock(fs.first_m);
1154                                 vm_page_dirty(fs.m);
1155 #if VM_NRESERVLEVEL > 0
1156                                 /*
1157                                  * Rename the reservation.
1158                                  */
1159                                 vm_reserv_rename(fs.m, fs.first_object,
1160                                     fs.object, OFF_TO_IDX(
1161                                     fs.first_object->backing_object_offset));
1162 #endif
1163                                 /*
1164                                  * Removing the page from the backing object
1165                                  * unbusied it.
1166                                  */
1167                                 vm_page_xbusy(fs.m);
1168                                 fs.first_m = fs.m;
1169                                 fs.m = NULL;
1170                                 VM_CNT_INC(v_cow_optim);
1171                         } else {
1172                                 /*
1173                                  * Oh, well, lets copy it.
1174                                  */
1175                                 pmap_copy_page(fs.m, fs.first_m);
1176                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
1177                                 if (wired && (fault_flags &
1178                                     VM_FAULT_WIRE) == 0) {
1179                                         vm_page_lock(fs.first_m);
1180                                         vm_page_wire(fs.first_m);
1181                                         vm_page_unlock(fs.first_m);
1182                                         
1183                                         vm_page_lock(fs.m);
1184                                         vm_page_unwire(fs.m, PQ_INACTIVE);
1185                                         vm_page_unlock(fs.m);
1186                                 }
1187                                 /*
1188                                  * We no longer need the old page or object.
1189                                  */
1190                                 release_page(&fs);
1191                         }
1192                         /*
1193                          * fs.object != fs.first_object due to above 
1194                          * conditional
1195                          */
1196                         vm_object_pip_wakeup(fs.object);
1197                         VM_OBJECT_WUNLOCK(fs.object);
1198
1199                         /*
1200                          * We only try to prefault read-only mappings to the
1201                          * neighboring pages when this copy-on-write fault is
1202                          * a hard fault.  In other cases, trying to prefault
1203                          * is typically wasted effort.
1204                          */
1205                         if (faultcount == 0)
1206                                 faultcount = 1;
1207
1208                         /*
1209                          * Only use the new page below...
1210                          */
1211                         fs.object = fs.first_object;
1212                         fs.pindex = fs.first_pindex;
1213                         fs.m = fs.first_m;
1214                         if (!is_first_object_locked)
1215                                 VM_OBJECT_WLOCK(fs.object);
1216                         VM_CNT_INC(v_cow_faults);
1217                         curthread->td_cow++;
1218                 } else {
1219                         prot &= ~VM_PROT_WRITE;
1220                 }
1221         }
1222
1223         /*
1224          * We must verify that the maps have not changed since our last
1225          * lookup.
1226          */
1227         if (!fs.lookup_still_valid) {
1228                 if (!vm_map_trylock_read(fs.map)) {
1229                         release_page(&fs);
1230                         unlock_and_deallocate(&fs);
1231                         goto RetryFault;
1232                 }
1233                 fs.lookup_still_valid = true;
1234                 if (fs.map->timestamp != fs.map_generation) {
1235                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1236                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1237
1238                         /*
1239                          * If we don't need the page any longer, put it on the inactive
1240                          * list (the easiest thing to do here).  If no one needs it,
1241                          * pageout will grab it eventually.
1242                          */
1243                         if (result != KERN_SUCCESS) {
1244                                 release_page(&fs);
1245                                 unlock_and_deallocate(&fs);
1246
1247                                 /*
1248                                  * If retry of map lookup would have blocked then
1249                                  * retry fault from start.
1250                                  */
1251                                 if (result == KERN_FAILURE)
1252                                         goto RetryFault;
1253                                 return (result);
1254                         }
1255                         if ((retry_object != fs.first_object) ||
1256                             (retry_pindex != fs.first_pindex)) {
1257                                 release_page(&fs);
1258                                 unlock_and_deallocate(&fs);
1259                                 goto RetryFault;
1260                         }
1261
1262                         /*
1263                          * Check whether the protection has changed or the object has
1264                          * been copied while we left the map unlocked. Changing from
1265                          * read to write permission is OK - we leave the page
1266                          * write-protected, and catch the write fault. Changing from
1267                          * write to read permission means that we can't mark the page
1268                          * write-enabled after all.
1269                          */
1270                         prot &= retry_prot;
1271                         fault_type &= retry_prot;
1272                         if (prot == 0) {
1273                                 release_page(&fs);
1274                                 unlock_and_deallocate(&fs);
1275                                 goto RetryFault;
1276                         }
1277
1278                         /* Reassert because wired may have changed. */
1279                         KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0,
1280                             ("!wired && VM_FAULT_WIRE"));
1281                 }
1282         }
1283
1284         /*
1285          * If the page was filled by a pager, save the virtual address that
1286          * should be faulted on next under a sequential access pattern to the
1287          * map entry.  A read lock on the map suffices to update this address
1288          * safely.
1289          */
1290         if (hardfault)
1291                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1292
1293         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1294         vm_page_assert_xbusied(fs.m);
1295
1296         /*
1297          * Page must be completely valid or it is not fit to
1298          * map into user space.  vm_pager_get_pages() ensures this.
1299          */
1300         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1301             ("vm_fault: page %p partially invalid", fs.m));
1302         VM_OBJECT_WUNLOCK(fs.object);
1303
1304         /*
1305          * Put this page into the physical map.  We had to do the unlock above
1306          * because pmap_enter() may sleep.  We don't put the page
1307          * back on the active queue until later so that the pageout daemon
1308          * won't find it (yet).
1309          */
1310         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1311             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1312         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1313             wired == 0)
1314                 vm_fault_prefault(&fs, vaddr,
1315                     faultcount > 0 ? behind : PFBAK,
1316                     faultcount > 0 ? ahead : PFFOR, false);
1317         VM_OBJECT_WLOCK(fs.object);
1318         vm_page_lock(fs.m);
1319
1320         /*
1321          * If the page is not wired down, then put it where the pageout daemon
1322          * can find it.
1323          */
1324         if ((fault_flags & VM_FAULT_WIRE) != 0)
1325                 vm_page_wire(fs.m);
1326         else
1327                 vm_page_activate(fs.m);
1328         if (m_hold != NULL) {
1329                 *m_hold = fs.m;
1330                 vm_page_hold(fs.m);
1331         }
1332         vm_page_unlock(fs.m);
1333         vm_page_xunbusy(fs.m);
1334
1335         /*
1336          * Unlock everything, and return
1337          */
1338         unlock_and_deallocate(&fs);
1339         if (hardfault) {
1340                 VM_CNT_INC(v_io_faults);
1341                 curthread->td_ru.ru_majflt++;
1342 #ifdef RACCT
1343                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1344                         PROC_LOCK(curproc);
1345                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1346                                 racct_add_force(curproc, RACCT_WRITEBPS,
1347                                     PAGE_SIZE + behind * PAGE_SIZE);
1348                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1349                         } else {
1350                                 racct_add_force(curproc, RACCT_READBPS,
1351                                     PAGE_SIZE + ahead * PAGE_SIZE);
1352                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1353                         }
1354                         PROC_UNLOCK(curproc);
1355                 }
1356 #endif
1357         } else 
1358                 curthread->td_ru.ru_minflt++;
1359
1360         return (KERN_SUCCESS);
1361 }
1362
1363 /*
1364  * Speed up the reclamation of pages that precede the faulting pindex within
1365  * the first object of the shadow chain.  Essentially, perform the equivalent
1366  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1367  * the faulting pindex by the cluster size when the pages read by vm_fault()
1368  * cross a cluster-size boundary.  The cluster size is the greater of the
1369  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1370  *
1371  * When "fs->first_object" is a shadow object, the pages in the backing object
1372  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1373  * function must only be concerned with pages in the first object.
1374  */
1375 static void
1376 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1377 {
1378         vm_map_entry_t entry;
1379         vm_object_t first_object, object;
1380         vm_offset_t end, start;
1381         vm_page_t m, m_next;
1382         vm_pindex_t pend, pstart;
1383         vm_size_t size;
1384
1385         object = fs->object;
1386         VM_OBJECT_ASSERT_WLOCKED(object);
1387         first_object = fs->first_object;
1388         if (first_object != object) {
1389                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1390                         VM_OBJECT_WUNLOCK(object);
1391                         VM_OBJECT_WLOCK(first_object);
1392                         VM_OBJECT_WLOCK(object);
1393                 }
1394         }
1395         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1396         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1397                 size = VM_FAULT_DONTNEED_MIN;
1398                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1399                         size = pagesizes[1];
1400                 end = rounddown2(vaddr, size);
1401                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1402                     (entry = fs->entry)->start < end) {
1403                         if (end - entry->start < size)
1404                                 start = entry->start;
1405                         else
1406                                 start = end - size;
1407                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1408                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1409                             entry->start);
1410                         m_next = vm_page_find_least(first_object, pstart);
1411                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1412                             entry->start);
1413                         while ((m = m_next) != NULL && m->pindex < pend) {
1414                                 m_next = TAILQ_NEXT(m, listq);
1415                                 if (m->valid != VM_PAGE_BITS_ALL ||
1416                                     vm_page_busied(m))
1417                                         continue;
1418
1419                                 /*
1420                                  * Don't clear PGA_REFERENCED, since it would
1421                                  * likely represent a reference by a different
1422                                  * process.
1423                                  *
1424                                  * Typically, at this point, prefetched pages
1425                                  * are still in the inactive queue.  Only
1426                                  * pages that triggered page faults are in the
1427                                  * active queue.
1428                                  */
1429                                 vm_page_lock(m);
1430                                 if (!vm_page_inactive(m))
1431                                         vm_page_deactivate(m);
1432                                 vm_page_unlock(m);
1433                         }
1434                 }
1435         }
1436         if (first_object != object)
1437                 VM_OBJECT_WUNLOCK(first_object);
1438 }
1439
1440 /*
1441  * vm_fault_prefault provides a quick way of clustering
1442  * pagefaults into a processes address space.  It is a "cousin"
1443  * of vm_map_pmap_enter, except it runs at page fault time instead
1444  * of mmap time.
1445  */
1446 static void
1447 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1448     int backward, int forward, bool obj_locked)
1449 {
1450         pmap_t pmap;
1451         vm_map_entry_t entry;
1452         vm_object_t backing_object, lobject;
1453         vm_offset_t addr, starta;
1454         vm_pindex_t pindex;
1455         vm_page_t m;
1456         int i;
1457
1458         pmap = fs->map->pmap;
1459         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1460                 return;
1461
1462         entry = fs->entry;
1463
1464         if (addra < backward * PAGE_SIZE) {
1465                 starta = entry->start;
1466         } else {
1467                 starta = addra - backward * PAGE_SIZE;
1468                 if (starta < entry->start)
1469                         starta = entry->start;
1470         }
1471
1472         /*
1473          * Generate the sequence of virtual addresses that are candidates for
1474          * prefaulting in an outward spiral from the faulting virtual address,
1475          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1476          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1477          * If the candidate address doesn't have a backing physical page, then
1478          * the loop immediately terminates.
1479          */
1480         for (i = 0; i < 2 * imax(backward, forward); i++) {
1481                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1482                     PAGE_SIZE);
1483                 if (addr > addra + forward * PAGE_SIZE)
1484                         addr = 0;
1485
1486                 if (addr < starta || addr >= entry->end)
1487                         continue;
1488
1489                 if (!pmap_is_prefaultable(pmap, addr))
1490                         continue;
1491
1492                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1493                 lobject = entry->object.vm_object;
1494                 if (!obj_locked)
1495                         VM_OBJECT_RLOCK(lobject);
1496                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1497                     lobject->type == OBJT_DEFAULT &&
1498                     (backing_object = lobject->backing_object) != NULL) {
1499                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1500                             0, ("vm_fault_prefault: unaligned object offset"));
1501                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1502                         VM_OBJECT_RLOCK(backing_object);
1503                         if (!obj_locked || lobject != entry->object.vm_object)
1504                                 VM_OBJECT_RUNLOCK(lobject);
1505                         lobject = backing_object;
1506                 }
1507                 if (m == NULL) {
1508                         if (!obj_locked || lobject != entry->object.vm_object)
1509                                 VM_OBJECT_RUNLOCK(lobject);
1510                         break;
1511                 }
1512                 if (m->valid == VM_PAGE_BITS_ALL &&
1513                     (m->flags & PG_FICTITIOUS) == 0)
1514                         pmap_enter_quick(pmap, addr, m, entry->protection);
1515                 if (!obj_locked || lobject != entry->object.vm_object)
1516                         VM_OBJECT_RUNLOCK(lobject);
1517         }
1518 }
1519
1520 /*
1521  * Hold each of the physical pages that are mapped by the specified range of
1522  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1523  * and allow the specified types of access, "prot".  If all of the implied
1524  * pages are successfully held, then the number of held pages is returned
1525  * together with pointers to those pages in the array "ma".  However, if any
1526  * of the pages cannot be held, -1 is returned.
1527  */
1528 int
1529 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1530     vm_prot_t prot, vm_page_t *ma, int max_count)
1531 {
1532         vm_offset_t end, va;
1533         vm_page_t *mp;
1534         int count;
1535         boolean_t pmap_failed;
1536
1537         if (len == 0)
1538                 return (0);
1539         end = round_page(addr + len);
1540         addr = trunc_page(addr);
1541
1542         /*
1543          * Check for illegal addresses.
1544          */
1545         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1546                 return (-1);
1547
1548         if (atop(end - addr) > max_count)
1549                 panic("vm_fault_quick_hold_pages: count > max_count");
1550         count = atop(end - addr);
1551
1552         /*
1553          * Most likely, the physical pages are resident in the pmap, so it is
1554          * faster to try pmap_extract_and_hold() first.
1555          */
1556         pmap_failed = FALSE;
1557         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1558                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1559                 if (*mp == NULL)
1560                         pmap_failed = TRUE;
1561                 else if ((prot & VM_PROT_WRITE) != 0 &&
1562                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1563                         /*
1564                          * Explicitly dirty the physical page.  Otherwise, the
1565                          * caller's changes may go unnoticed because they are
1566                          * performed through an unmanaged mapping or by a DMA
1567                          * operation.
1568                          *
1569                          * The object lock is not held here.
1570                          * See vm_page_clear_dirty_mask().
1571                          */
1572                         vm_page_dirty(*mp);
1573                 }
1574         }
1575         if (pmap_failed) {
1576                 /*
1577                  * One or more pages could not be held by the pmap.  Either no
1578                  * page was mapped at the specified virtual address or that
1579                  * mapping had insufficient permissions.  Attempt to fault in
1580                  * and hold these pages.
1581                  *
1582                  * If vm_fault_disable_pagefaults() was called,
1583                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1584                  * acquire MD VM locks, which means we must not call
1585                  * vm_fault_hold().  Some (out of tree) callers mark
1586                  * too wide a code area with vm_fault_disable_pagefaults()
1587                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1588                  * the proper behaviour explicitly.
1589                  */
1590                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1591                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1592                         goto error;
1593                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1594                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1595                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1596                                 goto error;
1597         }
1598         return (count);
1599 error:  
1600         for (mp = ma; mp < ma + count; mp++)
1601                 if (*mp != NULL) {
1602                         vm_page_lock(*mp);
1603                         vm_page_unhold(*mp);
1604                         vm_page_unlock(*mp);
1605                 }
1606         return (-1);
1607 }
1608
1609 /*
1610  *      Routine:
1611  *              vm_fault_copy_entry
1612  *      Function:
1613  *              Create new shadow object backing dst_entry with private copy of
1614  *              all underlying pages. When src_entry is equal to dst_entry,
1615  *              function implements COW for wired-down map entry. Otherwise,
1616  *              it forks wired entry into dst_map.
1617  *
1618  *      In/out conditions:
1619  *              The source and destination maps must be locked for write.
1620  *              The source map entry must be wired down (or be a sharing map
1621  *              entry corresponding to a main map entry that is wired down).
1622  */
1623 void
1624 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1625     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1626     vm_ooffset_t *fork_charge)
1627 {
1628         vm_object_t backing_object, dst_object, object, src_object;
1629         vm_pindex_t dst_pindex, pindex, src_pindex;
1630         vm_prot_t access, prot;
1631         vm_offset_t vaddr;
1632         vm_page_t dst_m;
1633         vm_page_t src_m;
1634         boolean_t upgrade;
1635
1636 #ifdef  lint
1637         src_map++;
1638 #endif  /* lint */
1639
1640         upgrade = src_entry == dst_entry;
1641         access = prot = dst_entry->protection;
1642
1643         src_object = src_entry->object.vm_object;
1644         src_pindex = OFF_TO_IDX(src_entry->offset);
1645
1646         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1647                 dst_object = src_object;
1648                 vm_object_reference(dst_object);
1649         } else {
1650                 /*
1651                  * Create the top-level object for the destination entry. (Doesn't
1652                  * actually shadow anything - we copy the pages directly.)
1653                  */
1654                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1655                     atop(dst_entry->end - dst_entry->start));
1656 #if VM_NRESERVLEVEL > 0
1657                 dst_object->flags |= OBJ_COLORED;
1658                 dst_object->pg_color = atop(dst_entry->start);
1659 #endif
1660                 dst_object->domain = src_object->domain;
1661                 dst_object->charge = dst_entry->end - dst_entry->start;
1662         }
1663
1664         VM_OBJECT_WLOCK(dst_object);
1665         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1666             ("vm_fault_copy_entry: vm_object not NULL"));
1667         if (src_object != dst_object) {
1668                 dst_entry->object.vm_object = dst_object;
1669                 dst_entry->offset = 0;
1670                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1671         }
1672         if (fork_charge != NULL) {
1673                 KASSERT(dst_entry->cred == NULL,
1674                     ("vm_fault_copy_entry: leaked swp charge"));
1675                 dst_object->cred = curthread->td_ucred;
1676                 crhold(dst_object->cred);
1677                 *fork_charge += dst_object->charge;
1678         } else if ((dst_object->type == OBJT_DEFAULT ||
1679             dst_object->type == OBJT_SWAP) &&
1680             dst_object->cred == NULL) {
1681                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1682                     dst_entry));
1683                 dst_object->cred = dst_entry->cred;
1684                 dst_entry->cred = NULL;
1685         }
1686
1687         /*
1688          * If not an upgrade, then enter the mappings in the pmap as
1689          * read and/or execute accesses.  Otherwise, enter them as
1690          * write accesses.
1691          *
1692          * A writeable large page mapping is only created if all of
1693          * the constituent small page mappings are modified. Marking
1694          * PTEs as modified on inception allows promotion to happen
1695          * without taking potentially large number of soft faults.
1696          */
1697         if (!upgrade)
1698                 access &= ~VM_PROT_WRITE;
1699
1700         /*
1701          * Loop through all of the virtual pages within the entry's
1702          * range, copying each page from the source object to the
1703          * destination object.  Since the source is wired, those pages
1704          * must exist.  In contrast, the destination is pageable.
1705          * Since the destination object doesn't share any backing storage
1706          * with the source object, all of its pages must be dirtied,
1707          * regardless of whether they can be written.
1708          */
1709         for (vaddr = dst_entry->start, dst_pindex = 0;
1710             vaddr < dst_entry->end;
1711             vaddr += PAGE_SIZE, dst_pindex++) {
1712 again:
1713                 /*
1714                  * Find the page in the source object, and copy it in.
1715                  * Because the source is wired down, the page will be
1716                  * in memory.
1717                  */
1718                 if (src_object != dst_object)
1719                         VM_OBJECT_RLOCK(src_object);
1720                 object = src_object;
1721                 pindex = src_pindex + dst_pindex;
1722                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1723                     (backing_object = object->backing_object) != NULL) {
1724                         /*
1725                          * Unless the source mapping is read-only or
1726                          * it is presently being upgraded from
1727                          * read-only, the first object in the shadow
1728                          * chain should provide all of the pages.  In
1729                          * other words, this loop body should never be
1730                          * executed when the source mapping is already
1731                          * read/write.
1732                          */
1733                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1734                             upgrade,
1735                             ("vm_fault_copy_entry: main object missing page"));
1736
1737                         VM_OBJECT_RLOCK(backing_object);
1738                         pindex += OFF_TO_IDX(object->backing_object_offset);
1739                         if (object != dst_object)
1740                                 VM_OBJECT_RUNLOCK(object);
1741                         object = backing_object;
1742                 }
1743                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1744
1745                 if (object != dst_object) {
1746                         /*
1747                          * Allocate a page in the destination object.
1748                          */
1749                         dst_m = vm_page_alloc(dst_object, (src_object ==
1750                             dst_object ? src_pindex : 0) + dst_pindex,
1751                             VM_ALLOC_NORMAL);
1752                         if (dst_m == NULL) {
1753                                 VM_OBJECT_WUNLOCK(dst_object);
1754                                 VM_OBJECT_RUNLOCK(object);
1755                                 vm_wait(dst_object);
1756                                 VM_OBJECT_WLOCK(dst_object);
1757                                 goto again;
1758                         }
1759                         pmap_copy_page(src_m, dst_m);
1760                         VM_OBJECT_RUNLOCK(object);
1761                         dst_m->dirty = dst_m->valid = src_m->valid;
1762                 } else {
1763                         dst_m = src_m;
1764                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1765                                 goto again;
1766                         if (dst_m->pindex >= dst_object->size)
1767                                 /*
1768                                  * We are upgrading.  Index can occur
1769                                  * out of bounds if the object type is
1770                                  * vnode and the file was truncated.
1771                                  */
1772                                 break;
1773                         vm_page_xbusy(dst_m);
1774                 }
1775                 VM_OBJECT_WUNLOCK(dst_object);
1776
1777                 /*
1778                  * Enter it in the pmap. If a wired, copy-on-write
1779                  * mapping is being replaced by a write-enabled
1780                  * mapping, then wire that new mapping.
1781                  *
1782                  * The page can be invalid if the user called
1783                  * msync(MS_INVALIDATE) or truncated the backing vnode
1784                  * or shared memory object.  In this case, do not
1785                  * insert it into pmap, but still do the copy so that
1786                  * all copies of the wired map entry have similar
1787                  * backing pages.
1788                  */
1789                 if (dst_m->valid == VM_PAGE_BITS_ALL) {
1790                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1791                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1792                 }
1793
1794                 /*
1795                  * Mark it no longer busy, and put it on the active list.
1796                  */
1797                 VM_OBJECT_WLOCK(dst_object);
1798                 
1799                 if (upgrade) {
1800                         if (src_m != dst_m) {
1801                                 vm_page_lock(src_m);
1802                                 vm_page_unwire(src_m, PQ_INACTIVE);
1803                                 vm_page_unlock(src_m);
1804                                 vm_page_lock(dst_m);
1805                                 vm_page_wire(dst_m);
1806                                 vm_page_unlock(dst_m);
1807                         } else {
1808                                 KASSERT(dst_m->wire_count > 0,
1809                                     ("dst_m %p is not wired", dst_m));
1810                         }
1811                 } else {
1812                         vm_page_lock(dst_m);
1813                         vm_page_activate(dst_m);
1814                         vm_page_unlock(dst_m);
1815                 }
1816                 vm_page_xunbusy(dst_m);
1817         }
1818         VM_OBJECT_WUNLOCK(dst_object);
1819         if (upgrade) {
1820                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1821                 vm_object_deallocate(src_object);
1822         }
1823 }
1824
1825 /*
1826  * Block entry into the machine-independent layer's page fault handler by
1827  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1828  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1829  * spurious page faults. 
1830  */
1831 int
1832 vm_fault_disable_pagefaults(void)
1833 {
1834
1835         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1836 }
1837
1838 void
1839 vm_fault_enable_pagefaults(int save)
1840 {
1841
1842         curthread_pflags_restore(save);
1843 }