]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - cddl/contrib/opensolaris/lib/libzpool/common/taskq.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / cddl / contrib / opensolaris / lib / libzpool / common / taskq.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 #include <sys/zfs_context.h>
27
28 int taskq_now;
29 taskq_t *system_taskq;
30
31 typedef struct task {
32         struct task     *task_next;
33         struct task     *task_prev;
34         task_func_t     *task_func;
35         void            *task_arg;
36 } task_t;
37
38 #define TASKQ_ACTIVE    0x00010000
39
40 struct taskq {
41         kmutex_t        tq_lock;
42         krwlock_t       tq_threadlock;
43         kcondvar_t      tq_dispatch_cv;
44         kcondvar_t      tq_wait_cv;
45         thread_t        *tq_threadlist;
46         int             tq_flags;
47         int             tq_active;
48         int             tq_nthreads;
49         int             tq_nalloc;
50         int             tq_minalloc;
51         int             tq_maxalloc;
52         kcondvar_t      tq_maxalloc_cv;
53         int             tq_maxalloc_wait;
54         task_t          *tq_freelist;
55         task_t          tq_task;
56 };
57
58 static task_t *
59 task_alloc(taskq_t *tq, int tqflags)
60 {
61         task_t *t;
62         int rv;
63
64 again:  if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
65                 tq->tq_freelist = t->task_next;
66         } else {
67                 if (tq->tq_nalloc >= tq->tq_maxalloc) {
68                         if (!(tqflags & KM_SLEEP))
69                                 return (NULL);
70
71                         /*
72                          * We don't want to exceed tq_maxalloc, but we can't
73                          * wait for other tasks to complete (and thus free up
74                          * task structures) without risking deadlock with
75                          * the caller.  So, we just delay for one second
76                          * to throttle the allocation rate. If we have tasks
77                          * complete before one second timeout expires then
78                          * taskq_ent_free will signal us and we will
79                          * immediately retry the allocation.
80                          */
81                         tq->tq_maxalloc_wait++;
82                         rv = cv_timedwait(&tq->tq_maxalloc_cv,
83                             &tq->tq_lock, ddi_get_lbolt() + hz);
84                         tq->tq_maxalloc_wait--;
85                         if (rv > 0)
86                                 goto again;             /* signaled */
87                 }
88                 mutex_exit(&tq->tq_lock);
89
90                 t = kmem_alloc(sizeof (task_t), tqflags & KM_SLEEP);
91
92                 mutex_enter(&tq->tq_lock);
93                 if (t != NULL)
94                         tq->tq_nalloc++;
95         }
96         return (t);
97 }
98
99 static void
100 task_free(taskq_t *tq, task_t *t)
101 {
102         if (tq->tq_nalloc <= tq->tq_minalloc) {
103                 t->task_next = tq->tq_freelist;
104                 tq->tq_freelist = t;
105         } else {
106                 tq->tq_nalloc--;
107                 mutex_exit(&tq->tq_lock);
108                 kmem_free(t, sizeof (task_t));
109                 mutex_enter(&tq->tq_lock);
110         }
111
112         if (tq->tq_maxalloc_wait)
113                 cv_signal(&tq->tq_maxalloc_cv);
114 }
115
116 taskqid_t
117 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
118 {
119         task_t *t;
120
121         if (taskq_now) {
122                 func(arg);
123                 return (1);
124         }
125
126         mutex_enter(&tq->tq_lock);
127         ASSERT(tq->tq_flags & TASKQ_ACTIVE);
128         if ((t = task_alloc(tq, tqflags)) == NULL) {
129                 mutex_exit(&tq->tq_lock);
130                 return (0);
131         }
132         if (tqflags & TQ_FRONT) {
133                 t->task_next = tq->tq_task.task_next;
134                 t->task_prev = &tq->tq_task;
135         } else {
136                 t->task_next = &tq->tq_task;
137                 t->task_prev = tq->tq_task.task_prev;
138         }
139         t->task_next->task_prev = t;
140         t->task_prev->task_next = t;
141         t->task_func = func;
142         t->task_arg = arg;
143         cv_signal(&tq->tq_dispatch_cv);
144         mutex_exit(&tq->tq_lock);
145         return (1);
146 }
147
148 void
149 taskq_wait(taskq_t *tq)
150 {
151         mutex_enter(&tq->tq_lock);
152         while (tq->tq_task.task_next != &tq->tq_task || tq->tq_active != 0)
153                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
154         mutex_exit(&tq->tq_lock);
155 }
156
157 static void *
158 taskq_thread(void *arg)
159 {
160         taskq_t *tq = arg;
161         task_t *t;
162
163         mutex_enter(&tq->tq_lock);
164         while (tq->tq_flags & TASKQ_ACTIVE) {
165                 if ((t = tq->tq_task.task_next) == &tq->tq_task) {
166                         if (--tq->tq_active == 0)
167                                 cv_broadcast(&tq->tq_wait_cv);
168                         cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
169                         tq->tq_active++;
170                         continue;
171                 }
172                 t->task_prev->task_next = t->task_next;
173                 t->task_next->task_prev = t->task_prev;
174                 mutex_exit(&tq->tq_lock);
175
176                 rw_enter(&tq->tq_threadlock, RW_READER);
177                 t->task_func(t->task_arg);
178                 rw_exit(&tq->tq_threadlock);
179
180                 mutex_enter(&tq->tq_lock);
181                 task_free(tq, t);
182         }
183         tq->tq_nthreads--;
184         cv_broadcast(&tq->tq_wait_cv);
185         mutex_exit(&tq->tq_lock);
186         return (NULL);
187 }
188
189 /*ARGSUSED*/
190 taskq_t *
191 taskq_create(const char *name, int nthreads, pri_t pri,
192         int minalloc, int maxalloc, uint_t flags)
193 {
194         taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
195         int t;
196
197         if (flags & TASKQ_THREADS_CPU_PCT) {
198                 int pct;
199                 ASSERT3S(nthreads, >=, 0);
200                 ASSERT3S(nthreads, <=, 100);
201                 pct = MIN(nthreads, 100);
202                 pct = MAX(pct, 0);
203
204                 nthreads = (sysconf(_SC_NPROCESSORS_ONLN) * pct) / 100;
205                 nthreads = MAX(nthreads, 1);    /* need at least 1 thread */
206         } else {
207                 ASSERT3S(nthreads, >=, 1);
208         }
209
210         rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
211         mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
212         cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
213         cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
214         cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
215         tq->tq_flags = flags | TASKQ_ACTIVE;
216         tq->tq_active = nthreads;
217         tq->tq_nthreads = nthreads;
218         tq->tq_minalloc = minalloc;
219         tq->tq_maxalloc = maxalloc;
220         tq->tq_task.task_next = &tq->tq_task;
221         tq->tq_task.task_prev = &tq->tq_task;
222         tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP);
223
224         if (flags & TASKQ_PREPOPULATE) {
225                 mutex_enter(&tq->tq_lock);
226                 while (minalloc-- > 0)
227                         task_free(tq, task_alloc(tq, KM_SLEEP));
228                 mutex_exit(&tq->tq_lock);
229         }
230
231         for (t = 0; t < nthreads; t++)
232                 (void) thr_create(0, 0, taskq_thread,
233                     tq, THR_BOUND, &tq->tq_threadlist[t]);
234
235         return (tq);
236 }
237
238 void
239 taskq_destroy(taskq_t *tq)
240 {
241         int t;
242         int nthreads = tq->tq_nthreads;
243
244         taskq_wait(tq);
245
246         mutex_enter(&tq->tq_lock);
247
248         tq->tq_flags &= ~TASKQ_ACTIVE;
249         cv_broadcast(&tq->tq_dispatch_cv);
250
251         while (tq->tq_nthreads != 0)
252                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
253
254         tq->tq_minalloc = 0;
255         while (tq->tq_nalloc != 0) {
256                 ASSERT(tq->tq_freelist != NULL);
257                 task_free(tq, task_alloc(tq, KM_SLEEP));
258         }
259
260         mutex_exit(&tq->tq_lock);
261
262         for (t = 0; t < nthreads; t++)
263                 (void) thr_join(tq->tq_threadlist[t], NULL, NULL);
264
265         kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t));
266
267         rw_destroy(&tq->tq_threadlock);
268         mutex_destroy(&tq->tq_lock);
269         cv_destroy(&tq->tq_dispatch_cv);
270         cv_destroy(&tq->tq_wait_cv);
271         cv_destroy(&tq->tq_maxalloc_cv);
272
273         kmem_free(tq, sizeof (taskq_t));
274 }
275
276 int
277 taskq_member(taskq_t *tq, void *t)
278 {
279         int i;
280
281         if (taskq_now)
282                 return (1);
283
284         for (i = 0; i < tq->tq_nthreads; i++)
285                 if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t)
286                         return (1);
287
288         return (0);
289 }
290
291 void
292 system_taskq_init(void)
293 {
294         system_taskq = taskq_create("system_taskq", 64, minclsyspri, 4, 512,
295             TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
296 }
297
298 void
299 system_taskq_fini(void)
300 {
301         taskq_destroy(system_taskq);
302         system_taskq = NULL; /* defensive */
303 }