]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/compiler-rt/lib/divsf3.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / compiler-rt / lib / divsf3.c
1 //===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements single-precision soft-float division
11 // with the IEEE-754 default rounding (to nearest, ties to even).
12 //
13 // For simplicity, this implementation currently flushes denormals to zero.
14 // It should be a fairly straightforward exercise to implement gradual
15 // underflow with correct rounding.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #define SINGLE_PRECISION
20 #include "fp_lib.h"
21
22 ARM_EABI_FNALIAS(fdiv, divsf3)
23
24 fp_t __divsf3(fp_t a, fp_t b) {
25     
26     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
27     const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
28     const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
29     
30     rep_t aSignificand = toRep(a) & significandMask;
31     rep_t bSignificand = toRep(b) & significandMask;
32     int scale = 0;
33     
34     // Detect if a or b is zero, denormal, infinity, or NaN.
35     if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
36         
37         const rep_t aAbs = toRep(a) & absMask;
38         const rep_t bAbs = toRep(b) & absMask;
39         
40         // NaN / anything = qNaN
41         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
42         // anything / NaN = qNaN
43         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
44         
45         if (aAbs == infRep) {
46             // infinity / infinity = NaN
47             if (bAbs == infRep) return fromRep(qnanRep);
48             // infinity / anything else = +/- infinity
49             else return fromRep(aAbs | quotientSign);
50         }
51         
52         // anything else / infinity = +/- 0
53         if (bAbs == infRep) return fromRep(quotientSign);
54         
55         if (!aAbs) {
56             // zero / zero = NaN
57             if (!bAbs) return fromRep(qnanRep);
58             // zero / anything else = +/- zero
59             else return fromRep(quotientSign);
60         }
61         // anything else / zero = +/- infinity
62         if (!bAbs) return fromRep(infRep | quotientSign);
63         
64         // one or both of a or b is denormal, the other (if applicable) is a
65         // normal number.  Renormalize one or both of a and b, and set scale to
66         // include the necessary exponent adjustment.
67         if (aAbs < implicitBit) scale += normalize(&aSignificand);
68         if (bAbs < implicitBit) scale -= normalize(&bSignificand);
69     }
70     
71     // Or in the implicit significand bit.  (If we fell through from the
72     // denormal path it was already set by normalize( ), but setting it twice
73     // won't hurt anything.)
74     aSignificand |= implicitBit;
75     bSignificand |= implicitBit;
76     int quotientExponent = aExponent - bExponent + scale;
77     
78     // Align the significand of b as a Q31 fixed-point number in the range
79     // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
80     // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
81     // is accurate to about 3.5 binary digits.
82     uint32_t q31b = bSignificand << 8;
83     uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
84     
85     // Now refine the reciprocal estimate using a Newton-Raphson iteration:
86     //
87     //     x1 = x0 * (2 - x0 * b)
88     //
89     // This doubles the number of correct binary digits in the approximation
90     // with each iteration, so after three iterations, we have about 28 binary
91     // digits of accuracy.
92     uint32_t correction;
93     correction = -((uint64_t)reciprocal * q31b >> 32);
94     reciprocal = (uint64_t)reciprocal * correction >> 31;
95     correction = -((uint64_t)reciprocal * q31b >> 32);
96     reciprocal = (uint64_t)reciprocal * correction >> 31;
97     correction = -((uint64_t)reciprocal * q31b >> 32);
98     reciprocal = (uint64_t)reciprocal * correction >> 31;
99     
100     // Exhaustive testing shows that the error in reciprocal after three steps
101     // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
102     // expectations.  We bump the reciprocal by a tiny value to force the error
103     // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
104     // be specific).  This also causes 1/1 to give a sensible approximation
105     // instead of zero (due to overflow).
106     reciprocal -= 2;
107     
108     // The numerical reciprocal is accurate to within 2^-28, lies in the
109     // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
110     // than the true reciprocal of b.  Multiplying a by this reciprocal thus
111     // gives a numerical q = a/b in Q24 with the following properties:
112     //
113     //    1. q < a/b
114     //    2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
115     //    3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
116     //       from the fact that we truncate the product, and the 2^27 term
117     //       is the error in the reciprocal of b scaled by the maximum
118     //       possible value of a.  As a consequence of this error bound,
119     //       either q or nextafter(q) is the correctly rounded 
120     rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
121     
122     // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
123     // In either case, we are going to compute a residual of the form
124     //
125     //     r = a - q*b
126     //
127     // We know from the construction of q that r satisfies:
128     //
129     //     0 <= r < ulp(q)*b
130     // 
131     // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
132     // already have the correct result.  The exact halfway case cannot occur.
133     // We also take this time to right shift quotient if it falls in the [1,2)
134     // range and adjust the exponent accordingly.
135     rep_t residual;
136     if (quotient < (implicitBit << 1)) {
137         residual = (aSignificand << 24) - quotient * bSignificand;
138         quotientExponent--;
139     } else {
140         quotient >>= 1;
141         residual = (aSignificand << 23) - quotient * bSignificand;
142     }
143
144     const int writtenExponent = quotientExponent + exponentBias;
145     
146     if (writtenExponent >= maxExponent) {
147         // If we have overflowed the exponent, return infinity.
148         return fromRep(infRep | quotientSign);
149     }
150     
151     else if (writtenExponent < 1) {
152         // Flush denormals to zero.  In the future, it would be nice to add
153         // code to round them correctly.
154         return fromRep(quotientSign);
155     }
156     
157     else {
158         const bool round = (residual << 1) > bSignificand;
159         // Clear the implicit bit
160         rep_t absResult = quotient & significandMask;
161         // Insert the exponent
162         absResult |= (rep_t)writtenExponent << significandBits;
163         // Round
164         absResult += round;
165         // Insert the sign and return
166         return fromRep(absResult | quotientSign);
167     }
168 }