]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/gdb/gdb/objfiles.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / gdb / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3    Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4    2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6    Contributed by Cygnus Support, using pieces from other GDB modules.
7
8    This file is part of GDB.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 2 of the License, or
13    (at your option) any later version.
14
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19
20    You should have received a copy of the GNU General Public License
21    along with this program; if not, write to the Free Software
22    Foundation, Inc., 59 Temple Place - Suite 330,
23    Boston, MA 02111-1307, USA.  */
24
25 /* This file contains support routines for creating, manipulating, and
26    destroying objfile structures. */
27
28 #include "defs.h"
29 #include "bfd.h"                /* Binary File Description */
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "target.h"
35 #include "bcache.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48
49 /* Prototypes for local functions */
50
51 static void objfile_alloc_data (struct objfile *objfile);
52 static void objfile_free_data (struct objfile *objfile);
53
54 /* Externally visible variables that are owned by this module.
55    See declarations in objfile.h for more info. */
56
57 struct objfile *object_files;   /* Linked list of all objfiles */
58 struct objfile *current_objfile;        /* For symbol file being read in */
59 struct objfile *symfile_objfile;        /* Main symbol table loaded from */
60 struct objfile *rt_common_objfile;      /* For runtime common symbols */
61
62 /* Locate all mappable sections of a BFD file. 
63    objfile_p_char is a char * to get it through
64    bfd_map_over_sections; we cast it back to its proper type.  */
65
66 #ifndef TARGET_KEEP_SECTION
67 #define TARGET_KEEP_SECTION(ASECT)      0
68 #endif
69
70 /* Called via bfd_map_over_sections to build up the section table that
71    the objfile references.  The objfile contains pointers to the start
72    of the table (objfile->sections) and to the first location after
73    the end of the table (objfile->sections_end). */
74
75 static void
76 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
77                          void *objfile_p_char)
78 {
79   struct objfile *objfile = (struct objfile *) objfile_p_char;
80   struct obj_section section;
81   flagword aflag;
82
83   aflag = bfd_get_section_flags (abfd, asect);
84
85   if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
86     return;
87
88   if (0 == bfd_section_size (abfd, asect))
89     return;
90   section.offset = 0;
91   section.objfile = objfile;
92   section.the_bfd_section = asect;
93   section.ovly_mapped = 0;
94   section.addr = bfd_section_vma (abfd, asect);
95   section.endaddr = section.addr + bfd_section_size (abfd, asect);
96   obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
97   objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
98 }
99
100 /* Builds a section table for OBJFILE.
101    Returns 0 if OK, 1 on error (in which case bfd_error contains the
102    error).
103
104    Note that while we are building the table, which goes into the
105    psymbol obstack, we hijack the sections_end pointer to instead hold
106    a count of the number of sections.  When bfd_map_over_sections
107    returns, this count is used to compute the pointer to the end of
108    the sections table, which then overwrites the count.
109
110    Also note that the OFFSET and OVLY_MAPPED in each table entry
111    are initialized to zero.
112
113    Also note that if anything else writes to the psymbol obstack while
114    we are building the table, we're pretty much hosed. */
115
116 int
117 build_objfile_section_table (struct objfile *objfile)
118 {
119   /* objfile->sections can be already set when reading a mapped symbol
120      file.  I believe that we do need to rebuild the section table in
121      this case (we rebuild other things derived from the bfd), but we
122      can't free the old one (it's in the objfile_obstack).  So we just
123      waste some memory.  */
124
125   objfile->sections_end = 0;
126   bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
127   objfile->sections = (struct obj_section *)
128     obstack_finish (&objfile->objfile_obstack);
129   objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
130   return (0);
131 }
132
133 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
134    allocate a new objfile struct, fill it in as best we can, link it
135    into the list of all known objfiles, and return a pointer to the
136    new objfile struct.
137
138    The FLAGS word contains various bits (OBJF_*) that can be taken as
139    requests for specific operations.  Other bits like OBJF_SHARED are
140    simply copied through to the new objfile flags member. */
141
142 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
143    by jv-lang.c, to create an artificial objfile used to hold
144    information about dynamically-loaded Java classes.  Unfortunately,
145    that branch of this function doesn't get tested very frequently, so
146    it's prone to breakage.  (E.g. at one time the name was set to NULL
147    in that situation, which broke a loop over all names in the dynamic
148    library loader.)  If you change this function, please try to leave
149    things in a consistent state even if abfd is NULL.  */
150
151 struct objfile *
152 allocate_objfile (bfd *abfd, int flags)
153 {
154   struct objfile *objfile = NULL;
155   struct objfile *last_one = NULL;
156
157   /* If we don't support mapped symbol files, didn't ask for the file to be
158      mapped, or failed to open the mapped file for some reason, then revert
159      back to an unmapped objfile. */
160
161   if (objfile == NULL)
162     {
163       objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
164       memset (objfile, 0, sizeof (struct objfile));
165       objfile->md = NULL;
166       objfile->psymbol_cache = bcache_xmalloc ();
167       objfile->macro_cache = bcache_xmalloc ();
168       /* We could use obstack_specify_allocation here instead, but
169          gdb_obstack.h specifies the alloc/dealloc functions.  */
170       obstack_init (&objfile->objfile_obstack);
171       terminate_minimal_symbol_table (objfile);
172     }
173
174   objfile_alloc_data (objfile);
175
176   /* Update the per-objfile information that comes from the bfd, ensuring
177      that any data that is reference is saved in the per-objfile data
178      region. */
179
180   objfile->obfd = abfd;
181   if (objfile->name != NULL)
182     {
183       xmfree (objfile->md, objfile->name);
184     }
185   if (abfd != NULL)
186     {
187       objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
188       objfile->mtime = bfd_get_mtime (abfd);
189
190       /* Build section table.  */
191
192       if (build_objfile_section_table (objfile))
193         {
194           error ("Can't find the file sections in `%s': %s",
195                  objfile->name, bfd_errmsg (bfd_get_error ()));
196         }
197     }
198   else
199     {
200       objfile->name = mstrsave (objfile->md, "<<anonymous objfile>>");
201     }
202
203   /* Initialize the section indexes for this objfile, so that we can
204      later detect if they are used w/o being properly assigned to. */
205
206   objfile->sect_index_text = -1;
207   objfile->sect_index_data = -1;
208   objfile->sect_index_bss = -1;
209   objfile->sect_index_rodata = -1;
210
211   /* We don't yet have a C++-specific namespace symtab.  */
212
213   objfile->cp_namespace_symtab = NULL;
214
215   /* Add this file onto the tail of the linked list of other such files. */
216
217   objfile->next = NULL;
218   if (object_files == NULL)
219     object_files = objfile;
220   else
221     {
222       for (last_one = object_files;
223            last_one->next;
224            last_one = last_one->next);
225       last_one->next = objfile;
226     }
227
228   /* Save passed in flag bits. */
229   objfile->flags |= flags;
230
231   return (objfile);
232 }
233
234 /* Initialize entry point information for this objfile. */
235
236 void
237 init_entry_point_info (struct objfile *objfile)
238 {
239   /* Save startup file's range of PC addresses to help blockframe.c
240      decide where the bottom of the stack is.  */
241
242   if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
243     {
244       /* Executable file -- record its entry point so we'll recognize
245          the startup file because it contains the entry point.  */
246       objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
247     }
248   else
249     {
250       /* Examination of non-executable.o files.  Short-circuit this stuff.  */
251       objfile->ei.entry_point = INVALID_ENTRY_POINT;
252     }
253   objfile->ei.deprecated_entry_file_lowpc = INVALID_ENTRY_LOWPC;
254   objfile->ei.deprecated_entry_file_highpc = INVALID_ENTRY_HIGHPC;
255   objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
256   objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
257   objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
258   objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
259 }
260
261 /* Get current entry point address.  */
262
263 CORE_ADDR
264 entry_point_address (void)
265 {
266   return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
267 }
268
269 /* Create the terminating entry of OBJFILE's minimal symbol table.
270    If OBJFILE->msymbols is zero, allocate a single entry from
271    OBJFILE->objfile_obstack; otherwise, just initialize
272    OBJFILE->msymbols[OBJFILE->minimal_symbol_count].  */
273 void
274 terminate_minimal_symbol_table (struct objfile *objfile)
275 {
276   if (! objfile->msymbols)
277     objfile->msymbols = ((struct minimal_symbol *)
278                          obstack_alloc (&objfile->objfile_obstack,
279                                         sizeof (objfile->msymbols[0])));
280
281   {
282     struct minimal_symbol *m
283       = &objfile->msymbols[objfile->minimal_symbol_count];
284
285     memset (m, 0, sizeof (*m));
286     /* Don't rely on these enumeration values being 0's.  */
287     MSYMBOL_TYPE (m) = mst_unknown;
288     SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
289   }
290 }
291
292
293 /* Put one object file before a specified on in the global list.
294    This can be used to make sure an object file is destroyed before
295    another when using ALL_OBJFILES_SAFE to free all objfiles. */
296 void
297 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
298 {
299   struct objfile **objp;
300
301   unlink_objfile (objfile);
302   
303   for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
304     {
305       if (*objp == before_this)
306         {
307           objfile->next = *objp;
308           *objp = objfile;
309           return;
310         }
311     }
312   
313   internal_error (__FILE__, __LINE__,
314                   "put_objfile_before: before objfile not in list");
315 }
316
317 /* Put OBJFILE at the front of the list.  */
318
319 void
320 objfile_to_front (struct objfile *objfile)
321 {
322   struct objfile **objp;
323   for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
324     {
325       if (*objp == objfile)
326         {
327           /* Unhook it from where it is.  */
328           *objp = objfile->next;
329           /* Put it in the front.  */
330           objfile->next = object_files;
331           object_files = objfile;
332           break;
333         }
334     }
335 }
336
337 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
338    list.
339
340    It is not a bug, or error, to call this function if OBJFILE is not known
341    to be in the current list.  This is done in the case of mapped objfiles,
342    for example, just to ensure that the mapped objfile doesn't appear twice
343    in the list.  Since the list is threaded, linking in a mapped objfile
344    twice would create a circular list.
345
346    If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
347    unlinking it, just to ensure that we have completely severed any linkages
348    between the OBJFILE and the list. */
349
350 void
351 unlink_objfile (struct objfile *objfile)
352 {
353   struct objfile **objpp;
354
355   for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
356     {
357       if (*objpp == objfile)
358         {
359           *objpp = (*objpp)->next;
360           objfile->next = NULL;
361           return;
362         }
363     }
364
365   internal_error (__FILE__, __LINE__,
366                   "unlink_objfile: objfile already unlinked");
367 }
368
369
370 /* Destroy an objfile and all the symtabs and psymtabs under it.  Note
371    that as much as possible is allocated on the objfile_obstack 
372    so that the memory can be efficiently freed.
373
374    Things which we do NOT free because they are not in malloc'd memory
375    or not in memory specific to the objfile include:
376
377    objfile -> sf
378
379    FIXME:  If the objfile is using reusable symbol information (via mmalloc),
380    then we need to take into account the fact that more than one process
381    may be using the symbol information at the same time (when mmalloc is
382    extended to support cooperative locking).  When more than one process
383    is using the mapped symbol info, we need to be more careful about when
384    we free objects in the reusable area. */
385
386 void
387 free_objfile (struct objfile *objfile)
388 {
389   if (objfile->separate_debug_objfile)
390     {
391       free_objfile (objfile->separate_debug_objfile);
392     }
393   
394   if (objfile->separate_debug_objfile_backlink)
395     {
396       /* We freed the separate debug file, make sure the base objfile
397          doesn't reference it.  */
398       objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
399     }
400   
401   /* First do any symbol file specific actions required when we are
402      finished with a particular symbol file.  Note that if the objfile
403      is using reusable symbol information (via mmalloc) then each of
404      these routines is responsible for doing the correct thing, either
405      freeing things which are valid only during this particular gdb
406      execution, or leaving them to be reused during the next one. */
407
408   if (objfile->sf != NULL)
409     {
410       (*objfile->sf->sym_finish) (objfile);
411     }
412
413   /* We always close the bfd. */
414
415   if (objfile->obfd != NULL)
416     {
417       char *name = bfd_get_filename (objfile->obfd);
418       if (!bfd_close (objfile->obfd))
419         warning ("cannot close \"%s\": %s",
420                  name, bfd_errmsg (bfd_get_error ()));
421       xfree (name);
422     }
423
424   /* Remove it from the chain of all objfiles. */
425
426   unlink_objfile (objfile);
427
428   /* If we are going to free the runtime common objfile, mark it
429      as unallocated.  */
430
431   if (objfile == rt_common_objfile)
432     rt_common_objfile = NULL;
433
434   /* Before the symbol table code was redone to make it easier to
435      selectively load and remove information particular to a specific
436      linkage unit, gdb used to do these things whenever the monolithic
437      symbol table was blown away.  How much still needs to be done
438      is unknown, but we play it safe for now and keep each action until
439      it is shown to be no longer needed. */
440
441   /* I *think* all our callers call clear_symtab_users.  If so, no need
442      to call this here.  */
443   clear_pc_function_cache ();
444
445   /* The last thing we do is free the objfile struct itself. */
446
447   objfile_free_data (objfile);
448   if (objfile->name != NULL)
449     {
450       xmfree (objfile->md, objfile->name);
451     }
452   if (objfile->global_psymbols.list)
453     xmfree (objfile->md, objfile->global_psymbols.list);
454   if (objfile->static_psymbols.list)
455     xmfree (objfile->md, objfile->static_psymbols.list);
456   /* Free the obstacks for non-reusable objfiles */
457   bcache_xfree (objfile->psymbol_cache);
458   bcache_xfree (objfile->macro_cache);
459   if (objfile->demangled_names_hash)
460     htab_delete (objfile->demangled_names_hash);
461   obstack_free (&objfile->objfile_obstack, 0);
462   xmfree (objfile->md, objfile);
463   objfile = NULL;
464 }
465
466 static void
467 do_free_objfile_cleanup (void *obj)
468 {
469   free_objfile (obj);
470 }
471
472 struct cleanup *
473 make_cleanup_free_objfile (struct objfile *obj)
474 {
475   return make_cleanup (do_free_objfile_cleanup, obj);
476 }
477
478 /* Free all the object files at once and clean up their users.  */
479
480 void
481 free_all_objfiles (void)
482 {
483   struct objfile *objfile, *temp;
484
485   ALL_OBJFILES_SAFE (objfile, temp)
486   {
487     free_objfile (objfile);
488   }
489   clear_symtab_users ();
490 }
491 \f
492 /* Relocate OBJFILE to NEW_OFFSETS.  There should be OBJFILE->NUM_SECTIONS
493    entries in new_offsets.  */
494 void
495 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
496 {
497   struct section_offsets *delta =
498     ((struct section_offsets *) 
499      alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
500
501   {
502     int i;
503     int something_changed = 0;
504     for (i = 0; i < objfile->num_sections; ++i)
505       {
506         delta->offsets[i] =
507           ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
508         if (ANOFFSET (delta, i) != 0)
509           something_changed = 1;
510       }
511     if (!something_changed)
512       return;
513   }
514
515   /* OK, get all the symtabs.  */
516   {
517     struct symtab *s;
518
519     ALL_OBJFILE_SYMTABS (objfile, s)
520     {
521       struct linetable *l;
522       struct blockvector *bv;
523       int i;
524
525       /* First the line table.  */
526       l = LINETABLE (s);
527       if (l)
528         {
529           for (i = 0; i < l->nitems; ++i)
530             l->item[i].pc += ANOFFSET (delta, s->block_line_section);
531         }
532
533       /* Don't relocate a shared blockvector more than once.  */
534       if (!s->primary)
535         continue;
536
537       bv = BLOCKVECTOR (s);
538       for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
539         {
540           struct block *b;
541           struct symbol *sym;
542           struct dict_iterator iter;
543
544           b = BLOCKVECTOR_BLOCK (bv, i);
545           BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
546           BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
547
548           ALL_BLOCK_SYMBOLS (b, iter, sym)
549             {
550               fixup_symbol_section (sym, objfile);
551
552               /* The RS6000 code from which this was taken skipped
553                  any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
554                  But I'm leaving out that test, on the theory that
555                  they can't possibly pass the tests below.  */
556               if ((SYMBOL_CLASS (sym) == LOC_LABEL
557                    || SYMBOL_CLASS (sym) == LOC_STATIC
558                    || SYMBOL_CLASS (sym) == LOC_INDIRECT)
559                   && SYMBOL_SECTION (sym) >= 0)
560                 {
561                   SYMBOL_VALUE_ADDRESS (sym) +=
562                     ANOFFSET (delta, SYMBOL_SECTION (sym));
563                 }
564 #ifdef MIPS_EFI_SYMBOL_NAME
565               /* Relocate Extra Function Info for ecoff.  */
566
567               else if (SYMBOL_CLASS (sym) == LOC_CONST
568                        && SYMBOL_DOMAIN (sym) == LABEL_DOMAIN
569                        && strcmp (DEPRECATED_SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
570                 ecoff_relocate_efi (sym, ANOFFSET (delta,
571                                                    s->block_line_section));
572 #endif
573             }
574         }
575     }
576   }
577
578   {
579     struct partial_symtab *p;
580
581     ALL_OBJFILE_PSYMTABS (objfile, p)
582     {
583       p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
584       p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
585     }
586   }
587
588   {
589     struct partial_symbol **psym;
590
591     for (psym = objfile->global_psymbols.list;
592          psym < objfile->global_psymbols.next;
593          psym++)
594       {
595         fixup_psymbol_section (*psym, objfile);
596         if (SYMBOL_SECTION (*psym) >= 0)
597           SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
598                                                     SYMBOL_SECTION (*psym));
599       }
600     for (psym = objfile->static_psymbols.list;
601          psym < objfile->static_psymbols.next;
602          psym++)
603       {
604         fixup_psymbol_section (*psym, objfile);
605         if (SYMBOL_SECTION (*psym) >= 0)
606           SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
607                                                     SYMBOL_SECTION (*psym));
608       }
609   }
610
611   {
612     struct minimal_symbol *msym;
613     ALL_OBJFILE_MSYMBOLS (objfile, msym)
614       if (SYMBOL_SECTION (msym) >= 0)
615       SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
616   }
617   /* Relocating different sections by different amounts may cause the symbols
618      to be out of order.  */
619   msymbols_sort (objfile);
620
621   {
622     int i;
623     for (i = 0; i < objfile->num_sections; ++i)
624       (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
625   }
626
627   if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
628     {
629       /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
630          only as a fallback.  */
631       struct obj_section *s;
632       s = find_pc_section (objfile->ei.entry_point);
633       if (s)
634         objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
635       else
636         objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
637     }
638
639   {
640     struct obj_section *s;
641     bfd *abfd;
642
643     abfd = objfile->obfd;
644
645     ALL_OBJFILE_OSECTIONS (objfile, s)
646       {
647         int idx = s->the_bfd_section->index;
648         
649         s->addr += ANOFFSET (delta, idx);
650         s->endaddr += ANOFFSET (delta, idx);
651       }
652   }
653
654   if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
655     {
656       objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
657       objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
658     }
659
660   if (objfile->ei.deprecated_entry_file_lowpc != INVALID_ENTRY_LOWPC)
661     {
662       objfile->ei.deprecated_entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
663       objfile->ei.deprecated_entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
664     }
665
666   if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
667     {
668       objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
669       objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
670     }
671
672   /* Relocate breakpoints as necessary, after things are relocated. */
673   breakpoint_re_set ();
674 }
675 \f
676 /* Many places in gdb want to test just to see if we have any partial
677    symbols available.  This function returns zero if none are currently
678    available, nonzero otherwise. */
679
680 int
681 have_partial_symbols (void)
682 {
683   struct objfile *ofp;
684
685   ALL_OBJFILES (ofp)
686   {
687     if (ofp->psymtabs != NULL)
688       {
689         return 1;
690       }
691   }
692   return 0;
693 }
694
695 /* Many places in gdb want to test just to see if we have any full
696    symbols available.  This function returns zero if none are currently
697    available, nonzero otherwise. */
698
699 int
700 have_full_symbols (void)
701 {
702   struct objfile *ofp;
703
704   ALL_OBJFILES (ofp)
705   {
706     if (ofp->symtabs != NULL)
707       {
708         return 1;
709       }
710   }
711   return 0;
712 }
713
714
715 /* This operations deletes all objfile entries that represent solibs that
716    weren't explicitly loaded by the user, via e.g., the add-symbol-file
717    command.
718  */
719 void
720 objfile_purge_solibs (void)
721 {
722   struct objfile *objf;
723   struct objfile *temp;
724
725   ALL_OBJFILES_SAFE (objf, temp)
726   {
727     /* We assume that the solib package has been purged already, or will
728        be soon.
729      */
730     if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
731       free_objfile (objf);
732   }
733 }
734
735
736 /* Many places in gdb want to test just to see if we have any minimal
737    symbols available.  This function returns zero if none are currently
738    available, nonzero otherwise. */
739
740 int
741 have_minimal_symbols (void)
742 {
743   struct objfile *ofp;
744
745   ALL_OBJFILES (ofp)
746   {
747     if (ofp->minimal_symbol_count > 0)
748       {
749         return 1;
750       }
751   }
752   return 0;
753 }
754
755 /* Returns a section whose range includes PC and SECTION, or NULL if
756    none found.  Note the distinction between the return type, struct
757    obj_section (which is defined in gdb), and the input type "struct
758    bfd_section" (which is a bfd-defined data type).  The obj_section
759    contains a pointer to the "struct bfd_section".  */
760
761 struct obj_section *
762 find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section)
763 {
764   struct obj_section *s;
765   struct objfile *objfile;
766
767   ALL_OBJSECTIONS (objfile, s)
768     if ((section == 0 || section == s->the_bfd_section) &&
769         s->addr <= pc && pc < s->endaddr)
770       return (s);
771
772   return (NULL);
773 }
774
775 /* Returns a section whose range includes PC or NULL if none found. 
776    Backward compatibility, no section.  */
777
778 struct obj_section *
779 find_pc_section (CORE_ADDR pc)
780 {
781   return find_pc_sect_section (pc, find_pc_mapped_section (pc));
782 }
783
784
785 /* In SVR4, we recognize a trampoline by it's section name. 
786    That is, if the pc is in a section named ".plt" then we are in
787    a trampoline.  */
788
789 int
790 in_plt_section (CORE_ADDR pc, char *name)
791 {
792   struct obj_section *s;
793   int retval = 0;
794
795   s = find_pc_section (pc);
796
797   retval = (s != NULL
798             && s->the_bfd_section->name != NULL
799             && strcmp (s->the_bfd_section->name, ".plt") == 0);
800   return (retval);
801 }
802
803 /* Return nonzero if NAME is in the import list of OBJFILE.  Else
804    return zero.  */
805
806 int
807 is_in_import_list (char *name, struct objfile *objfile)
808 {
809   int i;
810
811   if (!objfile || !name || !*name)
812     return 0;
813
814   for (i = 0; i < objfile->import_list_size; i++)
815     if (objfile->import_list[i] && DEPRECATED_STREQ (name, objfile->import_list[i]))
816       return 1;
817   return 0;
818 }
819 \f
820
821 /* Keep a registry of per-objfile data-pointers required by other GDB
822    modules.  */
823
824 struct objfile_data
825 {
826   unsigned index;
827 };
828
829 struct objfile_data_registration
830 {
831   struct objfile_data *data;
832   struct objfile_data_registration *next;
833 };
834   
835 struct objfile_data_registry
836 {
837   struct objfile_data_registration *registrations;
838   unsigned num_registrations;
839 };
840
841 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
842
843 const struct objfile_data *
844 register_objfile_data (void)
845 {
846   struct objfile_data_registration **curr;
847
848   /* Append new registration.  */
849   for (curr = &objfile_data_registry.registrations;
850        *curr != NULL; curr = &(*curr)->next);
851
852   *curr = XMALLOC (struct objfile_data_registration);
853   (*curr)->next = NULL;
854   (*curr)->data = XMALLOC (struct objfile_data);
855   (*curr)->data->index = objfile_data_registry.num_registrations++;
856
857   return (*curr)->data;
858 }
859
860 static void
861 objfile_alloc_data (struct objfile *objfile)
862 {
863   gdb_assert (objfile->data == NULL);
864   objfile->num_data = objfile_data_registry.num_registrations;
865   objfile->data = XCALLOC (objfile->num_data, void *);
866 }
867
868 static void
869 objfile_free_data (struct objfile *objfile)
870 {
871   gdb_assert (objfile->data != NULL);
872   xfree (objfile->data);
873   objfile->data = NULL;
874 }
875
876 void
877 clear_objfile_data (struct objfile *objfile)
878 {
879   gdb_assert (objfile->data != NULL);
880   memset (objfile->data, 0, objfile->num_data * sizeof (void *));
881 }
882
883 void
884 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
885                   void *value)
886 {
887   gdb_assert (data->index < objfile->num_data);
888   objfile->data[data->index] = value;
889 }
890
891 void *
892 objfile_data (struct objfile *objfile, const struct objfile_data *data)
893 {
894   gdb_assert (data->index < objfile->num_data);
895   return objfile->data[data->index];
896 }