]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/llvm/include/llvm/ADT/Twine.h
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / llvm / include / llvm / ADT / Twine.h
1 //===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #ifndef LLVM_ADT_TWINE_H
11 #define LLVM_ADT_TWINE_H
12
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/Support/DataTypes.h"
15 #include "llvm/Support/ErrorHandling.h"
16 #include <cassert>
17 #include <string>
18
19 namespace llvm {
20   template <typename T>
21   class SmallVectorImpl;
22   class StringRef;
23   class raw_ostream;
24
25   /// Twine - A lightweight data structure for efficiently representing the
26   /// concatenation of temporary values as strings.
27   ///
28   /// A Twine is a kind of rope, it represents a concatenated string using a
29   /// binary-tree, where the string is the preorder of the nodes. Since the
30   /// Twine can be efficiently rendered into a buffer when its result is used,
31   /// it avoids the cost of generating temporary values for intermediate string
32   /// results -- particularly in cases when the Twine result is never
33   /// required. By explicitly tracking the type of leaf nodes, we can also avoid
34   /// the creation of temporary strings for conversions operations (such as
35   /// appending an integer to a string).
36   ///
37   /// A Twine is not intended for use directly and should not be stored, its
38   /// implementation relies on the ability to store pointers to temporary stack
39   /// objects which may be deallocated at the end of a statement. Twines should
40   /// only be used accepted as const references in arguments, when an API wishes
41   /// to accept possibly-concatenated strings.
42   ///
43   /// Twines support a special 'null' value, which always concatenates to form
44   /// itself, and renders as an empty string. This can be returned from APIs to
45   /// effectively nullify any concatenations performed on the result.
46   ///
47   /// \b Implementation
48   ///
49   /// Given the nature of a Twine, it is not possible for the Twine's
50   /// concatenation method to construct interior nodes; the result must be
51   /// represented inside the returned value. For this reason a Twine object
52   /// actually holds two values, the left- and right-hand sides of a
53   /// concatenation. We also have nullary Twine objects, which are effectively
54   /// sentinel values that represent empty strings.
55   ///
56   /// Thus, a Twine can effectively have zero, one, or two children. The \see
57   /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
58   /// testing the number of children.
59   ///
60   /// We maintain a number of invariants on Twine objects (FIXME: Why):
61   ///  - Nullary twines are always represented with their Kind on the left-hand
62   ///    side, and the Empty kind on the right-hand side.
63   ///  - Unary twines are always represented with the value on the left-hand
64   ///    side, and the Empty kind on the right-hand side.
65   ///  - If a Twine has another Twine as a child, that child should always be
66   ///    binary (otherwise it could have been folded into the parent).
67   ///
68   /// These invariants are check by \see isValid().
69   ///
70   /// \b Efficiency Considerations
71   ///
72   /// The Twine is designed to yield efficient and small code for common
73   /// situations. For this reason, the concat() method is inlined so that
74   /// concatenations of leaf nodes can be optimized into stores directly into a
75   /// single stack allocated object.
76   ///
77   /// In practice, not all compilers can be trusted to optimize concat() fully,
78   /// so we provide two additional methods (and accompanying operator+
79   /// overloads) to guarantee that particularly important cases (cstring plus
80   /// StringRef) codegen as desired.
81   class Twine {
82     /// NodeKind - Represent the type of an argument.
83     enum NodeKind {
84       /// An empty string; the result of concatenating anything with it is also
85       /// empty.
86       NullKind,
87
88       /// The empty string.
89       EmptyKind,
90
91       /// A pointer to a Twine instance.
92       TwineKind,
93
94       /// A pointer to a C string instance.
95       CStringKind,
96
97       /// A pointer to an std::string instance.
98       StdStringKind,
99
100       /// A pointer to a StringRef instance.
101       StringRefKind,
102
103       /// A char value reinterpreted as a pointer, to render as a character.
104       CharKind,
105
106       /// An unsigned int value reinterpreted as a pointer, to render as an
107       /// unsigned decimal integer.
108       DecUIKind,
109
110       /// An int value reinterpreted as a pointer, to render as a signed
111       /// decimal integer.
112       DecIKind,
113
114       /// A pointer to an unsigned long value, to render as an unsigned decimal
115       /// integer.
116       DecULKind,
117
118       /// A pointer to a long value, to render as a signed decimal integer.
119       DecLKind,
120
121       /// A pointer to an unsigned long long value, to render as an unsigned
122       /// decimal integer.
123       DecULLKind,
124
125       /// A pointer to a long long value, to render as a signed decimal integer.
126       DecLLKind,
127
128       /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
129       /// integer.
130       UHexKind
131     };
132
133     union Child
134     {
135       const Twine *twine;
136       const char *cString;
137       const std::string *stdString;
138       const StringRef *stringRef;
139       char character;
140       unsigned int decUI;
141       int decI;
142       const unsigned long *decUL;
143       const long *decL;
144       const unsigned long long *decULL;
145       const long long *decLL;
146       const uint64_t *uHex;
147     };
148
149   private:
150     /// LHS - The prefix in the concatenation, which may be uninitialized for
151     /// Null or Empty kinds.
152     Child LHS;
153     /// RHS - The suffix in the concatenation, which may be uninitialized for
154     /// Null or Empty kinds.
155     Child RHS;
156     // enums stored as unsigned chars to save on space while some compilers
157     // don't support specifying the backing type for an enum
158     /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
159     unsigned char LHSKind;
160     /// RHSKind - The NodeKind of the left hand side, \see getLHSKind().
161     unsigned char RHSKind;
162
163   private:
164     /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
165     explicit Twine(NodeKind Kind)
166       : LHSKind(Kind), RHSKind(EmptyKind) {
167       assert(isNullary() && "Invalid kind!");
168     }
169
170     /// Construct a binary twine.
171     explicit Twine(const Twine &_LHS, const Twine &_RHS)
172       : LHSKind(TwineKind), RHSKind(TwineKind) {
173       LHS.twine = &_LHS;
174       RHS.twine = &_RHS;
175       assert(isValid() && "Invalid twine!");
176     }
177
178     /// Construct a twine from explicit values.
179     explicit Twine(Child _LHS, NodeKind _LHSKind,
180                    Child _RHS, NodeKind _RHSKind)
181       : LHS(_LHS), RHS(_RHS), LHSKind(_LHSKind), RHSKind(_RHSKind) {
182       assert(isValid() && "Invalid twine!");
183     }
184
185     /// isNull - Check for the null twine.
186     bool isNull() const {
187       return getLHSKind() == NullKind;
188     }
189
190     /// isEmpty - Check for the empty twine.
191     bool isEmpty() const {
192       return getLHSKind() == EmptyKind;
193     }
194
195     /// isNullary - Check if this is a nullary twine (null or empty).
196     bool isNullary() const {
197       return isNull() || isEmpty();
198     }
199
200     /// isUnary - Check if this is a unary twine.
201     bool isUnary() const {
202       return getRHSKind() == EmptyKind && !isNullary();
203     }
204
205     /// isBinary - Check if this is a binary twine.
206     bool isBinary() const {
207       return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
208     }
209
210     /// isValid - Check if this is a valid twine (satisfying the invariants on
211     /// order and number of arguments).
212     bool isValid() const {
213       // Nullary twines always have Empty on the RHS.
214       if (isNullary() && getRHSKind() != EmptyKind)
215         return false;
216
217       // Null should never appear on the RHS.
218       if (getRHSKind() == NullKind)
219         return false;
220
221       // The RHS cannot be non-empty if the LHS is empty.
222       if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
223         return false;
224
225       // A twine child should always be binary.
226       if (getLHSKind() == TwineKind &&
227           !LHS.twine->isBinary())
228         return false;
229       if (getRHSKind() == TwineKind &&
230           !RHS.twine->isBinary())
231         return false;
232
233       return true;
234     }
235
236     /// getLHSKind - Get the NodeKind of the left-hand side.
237     NodeKind getLHSKind() const { return (NodeKind) LHSKind; }
238
239     /// getRHSKind - Get the NodeKind of the right-hand side.
240     NodeKind getRHSKind() const { return (NodeKind) RHSKind; }
241
242     /// printOneChild - Print one child from a twine.
243     void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
244
245     /// printOneChildRepr - Print the representation of one child from a twine.
246     void printOneChildRepr(raw_ostream &OS, Child Ptr,
247                            NodeKind Kind) const;
248
249   public:
250     /// @name Constructors
251     /// @{
252
253     /// Construct from an empty string.
254     /*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) {
255       assert(isValid() && "Invalid twine!");
256     }
257
258     /// Construct from a C string.
259     ///
260     /// We take care here to optimize "" into the empty twine -- this will be
261     /// optimized out for string constants. This allows Twine arguments have
262     /// default "" values, without introducing unnecessary string constants.
263     /*implicit*/ Twine(const char *Str)
264       : RHSKind(EmptyKind) {
265       if (Str[0] != '\0') {
266         LHS.cString = Str;
267         LHSKind = CStringKind;
268       } else
269         LHSKind = EmptyKind;
270
271       assert(isValid() && "Invalid twine!");
272     }
273
274     /// Construct from an std::string.
275     /*implicit*/ Twine(const std::string &Str)
276       : LHSKind(StdStringKind), RHSKind(EmptyKind) {
277       LHS.stdString = &Str;
278       assert(isValid() && "Invalid twine!");
279     }
280
281     /// Construct from a StringRef.
282     /*implicit*/ Twine(const StringRef &Str)
283       : LHSKind(StringRefKind), RHSKind(EmptyKind) {
284       LHS.stringRef = &Str;
285       assert(isValid() && "Invalid twine!");
286     }
287
288     /// Construct from a char.
289     explicit Twine(char Val)
290       : LHSKind(CharKind), RHSKind(EmptyKind) {
291       LHS.character = Val;
292     }
293
294     /// Construct from a signed char.
295     explicit Twine(signed char Val)
296       : LHSKind(CharKind), RHSKind(EmptyKind) {
297       LHS.character = static_cast<char>(Val);
298     }
299
300     /// Construct from an unsigned char.
301     explicit Twine(unsigned char Val)
302       : LHSKind(CharKind), RHSKind(EmptyKind) {
303       LHS.character = static_cast<char>(Val);
304     }
305
306     /// Construct a twine to print \p Val as an unsigned decimal integer.
307     explicit Twine(unsigned Val)
308       : LHSKind(DecUIKind), RHSKind(EmptyKind) {
309       LHS.decUI = Val;
310     }
311
312     /// Construct a twine to print \p Val as a signed decimal integer.
313     explicit Twine(int Val)
314       : LHSKind(DecIKind), RHSKind(EmptyKind) {
315       LHS.decI = Val;
316     }
317
318     /// Construct a twine to print \p Val as an unsigned decimal integer.
319     explicit Twine(const unsigned long &Val)
320       : LHSKind(DecULKind), RHSKind(EmptyKind) {
321       LHS.decUL = &Val;
322     }
323
324     /// Construct a twine to print \p Val as a signed decimal integer.
325     explicit Twine(const long &Val)
326       : LHSKind(DecLKind), RHSKind(EmptyKind) {
327       LHS.decL = &Val;
328     }
329
330     /// Construct a twine to print \p Val as an unsigned decimal integer.
331     explicit Twine(const unsigned long long &Val)
332       : LHSKind(DecULLKind), RHSKind(EmptyKind) {
333       LHS.decULL = &Val;
334     }
335
336     /// Construct a twine to print \p Val as a signed decimal integer.
337     explicit Twine(const long long &Val)
338       : LHSKind(DecLLKind), RHSKind(EmptyKind) {
339       LHS.decLL = &Val;
340     }
341
342     // FIXME: Unfortunately, to make sure this is as efficient as possible we
343     // need extra binary constructors from particular types. We can't rely on
344     // the compiler to be smart enough to fold operator+()/concat() down to the
345     // right thing. Yet.
346
347     /// Construct as the concatenation of a C string and a StringRef.
348     /*implicit*/ Twine(const char *_LHS, const StringRef &_RHS)
349       : LHSKind(CStringKind), RHSKind(StringRefKind) {
350       LHS.cString = _LHS;
351       RHS.stringRef = &_RHS;
352       assert(isValid() && "Invalid twine!");
353     }
354
355     /// Construct as the concatenation of a StringRef and a C string.
356     /*implicit*/ Twine(const StringRef &_LHS, const char *_RHS)
357       : LHSKind(StringRefKind), RHSKind(CStringKind) {
358       LHS.stringRef = &_LHS;
359       RHS.cString = _RHS;
360       assert(isValid() && "Invalid twine!");
361     }
362
363     /// Create a 'null' string, which is an empty string that always
364     /// concatenates to form another empty string.
365     static Twine createNull() {
366       return Twine(NullKind);
367     }
368
369     /// @}
370     /// @name Numeric Conversions
371     /// @{
372
373     // Construct a twine to print \p Val as an unsigned hexadecimal integer.
374     static Twine utohexstr(const uint64_t &Val) {
375       Child LHS, RHS;
376       LHS.uHex = &Val;
377       RHS.twine = 0;
378       return Twine(LHS, UHexKind, RHS, EmptyKind);
379     }
380
381     /// @}
382     /// @name Predicate Operations
383     /// @{
384
385     /// isTriviallyEmpty - Check if this twine is trivially empty; a false
386     /// return value does not necessarily mean the twine is empty.
387     bool isTriviallyEmpty() const {
388       return isNullary();
389     }
390
391     /// isSingleStringRef - Return true if this twine can be dynamically
392     /// accessed as a single StringRef value with getSingleStringRef().
393     bool isSingleStringRef() const {
394       if (getRHSKind() != EmptyKind) return false;
395
396       switch (getLHSKind()) {
397       case EmptyKind:
398       case CStringKind:
399       case StdStringKind:
400       case StringRefKind:
401         return true;
402       default:
403         return false;
404       }
405     }
406
407     /// @}
408     /// @name String Operations
409     /// @{
410
411     Twine concat(const Twine &Suffix) const;
412
413     /// @}
414     /// @name Output & Conversion.
415     /// @{
416
417     /// str - Return the twine contents as a std::string.
418     std::string str() const;
419
420     /// toVector - Write the concatenated string into the given SmallString or
421     /// SmallVector.
422     void toVector(SmallVectorImpl<char> &Out) const;
423
424     /// getSingleStringRef - This returns the twine as a single StringRef.  This
425     /// method is only valid if isSingleStringRef() is true.
426     StringRef getSingleStringRef() const {
427       assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
428       switch (getLHSKind()) {
429       default: llvm_unreachable("Out of sync with isSingleStringRef");
430       case EmptyKind:      return StringRef();
431       case CStringKind:    return StringRef(LHS.cString);
432       case StdStringKind:  return StringRef(*LHS.stdString);
433       case StringRefKind:  return *LHS.stringRef;
434       }
435     }
436
437     /// toStringRef - This returns the twine as a single StringRef if it can be
438     /// represented as such. Otherwise the twine is written into the given
439     /// SmallVector and a StringRef to the SmallVector's data is returned.
440     StringRef toStringRef(SmallVectorImpl<char> &Out) const;
441
442     /// toNullTerminatedStringRef - This returns the twine as a single null
443     /// terminated StringRef if it can be represented as such. Otherwise the
444     /// twine is written into the given SmallVector and a StringRef to the
445     /// SmallVector's data is returned.
446     ///
447     /// The returned StringRef's size does not include the null terminator.
448     StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
449
450     /// Write the concatenated string represented by this twine to the
451     /// stream \p OS.
452     void print(raw_ostream &OS) const;
453
454     /// Dump the concatenated string represented by this twine to stderr.
455     void dump() const;
456
457     /// Write the representation of this twine to the stream \p OS.
458     void printRepr(raw_ostream &OS) const;
459
460     /// Dump the representation of this twine to stderr.
461     void dumpRepr() const;
462
463     /// @}
464   };
465
466   /// @name Twine Inline Implementations
467   /// @{
468
469   inline Twine Twine::concat(const Twine &Suffix) const {
470     // Concatenation with null is null.
471     if (isNull() || Suffix.isNull())
472       return Twine(NullKind);
473
474     // Concatenation with empty yields the other side.
475     if (isEmpty())
476       return Suffix;
477     if (Suffix.isEmpty())
478       return *this;
479
480     // Otherwise we need to create a new node, taking care to fold in unary
481     // twines.
482     Child NewLHS, NewRHS;
483     NewLHS.twine = this;
484     NewRHS.twine = &Suffix;
485     NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
486     if (isUnary()) {
487       NewLHS = LHS;
488       NewLHSKind = getLHSKind();
489     }
490     if (Suffix.isUnary()) {
491       NewRHS = Suffix.LHS;
492       NewRHSKind = Suffix.getLHSKind();
493     }
494
495     return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
496   }
497
498   inline Twine operator+(const Twine &LHS, const Twine &RHS) {
499     return LHS.concat(RHS);
500   }
501
502   /// Additional overload to guarantee simplified codegen; this is equivalent to
503   /// concat().
504
505   inline Twine operator+(const char *LHS, const StringRef &RHS) {
506     return Twine(LHS, RHS);
507   }
508
509   /// Additional overload to guarantee simplified codegen; this is equivalent to
510   /// concat().
511
512   inline Twine operator+(const StringRef &LHS, const char *RHS) {
513     return Twine(LHS, RHS);
514   }
515
516   inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
517     RHS.print(OS);
518     return OS;
519   }
520
521   /// @}
522 }
523
524 #endif