]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/llvm/include/llvm/Analysis/LoopInfoImpl.h
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / llvm / include / llvm / Analysis / LoopInfoImpl.h
1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the generic implementation of LoopInfo used for both Loops and
11 // MachineLoops.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
16 #define LLVM_ANALYSIS_LOOPINFOIMPL_H
17
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Analysis/LoopInfo.h"
21
22 namespace llvm {
23
24 //===----------------------------------------------------------------------===//
25 // APIs for simple analysis of the loop. See header notes.
26
27 /// getExitingBlocks - Return all blocks inside the loop that have successors
28 /// outside of the loop.  These are the blocks _inside of the current loop_
29 /// which branch out.  The returned list is always unique.
30 ///
31 template<class BlockT, class LoopT>
32 void LoopBase<BlockT, LoopT>::
33 getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
34   // Sort the blocks vector so that we can use binary search to do quick
35   // lookups.
36   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
37   std::sort(LoopBBs.begin(), LoopBBs.end());
38
39   typedef GraphTraits<BlockT*> BlockTraits;
40   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
41     for (typename BlockTraits::ChildIteratorType I =
42            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
43          I != E; ++I)
44       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
45         // Not in current loop? It must be an exit block.
46         ExitingBlocks.push_back(*BI);
47         break;
48       }
49 }
50
51 /// getExitingBlock - If getExitingBlocks would return exactly one block,
52 /// return that block. Otherwise return null.
53 template<class BlockT, class LoopT>
54 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
55   SmallVector<BlockT*, 8> ExitingBlocks;
56   getExitingBlocks(ExitingBlocks);
57   if (ExitingBlocks.size() == 1)
58     return ExitingBlocks[0];
59   return 0;
60 }
61
62 /// getExitBlocks - Return all of the successor blocks of this loop.  These
63 /// are the blocks _outside of the current loop_ which are branched to.
64 ///
65 template<class BlockT, class LoopT>
66 void LoopBase<BlockT, LoopT>::
67 getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
68   // Sort the blocks vector so that we can use binary search to do quick
69   // lookups.
70   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
71   std::sort(LoopBBs.begin(), LoopBBs.end());
72
73   typedef GraphTraits<BlockT*> BlockTraits;
74   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
75     for (typename BlockTraits::ChildIteratorType I =
76            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
77          I != E; ++I)
78       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
79         // Not in current loop? It must be an exit block.
80         ExitBlocks.push_back(*I);
81 }
82
83 /// getExitBlock - If getExitBlocks would return exactly one block,
84 /// return that block. Otherwise return null.
85 template<class BlockT, class LoopT>
86 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
87   SmallVector<BlockT*, 8> ExitBlocks;
88   getExitBlocks(ExitBlocks);
89   if (ExitBlocks.size() == 1)
90     return ExitBlocks[0];
91   return 0;
92 }
93
94 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
95 template<class BlockT, class LoopT>
96 void LoopBase<BlockT, LoopT>::
97 getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
98   // Sort the blocks vector so that we can use binary search to do quick
99   // lookups.
100   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
101   array_pod_sort(LoopBBs.begin(), LoopBBs.end());
102
103   typedef GraphTraits<BlockT*> BlockTraits;
104   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
105     for (typename BlockTraits::ChildIteratorType I =
106            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
107          I != E; ++I)
108       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
109         // Not in current loop? It must be an exit block.
110         ExitEdges.push_back(Edge(*BI, *I));
111 }
112
113 /// getLoopPreheader - If there is a preheader for this loop, return it.  A
114 /// loop has a preheader if there is only one edge to the header of the loop
115 /// from outside of the loop.  If this is the case, the block branching to the
116 /// header of the loop is the preheader node.
117 ///
118 /// This method returns null if there is no preheader for the loop.
119 ///
120 template<class BlockT, class LoopT>
121 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
122   // Keep track of nodes outside the loop branching to the header...
123   BlockT *Out = getLoopPredecessor();
124   if (!Out) return 0;
125
126   // Make sure there is only one exit out of the preheader.
127   typedef GraphTraits<BlockT*> BlockTraits;
128   typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
129   ++SI;
130   if (SI != BlockTraits::child_end(Out))
131     return 0;  // Multiple exits from the block, must not be a preheader.
132
133   // The predecessor has exactly one successor, so it is a preheader.
134   return Out;
135 }
136
137 /// getLoopPredecessor - If the given loop's header has exactly one unique
138 /// predecessor outside the loop, return it. Otherwise return null.
139 /// This is less strict that the loop "preheader" concept, which requires
140 /// the predecessor to have exactly one successor.
141 ///
142 template<class BlockT, class LoopT>
143 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
144   // Keep track of nodes outside the loop branching to the header...
145   BlockT *Out = 0;
146
147   // Loop over the predecessors of the header node...
148   BlockT *Header = getHeader();
149   typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
150   for (typename InvBlockTraits::ChildIteratorType PI =
151          InvBlockTraits::child_begin(Header),
152          PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
153     typename InvBlockTraits::NodeType *N = *PI;
154     if (!contains(N)) {     // If the block is not in the loop...
155       if (Out && Out != N)
156         return 0;             // Multiple predecessors outside the loop
157       Out = N;
158     }
159   }
160
161   // Make sure there is only one exit out of the preheader.
162   assert(Out && "Header of loop has no predecessors from outside loop?");
163   return Out;
164 }
165
166 /// getLoopLatch - If there is a single latch block for this loop, return it.
167 /// A latch block is a block that contains a branch back to the header.
168 template<class BlockT, class LoopT>
169 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
170   BlockT *Header = getHeader();
171   typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
172   typename InvBlockTraits::ChildIteratorType PI =
173     InvBlockTraits::child_begin(Header);
174   typename InvBlockTraits::ChildIteratorType PE =
175     InvBlockTraits::child_end(Header);
176   BlockT *Latch = 0;
177   for (; PI != PE; ++PI) {
178     typename InvBlockTraits::NodeType *N = *PI;
179     if (contains(N)) {
180       if (Latch) return 0;
181       Latch = N;
182     }
183   }
184
185   return Latch;
186 }
187
188 //===----------------------------------------------------------------------===//
189 // APIs for updating loop information after changing the CFG
190 //
191
192 /// addBasicBlockToLoop - This method is used by other analyses to update loop
193 /// information.  NewBB is set to be a new member of the current loop.
194 /// Because of this, it is added as a member of all parent loops, and is added
195 /// to the specified LoopInfo object as being in the current basic block.  It
196 /// is not valid to replace the loop header with this method.
197 ///
198 template<class BlockT, class LoopT>
199 void LoopBase<BlockT, LoopT>::
200 addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
201   assert((Blocks.empty() || LIB[getHeader()] == this) &&
202          "Incorrect LI specified for this loop!");
203   assert(NewBB && "Cannot add a null basic block to the loop!");
204   assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
205
206   LoopT *L = static_cast<LoopT *>(this);
207
208   // Add the loop mapping to the LoopInfo object...
209   LIB.BBMap[NewBB] = L;
210
211   // Add the basic block to this loop and all parent loops...
212   while (L) {
213     L->Blocks.push_back(NewBB);
214     L = L->getParentLoop();
215   }
216 }
217
218 /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
219 /// the OldChild entry in our children list with NewChild, and updates the
220 /// parent pointer of OldChild to be null and the NewChild to be this loop.
221 /// This updates the loop depth of the new child.
222 template<class BlockT, class LoopT>
223 void LoopBase<BlockT, LoopT>::
224 replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
225   assert(OldChild->ParentLoop == this && "This loop is already broken!");
226   assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
227   typename std::vector<LoopT *>::iterator I =
228     std::find(SubLoops.begin(), SubLoops.end(), OldChild);
229   assert(I != SubLoops.end() && "OldChild not in loop!");
230   *I = NewChild;
231   OldChild->ParentLoop = 0;
232   NewChild->ParentLoop = static_cast<LoopT *>(this);
233 }
234
235 /// verifyLoop - Verify loop structure
236 template<class BlockT, class LoopT>
237 void LoopBase<BlockT, LoopT>::verifyLoop() const {
238 #ifndef NDEBUG
239   assert(!Blocks.empty() && "Loop header is missing");
240
241   // Setup for using a depth-first iterator to visit every block in the loop.
242   SmallVector<BlockT*, 8> ExitBBs;
243   getExitBlocks(ExitBBs);
244   llvm::SmallPtrSet<BlockT*, 8> VisitSet;
245   VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
246   df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
247     BI = df_ext_begin(getHeader(), VisitSet),
248     BE = df_ext_end(getHeader(), VisitSet);
249
250   // Keep track of the number of BBs visited.
251   unsigned NumVisited = 0;
252
253   // Sort the blocks vector so that we can use binary search to do quick
254   // lookups.
255   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
256   std::sort(LoopBBs.begin(), LoopBBs.end());
257
258   // Check the individual blocks.
259   for ( ; BI != BE; ++BI) {
260     BlockT *BB = *BI;
261     bool HasInsideLoopSuccs = false;
262     bool HasInsideLoopPreds = false;
263     SmallVector<BlockT *, 2> OutsideLoopPreds;
264
265     typedef GraphTraits<BlockT*> BlockTraits;
266     for (typename BlockTraits::ChildIteratorType SI =
267            BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
268          SI != SE; ++SI)
269       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
270         HasInsideLoopSuccs = true;
271         break;
272       }
273     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
274     for (typename InvBlockTraits::ChildIteratorType PI =
275            InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
276          PI != PE; ++PI) {
277       BlockT *N = *PI;
278       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
279         HasInsideLoopPreds = true;
280       else
281         OutsideLoopPreds.push_back(N);
282     }
283
284     if (BB == getHeader()) {
285         assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
286     } else if (!OutsideLoopPreds.empty()) {
287       // A non-header loop shouldn't be reachable from outside the loop,
288       // though it is permitted if the predecessor is not itself actually
289       // reachable.
290       BlockT *EntryBB = BB->getParent()->begin();
291         for (df_iterator<BlockT *> NI = df_begin(EntryBB),
292                NE = df_end(EntryBB); NI != NE; ++NI)
293           for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
294             assert(*NI != OutsideLoopPreds[i] &&
295                    "Loop has multiple entry points!");
296     }
297     assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
298     assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
299     assert(BB != getHeader()->getParent()->begin() &&
300            "Loop contains function entry block!");
301
302     NumVisited++;
303   }
304
305   assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
306
307   // Check the subloops.
308   for (iterator I = begin(), E = end(); I != E; ++I)
309     // Each block in each subloop should be contained within this loop.
310     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
311          BI != BE; ++BI) {
312         assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
313                "Loop does not contain all the blocks of a subloop!");
314     }
315
316   // Check the parent loop pointer.
317   if (ParentLoop) {
318     assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
319            ParentLoop->end() &&
320            "Loop is not a subloop of its parent!");
321   }
322 #endif
323 }
324
325 /// verifyLoop - Verify loop structure of this loop and all nested loops.
326 template<class BlockT, class LoopT>
327 void LoopBase<BlockT, LoopT>::verifyLoopNest(
328   DenseSet<const LoopT*> *Loops) const {
329   Loops->insert(static_cast<const LoopT *>(this));
330   // Verify this loop.
331   verifyLoop();
332   // Verify the subloops.
333   for (iterator I = begin(), E = end(); I != E; ++I)
334     (*I)->verifyLoopNest(Loops);
335 }
336
337 template<class BlockT, class LoopT>
338 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
339   OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
340        << " containing: ";
341
342   for (unsigned i = 0; i < getBlocks().size(); ++i) {
343     if (i) OS << ",";
344     BlockT *BB = getBlocks()[i];
345     WriteAsOperand(OS, BB, false);
346     if (BB == getHeader())    OS << "<header>";
347     if (BB == getLoopLatch()) OS << "<latch>";
348     if (isLoopExiting(BB))    OS << "<exiting>";
349   }
350   OS << "\n";
351
352   for (iterator I = begin(), E = end(); I != E; ++I)
353     (*I)->print(OS, Depth+2);
354 }
355
356 //===----------------------------------------------------------------------===//
357 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
358 /// result does / not depend on use list (block predecessor) order.
359 ///
360
361 /// Discover a subloop with the specified backedges such that: All blocks within
362 /// this loop are mapped to this loop or a subloop. And all subloops within this
363 /// loop have their parent loop set to this loop or a subloop.
364 template<class BlockT, class LoopT>
365 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
366                                   LoopInfoBase<BlockT, LoopT> *LI,
367                                   DominatorTreeBase<BlockT> &DomTree) {
368   typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
369
370   unsigned NumBlocks = 0;
371   unsigned NumSubloops = 0;
372
373   // Perform a backward CFG traversal using a worklist.
374   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
375   while (!ReverseCFGWorklist.empty()) {
376     BlockT *PredBB = ReverseCFGWorklist.back();
377     ReverseCFGWorklist.pop_back();
378
379     LoopT *Subloop = LI->getLoopFor(PredBB);
380     if (!Subloop) {
381       if (!DomTree.isReachableFromEntry(PredBB))
382         continue;
383
384       // This is an undiscovered block. Map it to the current loop.
385       LI->changeLoopFor(PredBB, L);
386       ++NumBlocks;
387       if (PredBB == L->getHeader())
388           continue;
389       // Push all block predecessors on the worklist.
390       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
391                                 InvBlockTraits::child_begin(PredBB),
392                                 InvBlockTraits::child_end(PredBB));
393     }
394     else {
395       // This is a discovered block. Find its outermost discovered loop.
396       while (LoopT *Parent = Subloop->getParentLoop())
397         Subloop = Parent;
398
399       // If it is already discovered to be a subloop of this loop, continue.
400       if (Subloop == L)
401         continue;
402
403       // Discover a subloop of this loop.
404       Subloop->setParentLoop(L);
405       ++NumSubloops;
406       NumBlocks += Subloop->getBlocks().capacity();
407       PredBB = Subloop->getHeader();
408       // Continue traversal along predecessors that are not loop-back edges from
409       // within this subloop tree itself. Note that a predecessor may directly
410       // reach another subloop that is not yet discovered to be a subloop of
411       // this loop, which we must traverse.
412       for (typename InvBlockTraits::ChildIteratorType PI =
413              InvBlockTraits::child_begin(PredBB),
414              PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
415         if (LI->getLoopFor(*PI) != Subloop)
416           ReverseCFGWorklist.push_back(*PI);
417       }
418     }
419   }
420   L->getSubLoopsVector().reserve(NumSubloops);
421   L->getBlocksVector().reserve(NumBlocks);
422 }
423
424 namespace {
425 /// Populate all loop data in a stable order during a single forward DFS.
426 template<class BlockT, class LoopT>
427 class PopulateLoopsDFS {
428   typedef GraphTraits<BlockT*> BlockTraits;
429   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
430
431   LoopInfoBase<BlockT, LoopT> *LI;
432   DenseSet<const BlockT *> VisitedBlocks;
433   std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;
434
435 public:
436   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
437     LI(li) {}
438
439   void traverse(BlockT *EntryBlock);
440
441 protected:
442   void insertIntoLoop(BlockT *Block);
443
444   BlockT *dfsSource() { return DFSStack.back().first; }
445   SuccIterTy &dfsSucc() { return DFSStack.back().second; }
446   SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }
447
448   void pushBlock(BlockT *Block) {
449     DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block)));
450   }
451 };
452 } // anonymous
453
454 /// Top-level driver for the forward DFS within the loop.
455 template<class BlockT, class LoopT>
456 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
457   pushBlock(EntryBlock);
458   VisitedBlocks.insert(EntryBlock);
459   while (!DFSStack.empty()) {
460     // Traverse the leftmost path as far as possible.
461     while (dfsSucc() != dfsSuccEnd()) {
462       BlockT *BB = *dfsSucc();
463       ++dfsSucc();
464       if (!VisitedBlocks.insert(BB).second)
465         continue;
466
467       // Push the next DFS successor onto the stack.
468       pushBlock(BB);
469     }
470     // Visit the top of the stack in postorder and backtrack.
471     insertIntoLoop(dfsSource());
472     DFSStack.pop_back();
473   }
474 }
475
476 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
477 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
478 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
479 template<class BlockT, class LoopT>
480 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
481   LoopT *Subloop = LI->getLoopFor(Block);
482   if (Subloop && Block == Subloop->getHeader()) {
483     // We reach this point once per subloop after processing all the blocks in
484     // the subloop.
485     if (Subloop->getParentLoop())
486       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
487     else
488       LI->addTopLevelLoop(Subloop);
489
490     // For convenience, Blocks and Subloops are inserted in postorder. Reverse
491     // the lists, except for the loop header, which is always at the beginning.
492     std::reverse(Subloop->getBlocksVector().begin()+1,
493                  Subloop->getBlocksVector().end());
494     std::reverse(Subloop->getSubLoopsVector().begin(),
495                  Subloop->getSubLoopsVector().end());
496
497     Subloop = Subloop->getParentLoop();
498   }
499   for (; Subloop; Subloop = Subloop->getParentLoop())
500     Subloop->getBlocksVector().push_back(Block);
501 }
502
503 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
504 /// interleaved with backward CFG traversals within each subloop
505 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
506 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
507 /// Block vectors are then populated during a single forward CFG traversal
508 /// (PopulateLoopDFS).
509 ///
510 /// During the two CFG traversals each block is seen three times:
511 /// 1) Discovered and mapped by a reverse CFG traversal.
512 /// 2) Visited during a forward DFS CFG traversal.
513 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
514 ///
515 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
516 /// insertions per block.
517 template<class BlockT, class LoopT>
518 void LoopInfoBase<BlockT, LoopT>::
519 Analyze(DominatorTreeBase<BlockT> &DomTree) {
520
521   // Postorder traversal of the dominator tree.
522   DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
523   for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot),
524          DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {
525
526     BlockT *Header = DomIter->getBlock();
527     SmallVector<BlockT *, 4> Backedges;
528
529     // Check each predecessor of the potential loop header.
530     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
531     for (typename InvBlockTraits::ChildIteratorType PI =
532            InvBlockTraits::child_begin(Header),
533            PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
534
535       BlockT *Backedge = *PI;
536
537       // If Header dominates predBB, this is a new loop. Collect the backedges.
538       if (DomTree.dominates(Header, Backedge)
539           && DomTree.isReachableFromEntry(Backedge)) {
540         Backedges.push_back(Backedge);
541       }
542     }
543     // Perform a backward CFG traversal to discover and map blocks in this loop.
544     if (!Backedges.empty()) {
545       LoopT *L = new LoopT(Header);
546       discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
547     }
548   }
549   // Perform a single forward CFG traversal to populate block and subloop
550   // vectors for all loops.
551   PopulateLoopsDFS<BlockT, LoopT> DFS(this);
552   DFS.traverse(DomRoot->getBlock());
553 }
554
555 // Debugging
556 template<class BlockT, class LoopT>
557 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
558   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
559     TopLevelLoops[i]->print(OS);
560 #if 0
561   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
562          E = BBMap.end(); I != E; ++I)
563     OS << "BB '" << I->first->getName() << "' level = "
564        << I->second->getLoopDepth() << "\n";
565 #endif
566 }
567
568 } // End llvm namespace
569
570 #endif