]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/llvm/include/llvm/CodeGen/ISDOpcodes.h
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / llvm / include / llvm / CodeGen / ISDOpcodes.h
1 //===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares codegen opcodes and related utilities.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CODEGEN_ISDOPCODES_H
15 #define LLVM_CODEGEN_ISDOPCODES_H
16
17 namespace llvm {
18
19 /// ISD namespace - This namespace contains an enum which represents all of the
20 /// SelectionDAG node types and value types.
21 ///
22 namespace ISD {
23
24   //===--------------------------------------------------------------------===//
25   /// ISD::NodeType enum - This enum defines the target-independent operators
26   /// for a SelectionDAG.
27   ///
28   /// Targets may also define target-dependent operator codes for SDNodes. For
29   /// example, on x86, these are the enum values in the X86ISD namespace.
30   /// Targets should aim to use target-independent operators to model their
31   /// instruction sets as much as possible, and only use target-dependent
32   /// operators when they have special requirements.
33   ///
34   /// Finally, during and after selection proper, SNodes may use special
35   /// operator codes that correspond directly with MachineInstr opcodes. These
36   /// are used to represent selected instructions. See the isMachineOpcode()
37   /// and getMachineOpcode() member functions of SDNode.
38   ///
39   enum NodeType {
40     /// DELETED_NODE - This is an illegal value that is used to catch
41     /// errors.  This opcode is not a legal opcode for any node.
42     DELETED_NODE,
43
44     /// EntryToken - This is the marker used to indicate the start of a region.
45     EntryToken,
46
47     /// TokenFactor - This node takes multiple tokens as input and produces a
48     /// single token result. This is used to represent the fact that the operand
49     /// operators are independent of each other.
50     TokenFactor,
51
52     /// AssertSext, AssertZext - These nodes record if a register contains a
53     /// value that has already been zero or sign extended from a narrower type.
54     /// These nodes take two operands.  The first is the node that has already
55     /// been extended, and the second is a value type node indicating the width
56     /// of the extension
57     AssertSext, AssertZext,
58
59     /// Various leaf nodes.
60     BasicBlock, VALUETYPE, CONDCODE, Register, RegisterMask,
61     Constant, ConstantFP,
62     GlobalAddress, GlobalTLSAddress, FrameIndex,
63     JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
64
65     /// The address of the GOT
66     GLOBAL_OFFSET_TABLE,
67
68     /// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
69     /// llvm.returnaddress on the DAG.  These nodes take one operand, the index
70     /// of the frame or return address to return.  An index of zero corresponds
71     /// to the current function's frame or return address, an index of one to
72     /// the parent's frame or return address, and so on.
73     FRAMEADDR, RETURNADDR,
74
75     /// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
76     /// first (possible) on-stack argument. This is needed for correct stack
77     /// adjustment during unwind.
78     FRAME_TO_ARGS_OFFSET,
79
80     /// RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
81     /// address of the exception block on entry to an landing pad block.
82     EXCEPTIONADDR,
83
84     /// RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
85     /// address of the Language Specific Data Area for the enclosing function.
86     LSDAADDR,
87
88     /// RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node
89     /// represents the selection index of the exception thrown.
90     EHSELECTION,
91
92     /// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
93     /// 'eh_return' gcc dwarf builtin, which is used to return from
94     /// exception. The general meaning is: adjust stack by OFFSET and pass
95     /// execution to HANDLER. Many platform-related details also :)
96     EH_RETURN,
97
98     /// RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
99     /// This corresponds to the eh.sjlj.setjmp intrinsic.
100     /// It takes an input chain and a pointer to the jump buffer as inputs
101     /// and returns an outchain.
102     EH_SJLJ_SETJMP,
103
104     /// OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
105     /// This corresponds to the eh.sjlj.longjmp intrinsic.
106     /// It takes an input chain and a pointer to the jump buffer as inputs
107     /// and returns an outchain.
108     EH_SJLJ_LONGJMP,
109
110     /// TargetConstant* - Like Constant*, but the DAG does not do any folding,
111     /// simplification, or lowering of the constant. They are used for constants
112     /// which are known to fit in the immediate fields of their users, or for
113     /// carrying magic numbers which are not values which need to be
114     /// materialized in registers.
115     TargetConstant,
116     TargetConstantFP,
117
118     /// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
119     /// anything else with this node, and this is valid in the target-specific
120     /// dag, turning into a GlobalAddress operand.
121     TargetGlobalAddress,
122     TargetGlobalTLSAddress,
123     TargetFrameIndex,
124     TargetJumpTable,
125     TargetConstantPool,
126     TargetExternalSymbol,
127     TargetBlockAddress,
128
129     /// TargetIndex - Like a constant pool entry, but with completely
130     /// target-dependent semantics. Holds target flags, a 32-bit index, and a
131     /// 64-bit index. Targets can use this however they like.
132     TargetIndex,
133
134     /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
135     /// This node represents a target intrinsic function with no side effects.
136     /// The first operand is the ID number of the intrinsic from the
137     /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
138     /// node returns the result of the intrinsic.
139     INTRINSIC_WO_CHAIN,
140
141     /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
142     /// This node represents a target intrinsic function with side effects that
143     /// returns a result.  The first operand is a chain pointer.  The second is
144     /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
145     /// operands to the intrinsic follow.  The node has two results, the result
146     /// of the intrinsic and an output chain.
147     INTRINSIC_W_CHAIN,
148
149     /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
150     /// This node represents a target intrinsic function with side effects that
151     /// does not return a result.  The first operand is a chain pointer.  The
152     /// second is the ID number of the intrinsic from the llvm::Intrinsic
153     /// namespace.  The operands to the intrinsic follow.
154     INTRINSIC_VOID,
155
156     /// CopyToReg - This node has three operands: a chain, a register number to
157     /// set to this value, and a value.
158     CopyToReg,
159
160     /// CopyFromReg - This node indicates that the input value is a virtual or
161     /// physical register that is defined outside of the scope of this
162     /// SelectionDAG.  The register is available from the RegisterSDNode object.
163     CopyFromReg,
164
165     /// UNDEF - An undefined node.
166     UNDEF,
167
168     /// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
169     /// a Constant, which is required to be operand #1) half of the integer or
170     /// float value specified as operand #0.  This is only for use before
171     /// legalization, for values that will be broken into multiple registers.
172     EXTRACT_ELEMENT,
173
174     /// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
175     /// Given two values of the same integer value type, this produces a value
176     /// twice as big.  Like EXTRACT_ELEMENT, this can only be used before
177     /// legalization.
178     BUILD_PAIR,
179
180     /// MERGE_VALUES - This node takes multiple discrete operands and returns
181     /// them all as its individual results.  This nodes has exactly the same
182     /// number of inputs and outputs. This node is useful for some pieces of the
183     /// code generator that want to think about a single node with multiple
184     /// results, not multiple nodes.
185     MERGE_VALUES,
186
187     /// Simple integer binary arithmetic operators.
188     ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
189
190     /// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
191     /// a signed/unsigned value of type i[2*N], and return the full value as
192     /// two results, each of type iN.
193     SMUL_LOHI, UMUL_LOHI,
194
195     /// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
196     /// remainder result.
197     SDIVREM, UDIVREM,
198
199     /// CARRY_FALSE - This node is used when folding other nodes,
200     /// like ADDC/SUBC, which indicate the carry result is always false.
201     CARRY_FALSE,
202
203     /// Carry-setting nodes for multiple precision addition and subtraction.
204     /// These nodes take two operands of the same value type, and produce two
205     /// results.  The first result is the normal add or sub result, the second
206     /// result is the carry flag result.
207     ADDC, SUBC,
208
209     /// Carry-using nodes for multiple precision addition and subtraction. These
210     /// nodes take three operands: The first two are the normal lhs and rhs to
211     /// the add or sub, and the third is the input carry flag.  These nodes
212     /// produce two results; the normal result of the add or sub, and the output
213     /// carry flag.  These nodes both read and write a carry flag to allow them
214     /// to them to be chained together for add and sub of arbitrarily large
215     /// values.
216     ADDE, SUBE,
217
218     /// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
219     /// These nodes take two operands: the normal LHS and RHS to the add. They
220     /// produce two results: the normal result of the add, and a boolean that
221     /// indicates if an overflow occurred (*not* a flag, because it may be store
222     /// to memory, etc.).  If the type of the boolean is not i1 then the high
223     /// bits conform to getBooleanContents.
224     /// These nodes are generated from llvm.[su]add.with.overflow intrinsics.
225     SADDO, UADDO,
226
227     /// Same for subtraction.
228     SSUBO, USUBO,
229
230     /// Same for multiplication.
231     SMULO, UMULO,
232
233     /// Simple binary floating point operators.
234     FADD, FSUB, FMUL, FMA, FDIV, FREM,
235
236     /// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
237     /// DAG node does not require that X and Y have the same type, just that the
238     /// are both floating point.  X and the result must have the same type.
239     /// FCOPYSIGN(f32, f64) is allowed.
240     FCOPYSIGN,
241
242     /// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
243     /// value as an integer 0/1 value.
244     FGETSIGN,
245
246     /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
247     /// specified, possibly variable, elements.  The number of elements is
248     /// required to be a power of two.  The types of the operands must all be
249     /// the same and must match the vector element type, except that integer
250     /// types are allowed to be larger than the element type, in which case
251     /// the operands are implicitly truncated.
252     BUILD_VECTOR,
253
254     /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
255     /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
256     /// element type then VAL is truncated before replacement.
257     INSERT_VECTOR_ELT,
258
259     /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
260     /// identified by the (potentially variable) element number IDX.  If the
261     /// return type is an integer type larger than the element type of the
262     /// vector, the result is extended to the width of the return type.
263     EXTRACT_VECTOR_ELT,
264
265     /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
266     /// vector type with the same length and element type, this produces a
267     /// concatenated vector result value, with length equal to the sum of the
268     /// lengths of the input vectors.
269     CONCAT_VECTORS,
270
271     /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector
272     /// with VECTOR2 inserted into VECTOR1 at the (potentially
273     /// variable) element number IDX, which must be a multiple of the
274     /// VECTOR2 vector length.  The elements of VECTOR1 starting at
275     /// IDX are overwritten with VECTOR2.  Elements IDX through
276     /// vector_length(VECTOR2) must be valid VECTOR1 indices.
277     INSERT_SUBVECTOR,
278
279     /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
280     /// vector value) starting with the element number IDX, which must be a
281     /// constant multiple of the result vector length.
282     EXTRACT_SUBVECTOR,
283
284     /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
285     /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
286     /// values that indicate which value (or undef) each result element will
287     /// get.  These constant ints are accessible through the
288     /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
289     /// 'vperm' instruction, except that the indices must be constants and are
290     /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
291     VECTOR_SHUFFLE,
292
293     /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
294     /// scalar value into element 0 of the resultant vector type.  The top
295     /// elements 1 to N-1 of the N-element vector are undefined.  The type
296     /// of the operand must match the vector element type, except when they
297     /// are integer types.  In this case the operand is allowed to be wider
298     /// than the vector element type, and is implicitly truncated to it.
299     SCALAR_TO_VECTOR,
300
301     /// MULHU/MULHS - Multiply high - Multiply two integers of type iN,
302     /// producing an unsigned/signed value of type i[2*N], then return the top
303     /// part.
304     MULHU, MULHS,
305
306     /// Bitwise operators - logical and, logical or, logical xor.
307     AND, OR, XOR,
308
309     /// Shift and rotation operations.  After legalization, the type of the
310     /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
311     /// the shift amount can be any type, but care must be taken to ensure it is
312     /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
313     /// legalization, types like i1024 can occur and i8 doesn't have enough bits
314     /// to represent the shift amount.
315     /// When the 1st operand is a vector, the shift amount must be in the same
316     /// type. (TLI.getShiftAmountTy() will return the same type when the input
317     /// type is a vector.)
318     SHL, SRA, SRL, ROTL, ROTR,
319
320     /// Byte Swap and Counting operators.
321     BSWAP, CTTZ, CTLZ, CTPOP,
322
323     /// Bit counting operators with an undefined result for zero inputs.
324     CTTZ_ZERO_UNDEF, CTLZ_ZERO_UNDEF,
325
326     /// Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
327     /// i1 then the high bits must conform to getBooleanContents.
328     SELECT,
329
330     /// Select with a vector condition (op #0) and two vector operands (ops #1
331     /// and #2), returning a vector result.  All vectors have the same length.
332     /// Much like the scalar select and setcc, each bit in the condition selects
333     /// whether the corresponding result element is taken from op #1 or op #2.
334     /// At first, the VSELECT condition is of vXi1 type. Later, targets may
335     /// change the condition type in order to match the VSELECT node using a
336     /// pattern. The condition follows the BooleanContent format of the target.
337     VSELECT,
338
339     /// Select with condition operator - This selects between a true value and
340     /// a false value (ops #2 and #3) based on the boolean result of comparing
341     /// the lhs and rhs (ops #0 and #1) of a conditional expression with the
342     /// condition code in op #4, a CondCodeSDNode.
343     SELECT_CC,
344
345     /// SetCC operator - This evaluates to a true value iff the condition is
346     /// true.  If the result value type is not i1 then the high bits conform
347     /// to getBooleanContents.  The operands to this are the left and right
348     /// operands to compare (ops #0, and #1) and the condition code to compare
349     /// them with (op #2) as a CondCodeSDNode. If the operands are vector types
350     /// then the result type must also be a vector type.
351     SETCC,
352
353     /// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
354     /// integer shift operations, just like ADD/SUB_PARTS.  The operation
355     /// ordering is:
356     ///       [Lo,Hi] = op [LoLHS,HiLHS], Amt
357     SHL_PARTS, SRA_PARTS, SRL_PARTS,
358
359     /// Conversion operators.  These are all single input single output
360     /// operations.  For all of these, the result type must be strictly
361     /// wider or narrower (depending on the operation) than the source
362     /// type.
363
364     /// SIGN_EXTEND - Used for integer types, replicating the sign bit
365     /// into new bits.
366     SIGN_EXTEND,
367
368     /// ZERO_EXTEND - Used for integer types, zeroing the new bits.
369     ZERO_EXTEND,
370
371     /// ANY_EXTEND - Used for integer types.  The high bits are undefined.
372     ANY_EXTEND,
373
374     /// TRUNCATE - Completely drop the high bits.
375     TRUNCATE,
376
377     /// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
378     /// depends on the first letter) to floating point.
379     SINT_TO_FP,
380     UINT_TO_FP,
381
382     /// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
383     /// sign extend a small value in a large integer register (e.g. sign
384     /// extending the low 8 bits of a 32-bit register to fill the top 24 bits
385     /// with the 7th bit).  The size of the smaller type is indicated by the 1th
386     /// operand, a ValueType node.
387     SIGN_EXTEND_INREG,
388
389     /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
390     /// integer.
391     FP_TO_SINT,
392     FP_TO_UINT,
393
394     /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
395     /// down to the precision of the destination VT.  TRUNC is a flag, which is
396     /// always an integer that is zero or one.  If TRUNC is 0, this is a
397     /// normal rounding, if it is 1, this FP_ROUND is known to not change the
398     /// value of Y.
399     ///
400     /// The TRUNC = 1 case is used in cases where we know that the value will
401     /// not be modified by the node, because Y is not using any of the extra
402     /// precision of source type.  This allows certain transformations like
403     /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
404     /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
405     FP_ROUND,
406
407     /// FLT_ROUNDS_ - Returns current rounding mode:
408     /// -1 Undefined
409     ///  0 Round to 0
410     ///  1 Round to nearest
411     ///  2 Round to +inf
412     ///  3 Round to -inf
413     FLT_ROUNDS_,
414
415     /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
416     /// rounds it to a floating point value.  It then promotes it and returns it
417     /// in a register of the same size.  This operation effectively just
418     /// discards excess precision.  The type to round down to is specified by
419     /// the VT operand, a VTSDNode.
420     FP_ROUND_INREG,
421
422     /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
423     FP_EXTEND,
424
425     /// BITCAST - This operator converts between integer, vector and FP
426     /// values, as if the value was stored to memory with one type and loaded
427     /// from the same address with the other type (or equivalently for vector
428     /// format conversions, etc).  The source and result are required to have
429     /// the same bit size (e.g.  f32 <-> i32).  This can also be used for
430     /// int-to-int or fp-to-fp conversions, but that is a noop, deleted by
431     /// getNode().
432     BITCAST,
433
434     /// CONVERT_RNDSAT - This operator is used to support various conversions
435     /// between various types (float, signed, unsigned and vectors of those
436     /// types) with rounding and saturation. NOTE: Avoid using this operator as
437     /// most target don't support it and the operator might be removed in the
438     /// future. It takes the following arguments:
439     ///   0) value
440     ///   1) dest type (type to convert to)
441     ///   2) src type (type to convert from)
442     ///   3) rounding imm
443     ///   4) saturation imm
444     ///   5) ISD::CvtCode indicating the type of conversion to do
445     CONVERT_RNDSAT,
446
447     /// FP16_TO_FP32, FP32_TO_FP16 - These operators are used to perform
448     /// promotions and truncation for half-precision (16 bit) floating
449     /// numbers. We need special nodes since FP16 is a storage-only type with
450     /// special semantics of operations.
451     FP16_TO_FP32, FP32_TO_FP16,
452
453     /// FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
454     /// FLOG, FLOG2, FLOG10, FEXP, FEXP2,
455     /// FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary
456     /// floating point operations. These are inspired by libm.
457     FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
458     FLOG, FLOG2, FLOG10, FEXP, FEXP2,
459     FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
460     
461     /// FSINCOS - Compute both fsin and fcos as a single operation.
462     FSINCOS,
463
464     /// LOAD and STORE have token chains as their first operand, then the same
465     /// operands as an LLVM load/store instruction, then an offset node that
466     /// is added / subtracted from the base pointer to form the address (for
467     /// indexed memory ops).
468     LOAD, STORE,
469
470     /// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
471     /// to a specified boundary.  This node always has two return values: a new
472     /// stack pointer value and a chain. The first operand is the token chain,
473     /// the second is the number of bytes to allocate, and the third is the
474     /// alignment boundary.  The size is guaranteed to be a multiple of the
475     /// stack alignment, and the alignment is guaranteed to be bigger than the
476     /// stack alignment (if required) or 0 to get standard stack alignment.
477     DYNAMIC_STACKALLOC,
478
479     /// Control flow instructions.  These all have token chains.
480
481     /// BR - Unconditional branch.  The first operand is the chain
482     /// operand, the second is the MBB to branch to.
483     BR,
484
485     /// BRIND - Indirect branch.  The first operand is the chain, the second
486     /// is the value to branch to, which must be of the same type as the
487     /// target's pointer type.
488     BRIND,
489
490     /// BR_JT - Jumptable branch. The first operand is the chain, the second
491     /// is the jumptable index, the last one is the jumptable entry index.
492     BR_JT,
493
494     /// BRCOND - Conditional branch.  The first operand is the chain, the
495     /// second is the condition, the third is the block to branch to if the
496     /// condition is true.  If the type of the condition is not i1, then the
497     /// high bits must conform to getBooleanContents.
498     BRCOND,
499
500     /// BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
501     /// that the condition is represented as condition code, and two nodes to
502     /// compare, rather than as a combined SetCC node.  The operands in order
503     /// are chain, cc, lhs, rhs, block to branch to if condition is true.
504     BR_CC,
505
506     /// INLINEASM - Represents an inline asm block.  This node always has two
507     /// return values: a chain and a flag result.  The inputs are as follows:
508     ///   Operand #0  : Input chain.
509     ///   Operand #1  : a ExternalSymbolSDNode with a pointer to the asm string.
510     ///   Operand #2  : a MDNodeSDNode with the !srcloc metadata.
511     ///   Operand #3  : HasSideEffect, IsAlignStack bits.
512     ///   After this, it is followed by a list of operands with this format:
513     ///     ConstantSDNode: Flags that encode whether it is a mem or not, the
514     ///                     of operands that follow, etc.  See InlineAsm.h.
515     ///     ... however many operands ...
516     ///   Operand #last: Optional, an incoming flag.
517     ///
518     /// The variable width operands are required to represent target addressing
519     /// modes as a single "operand", even though they may have multiple
520     /// SDOperands.
521     INLINEASM,
522
523     /// EH_LABEL - Represents a label in mid basic block used to track
524     /// locations needed for debug and exception handling tables.  These nodes
525     /// take a chain as input and return a chain.
526     EH_LABEL,
527
528     /// STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
529     /// value, the same type as the pointer type for the system, and an output
530     /// chain.
531     STACKSAVE,
532
533     /// STACKRESTORE has two operands, an input chain and a pointer to restore
534     /// to it returns an output chain.
535     STACKRESTORE,
536
537     /// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end
538     /// of a call sequence, and carry arbitrary information that target might
539     /// want to know.  The first operand is a chain, the rest are specified by
540     /// the target and not touched by the DAG optimizers.
541     /// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
542     CALLSEQ_START,  // Beginning of a call sequence
543     CALLSEQ_END,    // End of a call sequence
544
545     /// VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
546     /// and the alignment. It returns a pair of values: the vaarg value and a
547     /// new chain.
548     VAARG,
549
550     /// VACOPY - VACOPY has 5 operands: an input chain, a destination pointer,
551     /// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
552     /// source.
553     VACOPY,
554
555     /// VAEND, VASTART - VAEND and VASTART have three operands: an input chain,
556     /// pointer, and a SRCVALUE.
557     VAEND, VASTART,
558
559     /// SRCVALUE - This is a node type that holds a Value* that is used to
560     /// make reference to a value in the LLVM IR.
561     SRCVALUE,
562
563     /// MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
564     /// reference metadata in the IR.
565     MDNODE_SDNODE,
566
567     /// PCMARKER - This corresponds to the pcmarker intrinsic.
568     PCMARKER,
569
570     /// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
571     /// The only operand is a chain and a value and a chain are produced.  The
572     /// value is the contents of the architecture specific cycle counter like
573     /// register (or other high accuracy low latency clock source)
574     READCYCLECOUNTER,
575
576     /// HANDLENODE node - Used as a handle for various purposes.
577     HANDLENODE,
578
579     /// INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
580     /// takes as input a token chain, the pointer to the trampoline, the pointer
581     /// to the nested function, the pointer to pass for the 'nest' parameter, a
582     /// SRCVALUE for the trampoline and another for the nested function
583     /// (allowing targets to access the original Function*).
584     /// It produces a token chain as output.
585     INIT_TRAMPOLINE,
586
587     /// ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
588     /// It takes a pointer to the trampoline and produces a (possibly) new
589     /// pointer to the same trampoline with platform-specific adjustments
590     /// applied.  The pointer it returns points to an executable block of code.
591     ADJUST_TRAMPOLINE,
592
593     /// TRAP - Trapping instruction
594     TRAP,
595
596     /// DEBUGTRAP - Trap intended to get the attention of a debugger.
597     DEBUGTRAP,
598
599     /// PREFETCH - This corresponds to a prefetch intrinsic. The first operand
600     /// is the chain.  The other operands are the address to prefetch,
601     /// read / write specifier, locality specifier and instruction / data cache
602     /// specifier.
603     PREFETCH,
604
605     /// OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
606     /// This corresponds to the fence instruction. It takes an input chain, and
607     /// two integer constants: an AtomicOrdering and a SynchronizationScope.
608     ATOMIC_FENCE,
609
610     /// Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
611     /// This corresponds to "load atomic" instruction.
612     ATOMIC_LOAD,
613
614     /// OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr, val)
615     /// This corresponds to "store atomic" instruction.
616     ATOMIC_STORE,
617
618     /// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
619     /// This corresponds to the cmpxchg instruction.
620     ATOMIC_CMP_SWAP,
621
622     /// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
623     /// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
624     /// These correspond to the atomicrmw instruction.
625     ATOMIC_SWAP,
626     ATOMIC_LOAD_ADD,
627     ATOMIC_LOAD_SUB,
628     ATOMIC_LOAD_AND,
629     ATOMIC_LOAD_OR,
630     ATOMIC_LOAD_XOR,
631     ATOMIC_LOAD_NAND,
632     ATOMIC_LOAD_MIN,
633     ATOMIC_LOAD_MAX,
634     ATOMIC_LOAD_UMIN,
635     ATOMIC_LOAD_UMAX,
636
637     /// This corresponds to the llvm.lifetime.* intrinsics. The first operand
638     /// is the chain and the second operand is the alloca pointer.
639     LIFETIME_START, LIFETIME_END,
640
641     /// BUILTIN_OP_END - This must be the last enum value in this list.
642     /// The target-specific pre-isel opcode values start here.
643     BUILTIN_OP_END
644   };
645
646   /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
647   /// which do not reference a specific memory location should be less than
648   /// this value. Those that do must not be less than this value, and can
649   /// be used with SelectionDAG::getMemIntrinsicNode.
650   static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+150;
651
652   //===--------------------------------------------------------------------===//
653   /// MemIndexedMode enum - This enum defines the load / store indexed
654   /// addressing modes.
655   ///
656   /// UNINDEXED    "Normal" load / store. The effective address is already
657   ///              computed and is available in the base pointer. The offset
658   ///              operand is always undefined. In addition to producing a
659   ///              chain, an unindexed load produces one value (result of the
660   ///              load); an unindexed store does not produce a value.
661   ///
662   /// PRE_INC      Similar to the unindexed mode where the effective address is
663   /// PRE_DEC      the value of the base pointer add / subtract the offset.
664   ///              It considers the computation as being folded into the load /
665   ///              store operation (i.e. the load / store does the address
666   ///              computation as well as performing the memory transaction).
667   ///              The base operand is always undefined. In addition to
668   ///              producing a chain, pre-indexed load produces two values
669   ///              (result of the load and the result of the address
670   ///              computation); a pre-indexed store produces one value (result
671   ///              of the address computation).
672   ///
673   /// POST_INC     The effective address is the value of the base pointer. The
674   /// POST_DEC     value of the offset operand is then added to / subtracted
675   ///              from the base after memory transaction. In addition to
676   ///              producing a chain, post-indexed load produces two values
677   ///              (the result of the load and the result of the base +/- offset
678   ///              computation); a post-indexed store produces one value (the
679   ///              the result of the base +/- offset computation).
680   enum MemIndexedMode {
681     UNINDEXED = 0,
682     PRE_INC,
683     PRE_DEC,
684     POST_INC,
685     POST_DEC,
686     LAST_INDEXED_MODE
687   };
688
689   //===--------------------------------------------------------------------===//
690   /// LoadExtType enum - This enum defines the three variants of LOADEXT
691   /// (load with extension).
692   ///
693   /// SEXTLOAD loads the integer operand and sign extends it to a larger
694   ///          integer result type.
695   /// ZEXTLOAD loads the integer operand and zero extends it to a larger
696   ///          integer result type.
697   /// EXTLOAD  is used for two things: floating point extending loads and
698   ///          integer extending loads [the top bits are undefined].
699   enum LoadExtType {
700     NON_EXTLOAD = 0,
701     EXTLOAD,
702     SEXTLOAD,
703     ZEXTLOAD,
704     LAST_LOADEXT_TYPE
705   };
706
707   //===--------------------------------------------------------------------===//
708   /// ISD::CondCode enum - These are ordered carefully to make the bitfields
709   /// below work out, when considering SETFALSE (something that never exists
710   /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
711   /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
712   /// to.  If the "N" column is 1, the result of the comparison is undefined if
713   /// the input is a NAN.
714   ///
715   /// All of these (except for the 'always folded ops') should be handled for
716   /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
717   /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
718   ///
719   /// Note that these are laid out in a specific order to allow bit-twiddling
720   /// to transform conditions.
721   enum CondCode {
722     // Opcode          N U L G E       Intuitive operation
723     SETFALSE,      //    0 0 0 0       Always false (always folded)
724     SETOEQ,        //    0 0 0 1       True if ordered and equal
725     SETOGT,        //    0 0 1 0       True if ordered and greater than
726     SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
727     SETOLT,        //    0 1 0 0       True if ordered and less than
728     SETOLE,        //    0 1 0 1       True if ordered and less than or equal
729     SETONE,        //    0 1 1 0       True if ordered and operands are unequal
730     SETO,          //    0 1 1 1       True if ordered (no nans)
731     SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
732     SETUEQ,        //    1 0 0 1       True if unordered or equal
733     SETUGT,        //    1 0 1 0       True if unordered or greater than
734     SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
735     SETULT,        //    1 1 0 0       True if unordered or less than
736     SETULE,        //    1 1 0 1       True if unordered, less than, or equal
737     SETUNE,        //    1 1 1 0       True if unordered or not equal
738     SETTRUE,       //    1 1 1 1       Always true (always folded)
739     // Don't care operations: undefined if the input is a nan.
740     SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
741     SETEQ,         //  1 X 0 0 1       True if equal
742     SETGT,         //  1 X 0 1 0       True if greater than
743     SETGE,         //  1 X 0 1 1       True if greater than or equal
744     SETLT,         //  1 X 1 0 0       True if less than
745     SETLE,         //  1 X 1 0 1       True if less than or equal
746     SETNE,         //  1 X 1 1 0       True if not equal
747     SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
748
749     SETCC_INVALID       // Marker value.
750   };
751
752   /// isSignedIntSetCC - Return true if this is a setcc instruction that
753   /// performs a signed comparison when used with integer operands.
754   inline bool isSignedIntSetCC(CondCode Code) {
755     return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
756   }
757
758   /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
759   /// performs an unsigned comparison when used with integer operands.
760   inline bool isUnsignedIntSetCC(CondCode Code) {
761     return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
762   }
763
764   /// isTrueWhenEqual - Return true if the specified condition returns true if
765   /// the two operands to the condition are equal.  Note that if one of the two
766   /// operands is a NaN, this value is meaningless.
767   inline bool isTrueWhenEqual(CondCode Cond) {
768     return ((int)Cond & 1) != 0;
769   }
770
771   /// getUnorderedFlavor - This function returns 0 if the condition is always
772   /// false if an operand is a NaN, 1 if the condition is always true if the
773   /// operand is a NaN, and 2 if the condition is undefined if the operand is a
774   /// NaN.
775   inline unsigned getUnorderedFlavor(CondCode Cond) {
776     return ((int)Cond >> 3) & 3;
777   }
778
779   /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
780   /// 'op' is a valid SetCC operation.
781   CondCode getSetCCInverse(CondCode Operation, bool isInteger);
782
783   /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
784   /// when given the operation for (X op Y).
785   CondCode getSetCCSwappedOperands(CondCode Operation);
786
787   /// getSetCCOrOperation - Return the result of a logical OR between different
788   /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
789   /// function returns SETCC_INVALID if it is not possible to represent the
790   /// resultant comparison.
791   CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
792
793   /// getSetCCAndOperation - Return the result of a logical AND between
794   /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
795   /// function returns SETCC_INVALID if it is not possible to represent the
796   /// resultant comparison.
797   CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
798
799   //===--------------------------------------------------------------------===//
800   /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
801   /// supports.
802   enum CvtCode {
803     CVT_FF,     /// Float from Float
804     CVT_FS,     /// Float from Signed
805     CVT_FU,     /// Float from Unsigned
806     CVT_SF,     /// Signed from Float
807     CVT_UF,     /// Unsigned from Float
808     CVT_SS,     /// Signed from Signed
809     CVT_SU,     /// Signed from Unsigned
810     CVT_US,     /// Unsigned from Signed
811     CVT_UU,     /// Unsigned from Unsigned
812     CVT_INVALID /// Marker - Invalid opcode
813   };
814
815 } // end llvm::ISD namespace
816
817 } // end llvm namespace
818
819 #endif