]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/llvm/include/llvm/Support/MathExtras.h
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / llvm / include / llvm / Support / MathExtras.h
1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains some functions that are useful for math stuff.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_SUPPORT_MATHEXTRAS_H
15 #define LLVM_SUPPORT_MATHEXTRAS_H
16
17 #include "llvm/Support/SwapByteOrder.h"
18
19 #ifdef _MSC_VER
20 # include <intrin.h>
21 #endif
22
23 namespace llvm {
24
25 // NOTE: The following support functions use the _32/_64 extensions instead of
26 // type overloading so that signed and unsigned integers can be used without
27 // ambiguity.
28
29 /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
30 inline uint32_t Hi_32(uint64_t Value) {
31   return static_cast<uint32_t>(Value >> 32);
32 }
33
34 /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
35 inline uint32_t Lo_32(uint64_t Value) {
36   return static_cast<uint32_t>(Value);
37 }
38
39 /// isInt - Checks if an integer fits into the given bit width.
40 template<unsigned N>
41 inline bool isInt(int64_t x) {
42   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
43 }
44 // Template specializations to get better code for common cases.
45 template<>
46 inline bool isInt<8>(int64_t x) {
47   return static_cast<int8_t>(x) == x;
48 }
49 template<>
50 inline bool isInt<16>(int64_t x) {
51   return static_cast<int16_t>(x) == x;
52 }
53 template<>
54 inline bool isInt<32>(int64_t x) {
55   return static_cast<int32_t>(x) == x;
56 }
57
58 /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
59 ///                     left by S.
60 template<unsigned N, unsigned S>
61 inline bool isShiftedInt(int64_t x) {
62   return isInt<N+S>(x) && (x % (1<<S) == 0);
63 }
64
65 /// isUInt - Checks if an unsigned integer fits into the given bit width.
66 template<unsigned N>
67 inline bool isUInt(uint64_t x) {
68   return N >= 64 || x < (UINT64_C(1)<<(N));
69 }
70 // Template specializations to get better code for common cases.
71 template<>
72 inline bool isUInt<8>(uint64_t x) {
73   return static_cast<uint8_t>(x) == x;
74 }
75 template<>
76 inline bool isUInt<16>(uint64_t x) {
77   return static_cast<uint16_t>(x) == x;
78 }
79 template<>
80 inline bool isUInt<32>(uint64_t x) {
81   return static_cast<uint32_t>(x) == x;
82 }
83
84 /// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
85 ///                     left by S.
86 template<unsigned N, unsigned S>
87 inline bool isShiftedUInt(uint64_t x) {
88   return isUInt<N+S>(x) && (x % (1<<S) == 0);
89 }
90
91 /// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
92 /// bit width.
93 inline bool isUIntN(unsigned N, uint64_t x) {
94   return x == (x & (~0ULL >> (64 - N)));
95 }
96
97 /// isIntN - Checks if an signed integer fits into the given (dynamic)
98 /// bit width.
99 inline bool isIntN(unsigned N, int64_t x) {
100   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
101 }
102
103 /// isMask_32 - This function returns true if the argument is a sequence of ones
104 /// starting at the least significant bit with the remainder zero (32 bit
105 /// version).   Ex. isMask_32(0x0000FFFFU) == true.
106 inline bool isMask_32(uint32_t Value) {
107   return Value && ((Value + 1) & Value) == 0;
108 }
109
110 /// isMask_64 - This function returns true if the argument is a sequence of ones
111 /// starting at the least significant bit with the remainder zero (64 bit
112 /// version).
113 inline bool isMask_64(uint64_t Value) {
114   return Value && ((Value + 1) & Value) == 0;
115 }
116
117 /// isShiftedMask_32 - This function returns true if the argument contains a
118 /// sequence of ones with the remainder zero (32 bit version.)
119 /// Ex. isShiftedMask_32(0x0000FF00U) == true.
120 inline bool isShiftedMask_32(uint32_t Value) {
121   return isMask_32((Value - 1) | Value);
122 }
123
124 /// isShiftedMask_64 - This function returns true if the argument contains a
125 /// sequence of ones with the remainder zero (64 bit version.)
126 inline bool isShiftedMask_64(uint64_t Value) {
127   return isMask_64((Value - 1) | Value);
128 }
129
130 /// isPowerOf2_32 - This function returns true if the argument is a power of
131 /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
132 inline bool isPowerOf2_32(uint32_t Value) {
133   return Value && !(Value & (Value - 1));
134 }
135
136 /// isPowerOf2_64 - This function returns true if the argument is a power of two
137 /// > 0 (64 bit edition.)
138 inline bool isPowerOf2_64(uint64_t Value) {
139   return Value && !(Value & (Value - int64_t(1L)));
140 }
141
142 /// ByteSwap_16 - This function returns a byte-swapped representation of the
143 /// 16-bit argument, Value.
144 inline uint16_t ByteSwap_16(uint16_t Value) {
145   return sys::SwapByteOrder_16(Value);
146 }
147
148 /// ByteSwap_32 - This function returns a byte-swapped representation of the
149 /// 32-bit argument, Value.
150 inline uint32_t ByteSwap_32(uint32_t Value) {
151   return sys::SwapByteOrder_32(Value);
152 }
153
154 /// ByteSwap_64 - This function returns a byte-swapped representation of the
155 /// 64-bit argument, Value.
156 inline uint64_t ByteSwap_64(uint64_t Value) {
157   return sys::SwapByteOrder_64(Value);
158 }
159
160 /// CountLeadingZeros_32 - this function performs the platform optimal form of
161 /// counting the number of zeros from the most significant bit to the first one
162 /// bit.  Ex. CountLeadingZeros_32(0x00F000FF) == 8.
163 /// Returns 32 if the word is zero.
164 inline unsigned CountLeadingZeros_32(uint32_t Value) {
165   unsigned Count; // result
166 #if __GNUC__ >= 4
167   // PowerPC is defined for __builtin_clz(0)
168 #if !defined(__ppc__) && !defined(__ppc64__)
169   if (!Value) return 32;
170 #endif
171   Count = __builtin_clz(Value);
172 #else
173   if (!Value) return 32;
174   Count = 0;
175   // bisection method for count leading zeros
176   for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) {
177     uint32_t Tmp = Value >> Shift;
178     if (Tmp) {
179       Value = Tmp;
180     } else {
181       Count |= Shift;
182     }
183   }
184 #endif
185   return Count;
186 }
187
188 /// CountLeadingOnes_32 - this function performs the operation of
189 /// counting the number of ones from the most significant bit to the first zero
190 /// bit.  Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
191 /// Returns 32 if the word is all ones.
192 inline unsigned CountLeadingOnes_32(uint32_t Value) {
193   return CountLeadingZeros_32(~Value);
194 }
195
196 /// CountLeadingZeros_64 - This function performs the platform optimal form
197 /// of counting the number of zeros from the most significant bit to the first
198 /// one bit (64 bit edition.)
199 /// Returns 64 if the word is zero.
200 inline unsigned CountLeadingZeros_64(uint64_t Value) {
201   unsigned Count; // result
202 #if __GNUC__ >= 4
203   // PowerPC is defined for __builtin_clzll(0)
204 #if !defined(__ppc__) && !defined(__ppc64__)
205   if (!Value) return 64;
206 #endif
207   Count = __builtin_clzll(Value);
208 #else
209   if (sizeof(long) == sizeof(int64_t)) {
210     if (!Value) return 64;
211     Count = 0;
212     // bisection method for count leading zeros
213     for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) {
214       uint64_t Tmp = Value >> Shift;
215       if (Tmp) {
216         Value = Tmp;
217       } else {
218         Count |= Shift;
219       }
220     }
221   } else {
222     // get hi portion
223     uint32_t Hi = Hi_32(Value);
224
225     // if some bits in hi portion
226     if (Hi) {
227         // leading zeros in hi portion plus all bits in lo portion
228         Count = CountLeadingZeros_32(Hi);
229     } else {
230         // get lo portion
231         uint32_t Lo = Lo_32(Value);
232         // same as 32 bit value
233         Count = CountLeadingZeros_32(Lo)+32;
234     }
235   }
236 #endif
237   return Count;
238 }
239
240 /// CountLeadingOnes_64 - This function performs the operation
241 /// of counting the number of ones from the most significant bit to the first
242 /// zero bit (64 bit edition.)
243 /// Returns 64 if the word is all ones.
244 inline unsigned CountLeadingOnes_64(uint64_t Value) {
245   return CountLeadingZeros_64(~Value);
246 }
247
248 /// CountTrailingZeros_32 - this function performs the platform optimal form of
249 /// counting the number of zeros from the least significant bit to the first one
250 /// bit.  Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
251 /// Returns 32 if the word is zero.
252 inline unsigned CountTrailingZeros_32(uint32_t Value) {
253 #if __GNUC__ >= 4
254   return Value ? __builtin_ctz(Value) : 32;
255 #else
256   static const unsigned Mod37BitPosition[] = {
257     32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13,
258     4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9,
259     5, 20, 8, 19, 18
260   };
261   // Replace "-Value" by "1+~Value" in the following commented code to avoid 
262   // MSVC warning C4146
263   //    return Mod37BitPosition[(-Value & Value) % 37];
264   return Mod37BitPosition[((1 + ~Value) & Value) % 37];
265 #endif
266 }
267
268 /// CountTrailingOnes_32 - this function performs the operation of
269 /// counting the number of ones from the least significant bit to the first zero
270 /// bit.  Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
271 /// Returns 32 if the word is all ones.
272 inline unsigned CountTrailingOnes_32(uint32_t Value) {
273   return CountTrailingZeros_32(~Value);
274 }
275
276 /// CountTrailingZeros_64 - This function performs the platform optimal form
277 /// of counting the number of zeros from the least significant bit to the first
278 /// one bit (64 bit edition.)
279 /// Returns 64 if the word is zero.
280 inline unsigned CountTrailingZeros_64(uint64_t Value) {
281 #if __GNUC__ >= 4
282   return Value ? __builtin_ctzll(Value) : 64;
283 #else
284   static const unsigned Mod67Position[] = {
285     64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54,
286     4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55,
287     47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27,
288     29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56,
289     7, 48, 35, 6, 34, 33, 0
290   };
291   // Replace "-Value" by "1+~Value" in the following commented code to avoid 
292   // MSVC warning C4146
293   //    return Mod67Position[(-Value & Value) % 67];
294   return Mod67Position[((1 + ~Value) & Value) % 67];
295 #endif
296 }
297
298 /// CountTrailingOnes_64 - This function performs the operation
299 /// of counting the number of ones from the least significant bit to the first
300 /// zero bit (64 bit edition.)
301 /// Returns 64 if the word is all ones.
302 inline unsigned CountTrailingOnes_64(uint64_t Value) {
303   return CountTrailingZeros_64(~Value);
304 }
305
306 /// CountPopulation_32 - this function counts the number of set bits in a value.
307 /// Ex. CountPopulation(0xF000F000) = 8
308 /// Returns 0 if the word is zero.
309 inline unsigned CountPopulation_32(uint32_t Value) {
310 #if __GNUC__ >= 4
311   return __builtin_popcount(Value);
312 #else
313   uint32_t v = Value - ((Value >> 1) & 0x55555555);
314   v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
315   return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
316 #endif
317 }
318
319 /// CountPopulation_64 - this function counts the number of set bits in a value,
320 /// (64 bit edition.)
321 inline unsigned CountPopulation_64(uint64_t Value) {
322 #if __GNUC__ >= 4
323   return __builtin_popcountll(Value);
324 #else
325   uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
326   v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
327   v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
328   return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
329 #endif
330 }
331
332 /// Log2_32 - This function returns the floor log base 2 of the specified value,
333 /// -1 if the value is zero. (32 bit edition.)
334 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
335 inline unsigned Log2_32(uint32_t Value) {
336   return 31 - CountLeadingZeros_32(Value);
337 }
338
339 /// Log2_64 - This function returns the floor log base 2 of the specified value,
340 /// -1 if the value is zero. (64 bit edition.)
341 inline unsigned Log2_64(uint64_t Value) {
342   return 63 - CountLeadingZeros_64(Value);
343 }
344
345 /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
346 /// value, 32 if the value is zero. (32 bit edition).
347 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
348 inline unsigned Log2_32_Ceil(uint32_t Value) {
349   return 32-CountLeadingZeros_32(Value-1);
350 }
351
352 /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
353 /// value, 64 if the value is zero. (64 bit edition.)
354 inline unsigned Log2_64_Ceil(uint64_t Value) {
355   return 64-CountLeadingZeros_64(Value-1);
356 }
357
358 /// GreatestCommonDivisor64 - Return the greatest common divisor of the two
359 /// values using Euclid's algorithm.
360 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
361   while (B) {
362     uint64_t T = B;
363     B = A % B;
364     A = T;
365   }
366   return A;
367 }
368
369 /// BitsToDouble - This function takes a 64-bit integer and returns the bit
370 /// equivalent double.
371 inline double BitsToDouble(uint64_t Bits) {
372   union {
373     uint64_t L;
374     double D;
375   } T;
376   T.L = Bits;
377   return T.D;
378 }
379
380 /// BitsToFloat - This function takes a 32-bit integer and returns the bit
381 /// equivalent float.
382 inline float BitsToFloat(uint32_t Bits) {
383   union {
384     uint32_t I;
385     float F;
386   } T;
387   T.I = Bits;
388   return T.F;
389 }
390
391 /// DoubleToBits - This function takes a double and returns the bit
392 /// equivalent 64-bit integer.  Note that copying doubles around
393 /// changes the bits of NaNs on some hosts, notably x86, so this
394 /// routine cannot be used if these bits are needed.
395 inline uint64_t DoubleToBits(double Double) {
396   union {
397     uint64_t L;
398     double D;
399   } T;
400   T.D = Double;
401   return T.L;
402 }
403
404 /// FloatToBits - This function takes a float and returns the bit
405 /// equivalent 32-bit integer.  Note that copying floats around
406 /// changes the bits of NaNs on some hosts, notably x86, so this
407 /// routine cannot be used if these bits are needed.
408 inline uint32_t FloatToBits(float Float) {
409   union {
410     uint32_t I;
411     float F;
412   } T;
413   T.F = Float;
414   return T.I;
415 }
416
417 /// Platform-independent wrappers for the C99 isnan() function.
418 int IsNAN(float f);
419 int IsNAN(double d);
420
421 /// Platform-independent wrappers for the C99 isinf() function.
422 int IsInf(float f);
423 int IsInf(double d);
424
425 /// MinAlign - A and B are either alignments or offsets.  Return the minimum
426 /// alignment that may be assumed after adding the two together.
427 inline uint64_t MinAlign(uint64_t A, uint64_t B) {
428   // The largest power of 2 that divides both A and B.
429   //
430   // Replace "-Value" by "1+~Value" in the following commented code to avoid 
431   // MSVC warning C4146
432   //    return (A | B) & -(A | B);
433   return (A | B) & (1 + ~(A | B));
434 }
435
436 /// NextPowerOf2 - Returns the next power of two (in 64-bits)
437 /// that is strictly greater than A.  Returns zero on overflow.
438 inline uint64_t NextPowerOf2(uint64_t A) {
439   A |= (A >> 1);
440   A |= (A >> 2);
441   A |= (A >> 4);
442   A |= (A >> 8);
443   A |= (A >> 16);
444   A |= (A >> 32);
445   return A + 1;
446 }
447
448 /// Returns the next integer (mod 2**64) that is greater than or equal to
449 /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
450 ///
451 /// Examples:
452 /// \code
453 ///   RoundUpToAlignment(5, 8) = 8
454 ///   RoundUpToAlignment(17, 8) = 24
455 ///   RoundUpToAlignment(~0LL, 8) = 0
456 /// \endcode
457 inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
458   return ((Value + Align - 1) / Align) * Align;
459 }
460
461 /// Returns the offset to the next integer (mod 2**64) that is greater than
462 /// or equal to \p Value and is a multiple of \p Align. \p Align must be
463 /// non-zero.
464 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
465   return RoundUpToAlignment(Value, Align) - Value;
466 }
467
468 /// abs64 - absolute value of a 64-bit int.  Not all environments support
469 /// "abs" on whatever their name for the 64-bit int type is.  The absolute
470 /// value of the largest negative number is undefined, as with "abs".
471 inline int64_t abs64(int64_t x) {
472   return (x < 0) ? -x : x;
473 }
474
475 /// SignExtend32 - Sign extend B-bit number x to 32-bit int.
476 /// Usage int32_t r = SignExtend32<5>(x);
477 template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
478   return int32_t(x << (32 - B)) >> (32 - B);
479 }
480
481 /// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
482 /// Requires 0 < B <= 32.
483 inline int32_t SignExtend32(uint32_t X, unsigned B) {
484   return int32_t(X << (32 - B)) >> (32 - B);
485 }
486
487 /// SignExtend64 - Sign extend B-bit number x to 64-bit int.
488 /// Usage int64_t r = SignExtend64<5>(x);
489 template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
490   return int64_t(x << (64 - B)) >> (64 - B);
491 }
492
493 /// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
494 /// Requires 0 < B <= 64.
495 inline int64_t SignExtend64(uint64_t X, unsigned B) {
496   return int64_t(X << (64 - B)) >> (64 - B);
497 }
498
499 } // End llvm namespace
500
501 #endif