]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/llvm/lib/CodeGen/PostRASchedulerList.cpp
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / llvm / lib / CodeGen / PostRASchedulerList.cpp
1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
14 //
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
18 //
19 //===----------------------------------------------------------------------===//
20
21 #define DEBUG_TYPE "post-RA-sched"
22 #include "llvm/CodeGen/Passes.h"
23 #include "AggressiveAntiDepBreaker.h"
24 #include "AntiDepBreaker.h"
25 #include "CriticalAntiDepBreaker.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/CodeGen/LatencyPriorityQueue.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39 #include "llvm/CodeGen/SchedulerRegistry.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetRegisterInfo.h"
48 #include "llvm/Target/TargetSubtargetInfo.h"
49 using namespace llvm;
50
51 STATISTIC(NumNoops, "Number of noops inserted");
52 STATISTIC(NumStalls, "Number of pipeline stalls");
53 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
54
55 // Post-RA scheduling is enabled with
56 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
57 // override the target.
58 static cl::opt<bool>
59 EnablePostRAScheduler("post-RA-scheduler",
60                        cl::desc("Enable scheduling after register allocation"),
61                        cl::init(false), cl::Hidden);
62 static cl::opt<std::string>
63 EnableAntiDepBreaking("break-anti-dependencies",
64                       cl::desc("Break post-RA scheduling anti-dependencies: "
65                                "\"critical\", \"all\", or \"none\""),
66                       cl::init("none"), cl::Hidden);
67
68 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
69 static cl::opt<int>
70 DebugDiv("postra-sched-debugdiv",
71                       cl::desc("Debug control MBBs that are scheduled"),
72                       cl::init(0), cl::Hidden);
73 static cl::opt<int>
74 DebugMod("postra-sched-debugmod",
75                       cl::desc("Debug control MBBs that are scheduled"),
76                       cl::init(0), cl::Hidden);
77
78 AntiDepBreaker::~AntiDepBreaker() { }
79
80 namespace {
81   class PostRAScheduler : public MachineFunctionPass {
82     const TargetInstrInfo *TII;
83     RegisterClassInfo RegClassInfo;
84
85   public:
86     static char ID;
87     PostRAScheduler() : MachineFunctionPass(ID) {}
88
89     void getAnalysisUsage(AnalysisUsage &AU) const {
90       AU.setPreservesCFG();
91       AU.addRequired<AliasAnalysis>();
92       AU.addRequired<TargetPassConfig>();
93       AU.addRequired<MachineDominatorTree>();
94       AU.addPreserved<MachineDominatorTree>();
95       AU.addRequired<MachineLoopInfo>();
96       AU.addPreserved<MachineLoopInfo>();
97       MachineFunctionPass::getAnalysisUsage(AU);
98     }
99
100     bool runOnMachineFunction(MachineFunction &Fn);
101   };
102   char PostRAScheduler::ID = 0;
103
104   class SchedulePostRATDList : public ScheduleDAGInstrs {
105     /// AvailableQueue - The priority queue to use for the available SUnits.
106     ///
107     LatencyPriorityQueue AvailableQueue;
108
109     /// PendingQueue - This contains all of the instructions whose operands have
110     /// been issued, but their results are not ready yet (due to the latency of
111     /// the operation).  Once the operands becomes available, the instruction is
112     /// added to the AvailableQueue.
113     std::vector<SUnit*> PendingQueue;
114
115     /// HazardRec - The hazard recognizer to use.
116     ScheduleHazardRecognizer *HazardRec;
117
118     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
119     AntiDepBreaker *AntiDepBreak;
120
121     /// AA - AliasAnalysis for making memory reference queries.
122     AliasAnalysis *AA;
123
124     /// LiveRegs - true if the register is live.
125     BitVector LiveRegs;
126
127     /// The schedule. Null SUnit*'s represent noop instructions.
128     std::vector<SUnit*> Sequence;
129
130   public:
131     SchedulePostRATDList(
132       MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
133       AliasAnalysis *AA, const RegisterClassInfo&,
134       TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
135       SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
136
137     ~SchedulePostRATDList();
138
139     /// startBlock - Initialize register live-range state for scheduling in
140     /// this block.
141     ///
142     void startBlock(MachineBasicBlock *BB);
143
144     /// Initialize the scheduler state for the next scheduling region.
145     virtual void enterRegion(MachineBasicBlock *bb,
146                              MachineBasicBlock::iterator begin,
147                              MachineBasicBlock::iterator end,
148                              unsigned endcount);
149
150     /// Notify that the scheduler has finished scheduling the current region.
151     virtual void exitRegion();
152
153     /// Schedule - Schedule the instruction range using list scheduling.
154     ///
155     void schedule();
156
157     void EmitSchedule();
158
159     /// Observe - Update liveness information to account for the current
160     /// instruction, which will not be scheduled.
161     ///
162     void Observe(MachineInstr *MI, unsigned Count);
163
164     /// finishBlock - Clean up register live-range state.
165     ///
166     void finishBlock();
167
168     /// FixupKills - Fix register kill flags that have been made
169     /// invalid due to scheduling
170     ///
171     void FixupKills(MachineBasicBlock *MBB);
172
173   private:
174     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
175     void ReleaseSuccessors(SUnit *SU);
176     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
177     void ListScheduleTopDown();
178     void StartBlockForKills(MachineBasicBlock *BB);
179
180     // ToggleKillFlag - Toggle a register operand kill flag. Other
181     // adjustments may be made to the instruction if necessary. Return
182     // true if the operand has been deleted, false if not.
183     bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
184
185     void dumpSchedule() const;
186   };
187 }
188
189 char &llvm::PostRASchedulerID = PostRAScheduler::ID;
190
191 INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
192                 "Post RA top-down list latency scheduler", false, false)
193
194 SchedulePostRATDList::SchedulePostRATDList(
195   MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
196   AliasAnalysis *AA, const RegisterClassInfo &RCI,
197   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
198   SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
199   : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), AA(AA),
200     LiveRegs(TRI->getNumRegs())
201 {
202   const TargetMachine &TM = MF.getTarget();
203   const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
204   HazardRec =
205     TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
206
207   assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
208           MRI.tracksLiveness()) &&
209          "Live-ins must be accurate for anti-dependency breaking");
210   AntiDepBreak =
211     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
212      (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
213      ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
214       (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
215 }
216
217 SchedulePostRATDList::~SchedulePostRATDList() {
218   delete HazardRec;
219   delete AntiDepBreak;
220 }
221
222 /// Initialize state associated with the next scheduling region.
223 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
224                  MachineBasicBlock::iterator begin,
225                  MachineBasicBlock::iterator end,
226                  unsigned endcount) {
227   ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
228   Sequence.clear();
229 }
230
231 /// Print the schedule before exiting the region.
232 void SchedulePostRATDList::exitRegion() {
233   DEBUG({
234       dbgs() << "*** Final schedule ***\n";
235       dumpSchedule();
236       dbgs() << '\n';
237     });
238   ScheduleDAGInstrs::exitRegion();
239 }
240
241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
242 /// dumpSchedule - dump the scheduled Sequence.
243 void SchedulePostRATDList::dumpSchedule() const {
244   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
245     if (SUnit *SU = Sequence[i])
246       SU->dump(this);
247     else
248       dbgs() << "**** NOOP ****\n";
249   }
250 }
251 #endif
252
253 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
254   TII = Fn.getTarget().getInstrInfo();
255   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
256   MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
257   AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
258   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
259
260   RegClassInfo.runOnMachineFunction(Fn);
261
262   // Check for explicit enable/disable of post-ra scheduling.
263   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
264     TargetSubtargetInfo::ANTIDEP_NONE;
265   SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
266   if (EnablePostRAScheduler.getPosition() > 0) {
267     if (!EnablePostRAScheduler)
268       return false;
269   } else {
270     // Check that post-RA scheduling is enabled for this target.
271     // This may upgrade the AntiDepMode.
272     const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
273     if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
274                                   CriticalPathRCs))
275       return false;
276   }
277
278   // Check for antidep breaking override...
279   if (EnableAntiDepBreaking.getPosition() > 0) {
280     AntiDepMode = (EnableAntiDepBreaking == "all")
281       ? TargetSubtargetInfo::ANTIDEP_ALL
282       : ((EnableAntiDepBreaking == "critical")
283          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
284          : TargetSubtargetInfo::ANTIDEP_NONE);
285   }
286
287   DEBUG(dbgs() << "PostRAScheduler\n");
288
289   SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
290                                  CriticalPathRCs);
291
292   // Loop over all of the basic blocks
293   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
294        MBB != MBBe; ++MBB) {
295 #ifndef NDEBUG
296     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
297     if (DebugDiv > 0) {
298       static int bbcnt = 0;
299       if (bbcnt++ % DebugDiv != DebugMod)
300         continue;
301       dbgs() << "*** DEBUG scheduling " << Fn.getName()
302              << ":BB#" << MBB->getNumber() << " ***\n";
303     }
304 #endif
305
306     // Initialize register live-range state for scheduling in this block.
307     Scheduler.startBlock(MBB);
308
309     // Schedule each sequence of instructions not interrupted by a label
310     // or anything else that effectively needs to shut down scheduling.
311     MachineBasicBlock::iterator Current = MBB->end();
312     unsigned Count = MBB->size(), CurrentCount = Count;
313     for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
314       MachineInstr *MI = llvm::prior(I);
315       // Calls are not scheduling boundaries before register allocation, but
316       // post-ra we don't gain anything by scheduling across calls since we
317       // don't need to worry about register pressure.
318       if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
319         Scheduler.enterRegion(MBB, I, Current, CurrentCount);
320         Scheduler.schedule();
321         Scheduler.exitRegion();
322         Scheduler.EmitSchedule();
323         Current = MI;
324         CurrentCount = Count - 1;
325         Scheduler.Observe(MI, CurrentCount);
326       }
327       I = MI;
328       --Count;
329       if (MI->isBundle())
330         Count -= MI->getBundleSize();
331     }
332     assert(Count == 0 && "Instruction count mismatch!");
333     assert((MBB->begin() == Current || CurrentCount != 0) &&
334            "Instruction count mismatch!");
335     Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
336     Scheduler.schedule();
337     Scheduler.exitRegion();
338     Scheduler.EmitSchedule();
339
340     // Clean up register live-range state.
341     Scheduler.finishBlock();
342
343     // Update register kills
344     Scheduler.FixupKills(MBB);
345   }
346
347   return true;
348 }
349
350 /// StartBlock - Initialize register live-range state for scheduling in
351 /// this block.
352 ///
353 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
354   // Call the superclass.
355   ScheduleDAGInstrs::startBlock(BB);
356
357   // Reset the hazard recognizer and anti-dep breaker.
358   HazardRec->Reset();
359   if (AntiDepBreak != NULL)
360     AntiDepBreak->StartBlock(BB);
361 }
362
363 /// Schedule - Schedule the instruction range using list scheduling.
364 ///
365 void SchedulePostRATDList::schedule() {
366   // Build the scheduling graph.
367   buildSchedGraph(AA);
368
369   if (AntiDepBreak != NULL) {
370     unsigned Broken =
371       AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
372                                           EndIndex, DbgValues);
373
374     if (Broken != 0) {
375       // We made changes. Update the dependency graph.
376       // Theoretically we could update the graph in place:
377       // When a live range is changed to use a different register, remove
378       // the def's anti-dependence *and* output-dependence edges due to
379       // that register, and add new anti-dependence and output-dependence
380       // edges based on the next live range of the register.
381       ScheduleDAG::clearDAG();
382       buildSchedGraph(AA);
383
384       NumFixedAnti += Broken;
385     }
386   }
387
388   DEBUG(dbgs() << "********** List Scheduling **********\n");
389   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
390           SUnits[su].dumpAll(this));
391
392   AvailableQueue.initNodes(SUnits);
393   ListScheduleTopDown();
394   AvailableQueue.releaseState();
395 }
396
397 /// Observe - Update liveness information to account for the current
398 /// instruction, which will not be scheduled.
399 ///
400 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
401   if (AntiDepBreak != NULL)
402     AntiDepBreak->Observe(MI, Count, EndIndex);
403 }
404
405 /// FinishBlock - Clean up register live-range state.
406 ///
407 void SchedulePostRATDList::finishBlock() {
408   if (AntiDepBreak != NULL)
409     AntiDepBreak->FinishBlock();
410
411   // Call the superclass.
412   ScheduleDAGInstrs::finishBlock();
413 }
414
415 /// StartBlockForKills - Initialize register live-range state for updating kills
416 ///
417 void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
418   // Start with no live registers.
419   LiveRegs.reset();
420
421   // Examine the live-in regs of all successors.
422   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
423        SE = BB->succ_end(); SI != SE; ++SI) {
424     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
425          E = (*SI)->livein_end(); I != E; ++I) {
426       unsigned Reg = *I;
427       LiveRegs.set(Reg);
428       // Repeat, for all subregs.
429       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
430         LiveRegs.set(*SubRegs);
431     }
432   }
433 }
434
435 bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
436                                           MachineOperand &MO) {
437   // Setting kill flag...
438   if (!MO.isKill()) {
439     MO.setIsKill(true);
440     return false;
441   }
442
443   // If MO itself is live, clear the kill flag...
444   if (LiveRegs.test(MO.getReg())) {
445     MO.setIsKill(false);
446     return false;
447   }
448
449   // If any subreg of MO is live, then create an imp-def for that
450   // subreg and keep MO marked as killed.
451   MO.setIsKill(false);
452   bool AllDead = true;
453   const unsigned SuperReg = MO.getReg();
454   MachineInstrBuilder MIB(MF, MI);
455   for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
456     if (LiveRegs.test(*SubRegs)) {
457       MIB.addReg(*SubRegs, RegState::ImplicitDefine);
458       AllDead = false;
459     }
460   }
461
462   if(AllDead)
463     MO.setIsKill(true);
464   return false;
465 }
466
467 /// FixupKills - Fix the register kill flags, they may have been made
468 /// incorrect by instruction reordering.
469 ///
470 void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
471   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
472
473   BitVector killedRegs(TRI->getNumRegs());
474
475   StartBlockForKills(MBB);
476
477   // Examine block from end to start...
478   unsigned Count = MBB->size();
479   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
480        I != E; --Count) {
481     MachineInstr *MI = --I;
482     if (MI->isDebugValue())
483       continue;
484
485     // Update liveness.  Registers that are defed but not used in this
486     // instruction are now dead. Mark register and all subregs as they
487     // are completely defined.
488     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
489       MachineOperand &MO = MI->getOperand(i);
490       if (MO.isRegMask())
491         LiveRegs.clearBitsNotInMask(MO.getRegMask());
492       if (!MO.isReg()) continue;
493       unsigned Reg = MO.getReg();
494       if (Reg == 0) continue;
495       if (!MO.isDef()) continue;
496       // Ignore two-addr defs.
497       if (MI->isRegTiedToUseOperand(i)) continue;
498
499       LiveRegs.reset(Reg);
500
501       // Repeat for all subregs.
502       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
503         LiveRegs.reset(*SubRegs);
504     }
505
506     // Examine all used registers and set/clear kill flag. When a
507     // register is used multiple times we only set the kill flag on
508     // the first use.
509     killedRegs.reset();
510     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
511       MachineOperand &MO = MI->getOperand(i);
512       if (!MO.isReg() || !MO.isUse()) continue;
513       unsigned Reg = MO.getReg();
514       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
515
516       bool kill = false;
517       if (!killedRegs.test(Reg)) {
518         kill = true;
519         // A register is not killed if any subregs are live...
520         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
521           if (LiveRegs.test(*SubRegs)) {
522             kill = false;
523             break;
524           }
525         }
526
527         // If subreg is not live, then register is killed if it became
528         // live in this instruction
529         if (kill)
530           kill = !LiveRegs.test(Reg);
531       }
532
533       if (MO.isKill() != kill) {
534         DEBUG(dbgs() << "Fixing " << MO << " in ");
535         // Warning: ToggleKillFlag may invalidate MO.
536         ToggleKillFlag(MI, MO);
537         DEBUG(MI->dump());
538       }
539
540       killedRegs.set(Reg);
541     }
542
543     // Mark any used register (that is not using undef) and subregs as
544     // now live...
545     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
546       MachineOperand &MO = MI->getOperand(i);
547       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
548       unsigned Reg = MO.getReg();
549       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
550
551       LiveRegs.set(Reg);
552
553       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
554         LiveRegs.set(*SubRegs);
555     }
556   }
557 }
558
559 //===----------------------------------------------------------------------===//
560 //  Top-Down Scheduling
561 //===----------------------------------------------------------------------===//
562
563 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
564 /// the PendingQueue if the count reaches zero.
565 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
566   SUnit *SuccSU = SuccEdge->getSUnit();
567
568   if (SuccEdge->isWeak()) {
569     --SuccSU->WeakPredsLeft;
570     return;
571   }
572 #ifndef NDEBUG
573   if (SuccSU->NumPredsLeft == 0) {
574     dbgs() << "*** Scheduling failed! ***\n";
575     SuccSU->dump(this);
576     dbgs() << " has been released too many times!\n";
577     llvm_unreachable(0);
578   }
579 #endif
580   --SuccSU->NumPredsLeft;
581
582   // Standard scheduler algorithms will recompute the depth of the successor
583   // here as such:
584   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
585   //
586   // However, we lazily compute node depth instead. Note that
587   // ScheduleNodeTopDown has already updated the depth of this node which causes
588   // all descendents to be marked dirty. Setting the successor depth explicitly
589   // here would cause depth to be recomputed for all its ancestors. If the
590   // successor is not yet ready (because of a transitively redundant edge) then
591   // this causes depth computation to be quadratic in the size of the DAG.
592
593   // If all the node's predecessors are scheduled, this node is ready
594   // to be scheduled. Ignore the special ExitSU node.
595   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
596     PendingQueue.push_back(SuccSU);
597 }
598
599 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
600 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
601   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
602        I != E; ++I) {
603     ReleaseSucc(SU, &*I);
604   }
605 }
606
607 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
608 /// count of its successors. If a successor pending count is zero, add it to
609 /// the Available queue.
610 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
611   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
612   DEBUG(SU->dump(this));
613
614   Sequence.push_back(SU);
615   assert(CurCycle >= SU->getDepth() &&
616          "Node scheduled above its depth!");
617   SU->setDepthToAtLeast(CurCycle);
618
619   ReleaseSuccessors(SU);
620   SU->isScheduled = true;
621   AvailableQueue.scheduledNode(SU);
622 }
623
624 /// ListScheduleTopDown - The main loop of list scheduling for top-down
625 /// schedulers.
626 void SchedulePostRATDList::ListScheduleTopDown() {
627   unsigned CurCycle = 0;
628
629   // We're scheduling top-down but we're visiting the regions in
630   // bottom-up order, so we don't know the hazards at the start of a
631   // region. So assume no hazards (this should usually be ok as most
632   // blocks are a single region).
633   HazardRec->Reset();
634
635   // Release any successors of the special Entry node.
636   ReleaseSuccessors(&EntrySU);
637
638   // Add all leaves to Available queue.
639   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
640     // It is available if it has no predecessors.
641     if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
642       AvailableQueue.push(&SUnits[i]);
643       SUnits[i].isAvailable = true;
644     }
645   }
646
647   // In any cycle where we can't schedule any instructions, we must
648   // stall or emit a noop, depending on the target.
649   bool CycleHasInsts = false;
650
651   // While Available queue is not empty, grab the node with the highest
652   // priority. If it is not ready put it back.  Schedule the node.
653   std::vector<SUnit*> NotReady;
654   Sequence.reserve(SUnits.size());
655   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
656     // Check to see if any of the pending instructions are ready to issue.  If
657     // so, add them to the available queue.
658     unsigned MinDepth = ~0u;
659     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
660       if (PendingQueue[i]->getDepth() <= CurCycle) {
661         AvailableQueue.push(PendingQueue[i]);
662         PendingQueue[i]->isAvailable = true;
663         PendingQueue[i] = PendingQueue.back();
664         PendingQueue.pop_back();
665         --i; --e;
666       } else if (PendingQueue[i]->getDepth() < MinDepth)
667         MinDepth = PendingQueue[i]->getDepth();
668     }
669
670     DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
671
672     SUnit *FoundSUnit = 0;
673     bool HasNoopHazards = false;
674     while (!AvailableQueue.empty()) {
675       SUnit *CurSUnit = AvailableQueue.pop();
676
677       ScheduleHazardRecognizer::HazardType HT =
678         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
679       if (HT == ScheduleHazardRecognizer::NoHazard) {
680         FoundSUnit = CurSUnit;
681         break;
682       }
683
684       // Remember if this is a noop hazard.
685       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
686
687       NotReady.push_back(CurSUnit);
688     }
689
690     // Add the nodes that aren't ready back onto the available list.
691     if (!NotReady.empty()) {
692       AvailableQueue.push_all(NotReady);
693       NotReady.clear();
694     }
695
696     // If we found a node to schedule...
697     if (FoundSUnit) {
698       // ... schedule the node...
699       ScheduleNodeTopDown(FoundSUnit, CurCycle);
700       HazardRec->EmitInstruction(FoundSUnit);
701       CycleHasInsts = true;
702       if (HazardRec->atIssueLimit()) {
703         DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
704         HazardRec->AdvanceCycle();
705         ++CurCycle;
706         CycleHasInsts = false;
707       }
708     } else {
709       if (CycleHasInsts) {
710         DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
711         HazardRec->AdvanceCycle();
712       } else if (!HasNoopHazards) {
713         // Otherwise, we have a pipeline stall, but no other problem,
714         // just advance the current cycle and try again.
715         DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
716         HazardRec->AdvanceCycle();
717         ++NumStalls;
718       } else {
719         // Otherwise, we have no instructions to issue and we have instructions
720         // that will fault if we don't do this right.  This is the case for
721         // processors without pipeline interlocks and other cases.
722         DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
723         HazardRec->EmitNoop();
724         Sequence.push_back(0);   // NULL here means noop
725         ++NumNoops;
726       }
727
728       ++CurCycle;
729       CycleHasInsts = false;
730     }
731   }
732
733 #ifndef NDEBUG
734   unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
735   unsigned Noops = 0;
736   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
737     if (!Sequence[i])
738       ++Noops;
739   assert(Sequence.size() - Noops == ScheduledNodes &&
740          "The number of nodes scheduled doesn't match the expected number!");
741 #endif // NDEBUG
742 }
743
744 // EmitSchedule - Emit the machine code in scheduled order.
745 void SchedulePostRATDList::EmitSchedule() {
746   RegionBegin = RegionEnd;
747
748   // If first instruction was a DBG_VALUE then put it back.
749   if (FirstDbgValue)
750     BB->splice(RegionEnd, BB, FirstDbgValue);
751
752   // Then re-insert them according to the given schedule.
753   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
754     if (SUnit *SU = Sequence[i])
755       BB->splice(RegionEnd, BB, SU->getInstr());
756     else
757       // Null SUnit* is a noop.
758       TII->insertNoop(*BB, RegionEnd);
759
760     // Update the Begin iterator, as the first instruction in the block
761     // may have been scheduled later.
762     if (i == 0)
763       RegionBegin = prior(RegionEnd);
764   }
765
766   // Reinsert any remaining debug_values.
767   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
768          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
769     std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
770     MachineInstr *DbgValue = P.first;
771     MachineBasicBlock::iterator OrigPrivMI = P.second;
772     BB->splice(++OrigPrivMI, BB, DbgValue);
773   }
774   DbgValues.clear();
775   FirstDbgValue = NULL;
776 }