]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/llvm/lib/CodeGen/TargetRegisterInfo.cpp
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / llvm / lib / CodeGen / TargetRegisterInfo.cpp
1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetRegisterInfo interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetRegisterInfo.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "llvm/Support/raw_ostream.h"
20
21 using namespace llvm;
22
23 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
24                              regclass_iterator RCB, regclass_iterator RCE,
25                              const char *const *SRINames,
26                              const unsigned *SRILaneMasks)
27   : InfoDesc(ID), SubRegIndexNames(SRINames),
28     SubRegIndexLaneMasks(SRILaneMasks),
29     RegClassBegin(RCB), RegClassEnd(RCE) {
30 }
31
32 TargetRegisterInfo::~TargetRegisterInfo() {}
33
34 void PrintReg::print(raw_ostream &OS) const {
35   if (!Reg)
36     OS << "%noreg";
37   else if (TargetRegisterInfo::isStackSlot(Reg))
38     OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
39   else if (TargetRegisterInfo::isVirtualRegister(Reg))
40     OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
41   else if (TRI && Reg < TRI->getNumRegs())
42     OS << '%' << TRI->getName(Reg);
43   else
44     OS << "%physreg" << Reg;
45   if (SubIdx) {
46     if (TRI)
47       OS << ':' << TRI->getSubRegIndexName(SubIdx);
48     else
49       OS << ":sub(" << SubIdx << ')';
50   }
51 }
52
53 void PrintRegUnit::print(raw_ostream &OS) const {
54   // Generic printout when TRI is missing.
55   if (!TRI) {
56     OS << "Unit~" << Unit;
57     return;
58   }
59
60   // Check for invalid register units.
61   if (Unit >= TRI->getNumRegUnits()) {
62     OS << "BadUnit~" << Unit;
63     return;
64   }
65
66   // Normal units have at least one root.
67   MCRegUnitRootIterator Roots(Unit, TRI);
68   assert(Roots.isValid() && "Unit has no roots.");
69   OS << TRI->getName(*Roots);
70   for (++Roots; Roots.isValid(); ++Roots)
71     OS << '~' << TRI->getName(*Roots);
72 }
73
74 /// getAllocatableClass - Return the maximal subclass of the given register
75 /// class that is alloctable, or NULL.
76 const TargetRegisterClass *
77 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
78   if (!RC || RC->isAllocatable())
79     return RC;
80
81   const unsigned *SubClass = RC->getSubClassMask();
82   for (unsigned Base = 0, BaseE = getNumRegClasses();
83        Base < BaseE; Base += 32) {
84     unsigned Idx = Base;
85     for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
86       unsigned Offset = CountTrailingZeros_32(Mask);
87       const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
88       if (SubRC->isAllocatable())
89         return SubRC;
90       Mask >>= Offset;
91       Idx += Offset + 1;
92     }
93   }
94   return NULL;
95 }
96
97 /// getMinimalPhysRegClass - Returns the Register Class of a physical
98 /// register of the given type, picking the most sub register class of
99 /// the right type that contains this physreg.
100 const TargetRegisterClass *
101 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const {
102   assert(isPhysicalRegister(reg) && "reg must be a physical register");
103
104   // Pick the most sub register class of the right type that contains
105   // this physreg.
106   const TargetRegisterClass* BestRC = 0;
107   for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
108     const TargetRegisterClass* RC = *I;
109     if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
110         (!BestRC || BestRC->hasSubClass(RC)))
111       BestRC = RC;
112   }
113
114   assert(BestRC && "Couldn't find the register class");
115   return BestRC;
116 }
117
118 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
119 /// registers for the specific register class.
120 static void getAllocatableSetForRC(const MachineFunction &MF,
121                                    const TargetRegisterClass *RC, BitVector &R){
122   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
123   ArrayRef<uint16_t> Order = RC->getRawAllocationOrder(MF);
124   for (unsigned i = 0; i != Order.size(); ++i)
125     R.set(Order[i]);
126 }
127
128 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
129                                           const TargetRegisterClass *RC) const {
130   BitVector Allocatable(getNumRegs());
131   if (RC) {
132     // A register class with no allocatable subclass returns an empty set.
133     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
134     if (SubClass)
135       getAllocatableSetForRC(MF, SubClass, Allocatable);
136   } else {
137     for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
138          E = regclass_end(); I != E; ++I)
139       if ((*I)->isAllocatable())
140         getAllocatableSetForRC(MF, *I, Allocatable);
141   }
142
143   // Mask out the reserved registers
144   BitVector Reserved = getReservedRegs(MF);
145   Allocatable &= Reserved.flip();
146
147   return Allocatable;
148 }
149
150 static inline
151 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
152                                             const uint32_t *B,
153                                             const TargetRegisterInfo *TRI) {
154   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
155     if (unsigned Common = *A++ & *B++)
156       return TRI->getRegClass(I + CountTrailingZeros_32(Common));
157   return 0;
158 }
159
160 const TargetRegisterClass *
161 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
162                                       const TargetRegisterClass *B) const {
163   // First take care of the trivial cases.
164   if (A == B)
165     return A;
166   if (!A || !B)
167     return 0;
168
169   // Register classes are ordered topologically, so the largest common
170   // sub-class it the common sub-class with the smallest ID.
171   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
172 }
173
174 const TargetRegisterClass *
175 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
176                                              const TargetRegisterClass *B,
177                                              unsigned Idx) const {
178   assert(A && B && "Missing register class");
179   assert(Idx && "Bad sub-register index");
180
181   // Find Idx in the list of super-register indices.
182   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
183     if (RCI.getSubReg() == Idx)
184       // The bit mask contains all register classes that are projected into B
185       // by Idx. Find a class that is also a sub-class of A.
186       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
187   return 0;
188 }
189
190 const TargetRegisterClass *TargetRegisterInfo::
191 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
192                        const TargetRegisterClass *RCB, unsigned SubB,
193                        unsigned &PreA, unsigned &PreB) const {
194   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
195
196   // Search all pairs of sub-register indices that project into RCA and RCB
197   // respectively. This is quadratic, but usually the sets are very small. On
198   // most targets like X86, there will only be a single sub-register index
199   // (e.g., sub_16bit projecting into GR16).
200   //
201   // The worst case is a register class like DPR on ARM.
202   // We have indices dsub_0..dsub_7 projecting into that class.
203   //
204   // It is very common that one register class is a sub-register of the other.
205   // Arrange for RCA to be the larger register so the answer will be found in
206   // the first iteration. This makes the search linear for the most common
207   // case.
208   const TargetRegisterClass *BestRC = 0;
209   unsigned *BestPreA = &PreA;
210   unsigned *BestPreB = &PreB;
211   if (RCA->getSize() < RCB->getSize()) {
212     std::swap(RCA, RCB);
213     std::swap(SubA, SubB);
214     std::swap(BestPreA, BestPreB);
215   }
216
217   // Also terminate the search one we have found a register class as small as
218   // RCA.
219   unsigned MinSize = RCA->getSize();
220
221   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
222     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
223     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
224       // Check if a common super-register class exists for this index pair.
225       const TargetRegisterClass *RC =
226         firstCommonClass(IA.getMask(), IB.getMask(), this);
227       if (!RC || RC->getSize() < MinSize)
228         continue;
229
230       // The indexes must compose identically: PreA+SubA == PreB+SubB.
231       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
232       if (FinalA != FinalB)
233         continue;
234
235       // Is RC a better candidate than BestRC?
236       if (BestRC && RC->getSize() >= BestRC->getSize())
237         continue;
238
239       // Yes, RC is the smallest super-register seen so far.
240       BestRC = RC;
241       *BestPreA = IA.getSubReg();
242       *BestPreB = IB.getSubReg();
243
244       // Bail early if we reached MinSize. We won't find a better candidate.
245       if (BestRC->getSize() == MinSize)
246         return BestRC;
247     }
248   }
249   return BestRC;
250 }
251
252 // Compute target-independent register allocator hints to help eliminate copies.
253 void
254 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
255                                           ArrayRef<MCPhysReg> Order,
256                                           SmallVectorImpl<MCPhysReg> &Hints,
257                                           const MachineFunction &MF,
258                                           const VirtRegMap *VRM) const {
259   const MachineRegisterInfo &MRI = MF.getRegInfo();
260   std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
261
262   // Hints with HintType != 0 were set by target-dependent code.
263   // Such targets must provide their own implementation of
264   // TRI::getRegAllocationHints to interpret those hint types.
265   assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
266
267   // Target-independent hints are either a physical or a virtual register.
268   unsigned Phys = Hint.second;
269   if (VRM && isVirtualRegister(Phys))
270     Phys = VRM->getPhys(Phys);
271
272   // Check that Phys is a valid hint in VirtReg's register class.
273   if (!isPhysicalRegister(Phys))
274     return;
275   if (MRI.isReserved(Phys))
276     return;
277   // Check that Phys is in the allocation order. We shouldn't heed hints
278   // from VirtReg's register class if they aren't in the allocation order. The
279   // target probably has a reason for removing the register.
280   if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
281     return;
282
283   // All clear, tell the register allocator to prefer this register.
284   Hints.push_back(Phys);
285 }