]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/llvm/lib/IR/Instruction.cpp
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / llvm / lib / IR / Instruction.cpp
1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Instruction class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/IR/Module.h"
18 #include "llvm/IR/Operator.h"
19 #include "llvm/IR/Type.h"
20 #include "llvm/Support/CallSite.h"
21 #include "llvm/Support/LeakDetector.h"
22 using namespace llvm;
23
24 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
25                          Instruction *InsertBefore)
26   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
27   // Make sure that we get added to a basicblock
28   LeakDetector::addGarbageObject(this);
29
30   // If requested, insert this instruction into a basic block...
31   if (InsertBefore) {
32     assert(InsertBefore->getParent() &&
33            "Instruction to insert before is not in a basic block!");
34     InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
35   }
36 }
37
38 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
39                          BasicBlock *InsertAtEnd)
40   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
41   // Make sure that we get added to a basicblock
42   LeakDetector::addGarbageObject(this);
43
44   // append this instruction into the basic block
45   assert(InsertAtEnd && "Basic block to append to may not be NULL!");
46   InsertAtEnd->getInstList().push_back(this);
47 }
48
49
50 // Out of line virtual method, so the vtable, etc has a home.
51 Instruction::~Instruction() {
52   assert(Parent == 0 && "Instruction still linked in the program!");
53   if (hasMetadataHashEntry())
54     clearMetadataHashEntries();
55 }
56
57
58 void Instruction::setParent(BasicBlock *P) {
59   if (getParent()) {
60     if (!P) LeakDetector::addGarbageObject(this);
61   } else {
62     if (P) LeakDetector::removeGarbageObject(this);
63   }
64
65   Parent = P;
66 }
67
68 void Instruction::removeFromParent() {
69   getParent()->getInstList().remove(this);
70 }
71
72 void Instruction::eraseFromParent() {
73   getParent()->getInstList().erase(this);
74 }
75
76 /// insertBefore - Insert an unlinked instructions into a basic block
77 /// immediately before the specified instruction.
78 void Instruction::insertBefore(Instruction *InsertPos) {
79   InsertPos->getParent()->getInstList().insert(InsertPos, this);
80 }
81
82 /// insertAfter - Insert an unlinked instructions into a basic block
83 /// immediately after the specified instruction.
84 void Instruction::insertAfter(Instruction *InsertPos) {
85   InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
86 }
87
88 /// moveBefore - Unlink this instruction from its current basic block and
89 /// insert it into the basic block that MovePos lives in, right before
90 /// MovePos.
91 void Instruction::moveBefore(Instruction *MovePos) {
92   MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
93                                              this);
94 }
95
96 /// Set or clear the unsafe-algebra flag on this instruction, which must be an
97 /// operator which supports this flag. See LangRef.html for the meaning of this
98 /// flag.
99 void Instruction::setHasUnsafeAlgebra(bool B) {
100   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
101   cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B);
102 }
103
104 /// Set or clear the NoNaNs flag on this instruction, which must be an operator
105 /// which supports this flag. See LangRef.html for the meaning of this flag.
106 void Instruction::setHasNoNaNs(bool B) {
107   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
108   cast<FPMathOperator>(this)->setHasNoNaNs(B);
109 }
110
111 /// Set or clear the no-infs flag on this instruction, which must be an operator
112 /// which supports this flag. See LangRef.html for the meaning of this flag.
113 void Instruction::setHasNoInfs(bool B) {
114   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
115   cast<FPMathOperator>(this)->setHasNoInfs(B);
116 }
117
118 /// Set or clear the no-signed-zeros flag on this instruction, which must be an
119 /// operator which supports this flag. See LangRef.html for the meaning of this
120 /// flag.
121 void Instruction::setHasNoSignedZeros(bool B) {
122   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
123   cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
124 }
125
126 /// Set or clear the allow-reciprocal flag on this instruction, which must be an
127 /// operator which supports this flag. See LangRef.html for the meaning of this
128 /// flag.
129 void Instruction::setHasAllowReciprocal(bool B) {
130   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
131   cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
132 }
133
134 /// Convenience function for setting all the fast-math flags on this
135 /// instruction, which must be an operator which supports these flags. See
136 /// LangRef.html for the meaning of these flats.
137 void Instruction::setFastMathFlags(FastMathFlags FMF) {
138   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
139   cast<FPMathOperator>(this)->setFastMathFlags(FMF);
140 }
141
142 /// Determine whether the unsafe-algebra flag is set.
143 bool Instruction::hasUnsafeAlgebra() const {
144   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
145   return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
146 }
147
148 /// Determine whether the no-NaNs flag is set.
149 bool Instruction::hasNoNaNs() const {
150   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
151   return cast<FPMathOperator>(this)->hasNoNaNs();
152 }
153
154 /// Determine whether the no-infs flag is set.
155 bool Instruction::hasNoInfs() const {
156   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
157   return cast<FPMathOperator>(this)->hasNoInfs();
158 }
159
160 /// Determine whether the no-signed-zeros flag is set.
161 bool Instruction::hasNoSignedZeros() const {
162   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
163   return cast<FPMathOperator>(this)->hasNoSignedZeros();
164 }
165
166 /// Determine whether the allow-reciprocal flag is set.
167 bool Instruction::hasAllowReciprocal() const {
168   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
169   return cast<FPMathOperator>(this)->hasAllowReciprocal();
170 }
171
172 /// Convenience function for getting all the fast-math flags, which must be an
173 /// operator which supports these flags. See LangRef.html for the meaning of
174 /// these flats.
175 FastMathFlags Instruction::getFastMathFlags() const {
176   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
177   return cast<FPMathOperator>(this)->getFastMathFlags();
178 }
179
180 /// Copy I's fast-math flags
181 void Instruction::copyFastMathFlags(const Instruction *I) {
182   setFastMathFlags(I->getFastMathFlags());
183 }
184
185
186 const char *Instruction::getOpcodeName(unsigned OpCode) {
187   switch (OpCode) {
188   // Terminators
189   case Ret:    return "ret";
190   case Br:     return "br";
191   case Switch: return "switch";
192   case IndirectBr: return "indirectbr";
193   case Invoke: return "invoke";
194   case Resume: return "resume";
195   case Unreachable: return "unreachable";
196
197   // Standard binary operators...
198   case Add: return "add";
199   case FAdd: return "fadd";
200   case Sub: return "sub";
201   case FSub: return "fsub";
202   case Mul: return "mul";
203   case FMul: return "fmul";
204   case UDiv: return "udiv";
205   case SDiv: return "sdiv";
206   case FDiv: return "fdiv";
207   case URem: return "urem";
208   case SRem: return "srem";
209   case FRem: return "frem";
210
211   // Logical operators...
212   case And: return "and";
213   case Or : return "or";
214   case Xor: return "xor";
215
216   // Memory instructions...
217   case Alloca:        return "alloca";
218   case Load:          return "load";
219   case Store:         return "store";
220   case AtomicCmpXchg: return "cmpxchg";
221   case AtomicRMW:     return "atomicrmw";
222   case Fence:         return "fence";
223   case GetElementPtr: return "getelementptr";
224
225   // Convert instructions...
226   case Trunc:     return "trunc";
227   case ZExt:      return "zext";
228   case SExt:      return "sext";
229   case FPTrunc:   return "fptrunc";
230   case FPExt:     return "fpext";
231   case FPToUI:    return "fptoui";
232   case FPToSI:    return "fptosi";
233   case UIToFP:    return "uitofp";
234   case SIToFP:    return "sitofp";
235   case IntToPtr:  return "inttoptr";
236   case PtrToInt:  return "ptrtoint";
237   case BitCast:   return "bitcast";
238
239   // Other instructions...
240   case ICmp:           return "icmp";
241   case FCmp:           return "fcmp";
242   case PHI:            return "phi";
243   case Select:         return "select";
244   case Call:           return "call";
245   case Shl:            return "shl";
246   case LShr:           return "lshr";
247   case AShr:           return "ashr";
248   case VAArg:          return "va_arg";
249   case ExtractElement: return "extractelement";
250   case InsertElement:  return "insertelement";
251   case ShuffleVector:  return "shufflevector";
252   case ExtractValue:   return "extractvalue";
253   case InsertValue:    return "insertvalue";
254   case LandingPad:     return "landingpad";
255
256   default: return "<Invalid operator> ";
257   }
258 }
259
260 /// isIdenticalTo - Return true if the specified instruction is exactly
261 /// identical to the current one.  This means that all operands match and any
262 /// extra information (e.g. load is volatile) agree.
263 bool Instruction::isIdenticalTo(const Instruction *I) const {
264   return isIdenticalToWhenDefined(I) &&
265          SubclassOptionalData == I->SubclassOptionalData;
266 }
267
268 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
269 /// ignores the SubclassOptionalData flags, which specify conditions
270 /// under which the instruction's result is undefined.
271 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
272   if (getOpcode() != I->getOpcode() ||
273       getNumOperands() != I->getNumOperands() ||
274       getType() != I->getType())
275     return false;
276
277   // We have two instructions of identical opcode and #operands.  Check to see
278   // if all operands are the same.
279   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
280     if (getOperand(i) != I->getOperand(i))
281       return false;
282
283   // Check special state that is a part of some instructions.
284   if (const LoadInst *LI = dyn_cast<LoadInst>(this))
285     return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
286            LI->getAlignment() == cast<LoadInst>(I)->getAlignment() &&
287            LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
288            LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
289   if (const StoreInst *SI = dyn_cast<StoreInst>(this))
290     return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
291            SI->getAlignment() == cast<StoreInst>(I)->getAlignment() &&
292            SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
293            SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
294   if (const CmpInst *CI = dyn_cast<CmpInst>(this))
295     return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
296   if (const CallInst *CI = dyn_cast<CallInst>(this))
297     return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
298            CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
299            CI->getAttributes() == cast<CallInst>(I)->getAttributes();
300   if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
301     return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
302            CI->getAttributes() == cast<InvokeInst>(I)->getAttributes();
303   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
304     return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
305   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
306     return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
307   if (const FenceInst *FI = dyn_cast<FenceInst>(this))
308     return FI->getOrdering() == cast<FenceInst>(FI)->getOrdering() &&
309            FI->getSynchScope() == cast<FenceInst>(FI)->getSynchScope();
310   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
311     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
312            CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
313            CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
314   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
315     return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
316            RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
317            RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
318            RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
319   if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
320     const PHINode *otherPHI = cast<PHINode>(I);
321     for (unsigned i = 0, e = thisPHI->getNumOperands(); i != e; ++i) {
322       if (thisPHI->getIncomingBlock(i) != otherPHI->getIncomingBlock(i))
323         return false;
324     }
325     return true;
326   }
327   return true;
328 }
329
330 // isSameOperationAs
331 // This should be kept in sync with isEquivalentOperation in
332 // lib/Transforms/IPO/MergeFunctions.cpp.
333 bool Instruction::isSameOperationAs(const Instruction *I,
334                                     unsigned flags) const {
335   bool IgnoreAlignment = flags & CompareIgnoringAlignment;
336   bool UseScalarTypes  = flags & CompareUsingScalarTypes;
337
338   if (getOpcode() != I->getOpcode() ||
339       getNumOperands() != I->getNumOperands() ||
340       (UseScalarTypes ?
341        getType()->getScalarType() != I->getType()->getScalarType() :
342        getType() != I->getType()))
343     return false;
344
345   // We have two instructions of identical opcode and #operands.  Check to see
346   // if all operands are the same type
347   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
348     if (UseScalarTypes ?
349         getOperand(i)->getType()->getScalarType() !=
350           I->getOperand(i)->getType()->getScalarType() :
351         getOperand(i)->getType() != I->getOperand(i)->getType())
352       return false;
353
354   // Check special state that is a part of some instructions.
355   if (const LoadInst *LI = dyn_cast<LoadInst>(this))
356     return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
357            (LI->getAlignment() == cast<LoadInst>(I)->getAlignment() ||
358             IgnoreAlignment) &&
359            LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
360            LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
361   if (const StoreInst *SI = dyn_cast<StoreInst>(this))
362     return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
363            (SI->getAlignment() == cast<StoreInst>(I)->getAlignment() ||
364             IgnoreAlignment) &&
365            SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
366            SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
367   if (const CmpInst *CI = dyn_cast<CmpInst>(this))
368     return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
369   if (const CallInst *CI = dyn_cast<CallInst>(this))
370     return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
371            CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
372            CI->getAttributes() == cast<CallInst>(I)->getAttributes();
373   if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
374     return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
375            CI->getAttributes() ==
376              cast<InvokeInst>(I)->getAttributes();
377   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
378     return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
379   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
380     return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
381   if (const FenceInst *FI = dyn_cast<FenceInst>(this))
382     return FI->getOrdering() == cast<FenceInst>(I)->getOrdering() &&
383            FI->getSynchScope() == cast<FenceInst>(I)->getSynchScope();
384   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
385     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
386            CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
387            CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
388   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
389     return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
390            RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
391            RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
392            RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
393
394   return true;
395 }
396
397 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
398 /// specified block.  Note that PHI nodes are considered to evaluate their
399 /// operands in the corresponding predecessor block.
400 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
401   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
402     // PHI nodes uses values in the corresponding predecessor block.  For other
403     // instructions, just check to see whether the parent of the use matches up.
404     const User *U = *UI;
405     const PHINode *PN = dyn_cast<PHINode>(U);
406     if (PN == 0) {
407       if (cast<Instruction>(U)->getParent() != BB)
408         return true;
409       continue;
410     }
411
412     if (PN->getIncomingBlock(UI) != BB)
413       return true;
414   }
415   return false;
416 }
417
418 /// mayReadFromMemory - Return true if this instruction may read memory.
419 ///
420 bool Instruction::mayReadFromMemory() const {
421   switch (getOpcode()) {
422   default: return false;
423   case Instruction::VAArg:
424   case Instruction::Load:
425   case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
426   case Instruction::AtomicCmpXchg:
427   case Instruction::AtomicRMW:
428     return true;
429   case Instruction::Call:
430     return !cast<CallInst>(this)->doesNotAccessMemory();
431   case Instruction::Invoke:
432     return !cast<InvokeInst>(this)->doesNotAccessMemory();
433   case Instruction::Store:
434     return !cast<StoreInst>(this)->isUnordered();
435   }
436 }
437
438 /// mayWriteToMemory - Return true if this instruction may modify memory.
439 ///
440 bool Instruction::mayWriteToMemory() const {
441   switch (getOpcode()) {
442   default: return false;
443   case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
444   case Instruction::Store:
445   case Instruction::VAArg:
446   case Instruction::AtomicCmpXchg:
447   case Instruction::AtomicRMW:
448     return true;
449   case Instruction::Call:
450     return !cast<CallInst>(this)->onlyReadsMemory();
451   case Instruction::Invoke:
452     return !cast<InvokeInst>(this)->onlyReadsMemory();
453   case Instruction::Load:
454     return !cast<LoadInst>(this)->isUnordered();
455   }
456 }
457
458 bool Instruction::mayThrow() const {
459   if (const CallInst *CI = dyn_cast<CallInst>(this))
460     return !CI->doesNotThrow();
461   return isa<ResumeInst>(this);
462 }
463
464 bool Instruction::mayReturn() const {
465   if (const CallInst *CI = dyn_cast<CallInst>(this))
466     return !CI->doesNotReturn();
467   return true;
468 }
469
470 /// isAssociative - Return true if the instruction is associative:
471 ///
472 ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
473 ///
474 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
475 ///
476 bool Instruction::isAssociative(unsigned Opcode) {
477   return Opcode == And || Opcode == Or || Opcode == Xor ||
478          Opcode == Add || Opcode == Mul;
479 }
480
481 bool Instruction::isAssociative() const {
482   unsigned Opcode = getOpcode();
483   if (isAssociative(Opcode))
484     return true;
485
486   switch (Opcode) {
487   case FMul:
488   case FAdd:
489     return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
490   default:
491     return false;
492   }
493 }
494
495 /// isCommutative - Return true if the instruction is commutative:
496 ///
497 ///   Commutative operators satisfy: (x op y) === (y op x)
498 ///
499 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
500 /// applied to any type.
501 ///
502 bool Instruction::isCommutative(unsigned op) {
503   switch (op) {
504   case Add:
505   case FAdd:
506   case Mul:
507   case FMul:
508   case And:
509   case Or:
510   case Xor:
511     return true;
512   default:
513     return false;
514   }
515 }
516
517 /// isIdempotent - Return true if the instruction is idempotent:
518 ///
519 ///   Idempotent operators satisfy:  x op x === x
520 ///
521 /// In LLVM, the And and Or operators are idempotent.
522 ///
523 bool Instruction::isIdempotent(unsigned Opcode) {
524   return Opcode == And || Opcode == Or;
525 }
526
527 /// isNilpotent - Return true if the instruction is nilpotent:
528 ///
529 ///   Nilpotent operators satisfy:  x op x === Id,
530 ///
531 ///   where Id is the identity for the operator, i.e. a constant such that
532 ///     x op Id === x and Id op x === x for all x.
533 ///
534 /// In LLVM, the Xor operator is nilpotent.
535 ///
536 bool Instruction::isNilpotent(unsigned Opcode) {
537   return Opcode == Xor;
538 }
539
540 Instruction *Instruction::clone() const {
541   Instruction *New = clone_impl();
542   New->SubclassOptionalData = SubclassOptionalData;
543   if (!hasMetadata())
544     return New;
545
546   // Otherwise, enumerate and copy over metadata from the old instruction to the
547   // new one.
548   SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs;
549   getAllMetadataOtherThanDebugLoc(TheMDs);
550   for (unsigned i = 0, e = TheMDs.size(); i != e; ++i)
551     New->setMetadata(TheMDs[i].first, TheMDs[i].second);
552
553   New->setDebugLoc(getDebugLoc());
554   return New;
555 }