]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / llvm / tools / clang / lib / Analysis / ThreadSafety.cpp
1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
11 // conditions), based off of an annotation system.
12 //
13 // See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14 // information.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "clang/Analysis/Analyses/ThreadSafety.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
25 #include "clang/Analysis/AnalysisContext.h"
26 #include "clang/Analysis/CFG.h"
27 #include "clang/Analysis/CFGStmtMap.h"
28 #include "clang/Basic/OperatorKinds.h"
29 #include "clang/Basic/SourceLocation.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/FoldingSet.h"
33 #include "llvm/ADT/ImmutableMap.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <utility>
40 #include <vector>
41
42 using namespace clang;
43 using namespace thread_safety;
44
45 // Key method definition
46 ThreadSafetyHandler::~ThreadSafetyHandler() {}
47
48 namespace {
49
50 /// SExpr implements a simple expression language that is used to store,
51 /// compare, and pretty-print C++ expressions.  Unlike a clang Expr, a SExpr
52 /// does not capture surface syntax, and it does not distinguish between
53 /// C++ concepts, like pointers and references, that have no real semantic
54 /// differences.  This simplicity allows SExprs to be meaningfully compared,
55 /// e.g.
56 ///        (x)          =  x
57 ///        (*this).foo  =  this->foo
58 ///        *&a          =  a
59 ///
60 /// Thread-safety analysis works by comparing lock expressions.  Within the
61 /// body of a function, an expression such as "x->foo->bar.mu" will resolve to
62 /// a particular mutex object at run-time.  Subsequent occurrences of the same
63 /// expression (where "same" means syntactic equality) will refer to the same
64 /// run-time object if three conditions hold:
65 /// (1) Local variables in the expression, such as "x" have not changed.
66 /// (2) Values on the heap that affect the expression have not changed.
67 /// (3) The expression involves only pure function calls.
68 ///
69 /// The current implementation assumes, but does not verify, that multiple uses
70 /// of the same lock expression satisfies these criteria.
71 class SExpr {
72 private:
73   enum ExprOp {
74     EOP_Nop,       ///< No-op
75     EOP_Wildcard,  ///< Matches anything.
76     EOP_Universal, ///< Universal lock.
77     EOP_This,      ///< This keyword.
78     EOP_NVar,      ///< Named variable.
79     EOP_LVar,      ///< Local variable.
80     EOP_Dot,       ///< Field access
81     EOP_Call,      ///< Function call
82     EOP_MCall,     ///< Method call
83     EOP_Index,     ///< Array index
84     EOP_Unary,     ///< Unary operation
85     EOP_Binary,    ///< Binary operation
86     EOP_Unknown    ///< Catchall for everything else
87   };
88
89
90   class SExprNode {
91    private:
92     unsigned char  Op;     ///< Opcode of the root node
93     unsigned char  Flags;  ///< Additional opcode-specific data
94     unsigned short Sz;     ///< Number of child nodes
95     const void*    Data;   ///< Additional opcode-specific data
96
97    public:
98     SExprNode(ExprOp O, unsigned F, const void* D)
99       : Op(static_cast<unsigned char>(O)),
100         Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
101     { }
102
103     unsigned size() const        { return Sz; }
104     void     setSize(unsigned S) { Sz = S;    }
105
106     ExprOp   kind() const { return static_cast<ExprOp>(Op); }
107
108     const NamedDecl* getNamedDecl() const {
109       assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
110       return reinterpret_cast<const NamedDecl*>(Data);
111     }
112
113     const NamedDecl* getFunctionDecl() const {
114       assert(Op == EOP_Call || Op == EOP_MCall);
115       return reinterpret_cast<const NamedDecl*>(Data);
116     }
117
118     bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
119     void setArrow(bool A) { Flags = A ? 1 : 0; }
120
121     unsigned arity() const {
122       switch (Op) {
123         case EOP_Nop:       return 0;
124         case EOP_Wildcard:  return 0;
125         case EOP_Universal: return 0;
126         case EOP_NVar:      return 0;
127         case EOP_LVar:      return 0;
128         case EOP_This:      return 0;
129         case EOP_Dot:       return 1;
130         case EOP_Call:      return Flags+1;  // First arg is function.
131         case EOP_MCall:     return Flags+1;  // First arg is implicit obj.
132         case EOP_Index:     return 2;
133         case EOP_Unary:     return 1;
134         case EOP_Binary:    return 2;
135         case EOP_Unknown:   return Flags;
136       }
137       return 0;
138     }
139
140     bool operator==(const SExprNode& Other) const {
141       // Ignore flags and size -- they don't matter.
142       return (Op == Other.Op &&
143               Data == Other.Data);
144     }
145
146     bool operator!=(const SExprNode& Other) const {
147       return !(*this == Other);
148     }
149
150     bool matches(const SExprNode& Other) const {
151       return (*this == Other) ||
152              (Op == EOP_Wildcard) ||
153              (Other.Op == EOP_Wildcard);
154     }
155   };
156
157
158   /// \brief Encapsulates the lexical context of a function call.  The lexical
159   /// context includes the arguments to the call, including the implicit object
160   /// argument.  When an attribute containing a mutex expression is attached to
161   /// a method, the expression may refer to formal parameters of the method.
162   /// Actual arguments must be substituted for formal parameters to derive
163   /// the appropriate mutex expression in the lexical context where the function
164   /// is called.  PrevCtx holds the context in which the arguments themselves
165   /// should be evaluated; multiple calling contexts can be chained together
166   /// by the lock_returned attribute.
167   struct CallingContext {
168     const NamedDecl*   AttrDecl;   // The decl to which the attribute is attached.
169     const Expr*        SelfArg;    // Implicit object argument -- e.g. 'this'
170     bool               SelfArrow;  // is Self referred to with -> or .?
171     unsigned           NumArgs;    // Number of funArgs
172     const Expr* const* FunArgs;    // Function arguments
173     CallingContext*    PrevCtx;    // The previous context; or 0 if none.
174
175     CallingContext(const NamedDecl *D = 0, const Expr *S = 0,
176                    unsigned N = 0, const Expr* const *A = 0,
177                    CallingContext *P = 0)
178       : AttrDecl(D), SelfArg(S), SelfArrow(false),
179         NumArgs(N), FunArgs(A), PrevCtx(P)
180     { }
181   };
182
183   typedef SmallVector<SExprNode, 4> NodeVector;
184
185 private:
186   // A SExpr is a list of SExprNodes in prefix order.  The Size field allows
187   // the list to be traversed as a tree.
188   NodeVector NodeVec;
189
190 private:
191   unsigned makeNop() {
192     NodeVec.push_back(SExprNode(EOP_Nop, 0, 0));
193     return NodeVec.size()-1;
194   }
195
196   unsigned makeWildcard() {
197     NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0));
198     return NodeVec.size()-1;
199   }
200
201   unsigned makeUniversal() {
202     NodeVec.push_back(SExprNode(EOP_Universal, 0, 0));
203     return NodeVec.size()-1;
204   }
205
206   unsigned makeNamedVar(const NamedDecl *D) {
207     NodeVec.push_back(SExprNode(EOP_NVar, 0, D));
208     return NodeVec.size()-1;
209   }
210
211   unsigned makeLocalVar(const NamedDecl *D) {
212     NodeVec.push_back(SExprNode(EOP_LVar, 0, D));
213     return NodeVec.size()-1;
214   }
215
216   unsigned makeThis() {
217     NodeVec.push_back(SExprNode(EOP_This, 0, 0));
218     return NodeVec.size()-1;
219   }
220
221   unsigned makeDot(const NamedDecl *D, bool Arrow) {
222     NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D));
223     return NodeVec.size()-1;
224   }
225
226   unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
227     NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D));
228     return NodeVec.size()-1;
229   }
230
231   // Grab the very first declaration of virtual method D
232   const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) {
233     while (true) {
234       D = D->getCanonicalDecl();
235       CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
236                                      E = D->end_overridden_methods();
237       if (I == E)
238         return D;  // Method does not override anything
239       D = *I;      // FIXME: this does not work with multiple inheritance.
240     }
241     return 0;
242   }
243
244   unsigned makeMCall(unsigned NumArgs, const CXXMethodDecl *D) {
245     NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, getFirstVirtualDecl(D)));
246     return NodeVec.size()-1;
247   }
248
249   unsigned makeIndex() {
250     NodeVec.push_back(SExprNode(EOP_Index, 0, 0));
251     return NodeVec.size()-1;
252   }
253
254   unsigned makeUnary() {
255     NodeVec.push_back(SExprNode(EOP_Unary, 0, 0));
256     return NodeVec.size()-1;
257   }
258
259   unsigned makeBinary() {
260     NodeVec.push_back(SExprNode(EOP_Binary, 0, 0));
261     return NodeVec.size()-1;
262   }
263
264   unsigned makeUnknown(unsigned Arity) {
265     NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0));
266     return NodeVec.size()-1;
267   }
268
269   /// Build an SExpr from the given C++ expression.
270   /// Recursive function that terminates on DeclRefExpr.
271   /// Note: this function merely creates a SExpr; it does not check to
272   /// ensure that the original expression is a valid mutex expression.
273   ///
274   /// NDeref returns the number of Derefence and AddressOf operations
275   /// preceeding the Expr; this is used to decide whether to pretty-print
276   /// SExprs with . or ->.
277   unsigned buildSExpr(const Expr *Exp, CallingContext* CallCtx,
278                       int* NDeref = 0) {
279     if (!Exp)
280       return 0;
281
282     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
283       const NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
284       const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
285       if (PV) {
286         const FunctionDecl *FD =
287           cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
288         unsigned i = PV->getFunctionScopeIndex();
289
290         if (CallCtx && CallCtx->FunArgs &&
291             FD == CallCtx->AttrDecl->getCanonicalDecl()) {
292           // Substitute call arguments for references to function parameters
293           assert(i < CallCtx->NumArgs);
294           return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
295         }
296         // Map the param back to the param of the original function declaration.
297         makeNamedVar(FD->getParamDecl(i));
298         return 1;
299       }
300       // Not a function parameter -- just store the reference.
301       makeNamedVar(ND);
302       return 1;
303     } else if (isa<CXXThisExpr>(Exp)) {
304       // Substitute parent for 'this'
305       if (CallCtx && CallCtx->SelfArg) {
306         if (!CallCtx->SelfArrow && NDeref)
307           // 'this' is a pointer, but self is not, so need to take address.
308           --(*NDeref);
309         return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
310       }
311       else {
312         makeThis();
313         return 1;
314       }
315     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
316       const NamedDecl *ND = ME->getMemberDecl();
317       int ImplicitDeref = ME->isArrow() ? 1 : 0;
318       unsigned Root = makeDot(ND, false);
319       unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
320       NodeVec[Root].setArrow(ImplicitDeref > 0);
321       NodeVec[Root].setSize(Sz + 1);
322       return Sz + 1;
323     } else if (const CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
324       // When calling a function with a lock_returned attribute, replace
325       // the function call with the expression in lock_returned.
326       const CXXMethodDecl* MD =
327         cast<CXXMethodDecl>(CMCE->getMethodDecl()->getMostRecentDecl());
328       if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
329         CallingContext LRCallCtx(CMCE->getMethodDecl());
330         LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
331         LRCallCtx.SelfArrow =
332           dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow();
333         LRCallCtx.NumArgs = CMCE->getNumArgs();
334         LRCallCtx.FunArgs = CMCE->getArgs();
335         LRCallCtx.PrevCtx = CallCtx;
336         return buildSExpr(At->getArg(), &LRCallCtx);
337       }
338       // Hack to treat smart pointers and iterators as pointers;
339       // ignore any method named get().
340       if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
341           CMCE->getNumArgs() == 0) {
342         if (NDeref && dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow())
343           ++(*NDeref);
344         return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
345       }
346       unsigned NumCallArgs = CMCE->getNumArgs();
347       unsigned Root = makeMCall(NumCallArgs, CMCE->getMethodDecl());
348       unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
349       const Expr* const* CallArgs = CMCE->getArgs();
350       for (unsigned i = 0; i < NumCallArgs; ++i) {
351         Sz += buildSExpr(CallArgs[i], CallCtx);
352       }
353       NodeVec[Root].setSize(Sz + 1);
354       return Sz + 1;
355     } else if (const CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
356       const FunctionDecl* FD =
357         cast<FunctionDecl>(CE->getDirectCallee()->getMostRecentDecl());
358       if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
359         CallingContext LRCallCtx(CE->getDirectCallee());
360         LRCallCtx.NumArgs = CE->getNumArgs();
361         LRCallCtx.FunArgs = CE->getArgs();
362         LRCallCtx.PrevCtx = CallCtx;
363         return buildSExpr(At->getArg(), &LRCallCtx);
364       }
365       // Treat smart pointers and iterators as pointers;
366       // ignore the * and -> operators.
367       if (const CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
368         OverloadedOperatorKind k = OE->getOperator();
369         if (k == OO_Star) {
370           if (NDeref) ++(*NDeref);
371           return buildSExpr(OE->getArg(0), CallCtx, NDeref);
372         }
373         else if (k == OO_Arrow) {
374           return buildSExpr(OE->getArg(0), CallCtx, NDeref);
375         }
376       }
377       unsigned NumCallArgs = CE->getNumArgs();
378       unsigned Root = makeCall(NumCallArgs, 0);
379       unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
380       const Expr* const* CallArgs = CE->getArgs();
381       for (unsigned i = 0; i < NumCallArgs; ++i) {
382         Sz += buildSExpr(CallArgs[i], CallCtx);
383       }
384       NodeVec[Root].setSize(Sz+1);
385       return Sz+1;
386     } else if (const BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
387       unsigned Root = makeBinary();
388       unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
389       Sz += buildSExpr(BOE->getRHS(), CallCtx);
390       NodeVec[Root].setSize(Sz);
391       return Sz;
392     } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
393       // Ignore & and * operators -- they're no-ops.
394       // However, we try to figure out whether the expression is a pointer,
395       // so we can use . and -> appropriately in error messages.
396       if (UOE->getOpcode() == UO_Deref) {
397         if (NDeref) ++(*NDeref);
398         return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
399       }
400       if (UOE->getOpcode() == UO_AddrOf) {
401         if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
402           if (DRE->getDecl()->isCXXInstanceMember()) {
403             // This is a pointer-to-member expression, e.g. &MyClass::mu_.
404             // We interpret this syntax specially, as a wildcard.
405             unsigned Root = makeDot(DRE->getDecl(), false);
406             makeWildcard();
407             NodeVec[Root].setSize(2);
408             return 2;
409           }
410         }
411         if (NDeref) --(*NDeref);
412         return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
413       }
414       unsigned Root = makeUnary();
415       unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
416       NodeVec[Root].setSize(Sz);
417       return Sz;
418     } else if (const ArraySubscriptExpr *ASE =
419                dyn_cast<ArraySubscriptExpr>(Exp)) {
420       unsigned Root = makeIndex();
421       unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
422       Sz += buildSExpr(ASE->getIdx(), CallCtx);
423       NodeVec[Root].setSize(Sz);
424       return Sz;
425     } else if (const AbstractConditionalOperator *CE =
426                dyn_cast<AbstractConditionalOperator>(Exp)) {
427       unsigned Root = makeUnknown(3);
428       unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
429       Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
430       Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
431       NodeVec[Root].setSize(Sz);
432       return Sz;
433     } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
434       unsigned Root = makeUnknown(3);
435       unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
436       Sz += buildSExpr(CE->getLHS(), CallCtx);
437       Sz += buildSExpr(CE->getRHS(), CallCtx);
438       NodeVec[Root].setSize(Sz);
439       return Sz;
440     } else if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
441       return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
442     } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
443       return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
444     } else if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
445       return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
446     } else if (const CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
447       return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
448     } else if (isa<CharacterLiteral>(Exp) ||
449                isa<CXXNullPtrLiteralExpr>(Exp) ||
450                isa<GNUNullExpr>(Exp) ||
451                isa<CXXBoolLiteralExpr>(Exp) ||
452                isa<FloatingLiteral>(Exp) ||
453                isa<ImaginaryLiteral>(Exp) ||
454                isa<IntegerLiteral>(Exp) ||
455                isa<StringLiteral>(Exp) ||
456                isa<ObjCStringLiteral>(Exp)) {
457       makeNop();
458       return 1;  // FIXME: Ignore literals for now
459     } else {
460       makeNop();
461       return 1;  // Ignore.  FIXME: mark as invalid expression?
462     }
463   }
464
465   /// \brief Construct a SExpr from an expression.
466   /// \param MutexExp The original mutex expression within an attribute
467   /// \param DeclExp An expression involving the Decl on which the attribute
468   ///        occurs.
469   /// \param D  The declaration to which the lock/unlock attribute is attached.
470   void buildSExprFromExpr(const Expr *MutexExp, const Expr *DeclExp,
471                           const NamedDecl *D, VarDecl *SelfDecl = 0) {
472     CallingContext CallCtx(D);
473
474     if (MutexExp) {
475       if (const StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
476         if (SLit->getString() == StringRef("*"))
477           // The "*" expr is a universal lock, which essentially turns off
478           // checks until it is removed from the lockset.
479           makeUniversal();
480         else
481           // Ignore other string literals for now.
482           makeNop();
483         return;
484       }
485     }
486
487     // If we are processing a raw attribute expression, with no substitutions.
488     if (DeclExp == 0) {
489       buildSExpr(MutexExp, 0);
490       return;
491     }
492
493     // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
494     // for formal parameters when we call buildMutexID later.
495     if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
496       CallCtx.SelfArg   = ME->getBase();
497       CallCtx.SelfArrow = ME->isArrow();
498     } else if (const CXXMemberCallExpr *CE =
499                dyn_cast<CXXMemberCallExpr>(DeclExp)) {
500       CallCtx.SelfArg   = CE->getImplicitObjectArgument();
501       CallCtx.SelfArrow = dyn_cast<MemberExpr>(CE->getCallee())->isArrow();
502       CallCtx.NumArgs   = CE->getNumArgs();
503       CallCtx.FunArgs   = CE->getArgs();
504     } else if (const CallExpr *CE =
505                dyn_cast<CallExpr>(DeclExp)) {
506       CallCtx.NumArgs = CE->getNumArgs();
507       CallCtx.FunArgs = CE->getArgs();
508     } else if (const CXXConstructExpr *CE =
509                dyn_cast<CXXConstructExpr>(DeclExp)) {
510       CallCtx.SelfArg = 0;  // Will be set below
511       CallCtx.NumArgs = CE->getNumArgs();
512       CallCtx.FunArgs = CE->getArgs();
513     } else if (D && isa<CXXDestructorDecl>(D)) {
514       // There's no such thing as a "destructor call" in the AST.
515       CallCtx.SelfArg = DeclExp;
516     }
517
518     // Hack to handle constructors, where self cannot be recovered from
519     // the expression.
520     if (SelfDecl && !CallCtx.SelfArg) {
521       DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
522                           SelfDecl->getLocation());
523       CallCtx.SelfArg = &SelfDRE;
524
525       // If the attribute has no arguments, then assume the argument is "this".
526       if (MutexExp == 0)
527         buildSExpr(CallCtx.SelfArg, 0);
528       else  // For most attributes.
529         buildSExpr(MutexExp, &CallCtx);
530       return;
531     }
532
533     // If the attribute has no arguments, then assume the argument is "this".
534     if (MutexExp == 0)
535       buildSExpr(CallCtx.SelfArg, 0);
536     else  // For most attributes.
537       buildSExpr(MutexExp, &CallCtx);
538   }
539
540   /// \brief Get index of next sibling of node i.
541   unsigned getNextSibling(unsigned i) const {
542     return i + NodeVec[i].size();
543   }
544
545 public:
546   explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
547
548   /// \param MutexExp The original mutex expression within an attribute
549   /// \param DeclExp An expression involving the Decl on which the attribute
550   ///        occurs.
551   /// \param D  The declaration to which the lock/unlock attribute is attached.
552   /// Caller must check isValid() after construction.
553   SExpr(const Expr* MutexExp, const Expr *DeclExp, const NamedDecl* D,
554         VarDecl *SelfDecl=0) {
555     buildSExprFromExpr(MutexExp, DeclExp, D, SelfDecl);
556   }
557
558   /// Return true if this is a valid decl sequence.
559   /// Caller must call this by hand after construction to handle errors.
560   bool isValid() const {
561     return !NodeVec.empty();
562   }
563
564   bool shouldIgnore() const {
565     // Nop is a mutex that we have decided to deliberately ignore.
566     assert(NodeVec.size() > 0 && "Invalid Mutex");
567     return NodeVec[0].kind() == EOP_Nop;
568   }
569
570   bool isUniversal() const {
571     assert(NodeVec.size() > 0 && "Invalid Mutex");
572     return NodeVec[0].kind() == EOP_Universal;
573   }
574
575   /// Issue a warning about an invalid lock expression
576   static void warnInvalidLock(ThreadSafetyHandler &Handler,
577                               const Expr *MutexExp,
578                               const Expr *DeclExp, const NamedDecl* D) {
579     SourceLocation Loc;
580     if (DeclExp)
581       Loc = DeclExp->getExprLoc();
582
583     // FIXME: add a note about the attribute location in MutexExp or D
584     if (Loc.isValid())
585       Handler.handleInvalidLockExp(Loc);
586   }
587
588   bool operator==(const SExpr &other) const {
589     return NodeVec == other.NodeVec;
590   }
591
592   bool operator!=(const SExpr &other) const {
593     return !(*this == other);
594   }
595
596   bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
597     if (NodeVec[i].matches(Other.NodeVec[j])) {
598       unsigned ni = NodeVec[i].arity();
599       unsigned nj = Other.NodeVec[j].arity();
600       unsigned n = (ni < nj) ? ni : nj;
601       bool Result = true;
602       unsigned ci = i+1;  // first child of i
603       unsigned cj = j+1;  // first child of j
604       for (unsigned k = 0; k < n;
605            ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
606         Result = Result && matches(Other, ci, cj);
607       }
608       return Result;
609     }
610     return false;
611   }
612
613   // A partial match between a.mu and b.mu returns true a and b have the same
614   // type (and thus mu refers to the same mutex declaration), regardless of
615   // whether a and b are different objects or not.
616   bool partiallyMatches(const SExpr &Other) const {
617     if (NodeVec[0].kind() == EOP_Dot)
618       return NodeVec[0].matches(Other.NodeVec[0]);
619     return false;
620   }
621
622   /// \brief Pretty print a lock expression for use in error messages.
623   std::string toString(unsigned i = 0) const {
624     assert(isValid());
625     if (i >= NodeVec.size())
626       return "";
627
628     const SExprNode* N = &NodeVec[i];
629     switch (N->kind()) {
630       case EOP_Nop:
631         return "_";
632       case EOP_Wildcard:
633         return "(?)";
634       case EOP_Universal:
635         return "*";
636       case EOP_This:
637         return "this";
638       case EOP_NVar:
639       case EOP_LVar: {
640         return N->getNamedDecl()->getNameAsString();
641       }
642       case EOP_Dot: {
643         if (NodeVec[i+1].kind() == EOP_Wildcard) {
644           std::string S = "&";
645           S += N->getNamedDecl()->getQualifiedNameAsString();
646           return S;
647         }
648         std::string FieldName = N->getNamedDecl()->getNameAsString();
649         if (NodeVec[i+1].kind() == EOP_This)
650           return FieldName;
651
652         std::string S = toString(i+1);
653         if (N->isArrow())
654           return S + "->" + FieldName;
655         else
656           return S + "." + FieldName;
657       }
658       case EOP_Call: {
659         std::string S = toString(i+1) + "(";
660         unsigned NumArgs = N->arity()-1;
661         unsigned ci = getNextSibling(i+1);
662         for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
663           S += toString(ci);
664           if (k+1 < NumArgs) S += ",";
665         }
666         S += ")";
667         return S;
668       }
669       case EOP_MCall: {
670         std::string S = "";
671         if (NodeVec[i+1].kind() != EOP_This)
672           S = toString(i+1) + ".";
673         if (const NamedDecl *D = N->getFunctionDecl())
674           S += D->getNameAsString() + "(";
675         else
676           S += "#(";
677         unsigned NumArgs = N->arity()-1;
678         unsigned ci = getNextSibling(i+1);
679         for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
680           S += toString(ci);
681           if (k+1 < NumArgs) S += ",";
682         }
683         S += ")";
684         return S;
685       }
686       case EOP_Index: {
687         std::string S1 = toString(i+1);
688         std::string S2 = toString(i+1 + NodeVec[i+1].size());
689         return S1 + "[" + S2 + "]";
690       }
691       case EOP_Unary: {
692         std::string S = toString(i+1);
693         return "#" + S;
694       }
695       case EOP_Binary: {
696         std::string S1 = toString(i+1);
697         std::string S2 = toString(i+1 + NodeVec[i+1].size());
698         return "(" + S1 + "#" + S2 + ")";
699       }
700       case EOP_Unknown: {
701         unsigned NumChildren = N->arity();
702         if (NumChildren == 0)
703           return "(...)";
704         std::string S = "(";
705         unsigned ci = i+1;
706         for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
707           S += toString(ci);
708           if (j+1 < NumChildren) S += "#";
709         }
710         S += ")";
711         return S;
712       }
713     }
714     return "";
715   }
716 };
717
718
719
720 /// \brief A short list of SExprs
721 class MutexIDList : public SmallVector<SExpr, 3> {
722 public:
723   /// \brief Return true if the list contains the specified SExpr
724   /// Performs a linear search, because these lists are almost always very small.
725   bool contains(const SExpr& M) {
726     for (iterator I=begin(),E=end(); I != E; ++I)
727       if ((*I) == M) return true;
728     return false;
729   }
730
731   /// \brief Push M onto list, bud discard duplicates
732   void push_back_nodup(const SExpr& M) {
733     if (!contains(M)) push_back(M);
734   }
735 };
736
737
738
739 /// \brief This is a helper class that stores info about the most recent
740 /// accquire of a Lock.
741 ///
742 /// The main body of the analysis maps MutexIDs to LockDatas.
743 struct LockData {
744   SourceLocation AcquireLoc;
745
746   /// \brief LKind stores whether a lock is held shared or exclusively.
747   /// Note that this analysis does not currently support either re-entrant
748   /// locking or lock "upgrading" and "downgrading" between exclusive and
749   /// shared.
750   ///
751   /// FIXME: add support for re-entrant locking and lock up/downgrading
752   LockKind LKind;
753   bool     Managed;            // for ScopedLockable objects
754   SExpr    UnderlyingMutex;    // for ScopedLockable objects
755
756   LockData(SourceLocation AcquireLoc, LockKind LKind, bool M = false)
757     : AcquireLoc(AcquireLoc), LKind(LKind), Managed(M),
758       UnderlyingMutex(Decl::EmptyShell())
759   {}
760
761   LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
762     : AcquireLoc(AcquireLoc), LKind(LKind), Managed(false),
763       UnderlyingMutex(Mu)
764   {}
765
766   bool operator==(const LockData &other) const {
767     return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
768   }
769
770   bool operator!=(const LockData &other) const {
771     return !(*this == other);
772   }
773
774   void Profile(llvm::FoldingSetNodeID &ID) const {
775     ID.AddInteger(AcquireLoc.getRawEncoding());
776     ID.AddInteger(LKind);
777   }
778
779   bool isAtLeast(LockKind LK) {
780     return (LK == LK_Shared) || (LKind == LK_Exclusive);
781   }
782 };
783
784
785 /// \brief A FactEntry stores a single fact that is known at a particular point
786 /// in the program execution.  Currently, this is information regarding a lock
787 /// that is held at that point.
788 struct FactEntry {
789   SExpr    MutID;
790   LockData LDat;
791
792   FactEntry(const SExpr& M, const LockData& L)
793     : MutID(M), LDat(L)
794   { }
795 };
796
797
798 typedef unsigned short FactID;
799
800 /// \brief FactManager manages the memory for all facts that are created during
801 /// the analysis of a single routine.
802 class FactManager {
803 private:
804   std::vector<FactEntry> Facts;
805
806 public:
807   FactID newLock(const SExpr& M, const LockData& L) {
808     Facts.push_back(FactEntry(M,L));
809     return static_cast<unsigned short>(Facts.size() - 1);
810   }
811
812   const FactEntry& operator[](FactID F) const { return Facts[F]; }
813   FactEntry&       operator[](FactID F)       { return Facts[F]; }
814 };
815
816
817 /// \brief A FactSet is the set of facts that are known to be true at a
818 /// particular program point.  FactSets must be small, because they are
819 /// frequently copied, and are thus implemented as a set of indices into a
820 /// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
821 /// locks, so we can get away with doing a linear search for lookup.  Note
822 /// that a hashtable or map is inappropriate in this case, because lookups
823 /// may involve partial pattern matches, rather than exact matches.
824 class FactSet {
825 private:
826   typedef SmallVector<FactID, 4> FactVec;
827
828   FactVec FactIDs;
829
830 public:
831   typedef FactVec::iterator       iterator;
832   typedef FactVec::const_iterator const_iterator;
833
834   iterator       begin()       { return FactIDs.begin(); }
835   const_iterator begin() const { return FactIDs.begin(); }
836
837   iterator       end()       { return FactIDs.end(); }
838   const_iterator end() const { return FactIDs.end(); }
839
840   bool isEmpty() const { return FactIDs.size() == 0; }
841
842   FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
843     FactID F = FM.newLock(M, L);
844     FactIDs.push_back(F);
845     return F;
846   }
847
848   bool removeLock(FactManager& FM, const SExpr& M) {
849     unsigned n = FactIDs.size();
850     if (n == 0)
851       return false;
852
853     for (unsigned i = 0; i < n-1; ++i) {
854       if (FM[FactIDs[i]].MutID.matches(M)) {
855         FactIDs[i] = FactIDs[n-1];
856         FactIDs.pop_back();
857         return true;
858       }
859     }
860     if (FM[FactIDs[n-1]].MutID.matches(M)) {
861       FactIDs.pop_back();
862       return true;
863     }
864     return false;
865   }
866
867   LockData* findLock(FactManager &FM, const SExpr &M) const {
868     for (const_iterator I = begin(), E = end(); I != E; ++I) {
869       const SExpr &Exp = FM[*I].MutID;
870       if (Exp.matches(M))
871         return &FM[*I].LDat;
872     }
873     return 0;
874   }
875
876   LockData* findLockUniv(FactManager &FM, const SExpr &M) const {
877     for (const_iterator I = begin(), E = end(); I != E; ++I) {
878       const SExpr &Exp = FM[*I].MutID;
879       if (Exp.matches(M) || Exp.isUniversal())
880         return &FM[*I].LDat;
881     }
882     return 0;
883   }
884
885   FactEntry* findPartialMatch(FactManager &FM, const SExpr &M) const {
886     for (const_iterator I=begin(), E=end(); I != E; ++I) {
887       const SExpr& Exp = FM[*I].MutID;
888       if (Exp.partiallyMatches(M)) return &FM[*I];
889     }
890     return 0;
891   }
892 };
893
894
895
896 /// A Lockset maps each SExpr (defined above) to information about how it has
897 /// been locked.
898 typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
899 typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
900
901 class LocalVariableMap;
902
903 /// A side (entry or exit) of a CFG node.
904 enum CFGBlockSide { CBS_Entry, CBS_Exit };
905
906 /// CFGBlockInfo is a struct which contains all the information that is
907 /// maintained for each block in the CFG.  See LocalVariableMap for more
908 /// information about the contexts.
909 struct CFGBlockInfo {
910   FactSet EntrySet;             // Lockset held at entry to block
911   FactSet ExitSet;              // Lockset held at exit from block
912   LocalVarContext EntryContext; // Context held at entry to block
913   LocalVarContext ExitContext;  // Context held at exit from block
914   SourceLocation EntryLoc;      // Location of first statement in block
915   SourceLocation ExitLoc;       // Location of last statement in block.
916   unsigned EntryIndex;          // Used to replay contexts later
917   bool Reachable;               // Is this block reachable?
918
919   const FactSet &getSet(CFGBlockSide Side) const {
920     return Side == CBS_Entry ? EntrySet : ExitSet;
921   }
922   SourceLocation getLocation(CFGBlockSide Side) const {
923     return Side == CBS_Entry ? EntryLoc : ExitLoc;
924   }
925
926 private:
927   CFGBlockInfo(LocalVarContext EmptyCtx)
928     : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false)
929   { }
930
931 public:
932   static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
933 };
934
935
936
937 // A LocalVariableMap maintains a map from local variables to their currently
938 // valid definitions.  It provides SSA-like functionality when traversing the
939 // CFG.  Like SSA, each definition or assignment to a variable is assigned a
940 // unique name (an integer), which acts as the SSA name for that definition.
941 // The total set of names is shared among all CFG basic blocks.
942 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
943 // with their SSA-names.  Instead, we compute a Context for each point in the
944 // code, which maps local variables to the appropriate SSA-name.  This map
945 // changes with each assignment.
946 //
947 // The map is computed in a single pass over the CFG.  Subsequent analyses can
948 // then query the map to find the appropriate Context for a statement, and use
949 // that Context to look up the definitions of variables.
950 class LocalVariableMap {
951 public:
952   typedef LocalVarContext Context;
953
954   /// A VarDefinition consists of an expression, representing the value of the
955   /// variable, along with the context in which that expression should be
956   /// interpreted.  A reference VarDefinition does not itself contain this
957   /// information, but instead contains a pointer to a previous VarDefinition.
958   struct VarDefinition {
959   public:
960     friend class LocalVariableMap;
961
962     const NamedDecl *Dec;  // The original declaration for this variable.
963     const Expr *Exp;       // The expression for this variable, OR
964     unsigned Ref;          // Reference to another VarDefinition
965     Context Ctx;           // The map with which Exp should be interpreted.
966
967     bool isReference() { return !Exp; }
968
969   private:
970     // Create ordinary variable definition
971     VarDefinition(const NamedDecl *D, const Expr *E, Context C)
972       : Dec(D), Exp(E), Ref(0), Ctx(C)
973     { }
974
975     // Create reference to previous definition
976     VarDefinition(const NamedDecl *D, unsigned R, Context C)
977       : Dec(D), Exp(0), Ref(R), Ctx(C)
978     { }
979   };
980
981 private:
982   Context::Factory ContextFactory;
983   std::vector<VarDefinition> VarDefinitions;
984   std::vector<unsigned> CtxIndices;
985   std::vector<std::pair<Stmt*, Context> > SavedContexts;
986
987 public:
988   LocalVariableMap() {
989     // index 0 is a placeholder for undefined variables (aka phi-nodes).
990     VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
991   }
992
993   /// Look up a definition, within the given context.
994   const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
995     const unsigned *i = Ctx.lookup(D);
996     if (!i)
997       return 0;
998     assert(*i < VarDefinitions.size());
999     return &VarDefinitions[*i];
1000   }
1001
1002   /// Look up the definition for D within the given context.  Returns
1003   /// NULL if the expression is not statically known.  If successful, also
1004   /// modifies Ctx to hold the context of the return Expr.
1005   const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
1006     const unsigned *P = Ctx.lookup(D);
1007     if (!P)
1008       return 0;
1009
1010     unsigned i = *P;
1011     while (i > 0) {
1012       if (VarDefinitions[i].Exp) {
1013         Ctx = VarDefinitions[i].Ctx;
1014         return VarDefinitions[i].Exp;
1015       }
1016       i = VarDefinitions[i].Ref;
1017     }
1018     return 0;
1019   }
1020
1021   Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
1022
1023   /// Return the next context after processing S.  This function is used by
1024   /// clients of the class to get the appropriate context when traversing the
1025   /// CFG.  It must be called for every assignment or DeclStmt.
1026   Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
1027     if (SavedContexts[CtxIndex+1].first == S) {
1028       CtxIndex++;
1029       Context Result = SavedContexts[CtxIndex].second;
1030       return Result;
1031     }
1032     return C;
1033   }
1034
1035   void dumpVarDefinitionName(unsigned i) {
1036     if (i == 0) {
1037       llvm::errs() << "Undefined";
1038       return;
1039     }
1040     const NamedDecl *Dec = VarDefinitions[i].Dec;
1041     if (!Dec) {
1042       llvm::errs() << "<<NULL>>";
1043       return;
1044     }
1045     Dec->printName(llvm::errs());
1046     llvm::errs() << "." << i << " " << ((const void*) Dec);
1047   }
1048
1049   /// Dumps an ASCII representation of the variable map to llvm::errs()
1050   void dump() {
1051     for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
1052       const Expr *Exp = VarDefinitions[i].Exp;
1053       unsigned Ref = VarDefinitions[i].Ref;
1054
1055       dumpVarDefinitionName(i);
1056       llvm::errs() << " = ";
1057       if (Exp) Exp->dump();
1058       else {
1059         dumpVarDefinitionName(Ref);
1060         llvm::errs() << "\n";
1061       }
1062     }
1063   }
1064
1065   /// Dumps an ASCII representation of a Context to llvm::errs()
1066   void dumpContext(Context C) {
1067     for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1068       const NamedDecl *D = I.getKey();
1069       D->printName(llvm::errs());
1070       const unsigned *i = C.lookup(D);
1071       llvm::errs() << " -> ";
1072       dumpVarDefinitionName(*i);
1073       llvm::errs() << "\n";
1074     }
1075   }
1076
1077   /// Builds the variable map.
1078   void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
1079                      std::vector<CFGBlockInfo> &BlockInfo);
1080
1081 protected:
1082   // Get the current context index
1083   unsigned getContextIndex() { return SavedContexts.size()-1; }
1084
1085   // Save the current context for later replay
1086   void saveContext(Stmt *S, Context C) {
1087     SavedContexts.push_back(std::make_pair(S,C));
1088   }
1089
1090   // Adds a new definition to the given context, and returns a new context.
1091   // This method should be called when declaring a new variable.
1092   Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1093     assert(!Ctx.contains(D));
1094     unsigned newID = VarDefinitions.size();
1095     Context NewCtx = ContextFactory.add(Ctx, D, newID);
1096     VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1097     return NewCtx;
1098   }
1099
1100   // Add a new reference to an existing definition.
1101   Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
1102     unsigned newID = VarDefinitions.size();
1103     Context NewCtx = ContextFactory.add(Ctx, D, newID);
1104     VarDefinitions.push_back(VarDefinition(D, i, Ctx));
1105     return NewCtx;
1106   }
1107
1108   // Updates a definition only if that definition is already in the map.
1109   // This method should be called when assigning to an existing variable.
1110   Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1111     if (Ctx.contains(D)) {
1112       unsigned newID = VarDefinitions.size();
1113       Context NewCtx = ContextFactory.remove(Ctx, D);
1114       NewCtx = ContextFactory.add(NewCtx, D, newID);
1115       VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1116       return NewCtx;
1117     }
1118     return Ctx;
1119   }
1120
1121   // Removes a definition from the context, but keeps the variable name
1122   // as a valid variable.  The index 0 is a placeholder for cleared definitions.
1123   Context clearDefinition(const NamedDecl *D, Context Ctx) {
1124     Context NewCtx = Ctx;
1125     if (NewCtx.contains(D)) {
1126       NewCtx = ContextFactory.remove(NewCtx, D);
1127       NewCtx = ContextFactory.add(NewCtx, D, 0);
1128     }
1129     return NewCtx;
1130   }
1131
1132   // Remove a definition entirely frmo the context.
1133   Context removeDefinition(const NamedDecl *D, Context Ctx) {
1134     Context NewCtx = Ctx;
1135     if (NewCtx.contains(D)) {
1136       NewCtx = ContextFactory.remove(NewCtx, D);
1137     }
1138     return NewCtx;
1139   }
1140
1141   Context intersectContexts(Context C1, Context C2);
1142   Context createReferenceContext(Context C);
1143   void intersectBackEdge(Context C1, Context C2);
1144
1145   friend class VarMapBuilder;
1146 };
1147
1148
1149 // This has to be defined after LocalVariableMap.
1150 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
1151   return CFGBlockInfo(M.getEmptyContext());
1152 }
1153
1154
1155 /// Visitor which builds a LocalVariableMap
1156 class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
1157 public:
1158   LocalVariableMap* VMap;
1159   LocalVariableMap::Context Ctx;
1160
1161   VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
1162     : VMap(VM), Ctx(C) {}
1163
1164   void VisitDeclStmt(DeclStmt *S);
1165   void VisitBinaryOperator(BinaryOperator *BO);
1166 };
1167
1168
1169 // Add new local variables to the variable map
1170 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
1171   bool modifiedCtx = false;
1172   DeclGroupRef DGrp = S->getDeclGroup();
1173   for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1174     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
1175       Expr *E = VD->getInit();
1176
1177       // Add local variables with trivial type to the variable map
1178       QualType T = VD->getType();
1179       if (T.isTrivialType(VD->getASTContext())) {
1180         Ctx = VMap->addDefinition(VD, E, Ctx);
1181         modifiedCtx = true;
1182       }
1183     }
1184   }
1185   if (modifiedCtx)
1186     VMap->saveContext(S, Ctx);
1187 }
1188
1189 // Update local variable definitions in variable map
1190 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
1191   if (!BO->isAssignmentOp())
1192     return;
1193
1194   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1195
1196   // Update the variable map and current context.
1197   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
1198     ValueDecl *VDec = DRE->getDecl();
1199     if (Ctx.lookup(VDec)) {
1200       if (BO->getOpcode() == BO_Assign)
1201         Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
1202       else
1203         // FIXME -- handle compound assignment operators
1204         Ctx = VMap->clearDefinition(VDec, Ctx);
1205       VMap->saveContext(BO, Ctx);
1206     }
1207   }
1208 }
1209
1210
1211 // Computes the intersection of two contexts.  The intersection is the
1212 // set of variables which have the same definition in both contexts;
1213 // variables with different definitions are discarded.
1214 LocalVariableMap::Context
1215 LocalVariableMap::intersectContexts(Context C1, Context C2) {
1216   Context Result = C1;
1217   for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1218     const NamedDecl *Dec = I.getKey();
1219     unsigned i1 = I.getData();
1220     const unsigned *i2 = C2.lookup(Dec);
1221     if (!i2)             // variable doesn't exist on second path
1222       Result = removeDefinition(Dec, Result);
1223     else if (*i2 != i1)  // variable exists, but has different definition
1224       Result = clearDefinition(Dec, Result);
1225   }
1226   return Result;
1227 }
1228
1229 // For every variable in C, create a new variable that refers to the
1230 // definition in C.  Return a new context that contains these new variables.
1231 // (We use this for a naive implementation of SSA on loop back-edges.)
1232 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
1233   Context Result = getEmptyContext();
1234   for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1235     const NamedDecl *Dec = I.getKey();
1236     unsigned i = I.getData();
1237     Result = addReference(Dec, i, Result);
1238   }
1239   return Result;
1240 }
1241
1242 // This routine also takes the intersection of C1 and C2, but it does so by
1243 // altering the VarDefinitions.  C1 must be the result of an earlier call to
1244 // createReferenceContext.
1245 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
1246   for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1247     const NamedDecl *Dec = I.getKey();
1248     unsigned i1 = I.getData();
1249     VarDefinition *VDef = &VarDefinitions[i1];
1250     assert(VDef->isReference());
1251
1252     const unsigned *i2 = C2.lookup(Dec);
1253     if (!i2 || (*i2 != i1))
1254       VDef->Ref = 0;    // Mark this variable as undefined
1255   }
1256 }
1257
1258
1259 // Traverse the CFG in topological order, so all predecessors of a block
1260 // (excluding back-edges) are visited before the block itself.  At
1261 // each point in the code, we calculate a Context, which holds the set of
1262 // variable definitions which are visible at that point in execution.
1263 // Visible variables are mapped to their definitions using an array that
1264 // contains all definitions.
1265 //
1266 // At join points in the CFG, the set is computed as the intersection of
1267 // the incoming sets along each edge, E.g.
1268 //
1269 //                       { Context                 | VarDefinitions }
1270 //   int x = 0;          { x -> x1                 | x1 = 0 }
1271 //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
1272 //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
1273 //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
1274 //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
1275 //
1276 // This is essentially a simpler and more naive version of the standard SSA
1277 // algorithm.  Those definitions that remain in the intersection are from blocks
1278 // that strictly dominate the current block.  We do not bother to insert proper
1279 // phi nodes, because they are not used in our analysis; instead, wherever
1280 // a phi node would be required, we simply remove that definition from the
1281 // context (E.g. x above).
1282 //
1283 // The initial traversal does not capture back-edges, so those need to be
1284 // handled on a separate pass.  Whenever the first pass encounters an
1285 // incoming back edge, it duplicates the context, creating new definitions
1286 // that refer back to the originals.  (These correspond to places where SSA
1287 // might have to insert a phi node.)  On the second pass, these definitions are
1288 // set to NULL if the variable has changed on the back-edge (i.e. a phi
1289 // node was actually required.)  E.g.
1290 //
1291 //                       { Context           | VarDefinitions }
1292 //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
1293 //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
1294 //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
1295 //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
1296 //
1297 void LocalVariableMap::traverseCFG(CFG *CFGraph,
1298                                    PostOrderCFGView *SortedGraph,
1299                                    std::vector<CFGBlockInfo> &BlockInfo) {
1300   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1301
1302   CtxIndices.resize(CFGraph->getNumBlockIDs());
1303
1304   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1305        E = SortedGraph->end(); I!= E; ++I) {
1306     const CFGBlock *CurrBlock = *I;
1307     int CurrBlockID = CurrBlock->getBlockID();
1308     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1309
1310     VisitedBlocks.insert(CurrBlock);
1311
1312     // Calculate the entry context for the current block
1313     bool HasBackEdges = false;
1314     bool CtxInit = true;
1315     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1316          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1317       // if *PI -> CurrBlock is a back edge, so skip it
1318       if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
1319         HasBackEdges = true;
1320         continue;
1321       }
1322
1323       int PrevBlockID = (*PI)->getBlockID();
1324       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1325
1326       if (CtxInit) {
1327         CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
1328         CtxInit = false;
1329       }
1330       else {
1331         CurrBlockInfo->EntryContext =
1332           intersectContexts(CurrBlockInfo->EntryContext,
1333                             PrevBlockInfo->ExitContext);
1334       }
1335     }
1336
1337     // Duplicate the context if we have back-edges, so we can call
1338     // intersectBackEdges later.
1339     if (HasBackEdges)
1340       CurrBlockInfo->EntryContext =
1341         createReferenceContext(CurrBlockInfo->EntryContext);
1342
1343     // Create a starting context index for the current block
1344     saveContext(0, CurrBlockInfo->EntryContext);
1345     CurrBlockInfo->EntryIndex = getContextIndex();
1346
1347     // Visit all the statements in the basic block.
1348     VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
1349     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1350          BE = CurrBlock->end(); BI != BE; ++BI) {
1351       switch (BI->getKind()) {
1352         case CFGElement::Statement: {
1353           CFGStmt CS = BI->castAs<CFGStmt>();
1354           VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
1355           break;
1356         }
1357         default:
1358           break;
1359       }
1360     }
1361     CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
1362
1363     // Mark variables on back edges as "unknown" if they've been changed.
1364     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1365          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
1366       // if CurrBlock -> *SI is *not* a back edge
1367       if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1368         continue;
1369
1370       CFGBlock *FirstLoopBlock = *SI;
1371       Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
1372       Context LoopEnd   = CurrBlockInfo->ExitContext;
1373       intersectBackEdge(LoopBegin, LoopEnd);
1374     }
1375   }
1376
1377   // Put an extra entry at the end of the indexed context array
1378   unsigned exitID = CFGraph->getExit().getBlockID();
1379   saveContext(0, BlockInfo[exitID].ExitContext);
1380 }
1381
1382 /// Find the appropriate source locations to use when producing diagnostics for
1383 /// each block in the CFG.
1384 static void findBlockLocations(CFG *CFGraph,
1385                                PostOrderCFGView *SortedGraph,
1386                                std::vector<CFGBlockInfo> &BlockInfo) {
1387   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1388        E = SortedGraph->end(); I!= E; ++I) {
1389     const CFGBlock *CurrBlock = *I;
1390     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
1391
1392     // Find the source location of the last statement in the block, if the
1393     // block is not empty.
1394     if (const Stmt *S = CurrBlock->getTerminator()) {
1395       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
1396     } else {
1397       for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
1398            BE = CurrBlock->rend(); BI != BE; ++BI) {
1399         // FIXME: Handle other CFGElement kinds.
1400         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
1401           CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
1402           break;
1403         }
1404       }
1405     }
1406
1407     if (!CurrBlockInfo->ExitLoc.isInvalid()) {
1408       // This block contains at least one statement. Find the source location
1409       // of the first statement in the block.
1410       for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1411            BE = CurrBlock->end(); BI != BE; ++BI) {
1412         // FIXME: Handle other CFGElement kinds.
1413         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
1414           CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
1415           break;
1416         }
1417       }
1418     } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
1419                CurrBlock != &CFGraph->getExit()) {
1420       // The block is empty, and has a single predecessor. Use its exit
1421       // location.
1422       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
1423           BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
1424     }
1425   }
1426 }
1427
1428 /// \brief Class which implements the core thread safety analysis routines.
1429 class ThreadSafetyAnalyzer {
1430   friend class BuildLockset;
1431
1432   ThreadSafetyHandler       &Handler;
1433   LocalVariableMap          LocalVarMap;
1434   FactManager               FactMan;
1435   std::vector<CFGBlockInfo> BlockInfo;
1436
1437 public:
1438   ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
1439
1440   void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat);
1441   void removeLock(FactSet &FSet, const SExpr &Mutex,
1442                   SourceLocation UnlockLoc, bool FullyRemove=false);
1443
1444   template <typename AttrType>
1445   void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1446                    const NamedDecl *D, VarDecl *SelfDecl=0);
1447
1448   template <class AttrType>
1449   void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1450                    const NamedDecl *D,
1451                    const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1452                    Expr *BrE, bool Neg);
1453
1454   const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1455                                      bool &Negate);
1456
1457   void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1458                       const CFGBlock* PredBlock,
1459                       const CFGBlock *CurrBlock);
1460
1461   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1462                         SourceLocation JoinLoc,
1463                         LockErrorKind LEK1, LockErrorKind LEK2,
1464                         bool Modify=true);
1465
1466   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1467                         SourceLocation JoinLoc, LockErrorKind LEK1,
1468                         bool Modify=true) {
1469     intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
1470   }
1471
1472   void runAnalysis(AnalysisDeclContext &AC);
1473 };
1474
1475
1476 /// \brief Add a new lock to the lockset, warning if the lock is already there.
1477 /// \param Mutex -- the Mutex expression for the lock
1478 /// \param LDat  -- the LockData for the lock
1479 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
1480                                    const LockData &LDat) {
1481   // FIXME: deal with acquired before/after annotations.
1482   // FIXME: Don't always warn when we have support for reentrant locks.
1483   if (Mutex.shouldIgnore())
1484     return;
1485
1486   if (FSet.findLock(FactMan, Mutex)) {
1487     Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc);
1488   } else {
1489     FSet.addLock(FactMan, Mutex, LDat);
1490   }
1491 }
1492
1493
1494 /// \brief Remove a lock from the lockset, warning if the lock is not there.
1495 /// \param Mutex The lock expression corresponding to the lock to be removed
1496 /// \param UnlockLoc The source location of the unlock (only used in error msg)
1497 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet,
1498                                       const SExpr &Mutex,
1499                                       SourceLocation UnlockLoc,
1500                                       bool FullyRemove) {
1501   if (Mutex.shouldIgnore())
1502     return;
1503
1504   const LockData *LDat = FSet.findLock(FactMan, Mutex);
1505   if (!LDat) {
1506     Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc);
1507     return;
1508   }
1509
1510   if (LDat->UnderlyingMutex.isValid()) {
1511     // This is scoped lockable object, which manages the real mutex.
1512     if (FullyRemove) {
1513       // We're destroying the managing object.
1514       // Remove the underlying mutex if it exists; but don't warn.
1515       if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
1516         FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1517     } else {
1518       // We're releasing the underlying mutex, but not destroying the
1519       // managing object.  Warn on dual release.
1520       if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
1521         Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(),
1522                                       UnlockLoc);
1523       }
1524       FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1525       return;
1526     }
1527   }
1528   FSet.removeLock(FactMan, Mutex);
1529 }
1530
1531
1532 /// \brief Extract the list of mutexIDs from the attribute on an expression,
1533 /// and push them onto Mtxs, discarding any duplicates.
1534 template <typename AttrType>
1535 void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1536                                        Expr *Exp, const NamedDecl *D,
1537                                        VarDecl *SelfDecl) {
1538   typedef typename AttrType::args_iterator iterator_type;
1539
1540   if (Attr->args_size() == 0) {
1541     // The mutex held is the "this" object.
1542     SExpr Mu(0, Exp, D, SelfDecl);
1543     if (!Mu.isValid())
1544       SExpr::warnInvalidLock(Handler, 0, Exp, D);
1545     else
1546       Mtxs.push_back_nodup(Mu);
1547     return;
1548   }
1549
1550   for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
1551     SExpr Mu(*I, Exp, D, SelfDecl);
1552     if (!Mu.isValid())
1553       SExpr::warnInvalidLock(Handler, *I, Exp, D);
1554     else
1555       Mtxs.push_back_nodup(Mu);
1556   }
1557 }
1558
1559
1560 /// \brief Extract the list of mutexIDs from a trylock attribute.  If the
1561 /// trylock applies to the given edge, then push them onto Mtxs, discarding
1562 /// any duplicates.
1563 template <class AttrType>
1564 void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1565                                        Expr *Exp, const NamedDecl *D,
1566                                        const CFGBlock *PredBlock,
1567                                        const CFGBlock *CurrBlock,
1568                                        Expr *BrE, bool Neg) {
1569   // Find out which branch has the lock
1570   bool branch = 0;
1571   if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1572     branch = BLE->getValue();
1573   }
1574   else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1575     branch = ILE->getValue().getBoolValue();
1576   }
1577   int branchnum = branch ? 0 : 1;
1578   if (Neg) branchnum = !branchnum;
1579
1580   // If we've taken the trylock branch, then add the lock
1581   int i = 0;
1582   for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1583        SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1584     if (*SI == CurrBlock && i == branchnum) {
1585       getMutexIDs(Mtxs, Attr, Exp, D);
1586     }
1587   }
1588 }
1589
1590
1591 bool getStaticBooleanValue(Expr* E, bool& TCond) {
1592   if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1593     TCond = false;
1594     return true;
1595   } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1596     TCond = BLE->getValue();
1597     return true;
1598   } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
1599     TCond = ILE->getValue().getBoolValue();
1600     return true;
1601   } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1602     return getStaticBooleanValue(CE->getSubExpr(), TCond);
1603   }
1604   return false;
1605 }
1606
1607
1608 // If Cond can be traced back to a function call, return the call expression.
1609 // The negate variable should be called with false, and will be set to true
1610 // if the function call is negated, e.g. if (!mu.tryLock(...))
1611 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1612                                                          LocalVarContext C,
1613                                                          bool &Negate) {
1614   if (!Cond)
1615     return 0;
1616
1617   if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1618     return CallExp;
1619   }
1620   else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
1621     return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1622   }
1623   else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1624     return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1625   }
1626   else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
1627     return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
1628   }
1629   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1630     const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1631     return getTrylockCallExpr(E, C, Negate);
1632   }
1633   else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1634     if (UOP->getOpcode() == UO_LNot) {
1635       Negate = !Negate;
1636       return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1637     }
1638     return 0;
1639   }
1640   else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
1641     if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1642       if (BOP->getOpcode() == BO_NE)
1643         Negate = !Negate;
1644
1645       bool TCond = false;
1646       if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1647         if (!TCond) Negate = !Negate;
1648         return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1649       }
1650       else if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1651         if (!TCond) Negate = !Negate;
1652         return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1653       }
1654       return 0;
1655     }
1656     return 0;
1657   }
1658   // FIXME -- handle && and || as well.
1659   return 0;
1660 }
1661
1662
1663 /// \brief Find the lockset that holds on the edge between PredBlock
1664 /// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1665 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1666 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1667                                           const FactSet &ExitSet,
1668                                           const CFGBlock *PredBlock,
1669                                           const CFGBlock *CurrBlock) {
1670   Result = ExitSet;
1671
1672   if (!PredBlock->getTerminatorCondition())
1673     return;
1674
1675   bool Negate = false;
1676   const Stmt *Cond = PredBlock->getTerminatorCondition();
1677   const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1678   const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1679
1680   CallExpr *Exp =
1681     const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
1682   if (!Exp)
1683     return;
1684
1685   NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1686   if(!FunDecl || !FunDecl->hasAttrs())
1687     return;
1688
1689
1690   MutexIDList ExclusiveLocksToAdd;
1691   MutexIDList SharedLocksToAdd;
1692
1693   // If the condition is a call to a Trylock function, then grab the attributes
1694   AttrVec &ArgAttrs = FunDecl->getAttrs();
1695   for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1696     Attr *Attr = ArgAttrs[i];
1697     switch (Attr->getKind()) {
1698       case attr::ExclusiveTrylockFunction: {
1699         ExclusiveTrylockFunctionAttr *A =
1700           cast<ExclusiveTrylockFunctionAttr>(Attr);
1701         getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1702                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1703         break;
1704       }
1705       case attr::SharedTrylockFunction: {
1706         SharedTrylockFunctionAttr *A =
1707           cast<SharedTrylockFunctionAttr>(Attr);
1708         getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
1709                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1710         break;
1711       }
1712       default:
1713         break;
1714     }
1715   }
1716
1717   // Add and remove locks.
1718   SourceLocation Loc = Exp->getExprLoc();
1719   for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1720     addLock(Result, ExclusiveLocksToAdd[i],
1721             LockData(Loc, LK_Exclusive));
1722   }
1723   for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1724     addLock(Result, SharedLocksToAdd[i],
1725             LockData(Loc, LK_Shared));
1726   }
1727 }
1728
1729
1730 /// \brief We use this class to visit different types of expressions in
1731 /// CFGBlocks, and build up the lockset.
1732 /// An expression may cause us to add or remove locks from the lockset, or else
1733 /// output error messages related to missing locks.
1734 /// FIXME: In future, we may be able to not inherit from a visitor.
1735 class BuildLockset : public StmtVisitor<BuildLockset> {
1736   friend class ThreadSafetyAnalyzer;
1737
1738   ThreadSafetyAnalyzer *Analyzer;
1739   FactSet FSet;
1740   LocalVariableMap::Context LVarCtx;
1741   unsigned CtxIndex;
1742
1743   // Helper functions
1744   const ValueDecl *getValueDecl(const Expr *Exp);
1745
1746   void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
1747                           Expr *MutexExp, ProtectedOperationKind POK);
1748   void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp);
1749
1750   void checkAccess(const Expr *Exp, AccessKind AK);
1751   void checkPtAccess(const Expr *Exp, AccessKind AK);
1752
1753   void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0);
1754
1755 public:
1756   BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1757     : StmtVisitor<BuildLockset>(),
1758       Analyzer(Anlzr),
1759       FSet(Info.EntrySet),
1760       LVarCtx(Info.EntryContext),
1761       CtxIndex(Info.EntryIndex)
1762   {}
1763
1764   void VisitUnaryOperator(UnaryOperator *UO);
1765   void VisitBinaryOperator(BinaryOperator *BO);
1766   void VisitCastExpr(CastExpr *CE);
1767   void VisitCallExpr(CallExpr *Exp);
1768   void VisitCXXConstructExpr(CXXConstructExpr *Exp);
1769   void VisitDeclStmt(DeclStmt *S);
1770 };
1771
1772
1773 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
1774 const ValueDecl *BuildLockset::getValueDecl(const Expr *Exp) {
1775   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Exp))
1776     return getValueDecl(CE->getSubExpr());
1777
1778   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1779     return DR->getDecl();
1780
1781   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1782     return ME->getMemberDecl();
1783
1784   return 0;
1785 }
1786
1787 /// \brief Warn if the LSet does not contain a lock sufficient to protect access
1788 /// of at least the passed in AccessKind.
1789 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
1790                                       AccessKind AK, Expr *MutexExp,
1791                                       ProtectedOperationKind POK) {
1792   LockKind LK = getLockKindFromAccessKind(AK);
1793
1794   SExpr Mutex(MutexExp, Exp, D);
1795   if (!Mutex.isValid()) {
1796     SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1797     return;
1798   } else if (Mutex.shouldIgnore()) {
1799     return;
1800   }
1801
1802   LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex);
1803   bool NoError = true;
1804   if (!LDat) {
1805     // No exact match found.  Look for a partial match.
1806     FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex);
1807     if (FEntry) {
1808       // Warn that there's no precise match.
1809       LDat = &FEntry->LDat;
1810       std::string PartMatchStr = FEntry->MutID.toString();
1811       StringRef   PartMatchName(PartMatchStr);
1812       Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1813                                            Exp->getExprLoc(), &PartMatchName);
1814     } else {
1815       // Warn that there's no match at all.
1816       Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1817                                            Exp->getExprLoc());
1818     }
1819     NoError = false;
1820   }
1821   // Make sure the mutex we found is the right kind.
1822   if (NoError && LDat && !LDat->isAtLeast(LK))
1823     Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1824                                          Exp->getExprLoc());
1825 }
1826
1827 /// \brief Warn if the LSet contains the given lock.
1828 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr* Exp,
1829                                    Expr *MutexExp) {
1830   SExpr Mutex(MutexExp, Exp, D);
1831   if (!Mutex.isValid()) {
1832     SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1833     return;
1834   }
1835
1836   LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
1837   if (LDat) {
1838     std::string DeclName = D->getNameAsString();
1839     StringRef   DeclNameSR (DeclName);
1840     Analyzer->Handler.handleFunExcludesLock(DeclNameSR, Mutex.toString(),
1841                                             Exp->getExprLoc());
1842   }
1843 }
1844
1845
1846 /// \brief Checks guarded_by and pt_guarded_by attributes.
1847 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1848 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1849 /// Similarly, we check if the access is to an expression that dereferences
1850 /// a pointer marked with pt_guarded_by.
1851 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK) {
1852   Exp = Exp->IgnoreParenCasts();
1853
1854   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) {
1855     // For dereferences
1856     if (UO->getOpcode() == clang::UO_Deref)
1857       checkPtAccess(UO->getSubExpr(), AK);
1858     return;
1859   }
1860
1861   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
1862     if (ME->isArrow())
1863       checkPtAccess(ME->getBase(), AK);
1864     else
1865       checkAccess(ME->getBase(), AK);
1866   }
1867
1868   const ValueDecl *D = getValueDecl(Exp);
1869   if (!D || !D->hasAttrs())
1870     return;
1871
1872   if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty())
1873     Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
1874                                         Exp->getExprLoc());
1875
1876   const AttrVec &ArgAttrs = D->getAttrs();
1877   for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1878     if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1879       warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1880 }
1881
1882 /// \brief Checks pt_guarded_by and pt_guarded_var attributes.
1883 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) {
1884   Exp = Exp->IgnoreParenCasts();
1885
1886   const ValueDecl *D = getValueDecl(Exp);
1887   if (!D || !D->hasAttrs())
1888     return;
1889
1890   if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty())
1891     Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
1892                                         Exp->getExprLoc());
1893
1894   const AttrVec &ArgAttrs = D->getAttrs();
1895   for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1896     if (PtGuardedByAttr *GBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1897       warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarDereference);
1898 }
1899
1900
1901 /// \brief Process a function call, method call, constructor call,
1902 /// or destructor call.  This involves looking at the attributes on the
1903 /// corresponding function/method/constructor/destructor, issuing warnings,
1904 /// and updating the locksets accordingly.
1905 ///
1906 /// FIXME: For classes annotated with one of the guarded annotations, we need
1907 /// to treat const method calls as reads and non-const method calls as writes,
1908 /// and check that the appropriate locks are held. Non-const method calls with
1909 /// the same signature as const method calls can be also treated as reads.
1910 ///
1911 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
1912   const AttrVec &ArgAttrs = D->getAttrs();
1913   MutexIDList ExclusiveLocksToAdd;
1914   MutexIDList SharedLocksToAdd;
1915   MutexIDList LocksToRemove;
1916
1917   for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1918     Attr *At = const_cast<Attr*>(ArgAttrs[i]);
1919     switch (At->getKind()) {
1920       // When we encounter an exclusive lock function, we need to add the lock
1921       // to our lockset with kind exclusive.
1922       case attr::ExclusiveLockFunction: {
1923         ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At);
1924         Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D, VD);
1925         break;
1926       }
1927
1928       // When we encounter a shared lock function, we need to add the lock
1929       // to our lockset with kind shared.
1930       case attr::SharedLockFunction: {
1931         SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At);
1932         Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D, VD);
1933         break;
1934       }
1935
1936       // When we encounter an unlock function, we need to remove unlocked
1937       // mutexes from the lockset, and flag a warning if they are not there.
1938       case attr::UnlockFunction: {
1939         UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At);
1940         Analyzer->getMutexIDs(LocksToRemove, A, Exp, D, VD);
1941         break;
1942       }
1943
1944       case attr::ExclusiveLocksRequired: {
1945         ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At);
1946
1947         for (ExclusiveLocksRequiredAttr::args_iterator
1948              I = A->args_begin(), E = A->args_end(); I != E; ++I)
1949           warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
1950         break;
1951       }
1952
1953       case attr::SharedLocksRequired: {
1954         SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At);
1955
1956         for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(),
1957              E = A->args_end(); I != E; ++I)
1958           warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
1959         break;
1960       }
1961
1962       case attr::LocksExcluded: {
1963         LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
1964
1965         for (LocksExcludedAttr::args_iterator I = A->args_begin(),
1966             E = A->args_end(); I != E; ++I) {
1967           warnIfMutexHeld(D, Exp, *I);
1968         }
1969         break;
1970       }
1971
1972       // Ignore other (non thread-safety) attributes
1973       default:
1974         break;
1975     }
1976   }
1977
1978   // Figure out if we're calling the constructor of scoped lockable class
1979   bool isScopedVar = false;
1980   if (VD) {
1981     if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1982       const CXXRecordDecl* PD = CD->getParent();
1983       if (PD && PD->getAttr<ScopedLockableAttr>())
1984         isScopedVar = true;
1985     }
1986   }
1987
1988   // Add locks.
1989   SourceLocation Loc = Exp->getExprLoc();
1990   for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1991     Analyzer->addLock(FSet, ExclusiveLocksToAdd[i],
1992                             LockData(Loc, LK_Exclusive, isScopedVar));
1993   }
1994   for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1995     Analyzer->addLock(FSet, SharedLocksToAdd[i],
1996                             LockData(Loc, LK_Shared, isScopedVar));
1997   }
1998
1999   // Add the managing object as a dummy mutex, mapped to the underlying mutex.
2000   // FIXME -- this doesn't work if we acquire multiple locks.
2001   if (isScopedVar) {
2002     SourceLocation MLoc = VD->getLocation();
2003     DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
2004     SExpr SMutex(&DRE, 0, 0);
2005
2006     for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
2007       Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive,
2008                                                ExclusiveLocksToAdd[i]));
2009     }
2010     for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
2011       Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared,
2012                                                SharedLocksToAdd[i]));
2013     }
2014   }
2015
2016   // Remove locks.
2017   // FIXME -- should only fully remove if the attribute refers to 'this'.
2018   bool Dtor = isa<CXXDestructorDecl>(D);
2019   for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) {
2020     Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor);
2021   }
2022 }
2023
2024
2025 /// \brief For unary operations which read and write a variable, we need to
2026 /// check whether we hold any required mutexes. Reads are checked in
2027 /// VisitCastExpr.
2028 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
2029   switch (UO->getOpcode()) {
2030     case clang::UO_PostDec:
2031     case clang::UO_PostInc:
2032     case clang::UO_PreDec:
2033     case clang::UO_PreInc: {
2034       checkAccess(UO->getSubExpr(), AK_Written);
2035       break;
2036     }
2037     default:
2038       break;
2039   }
2040 }
2041
2042 /// For binary operations which assign to a variable (writes), we need to check
2043 /// whether we hold any required mutexes.
2044 /// FIXME: Deal with non-primitive types.
2045 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
2046   if (!BO->isAssignmentOp())
2047     return;
2048
2049   // adjust the context
2050   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
2051
2052   checkAccess(BO->getLHS(), AK_Written);
2053 }
2054
2055 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
2056 /// need to ensure we hold any required mutexes.
2057 /// FIXME: Deal with non-primitive types.
2058 void BuildLockset::VisitCastExpr(CastExpr *CE) {
2059   if (CE->getCastKind() != CK_LValueToRValue)
2060     return;
2061   checkAccess(CE->getSubExpr(), AK_Read);
2062 }
2063
2064
2065 void BuildLockset::VisitCallExpr(CallExpr *Exp) {
2066   if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2067     MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee());
2068     // ME can be null when calling a method pointer
2069     CXXMethodDecl *MD = CE->getMethodDecl();
2070
2071     if (ME && MD) {
2072       if (ME->isArrow()) {
2073         if (MD->isConst()) {
2074           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2075         } else {  // FIXME -- should be AK_Written
2076           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2077         }
2078       } else {
2079         if (MD->isConst())
2080           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2081         else     // FIXME -- should be AK_Written
2082           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2083       }
2084     }
2085   } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2086     switch (OE->getOperator()) {
2087       case OO_Equal: {
2088         const Expr *Target = OE->getArg(0);
2089         const Expr *Source = OE->getArg(1);
2090         checkAccess(Target, AK_Written);
2091         checkAccess(Source, AK_Read);
2092         break;
2093       }
2094       default: {
2095         const Expr *Source = OE->getArg(0);
2096         checkAccess(Source, AK_Read);
2097         break;
2098       }
2099     }
2100   }
2101   NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2102   if(!D || !D->hasAttrs())
2103     return;
2104   handleCall(Exp, D);
2105 }
2106
2107 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
2108   const CXXConstructorDecl *D = Exp->getConstructor();
2109   if (D && D->isCopyConstructor()) {
2110     const Expr* Source = Exp->getArg(0);
2111     checkAccess(Source, AK_Read);
2112   }
2113   // FIXME -- only handles constructors in DeclStmt below.
2114 }
2115
2116 void BuildLockset::VisitDeclStmt(DeclStmt *S) {
2117   // adjust the context
2118   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2119
2120   DeclGroupRef DGrp = S->getDeclGroup();
2121   for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
2122     Decl *D = *I;
2123     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
2124       Expr *E = VD->getInit();
2125       // handle constructors that involve temporaries
2126       if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
2127         E = EWC->getSubExpr();
2128
2129       if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
2130         NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2131         if (!CtorD || !CtorD->hasAttrs())
2132           return;
2133         handleCall(CE, CtorD, VD);
2134       }
2135     }
2136   }
2137 }
2138
2139
2140
2141 /// \brief Compute the intersection of two locksets and issue warnings for any
2142 /// locks in the symmetric difference.
2143 ///
2144 /// This function is used at a merge point in the CFG when comparing the lockset
2145 /// of each branch being merged. For example, given the following sequence:
2146 /// A; if () then B; else C; D; we need to check that the lockset after B and C
2147 /// are the same. In the event of a difference, we use the intersection of these
2148 /// two locksets at the start of D.
2149 ///
2150 /// \param FSet1 The first lockset.
2151 /// \param FSet2 The second lockset.
2152 /// \param JoinLoc The location of the join point for error reporting
2153 /// \param LEK1 The error message to report if a mutex is missing from LSet1
2154 /// \param LEK2 The error message to report if a mutex is missing from Lset2
2155 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2156                                             const FactSet &FSet2,
2157                                             SourceLocation JoinLoc,
2158                                             LockErrorKind LEK1,
2159                                             LockErrorKind LEK2,
2160                                             bool Modify) {
2161   FactSet FSet1Orig = FSet1;
2162
2163   for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end();
2164        I != E; ++I) {
2165     const SExpr &FSet2Mutex = FactMan[*I].MutID;
2166     const LockData &LDat2 = FactMan[*I].LDat;
2167
2168     if (const LockData *LDat1 = FSet1.findLock(FactMan, FSet2Mutex)) {
2169       if (LDat1->LKind != LDat2.LKind) {
2170         Handler.handleExclusiveAndShared(FSet2Mutex.toString(),
2171                                          LDat2.AcquireLoc,
2172                                          LDat1->AcquireLoc);
2173         if (Modify && LDat1->LKind != LK_Exclusive) {
2174           FSet1.removeLock(FactMan, FSet2Mutex);
2175           FSet1.addLock(FactMan, FSet2Mutex, LDat2);
2176         }
2177       }
2178     } else {
2179       if (LDat2.UnderlyingMutex.isValid()) {
2180         if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
2181           // If this is a scoped lock that manages another mutex, and if the
2182           // underlying mutex is still held, then warn about the underlying
2183           // mutex.
2184           Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(),
2185                                             LDat2.AcquireLoc,
2186                                             JoinLoc, LEK1);
2187         }
2188       }
2189       else if (!LDat2.Managed && !FSet2Mutex.isUniversal())
2190         Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(),
2191                                           LDat2.AcquireLoc,
2192                                           JoinLoc, LEK1);
2193     }
2194   }
2195
2196   for (FactSet::const_iterator I = FSet1.begin(), E = FSet1.end();
2197        I != E; ++I) {
2198     const SExpr &FSet1Mutex = FactMan[*I].MutID;
2199     const LockData &LDat1 = FactMan[*I].LDat;
2200
2201     if (!FSet2.findLock(FactMan, FSet1Mutex)) {
2202       if (LDat1.UnderlyingMutex.isValid()) {
2203         if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
2204           // If this is a scoped lock that manages another mutex, and if the
2205           // underlying mutex is still held, then warn about the underlying
2206           // mutex.
2207           Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(),
2208                                             LDat1.AcquireLoc,
2209                                             JoinLoc, LEK1);
2210         }
2211       }
2212       else if (!LDat1.Managed && !FSet1Mutex.isUniversal())
2213         Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(),
2214                                           LDat1.AcquireLoc,
2215                                           JoinLoc, LEK2);
2216       if (Modify)
2217         FSet1.removeLock(FactMan, FSet1Mutex);
2218     }
2219   }
2220 }
2221
2222
2223 // Return true if block B never continues to its successors.
2224 inline bool neverReturns(const CFGBlock* B) {
2225   if (B->hasNoReturnElement())
2226     return true;
2227   if (B->empty())
2228     return false;
2229
2230   CFGElement Last = B->back();
2231   if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2232     if (isa<CXXThrowExpr>(S->getStmt()))
2233       return true;
2234   }
2235   return false;
2236 }
2237
2238
2239 /// \brief Check a function's CFG for thread-safety violations.
2240 ///
2241 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2242 /// at the end of each block, and issue warnings for thread safety violations.
2243 /// Each block in the CFG is traversed exactly once.
2244 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2245   CFG *CFGraph = AC.getCFG();
2246   if (!CFGraph) return;
2247   const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
2248
2249   // AC.dumpCFG(true);
2250
2251   if (!D)
2252     return;  // Ignore anonymous functions for now.
2253   if (D->getAttr<NoThreadSafetyAnalysisAttr>())
2254     return;
2255   // FIXME: Do something a bit more intelligent inside constructor and
2256   // destructor code.  Constructors and destructors must assume unique access
2257   // to 'this', so checks on member variable access is disabled, but we should
2258   // still enable checks on other objects.
2259   if (isa<CXXConstructorDecl>(D))
2260     return;  // Don't check inside constructors.
2261   if (isa<CXXDestructorDecl>(D))
2262     return;  // Don't check inside destructors.
2263
2264   BlockInfo.resize(CFGraph->getNumBlockIDs(),
2265     CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2266
2267   // We need to explore the CFG via a "topological" ordering.
2268   // That way, we will be guaranteed to have information about required
2269   // predecessor locksets when exploring a new block.
2270   PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
2271   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2272
2273   // Mark entry block as reachable
2274   BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
2275
2276   // Compute SSA names for local variables
2277   LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2278
2279   // Fill in source locations for all CFGBlocks.
2280   findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2281
2282   MutexIDList ExclusiveLocksAcquired;
2283   MutexIDList SharedLocksAcquired;
2284   MutexIDList LocksReleased;
2285
2286   // Add locks from exclusive_locks_required and shared_locks_required
2287   // to initial lockset. Also turn off checking for lock and unlock functions.
2288   // FIXME: is there a more intelligent way to check lock/unlock functions?
2289   if (!SortedGraph->empty() && D->hasAttrs()) {
2290     const CFGBlock *FirstBlock = *SortedGraph->begin();
2291     FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2292     const AttrVec &ArgAttrs = D->getAttrs();
2293
2294     MutexIDList ExclusiveLocksToAdd;
2295     MutexIDList SharedLocksToAdd;
2296
2297     SourceLocation Loc = D->getLocation();
2298     for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
2299       Attr *Attr = ArgAttrs[i];
2300       Loc = Attr->getLocation();
2301       if (ExclusiveLocksRequiredAttr *A
2302             = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
2303         getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
2304       } else if (SharedLocksRequiredAttr *A
2305                    = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
2306         getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D);
2307       } else if (UnlockFunctionAttr *A = dyn_cast<UnlockFunctionAttr>(Attr)) {
2308         if (!Handler.issueBetaWarnings())
2309           return;
2310         // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2311         // We must ignore such methods.
2312         if (A->args_size() == 0)
2313           return;
2314         // FIXME -- deal with exclusive vs. shared unlock functions?
2315         getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
2316         getMutexIDs(LocksReleased, A, (Expr*) 0, D);
2317       } else if (ExclusiveLockFunctionAttr *A
2318                    = dyn_cast<ExclusiveLockFunctionAttr>(Attr)) {
2319         if (!Handler.issueBetaWarnings())
2320           return;
2321         if (A->args_size() == 0)
2322           return;
2323         getMutexIDs(ExclusiveLocksAcquired, A, (Expr*) 0, D);
2324       } else if (SharedLockFunctionAttr *A
2325                    = dyn_cast<SharedLockFunctionAttr>(Attr)) {
2326         if (!Handler.issueBetaWarnings())
2327           return;
2328         if (A->args_size() == 0)
2329           return;
2330         getMutexIDs(SharedLocksAcquired, A, (Expr*) 0, D);
2331       } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2332         // Don't try to check trylock functions for now
2333         return;
2334       } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2335         // Don't try to check trylock functions for now
2336         return;
2337       }
2338     }
2339
2340     // FIXME -- Loc can be wrong here.
2341     for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
2342       addLock(InitialLockset, ExclusiveLocksToAdd[i],
2343               LockData(Loc, LK_Exclusive));
2344     }
2345     for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
2346       addLock(InitialLockset, SharedLocksToAdd[i],
2347               LockData(Loc, LK_Shared));
2348     }
2349   }
2350
2351   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
2352        E = SortedGraph->end(); I!= E; ++I) {
2353     const CFGBlock *CurrBlock = *I;
2354     int CurrBlockID = CurrBlock->getBlockID();
2355     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2356
2357     // Use the default initial lockset in case there are no predecessors.
2358     VisitedBlocks.insert(CurrBlock);
2359
2360     // Iterate through the predecessor blocks and warn if the lockset for all
2361     // predecessors is not the same. We take the entry lockset of the current
2362     // block to be the intersection of all previous locksets.
2363     // FIXME: By keeping the intersection, we may output more errors in future
2364     // for a lock which is not in the intersection, but was in the union. We
2365     // may want to also keep the union in future. As an example, let's say
2366     // the intersection contains Mutex L, and the union contains L and M.
2367     // Later we unlock M. At this point, we would output an error because we
2368     // never locked M; although the real error is probably that we forgot to
2369     // lock M on all code paths. Conversely, let's say that later we lock M.
2370     // In this case, we should compare against the intersection instead of the
2371     // union because the real error is probably that we forgot to unlock M on
2372     // all code paths.
2373     bool LocksetInitialized = false;
2374     SmallVector<CFGBlock *, 8> SpecialBlocks;
2375     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2376          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2377
2378       // if *PI -> CurrBlock is a back edge
2379       if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
2380         continue;
2381
2382       int PrevBlockID = (*PI)->getBlockID();
2383       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2384
2385       // Ignore edges from blocks that can't return.
2386       if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2387         continue;
2388
2389       // Okay, we can reach this block from the entry.
2390       CurrBlockInfo->Reachable = true;
2391
2392       // If the previous block ended in a 'continue' or 'break' statement, then
2393       // a difference in locksets is probably due to a bug in that block, rather
2394       // than in some other predecessor. In that case, keep the other
2395       // predecessor's lockset.
2396       if (const Stmt *Terminator = (*PI)->getTerminator()) {
2397         if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2398           SpecialBlocks.push_back(*PI);
2399           continue;
2400         }
2401       }
2402
2403       FactSet PrevLockset;
2404       getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2405
2406       if (!LocksetInitialized) {
2407         CurrBlockInfo->EntrySet = PrevLockset;
2408         LocksetInitialized = true;
2409       } else {
2410         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2411                          CurrBlockInfo->EntryLoc,
2412                          LEK_LockedSomePredecessors);
2413       }
2414     }
2415
2416     // Skip rest of block if it's not reachable.
2417     if (!CurrBlockInfo->Reachable)
2418       continue;
2419
2420     // Process continue and break blocks. Assume that the lockset for the
2421     // resulting block is unaffected by any discrepancies in them.
2422     for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
2423          SpecialI < SpecialN; ++SpecialI) {
2424       CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
2425       int PrevBlockID = PrevBlock->getBlockID();
2426       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2427
2428       if (!LocksetInitialized) {
2429         CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2430         LocksetInitialized = true;
2431       } else {
2432         // Determine whether this edge is a loop terminator for diagnostic
2433         // purposes. FIXME: A 'break' statement might be a loop terminator, but
2434         // it might also be part of a switch. Also, a subsequent destructor
2435         // might add to the lockset, in which case the real issue might be a
2436         // double lock on the other path.
2437         const Stmt *Terminator = PrevBlock->getTerminator();
2438         bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2439
2440         FactSet PrevLockset;
2441         getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2442                        PrevBlock, CurrBlock);
2443
2444         // Do not update EntrySet.
2445         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2446                          PrevBlockInfo->ExitLoc,
2447                          IsLoop ? LEK_LockedSomeLoopIterations
2448                                 : LEK_LockedSomePredecessors,
2449                          false);
2450       }
2451     }
2452
2453     BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2454
2455     // Visit all the statements in the basic block.
2456     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
2457          BE = CurrBlock->end(); BI != BE; ++BI) {
2458       switch (BI->getKind()) {
2459         case CFGElement::Statement: {
2460           CFGStmt CS = BI->castAs<CFGStmt>();
2461           LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
2462           break;
2463         }
2464         // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2465         case CFGElement::AutomaticObjectDtor: {
2466           CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>();
2467           CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>(
2468               AD.getDestructorDecl(AC.getASTContext()));
2469           if (!DD->hasAttrs())
2470             break;
2471
2472           // Create a dummy expression,
2473           VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl());
2474           DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
2475                           AD.getTriggerStmt()->getLocEnd());
2476           LocksetBuilder.handleCall(&DRE, DD);
2477           break;
2478         }
2479         default:
2480           break;
2481       }
2482     }
2483     CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2484
2485     // For every back edge from CurrBlock (the end of the loop) to another block
2486     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2487     // the one held at the beginning of FirstLoopBlock. We can look up the
2488     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2489     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2490          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2491
2492       // if CurrBlock -> *SI is *not* a back edge
2493       if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
2494         continue;
2495
2496       CFGBlock *FirstLoopBlock = *SI;
2497       CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2498       CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2499       intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2500                        PreLoop->EntryLoc,
2501                        LEK_LockedSomeLoopIterations,
2502                        false);
2503     }
2504   }
2505
2506   CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2507   CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2508
2509   // Skip the final check if the exit block is unreachable.
2510   if (!Final->Reachable)
2511     return;
2512
2513   // By default, we expect all locks held on entry to be held on exit.
2514   FactSet ExpectedExitSet = Initial->EntrySet;
2515
2516   // Adjust the expected exit set by adding or removing locks, as declared
2517   // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
2518   // issue the appropriate warning.
2519   // FIXME: the location here is not quite right.
2520   for (unsigned i=0,n=ExclusiveLocksAcquired.size(); i<n; ++i) {
2521     ExpectedExitSet.addLock(FactMan, ExclusiveLocksAcquired[i],
2522                             LockData(D->getLocation(), LK_Exclusive));
2523   }
2524   for (unsigned i=0,n=SharedLocksAcquired.size(); i<n; ++i) {
2525     ExpectedExitSet.addLock(FactMan, SharedLocksAcquired[i],
2526                             LockData(D->getLocation(), LK_Shared));
2527   }
2528   for (unsigned i=0,n=LocksReleased.size(); i<n; ++i) {
2529     ExpectedExitSet.removeLock(FactMan, LocksReleased[i]);
2530   }
2531
2532   // FIXME: Should we call this function for all blocks which exit the function?
2533   intersectAndWarn(ExpectedExitSet, Final->ExitSet,
2534                    Final->ExitLoc,
2535                    LEK_LockedAtEndOfFunction,
2536                    LEK_NotLockedAtEndOfFunction,
2537                    false);
2538 }
2539
2540 } // end anonymous namespace
2541
2542
2543 namespace clang {
2544 namespace thread_safety {
2545
2546 /// \brief Check a function's CFG for thread-safety violations.
2547 ///
2548 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2549 /// at the end of each block, and issue warnings for thread safety violations.
2550 /// Each block in the CFG is traversed exactly once.
2551 void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2552                              ThreadSafetyHandler &Handler) {
2553   ThreadSafetyAnalyzer Analyzer(Handler);
2554   Analyzer.runAnalysis(AC);
2555 }
2556
2557 /// \brief Helper function that returns a LockKind required for the given level
2558 /// of access.
2559 LockKind getLockKindFromAccessKind(AccessKind AK) {
2560   switch (AK) {
2561     case AK_Read :
2562       return LK_Shared;
2563     case AK_Written :
2564       return LK_Exclusive;
2565   }
2566   llvm_unreachable("Unknown AccessKind");
2567 }
2568
2569 }} // end namespace clang::thread_safety