]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / llvm / tools / clang / lib / CodeGen / CGBuiltin.cpp
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Builtin calls as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/Basic/TargetBuiltins.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Intrinsics.h"
24
25 using namespace clang;
26 using namespace CodeGen;
27 using namespace llvm;
28
29 /// getBuiltinLibFunction - Given a builtin id for a function like
30 /// "__builtin_fabsf", return a Function* for "fabsf".
31 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
32                                                   unsigned BuiltinID) {
33   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
34
35   // Get the name, skip over the __builtin_ prefix (if necessary).
36   StringRef Name;
37   GlobalDecl D(FD);
38
39   // If the builtin has been declared explicitly with an assembler label,
40   // use the mangled name. This differs from the plain label on platforms
41   // that prefix labels.
42   if (FD->hasAttr<AsmLabelAttr>())
43     Name = getMangledName(D);
44   else
45     Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
46
47   llvm::FunctionType *Ty =
48     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
49
50   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
51 }
52
53 /// Emit the conversions required to turn the given value into an
54 /// integer of the given size.
55 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
56                         QualType T, llvm::IntegerType *IntType) {
57   V = CGF.EmitToMemory(V, T);
58
59   if (V->getType()->isPointerTy())
60     return CGF.Builder.CreatePtrToInt(V, IntType);
61
62   assert(V->getType() == IntType);
63   return V;
64 }
65
66 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
67                           QualType T, llvm::Type *ResultType) {
68   V = CGF.EmitFromMemory(V, T);
69
70   if (ResultType->isPointerTy())
71     return CGF.Builder.CreateIntToPtr(V, ResultType);
72
73   assert(V->getType() == ResultType);
74   return V;
75 }
76
77 /// Utility to insert an atomic instruction based on Instrinsic::ID
78 /// and the expression node.
79 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
80                                llvm::AtomicRMWInst::BinOp Kind,
81                                const CallExpr *E) {
82   QualType T = E->getType();
83   assert(E->getArg(0)->getType()->isPointerType());
84   assert(CGF.getContext().hasSameUnqualifiedType(T,
85                                   E->getArg(0)->getType()->getPointeeType()));
86   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
87
88   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
89   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
90
91   llvm::IntegerType *IntType =
92     llvm::IntegerType::get(CGF.getLLVMContext(),
93                            CGF.getContext().getTypeSize(T));
94   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
95
96   llvm::Value *Args[2];
97   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
98   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
99   llvm::Type *ValueType = Args[1]->getType();
100   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
101
102   llvm::Value *Result =
103       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
104                                   llvm::SequentiallyConsistent);
105   Result = EmitFromInt(CGF, Result, T, ValueType);
106   return RValue::get(Result);
107 }
108
109 /// Utility to insert an atomic instruction based Instrinsic::ID and
110 /// the expression node, where the return value is the result of the
111 /// operation.
112 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
113                                    llvm::AtomicRMWInst::BinOp Kind,
114                                    const CallExpr *E,
115                                    Instruction::BinaryOps Op) {
116   QualType T = E->getType();
117   assert(E->getArg(0)->getType()->isPointerType());
118   assert(CGF.getContext().hasSameUnqualifiedType(T,
119                                   E->getArg(0)->getType()->getPointeeType()));
120   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
121
122   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
123   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
124
125   llvm::IntegerType *IntType =
126     llvm::IntegerType::get(CGF.getLLVMContext(),
127                            CGF.getContext().getTypeSize(T));
128   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
129
130   llvm::Value *Args[2];
131   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
132   llvm::Type *ValueType = Args[1]->getType();
133   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
134   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
135
136   llvm::Value *Result =
137       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
138                                   llvm::SequentiallyConsistent);
139   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
140   Result = EmitFromInt(CGF, Result, T, ValueType);
141   return RValue::get(Result);
142 }
143
144 /// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
145 /// which must be a scalar floating point type.
146 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
147   const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
148   assert(ValTyP && "isn't scalar fp type!");
149
150   StringRef FnName;
151   switch (ValTyP->getKind()) {
152   default: llvm_unreachable("Isn't a scalar fp type!");
153   case BuiltinType::Float:      FnName = "fabsf"; break;
154   case BuiltinType::Double:     FnName = "fabs"; break;
155   case BuiltinType::LongDouble: FnName = "fabsl"; break;
156   }
157
158   // The prototype is something that takes and returns whatever V's type is.
159   llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(),
160                                                    false);
161   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
162
163   return CGF.EmitNounwindRuntimeCall(Fn, V, "abs");
164 }
165
166 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
167                               const CallExpr *E, llvm::Value *calleeValue) {
168   return CGF.EmitCall(E->getCallee()->getType(), calleeValue,
169                       ReturnValueSlot(), E->arg_begin(), E->arg_end(), Fn);
170 }
171
172 /// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
173 /// depending on IntrinsicID.
174 ///
175 /// \arg CGF The current codegen function.
176 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
177 /// \arg X The first argument to the llvm.*.with.overflow.*.
178 /// \arg Y The second argument to the llvm.*.with.overflow.*.
179 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
180 /// \returns The result (i.e. sum/product) returned by the intrinsic.
181 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
182                                           const llvm::Intrinsic::ID IntrinsicID,
183                                           llvm::Value *X, llvm::Value *Y,
184                                           llvm::Value *&Carry) {
185   // Make sure we have integers of the same width.
186   assert(X->getType() == Y->getType() &&
187          "Arguments must be the same type. (Did you forget to make sure both "
188          "arguments have the same integer width?)");
189
190   llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
191   llvm::Value *Tmp = CGF.Builder.CreateCall2(Callee, X, Y);
192   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
193   return CGF.Builder.CreateExtractValue(Tmp, 0);
194 }
195
196 RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
197                                         unsigned BuiltinID, const CallExpr *E) {
198   // See if we can constant fold this builtin.  If so, don't emit it at all.
199   Expr::EvalResult Result;
200   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
201       !Result.hasSideEffects()) {
202     if (Result.Val.isInt())
203       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
204                                                 Result.Val.getInt()));
205     if (Result.Val.isFloat())
206       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
207                                                Result.Val.getFloat()));
208   }
209
210   switch (BuiltinID) {
211   default: break;  // Handle intrinsics and libm functions below.
212   case Builtin::BI__builtin___CFStringMakeConstantString:
213   case Builtin::BI__builtin___NSStringMakeConstantString:
214     return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
215   case Builtin::BI__builtin_stdarg_start:
216   case Builtin::BI__builtin_va_start:
217   case Builtin::BI__builtin_va_end: {
218     Value *ArgValue = EmitVAListRef(E->getArg(0));
219     llvm::Type *DestType = Int8PtrTy;
220     if (ArgValue->getType() != DestType)
221       ArgValue = Builder.CreateBitCast(ArgValue, DestType,
222                                        ArgValue->getName().data());
223
224     Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
225       Intrinsic::vaend : Intrinsic::vastart;
226     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
227   }
228   case Builtin::BI__builtin_va_copy: {
229     Value *DstPtr = EmitVAListRef(E->getArg(0));
230     Value *SrcPtr = EmitVAListRef(E->getArg(1));
231
232     llvm::Type *Type = Int8PtrTy;
233
234     DstPtr = Builder.CreateBitCast(DstPtr, Type);
235     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
236     return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
237                                            DstPtr, SrcPtr));
238   }
239   case Builtin::BI__builtin_abs:
240   case Builtin::BI__builtin_labs:
241   case Builtin::BI__builtin_llabs: {
242     Value *ArgValue = EmitScalarExpr(E->getArg(0));
243
244     Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
245     Value *CmpResult =
246     Builder.CreateICmpSGE(ArgValue,
247                           llvm::Constant::getNullValue(ArgValue->getType()),
248                                                             "abscond");
249     Value *Result =
250       Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
251
252     return RValue::get(Result);
253   }
254
255   case Builtin::BI__builtin_conj:
256   case Builtin::BI__builtin_conjf:
257   case Builtin::BI__builtin_conjl: {
258     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
259     Value *Real = ComplexVal.first;
260     Value *Imag = ComplexVal.second;
261     Value *Zero =
262       Imag->getType()->isFPOrFPVectorTy()
263         ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
264         : llvm::Constant::getNullValue(Imag->getType());
265
266     Imag = Builder.CreateFSub(Zero, Imag, "sub");
267     return RValue::getComplex(std::make_pair(Real, Imag));
268   }
269   case Builtin::BI__builtin_creal:
270   case Builtin::BI__builtin_crealf:
271   case Builtin::BI__builtin_creall:
272   case Builtin::BIcreal:
273   case Builtin::BIcrealf:
274   case Builtin::BIcreall: {
275     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
276     return RValue::get(ComplexVal.first);
277   }
278
279   case Builtin::BI__builtin_cimag:
280   case Builtin::BI__builtin_cimagf:
281   case Builtin::BI__builtin_cimagl:
282   case Builtin::BIcimag:
283   case Builtin::BIcimagf:
284   case Builtin::BIcimagl: {
285     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
286     return RValue::get(ComplexVal.second);
287   }
288
289   case Builtin::BI__builtin_ctzs:
290   case Builtin::BI__builtin_ctz:
291   case Builtin::BI__builtin_ctzl:
292   case Builtin::BI__builtin_ctzll: {
293     Value *ArgValue = EmitScalarExpr(E->getArg(0));
294
295     llvm::Type *ArgType = ArgValue->getType();
296     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
297
298     llvm::Type *ResultType = ConvertType(E->getType());
299     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
300     Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
301     if (Result->getType() != ResultType)
302       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
303                                      "cast");
304     return RValue::get(Result);
305   }
306   case Builtin::BI__builtin_clzs:
307   case Builtin::BI__builtin_clz:
308   case Builtin::BI__builtin_clzl:
309   case Builtin::BI__builtin_clzll: {
310     Value *ArgValue = EmitScalarExpr(E->getArg(0));
311
312     llvm::Type *ArgType = ArgValue->getType();
313     Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
314
315     llvm::Type *ResultType = ConvertType(E->getType());
316     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
317     Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
318     if (Result->getType() != ResultType)
319       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
320                                      "cast");
321     return RValue::get(Result);
322   }
323   case Builtin::BI__builtin_ffs:
324   case Builtin::BI__builtin_ffsl:
325   case Builtin::BI__builtin_ffsll: {
326     // ffs(x) -> x ? cttz(x) + 1 : 0
327     Value *ArgValue = EmitScalarExpr(E->getArg(0));
328
329     llvm::Type *ArgType = ArgValue->getType();
330     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
331
332     llvm::Type *ResultType = ConvertType(E->getType());
333     Value *Tmp = Builder.CreateAdd(Builder.CreateCall2(F, ArgValue,
334                                                        Builder.getTrue()),
335                                    llvm::ConstantInt::get(ArgType, 1));
336     Value *Zero = llvm::Constant::getNullValue(ArgType);
337     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
338     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
339     if (Result->getType() != ResultType)
340       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
341                                      "cast");
342     return RValue::get(Result);
343   }
344   case Builtin::BI__builtin_parity:
345   case Builtin::BI__builtin_parityl:
346   case Builtin::BI__builtin_parityll: {
347     // parity(x) -> ctpop(x) & 1
348     Value *ArgValue = EmitScalarExpr(E->getArg(0));
349
350     llvm::Type *ArgType = ArgValue->getType();
351     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
352
353     llvm::Type *ResultType = ConvertType(E->getType());
354     Value *Tmp = Builder.CreateCall(F, ArgValue);
355     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
356     if (Result->getType() != ResultType)
357       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
358                                      "cast");
359     return RValue::get(Result);
360   }
361   case Builtin::BI__builtin_popcount:
362   case Builtin::BI__builtin_popcountl:
363   case Builtin::BI__builtin_popcountll: {
364     Value *ArgValue = EmitScalarExpr(E->getArg(0));
365
366     llvm::Type *ArgType = ArgValue->getType();
367     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
368
369     llvm::Type *ResultType = ConvertType(E->getType());
370     Value *Result = Builder.CreateCall(F, ArgValue);
371     if (Result->getType() != ResultType)
372       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
373                                      "cast");
374     return RValue::get(Result);
375   }
376   case Builtin::BI__builtin_expect: {
377     Value *ArgValue = EmitScalarExpr(E->getArg(0));
378     llvm::Type *ArgType = ArgValue->getType();
379
380     Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
381     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
382
383     Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
384                                         "expval");
385     return RValue::get(Result);
386   }
387   case Builtin::BI__builtin_bswap16:
388   case Builtin::BI__builtin_bswap32:
389   case Builtin::BI__builtin_bswap64: {
390     Value *ArgValue = EmitScalarExpr(E->getArg(0));
391     llvm::Type *ArgType = ArgValue->getType();
392     Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
393     return RValue::get(Builder.CreateCall(F, ArgValue));
394   }
395   case Builtin::BI__builtin_object_size: {
396     // We rely on constant folding to deal with expressions with side effects.
397     assert(!E->getArg(0)->HasSideEffects(getContext()) &&
398            "should have been constant folded");
399
400     // We pass this builtin onto the optimizer so that it can
401     // figure out the object size in more complex cases.
402     llvm::Type *ResType = ConvertType(E->getType());
403
404     // LLVM only supports 0 and 2, make sure that we pass along that
405     // as a boolean.
406     Value *Ty = EmitScalarExpr(E->getArg(1));
407     ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
408     assert(CI);
409     uint64_t val = CI->getZExtValue();
410     CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
411
412     Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType);
413     return RValue::get(Builder.CreateCall2(F, EmitScalarExpr(E->getArg(0)),CI));
414   }
415   case Builtin::BI__builtin_prefetch: {
416     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
417     // FIXME: Technically these constants should of type 'int', yes?
418     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
419       llvm::ConstantInt::get(Int32Ty, 0);
420     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
421       llvm::ConstantInt::get(Int32Ty, 3);
422     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
423     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
424     return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
425   }
426   case Builtin::BI__builtin_readcyclecounter: {
427     Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
428     return RValue::get(Builder.CreateCall(F));
429   }
430   case Builtin::BI__builtin_trap: {
431     Value *F = CGM.getIntrinsic(Intrinsic::trap);
432     return RValue::get(Builder.CreateCall(F));
433   }
434   case Builtin::BI__debugbreak: {
435     Value *F = CGM.getIntrinsic(Intrinsic::debugtrap);
436     return RValue::get(Builder.CreateCall(F));
437   }
438   case Builtin::BI__builtin_unreachable: {
439     if (SanOpts->Unreachable)
440       EmitCheck(Builder.getFalse(), "builtin_unreachable",
441                 EmitCheckSourceLocation(E->getExprLoc()),
442                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
443     else
444       Builder.CreateUnreachable();
445
446     // We do need to preserve an insertion point.
447     EmitBlock(createBasicBlock("unreachable.cont"));
448
449     return RValue::get(0);
450   }
451
452   case Builtin::BI__builtin_powi:
453   case Builtin::BI__builtin_powif:
454   case Builtin::BI__builtin_powil: {
455     Value *Base = EmitScalarExpr(E->getArg(0));
456     Value *Exponent = EmitScalarExpr(E->getArg(1));
457     llvm::Type *ArgType = Base->getType();
458     Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
459     return RValue::get(Builder.CreateCall2(F, Base, Exponent));
460   }
461
462   case Builtin::BI__builtin_isgreater:
463   case Builtin::BI__builtin_isgreaterequal:
464   case Builtin::BI__builtin_isless:
465   case Builtin::BI__builtin_islessequal:
466   case Builtin::BI__builtin_islessgreater:
467   case Builtin::BI__builtin_isunordered: {
468     // Ordered comparisons: we know the arguments to these are matching scalar
469     // floating point values.
470     Value *LHS = EmitScalarExpr(E->getArg(0));
471     Value *RHS = EmitScalarExpr(E->getArg(1));
472
473     switch (BuiltinID) {
474     default: llvm_unreachable("Unknown ordered comparison");
475     case Builtin::BI__builtin_isgreater:
476       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
477       break;
478     case Builtin::BI__builtin_isgreaterequal:
479       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
480       break;
481     case Builtin::BI__builtin_isless:
482       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
483       break;
484     case Builtin::BI__builtin_islessequal:
485       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
486       break;
487     case Builtin::BI__builtin_islessgreater:
488       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
489       break;
490     case Builtin::BI__builtin_isunordered:
491       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
492       break;
493     }
494     // ZExt bool to int type.
495     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
496   }
497   case Builtin::BI__builtin_isnan: {
498     Value *V = EmitScalarExpr(E->getArg(0));
499     V = Builder.CreateFCmpUNO(V, V, "cmp");
500     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
501   }
502
503   case Builtin::BI__builtin_isinf: {
504     // isinf(x) --> fabs(x) == infinity
505     Value *V = EmitScalarExpr(E->getArg(0));
506     V = EmitFAbs(*this, V, E->getArg(0)->getType());
507
508     V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
509     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
510   }
511
512   // TODO: BI__builtin_isinf_sign
513   //   isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
514
515   case Builtin::BI__builtin_isnormal: {
516     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
517     Value *V = EmitScalarExpr(E->getArg(0));
518     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
519
520     Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
521     Value *IsLessThanInf =
522       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
523     APFloat Smallest = APFloat::getSmallestNormalized(
524                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
525     Value *IsNormal =
526       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
527                             "isnormal");
528     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
529     V = Builder.CreateAnd(V, IsNormal, "and");
530     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
531   }
532
533   case Builtin::BI__builtin_isfinite: {
534     // isfinite(x) --> x == x && fabs(x) != infinity;
535     Value *V = EmitScalarExpr(E->getArg(0));
536     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
537
538     Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
539     Value *IsNotInf =
540       Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
541
542     V = Builder.CreateAnd(Eq, IsNotInf, "and");
543     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
544   }
545
546   case Builtin::BI__builtin_fpclassify: {
547     Value *V = EmitScalarExpr(E->getArg(5));
548     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
549
550     // Create Result
551     BasicBlock *Begin = Builder.GetInsertBlock();
552     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
553     Builder.SetInsertPoint(End);
554     PHINode *Result =
555       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
556                         "fpclassify_result");
557
558     // if (V==0) return FP_ZERO
559     Builder.SetInsertPoint(Begin);
560     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
561                                           "iszero");
562     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
563     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
564     Builder.CreateCondBr(IsZero, End, NotZero);
565     Result->addIncoming(ZeroLiteral, Begin);
566
567     // if (V != V) return FP_NAN
568     Builder.SetInsertPoint(NotZero);
569     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
570     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
571     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
572     Builder.CreateCondBr(IsNan, End, NotNan);
573     Result->addIncoming(NanLiteral, NotZero);
574
575     // if (fabs(V) == infinity) return FP_INFINITY
576     Builder.SetInsertPoint(NotNan);
577     Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
578     Value *IsInf =
579       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
580                             "isinf");
581     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
582     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
583     Builder.CreateCondBr(IsInf, End, NotInf);
584     Result->addIncoming(InfLiteral, NotNan);
585
586     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
587     Builder.SetInsertPoint(NotInf);
588     APFloat Smallest = APFloat::getSmallestNormalized(
589         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
590     Value *IsNormal =
591       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
592                             "isnormal");
593     Value *NormalResult =
594       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
595                            EmitScalarExpr(E->getArg(3)));
596     Builder.CreateBr(End);
597     Result->addIncoming(NormalResult, NotInf);
598
599     // return Result
600     Builder.SetInsertPoint(End);
601     return RValue::get(Result);
602   }
603
604   case Builtin::BIalloca:
605   case Builtin::BI__builtin_alloca: {
606     Value *Size = EmitScalarExpr(E->getArg(0));
607     return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
608   }
609   case Builtin::BIbzero:
610   case Builtin::BI__builtin_bzero: {
611     std::pair<llvm::Value*, unsigned> Dest =
612         EmitPointerWithAlignment(E->getArg(0));
613     Value *SizeVal = EmitScalarExpr(E->getArg(1));
614     Builder.CreateMemSet(Dest.first, Builder.getInt8(0), SizeVal,
615                          Dest.second, false);
616     return RValue::get(Dest.first);
617   }
618   case Builtin::BImemcpy:
619   case Builtin::BI__builtin_memcpy: {
620     std::pair<llvm::Value*, unsigned> Dest =
621         EmitPointerWithAlignment(E->getArg(0));
622     std::pair<llvm::Value*, unsigned> Src =
623         EmitPointerWithAlignment(E->getArg(1));
624     Value *SizeVal = EmitScalarExpr(E->getArg(2));
625     unsigned Align = std::min(Dest.second, Src.second);
626     Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
627     return RValue::get(Dest.first);
628   }
629
630   case Builtin::BI__builtin___memcpy_chk: {
631     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
632     llvm::APSInt Size, DstSize;
633     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
634         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
635       break;
636     if (Size.ugt(DstSize))
637       break;
638     std::pair<llvm::Value*, unsigned> Dest =
639         EmitPointerWithAlignment(E->getArg(0));
640     std::pair<llvm::Value*, unsigned> Src =
641         EmitPointerWithAlignment(E->getArg(1));
642     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
643     unsigned Align = std::min(Dest.second, Src.second);
644     Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
645     return RValue::get(Dest.first);
646   }
647
648   case Builtin::BI__builtin_objc_memmove_collectable: {
649     Value *Address = EmitScalarExpr(E->getArg(0));
650     Value *SrcAddr = EmitScalarExpr(E->getArg(1));
651     Value *SizeVal = EmitScalarExpr(E->getArg(2));
652     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
653                                                   Address, SrcAddr, SizeVal);
654     return RValue::get(Address);
655   }
656
657   case Builtin::BI__builtin___memmove_chk: {
658     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
659     llvm::APSInt Size, DstSize;
660     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
661         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
662       break;
663     if (Size.ugt(DstSize))
664       break;
665     std::pair<llvm::Value*, unsigned> Dest =
666         EmitPointerWithAlignment(E->getArg(0));
667     std::pair<llvm::Value*, unsigned> Src =
668         EmitPointerWithAlignment(E->getArg(1));
669     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
670     unsigned Align = std::min(Dest.second, Src.second);
671     Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
672     return RValue::get(Dest.first);
673   }
674
675   case Builtin::BImemmove:
676   case Builtin::BI__builtin_memmove: {
677     std::pair<llvm::Value*, unsigned> Dest =
678         EmitPointerWithAlignment(E->getArg(0));
679     std::pair<llvm::Value*, unsigned> Src =
680         EmitPointerWithAlignment(E->getArg(1));
681     Value *SizeVal = EmitScalarExpr(E->getArg(2));
682     unsigned Align = std::min(Dest.second, Src.second);
683     Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
684     return RValue::get(Dest.first);
685   }
686   case Builtin::BImemset:
687   case Builtin::BI__builtin_memset: {
688     std::pair<llvm::Value*, unsigned> Dest =
689         EmitPointerWithAlignment(E->getArg(0));
690     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
691                                          Builder.getInt8Ty());
692     Value *SizeVal = EmitScalarExpr(E->getArg(2));
693     Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
694     return RValue::get(Dest.first);
695   }
696   case Builtin::BI__builtin___memset_chk: {
697     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
698     llvm::APSInt Size, DstSize;
699     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
700         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
701       break;
702     if (Size.ugt(DstSize))
703       break;
704     std::pair<llvm::Value*, unsigned> Dest =
705         EmitPointerWithAlignment(E->getArg(0));
706     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
707                                          Builder.getInt8Ty());
708     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
709     Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
710     return RValue::get(Dest.first);
711   }
712   case Builtin::BI__builtin_dwarf_cfa: {
713     // The offset in bytes from the first argument to the CFA.
714     //
715     // Why on earth is this in the frontend?  Is there any reason at
716     // all that the backend can't reasonably determine this while
717     // lowering llvm.eh.dwarf.cfa()?
718     //
719     // TODO: If there's a satisfactory reason, add a target hook for
720     // this instead of hard-coding 0, which is correct for most targets.
721     int32_t Offset = 0;
722
723     Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
724     return RValue::get(Builder.CreateCall(F,
725                                       llvm::ConstantInt::get(Int32Ty, Offset)));
726   }
727   case Builtin::BI__builtin_return_address: {
728     Value *Depth = EmitScalarExpr(E->getArg(0));
729     Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
730     Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
731     return RValue::get(Builder.CreateCall(F, Depth));
732   }
733   case Builtin::BI__builtin_frame_address: {
734     Value *Depth = EmitScalarExpr(E->getArg(0));
735     Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
736     Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
737     return RValue::get(Builder.CreateCall(F, Depth));
738   }
739   case Builtin::BI__builtin_extract_return_addr: {
740     Value *Address = EmitScalarExpr(E->getArg(0));
741     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
742     return RValue::get(Result);
743   }
744   case Builtin::BI__builtin_frob_return_addr: {
745     Value *Address = EmitScalarExpr(E->getArg(0));
746     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
747     return RValue::get(Result);
748   }
749   case Builtin::BI__builtin_dwarf_sp_column: {
750     llvm::IntegerType *Ty
751       = cast<llvm::IntegerType>(ConvertType(E->getType()));
752     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
753     if (Column == -1) {
754       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
755       return RValue::get(llvm::UndefValue::get(Ty));
756     }
757     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
758   }
759   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
760     Value *Address = EmitScalarExpr(E->getArg(0));
761     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
762       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
763     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
764   }
765   case Builtin::BI__builtin_eh_return: {
766     Value *Int = EmitScalarExpr(E->getArg(0));
767     Value *Ptr = EmitScalarExpr(E->getArg(1));
768
769     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
770     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
771            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
772     Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
773                                   ? Intrinsic::eh_return_i32
774                                   : Intrinsic::eh_return_i64);
775     Builder.CreateCall2(F, Int, Ptr);
776     Builder.CreateUnreachable();
777
778     // We do need to preserve an insertion point.
779     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
780
781     return RValue::get(0);
782   }
783   case Builtin::BI__builtin_unwind_init: {
784     Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
785     return RValue::get(Builder.CreateCall(F));
786   }
787   case Builtin::BI__builtin_extend_pointer: {
788     // Extends a pointer to the size of an _Unwind_Word, which is
789     // uint64_t on all platforms.  Generally this gets poked into a
790     // register and eventually used as an address, so if the
791     // addressing registers are wider than pointers and the platform
792     // doesn't implicitly ignore high-order bits when doing
793     // addressing, we need to make sure we zext / sext based on
794     // the platform's expectations.
795     //
796     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
797
798     // Cast the pointer to intptr_t.
799     Value *Ptr = EmitScalarExpr(E->getArg(0));
800     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
801
802     // If that's 64 bits, we're done.
803     if (IntPtrTy->getBitWidth() == 64)
804       return RValue::get(Result);
805
806     // Otherwise, ask the codegen data what to do.
807     if (getTargetHooks().extendPointerWithSExt())
808       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
809     else
810       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
811   }
812   case Builtin::BI__builtin_setjmp: {
813     // Buffer is a void**.
814     Value *Buf = EmitScalarExpr(E->getArg(0));
815
816     // Store the frame pointer to the setjmp buffer.
817     Value *FrameAddr =
818       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
819                          ConstantInt::get(Int32Ty, 0));
820     Builder.CreateStore(FrameAddr, Buf);
821
822     // Store the stack pointer to the setjmp buffer.
823     Value *StackAddr =
824       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
825     Value *StackSaveSlot =
826       Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
827     Builder.CreateStore(StackAddr, StackSaveSlot);
828
829     // Call LLVM's EH setjmp, which is lightweight.
830     Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
831     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
832     return RValue::get(Builder.CreateCall(F, Buf));
833   }
834   case Builtin::BI__builtin_longjmp: {
835     Value *Buf = EmitScalarExpr(E->getArg(0));
836     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
837
838     // Call LLVM's EH longjmp, which is lightweight.
839     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
840
841     // longjmp doesn't return; mark this as unreachable.
842     Builder.CreateUnreachable();
843
844     // We do need to preserve an insertion point.
845     EmitBlock(createBasicBlock("longjmp.cont"));
846
847     return RValue::get(0);
848   }
849   case Builtin::BI__sync_fetch_and_add:
850   case Builtin::BI__sync_fetch_and_sub:
851   case Builtin::BI__sync_fetch_and_or:
852   case Builtin::BI__sync_fetch_and_and:
853   case Builtin::BI__sync_fetch_and_xor:
854   case Builtin::BI__sync_add_and_fetch:
855   case Builtin::BI__sync_sub_and_fetch:
856   case Builtin::BI__sync_and_and_fetch:
857   case Builtin::BI__sync_or_and_fetch:
858   case Builtin::BI__sync_xor_and_fetch:
859   case Builtin::BI__sync_val_compare_and_swap:
860   case Builtin::BI__sync_bool_compare_and_swap:
861   case Builtin::BI__sync_lock_test_and_set:
862   case Builtin::BI__sync_lock_release:
863   case Builtin::BI__sync_swap:
864     llvm_unreachable("Shouldn't make it through sema");
865   case Builtin::BI__sync_fetch_and_add_1:
866   case Builtin::BI__sync_fetch_and_add_2:
867   case Builtin::BI__sync_fetch_and_add_4:
868   case Builtin::BI__sync_fetch_and_add_8:
869   case Builtin::BI__sync_fetch_and_add_16:
870     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
871   case Builtin::BI__sync_fetch_and_sub_1:
872   case Builtin::BI__sync_fetch_and_sub_2:
873   case Builtin::BI__sync_fetch_and_sub_4:
874   case Builtin::BI__sync_fetch_and_sub_8:
875   case Builtin::BI__sync_fetch_and_sub_16:
876     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
877   case Builtin::BI__sync_fetch_and_or_1:
878   case Builtin::BI__sync_fetch_and_or_2:
879   case Builtin::BI__sync_fetch_and_or_4:
880   case Builtin::BI__sync_fetch_and_or_8:
881   case Builtin::BI__sync_fetch_and_or_16:
882     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
883   case Builtin::BI__sync_fetch_and_and_1:
884   case Builtin::BI__sync_fetch_and_and_2:
885   case Builtin::BI__sync_fetch_and_and_4:
886   case Builtin::BI__sync_fetch_and_and_8:
887   case Builtin::BI__sync_fetch_and_and_16:
888     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
889   case Builtin::BI__sync_fetch_and_xor_1:
890   case Builtin::BI__sync_fetch_and_xor_2:
891   case Builtin::BI__sync_fetch_and_xor_4:
892   case Builtin::BI__sync_fetch_and_xor_8:
893   case Builtin::BI__sync_fetch_and_xor_16:
894     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
895
896   // Clang extensions: not overloaded yet.
897   case Builtin::BI__sync_fetch_and_min:
898     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
899   case Builtin::BI__sync_fetch_and_max:
900     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
901   case Builtin::BI__sync_fetch_and_umin:
902     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
903   case Builtin::BI__sync_fetch_and_umax:
904     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
905
906   case Builtin::BI__sync_add_and_fetch_1:
907   case Builtin::BI__sync_add_and_fetch_2:
908   case Builtin::BI__sync_add_and_fetch_4:
909   case Builtin::BI__sync_add_and_fetch_8:
910   case Builtin::BI__sync_add_and_fetch_16:
911     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
912                                 llvm::Instruction::Add);
913   case Builtin::BI__sync_sub_and_fetch_1:
914   case Builtin::BI__sync_sub_and_fetch_2:
915   case Builtin::BI__sync_sub_and_fetch_4:
916   case Builtin::BI__sync_sub_and_fetch_8:
917   case Builtin::BI__sync_sub_and_fetch_16:
918     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
919                                 llvm::Instruction::Sub);
920   case Builtin::BI__sync_and_and_fetch_1:
921   case Builtin::BI__sync_and_and_fetch_2:
922   case Builtin::BI__sync_and_and_fetch_4:
923   case Builtin::BI__sync_and_and_fetch_8:
924   case Builtin::BI__sync_and_and_fetch_16:
925     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
926                                 llvm::Instruction::And);
927   case Builtin::BI__sync_or_and_fetch_1:
928   case Builtin::BI__sync_or_and_fetch_2:
929   case Builtin::BI__sync_or_and_fetch_4:
930   case Builtin::BI__sync_or_and_fetch_8:
931   case Builtin::BI__sync_or_and_fetch_16:
932     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
933                                 llvm::Instruction::Or);
934   case Builtin::BI__sync_xor_and_fetch_1:
935   case Builtin::BI__sync_xor_and_fetch_2:
936   case Builtin::BI__sync_xor_and_fetch_4:
937   case Builtin::BI__sync_xor_and_fetch_8:
938   case Builtin::BI__sync_xor_and_fetch_16:
939     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
940                                 llvm::Instruction::Xor);
941
942   case Builtin::BI__sync_val_compare_and_swap_1:
943   case Builtin::BI__sync_val_compare_and_swap_2:
944   case Builtin::BI__sync_val_compare_and_swap_4:
945   case Builtin::BI__sync_val_compare_and_swap_8:
946   case Builtin::BI__sync_val_compare_and_swap_16: {
947     QualType T = E->getType();
948     llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
949     unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
950
951     llvm::IntegerType *IntType =
952       llvm::IntegerType::get(getLLVMContext(),
953                              getContext().getTypeSize(T));
954     llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
955
956     Value *Args[3];
957     Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
958     Args[1] = EmitScalarExpr(E->getArg(1));
959     llvm::Type *ValueType = Args[1]->getType();
960     Args[1] = EmitToInt(*this, Args[1], T, IntType);
961     Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
962
963     Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
964                                                 llvm::SequentiallyConsistent);
965     Result = EmitFromInt(*this, Result, T, ValueType);
966     return RValue::get(Result);
967   }
968
969   case Builtin::BI__sync_bool_compare_and_swap_1:
970   case Builtin::BI__sync_bool_compare_and_swap_2:
971   case Builtin::BI__sync_bool_compare_and_swap_4:
972   case Builtin::BI__sync_bool_compare_and_swap_8:
973   case Builtin::BI__sync_bool_compare_and_swap_16: {
974     QualType T = E->getArg(1)->getType();
975     llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
976     unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
977
978     llvm::IntegerType *IntType =
979       llvm::IntegerType::get(getLLVMContext(),
980                              getContext().getTypeSize(T));
981     llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
982
983     Value *Args[3];
984     Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
985     Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
986     Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
987
988     Value *OldVal = Args[1];
989     Value *PrevVal = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
990                                                  llvm::SequentiallyConsistent);
991     Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
992     // zext bool to int.
993     Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
994     return RValue::get(Result);
995   }
996
997   case Builtin::BI__sync_swap_1:
998   case Builtin::BI__sync_swap_2:
999   case Builtin::BI__sync_swap_4:
1000   case Builtin::BI__sync_swap_8:
1001   case Builtin::BI__sync_swap_16:
1002     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1003
1004   case Builtin::BI__sync_lock_test_and_set_1:
1005   case Builtin::BI__sync_lock_test_and_set_2:
1006   case Builtin::BI__sync_lock_test_and_set_4:
1007   case Builtin::BI__sync_lock_test_and_set_8:
1008   case Builtin::BI__sync_lock_test_and_set_16:
1009     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1010
1011   case Builtin::BI__sync_lock_release_1:
1012   case Builtin::BI__sync_lock_release_2:
1013   case Builtin::BI__sync_lock_release_4:
1014   case Builtin::BI__sync_lock_release_8:
1015   case Builtin::BI__sync_lock_release_16: {
1016     Value *Ptr = EmitScalarExpr(E->getArg(0));
1017     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
1018     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
1019     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
1020                                              StoreSize.getQuantity() * 8);
1021     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
1022     llvm::StoreInst *Store =
1023       Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
1024     Store->setAlignment(StoreSize.getQuantity());
1025     Store->setAtomic(llvm::Release);
1026     return RValue::get(0);
1027   }
1028
1029   case Builtin::BI__sync_synchronize: {
1030     // We assume this is supposed to correspond to a C++0x-style
1031     // sequentially-consistent fence (i.e. this is only usable for
1032     // synchonization, not device I/O or anything like that). This intrinsic
1033     // is really badly designed in the sense that in theory, there isn't
1034     // any way to safely use it... but in practice, it mostly works
1035     // to use it with non-atomic loads and stores to get acquire/release
1036     // semantics.
1037     Builder.CreateFence(llvm::SequentiallyConsistent);
1038     return RValue::get(0);
1039   }
1040
1041   case Builtin::BI__c11_atomic_is_lock_free:
1042   case Builtin::BI__atomic_is_lock_free: {
1043     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
1044     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
1045     // _Atomic(T) is always properly-aligned.
1046     const char *LibCallName = "__atomic_is_lock_free";
1047     CallArgList Args;
1048     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
1049              getContext().getSizeType());
1050     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
1051       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
1052                getContext().VoidPtrTy);
1053     else
1054       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
1055                getContext().VoidPtrTy);
1056     const CGFunctionInfo &FuncInfo =
1057         CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args,
1058                                                FunctionType::ExtInfo(),
1059                                                RequiredArgs::All);
1060     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
1061     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
1062     return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
1063   }
1064
1065   case Builtin::BI__atomic_test_and_set: {
1066     // Look at the argument type to determine whether this is a volatile
1067     // operation. The parameter type is always volatile.
1068     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1069     bool Volatile =
1070         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1071
1072     Value *Ptr = EmitScalarExpr(E->getArg(0));
1073     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1074     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1075     Value *NewVal = Builder.getInt8(1);
1076     Value *Order = EmitScalarExpr(E->getArg(1));
1077     if (isa<llvm::ConstantInt>(Order)) {
1078       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1079       AtomicRMWInst *Result = 0;
1080       switch (ord) {
1081       case 0:  // memory_order_relaxed
1082       default: // invalid order
1083         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1084                                          Ptr, NewVal,
1085                                          llvm::Monotonic);
1086         break;
1087       case 1:  // memory_order_consume
1088       case 2:  // memory_order_acquire
1089         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1090                                          Ptr, NewVal,
1091                                          llvm::Acquire);
1092         break;
1093       case 3:  // memory_order_release
1094         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1095                                          Ptr, NewVal,
1096                                          llvm::Release);
1097         break;
1098       case 4:  // memory_order_acq_rel
1099         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1100                                          Ptr, NewVal,
1101                                          llvm::AcquireRelease);
1102         break;
1103       case 5:  // memory_order_seq_cst
1104         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1105                                          Ptr, NewVal,
1106                                          llvm::SequentiallyConsistent);
1107         break;
1108       }
1109       Result->setVolatile(Volatile);
1110       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1111     }
1112
1113     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1114
1115     llvm::BasicBlock *BBs[5] = {
1116       createBasicBlock("monotonic", CurFn),
1117       createBasicBlock("acquire", CurFn),
1118       createBasicBlock("release", CurFn),
1119       createBasicBlock("acqrel", CurFn),
1120       createBasicBlock("seqcst", CurFn)
1121     };
1122     llvm::AtomicOrdering Orders[5] = {
1123       llvm::Monotonic, llvm::Acquire, llvm::Release,
1124       llvm::AcquireRelease, llvm::SequentiallyConsistent
1125     };
1126
1127     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1128     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1129
1130     Builder.SetInsertPoint(ContBB);
1131     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
1132
1133     for (unsigned i = 0; i < 5; ++i) {
1134       Builder.SetInsertPoint(BBs[i]);
1135       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1136                                                    Ptr, NewVal, Orders[i]);
1137       RMW->setVolatile(Volatile);
1138       Result->addIncoming(RMW, BBs[i]);
1139       Builder.CreateBr(ContBB);
1140     }
1141
1142     SI->addCase(Builder.getInt32(0), BBs[0]);
1143     SI->addCase(Builder.getInt32(1), BBs[1]);
1144     SI->addCase(Builder.getInt32(2), BBs[1]);
1145     SI->addCase(Builder.getInt32(3), BBs[2]);
1146     SI->addCase(Builder.getInt32(4), BBs[3]);
1147     SI->addCase(Builder.getInt32(5), BBs[4]);
1148
1149     Builder.SetInsertPoint(ContBB);
1150     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1151   }
1152
1153   case Builtin::BI__atomic_clear: {
1154     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1155     bool Volatile =
1156         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1157
1158     Value *Ptr = EmitScalarExpr(E->getArg(0));
1159     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1160     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1161     Value *NewVal = Builder.getInt8(0);
1162     Value *Order = EmitScalarExpr(E->getArg(1));
1163     if (isa<llvm::ConstantInt>(Order)) {
1164       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1165       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1166       Store->setAlignment(1);
1167       switch (ord) {
1168       case 0:  // memory_order_relaxed
1169       default: // invalid order
1170         Store->setOrdering(llvm::Monotonic);
1171         break;
1172       case 3:  // memory_order_release
1173         Store->setOrdering(llvm::Release);
1174         break;
1175       case 5:  // memory_order_seq_cst
1176         Store->setOrdering(llvm::SequentiallyConsistent);
1177         break;
1178       }
1179       return RValue::get(0);
1180     }
1181
1182     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1183
1184     llvm::BasicBlock *BBs[3] = {
1185       createBasicBlock("monotonic", CurFn),
1186       createBasicBlock("release", CurFn),
1187       createBasicBlock("seqcst", CurFn)
1188     };
1189     llvm::AtomicOrdering Orders[3] = {
1190       llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent
1191     };
1192
1193     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1194     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1195
1196     for (unsigned i = 0; i < 3; ++i) {
1197       Builder.SetInsertPoint(BBs[i]);
1198       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1199       Store->setAlignment(1);
1200       Store->setOrdering(Orders[i]);
1201       Builder.CreateBr(ContBB);
1202     }
1203
1204     SI->addCase(Builder.getInt32(0), BBs[0]);
1205     SI->addCase(Builder.getInt32(3), BBs[1]);
1206     SI->addCase(Builder.getInt32(5), BBs[2]);
1207
1208     Builder.SetInsertPoint(ContBB);
1209     return RValue::get(0);
1210   }
1211
1212   case Builtin::BI__atomic_thread_fence:
1213   case Builtin::BI__atomic_signal_fence:
1214   case Builtin::BI__c11_atomic_thread_fence:
1215   case Builtin::BI__c11_atomic_signal_fence: {
1216     llvm::SynchronizationScope Scope;
1217     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
1218         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
1219       Scope = llvm::SingleThread;
1220     else
1221       Scope = llvm::CrossThread;
1222     Value *Order = EmitScalarExpr(E->getArg(0));
1223     if (isa<llvm::ConstantInt>(Order)) {
1224       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1225       switch (ord) {
1226       case 0:  // memory_order_relaxed
1227       default: // invalid order
1228         break;
1229       case 1:  // memory_order_consume
1230       case 2:  // memory_order_acquire
1231         Builder.CreateFence(llvm::Acquire, Scope);
1232         break;
1233       case 3:  // memory_order_release
1234         Builder.CreateFence(llvm::Release, Scope);
1235         break;
1236       case 4:  // memory_order_acq_rel
1237         Builder.CreateFence(llvm::AcquireRelease, Scope);
1238         break;
1239       case 5:  // memory_order_seq_cst
1240         Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1241         break;
1242       }
1243       return RValue::get(0);
1244     }
1245
1246     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
1247     AcquireBB = createBasicBlock("acquire", CurFn);
1248     ReleaseBB = createBasicBlock("release", CurFn);
1249     AcqRelBB = createBasicBlock("acqrel", CurFn);
1250     SeqCstBB = createBasicBlock("seqcst", CurFn);
1251     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1252
1253     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1254     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
1255
1256     Builder.SetInsertPoint(AcquireBB);
1257     Builder.CreateFence(llvm::Acquire, Scope);
1258     Builder.CreateBr(ContBB);
1259     SI->addCase(Builder.getInt32(1), AcquireBB);
1260     SI->addCase(Builder.getInt32(2), AcquireBB);
1261
1262     Builder.SetInsertPoint(ReleaseBB);
1263     Builder.CreateFence(llvm::Release, Scope);
1264     Builder.CreateBr(ContBB);
1265     SI->addCase(Builder.getInt32(3), ReleaseBB);
1266
1267     Builder.SetInsertPoint(AcqRelBB);
1268     Builder.CreateFence(llvm::AcquireRelease, Scope);
1269     Builder.CreateBr(ContBB);
1270     SI->addCase(Builder.getInt32(4), AcqRelBB);
1271
1272     Builder.SetInsertPoint(SeqCstBB);
1273     Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1274     Builder.CreateBr(ContBB);
1275     SI->addCase(Builder.getInt32(5), SeqCstBB);
1276
1277     Builder.SetInsertPoint(ContBB);
1278     return RValue::get(0);
1279   }
1280
1281     // Library functions with special handling.
1282   case Builtin::BIsqrt:
1283   case Builtin::BIsqrtf:
1284   case Builtin::BIsqrtl: {
1285     // TODO: there is currently no set of optimizer flags
1286     // sufficient for us to rewrite sqrt to @llvm.sqrt.
1287     // -fmath-errno=0 is not good enough; we need finiteness.
1288     // We could probably precondition the call with an ult
1289     // against 0, but is that worth the complexity?
1290     break;
1291   }
1292
1293   case Builtin::BIpow:
1294   case Builtin::BIpowf:
1295   case Builtin::BIpowl: {
1296     // Rewrite sqrt to intrinsic if allowed.
1297     if (!FD->hasAttr<ConstAttr>())
1298       break;
1299     Value *Base = EmitScalarExpr(E->getArg(0));
1300     Value *Exponent = EmitScalarExpr(E->getArg(1));
1301     llvm::Type *ArgType = Base->getType();
1302     Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
1303     return RValue::get(Builder.CreateCall2(F, Base, Exponent));
1304   }
1305
1306   case Builtin::BIfma:
1307   case Builtin::BIfmaf:
1308   case Builtin::BIfmal:
1309   case Builtin::BI__builtin_fma:
1310   case Builtin::BI__builtin_fmaf:
1311   case Builtin::BI__builtin_fmal: {
1312     // Rewrite fma to intrinsic.
1313     Value *FirstArg = EmitScalarExpr(E->getArg(0));
1314     llvm::Type *ArgType = FirstArg->getType();
1315     Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
1316     return RValue::get(Builder.CreateCall3(F, FirstArg,
1317                                               EmitScalarExpr(E->getArg(1)),
1318                                               EmitScalarExpr(E->getArg(2))));
1319   }
1320
1321   case Builtin::BI__builtin_signbit:
1322   case Builtin::BI__builtin_signbitf:
1323   case Builtin::BI__builtin_signbitl: {
1324     LLVMContext &C = CGM.getLLVMContext();
1325
1326     Value *Arg = EmitScalarExpr(E->getArg(0));
1327     llvm::Type *ArgTy = Arg->getType();
1328     if (ArgTy->isPPC_FP128Ty())
1329       break; // FIXME: I'm not sure what the right implementation is here.
1330     int ArgWidth = ArgTy->getPrimitiveSizeInBits();
1331     llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
1332     Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
1333     Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
1334     Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
1335     return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
1336   }
1337   case Builtin::BI__builtin_annotation: {
1338     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
1339     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
1340                                       AnnVal->getType());
1341
1342     // Get the annotation string, go through casts. Sema requires this to be a
1343     // non-wide string literal, potentially casted, so the cast<> is safe.
1344     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
1345     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
1346     return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
1347   }
1348   case Builtin::BI__builtin_addcs:
1349   case Builtin::BI__builtin_addc:
1350   case Builtin::BI__builtin_addcl:
1351   case Builtin::BI__builtin_addcll:
1352   case Builtin::BI__builtin_subcs:
1353   case Builtin::BI__builtin_subc:
1354   case Builtin::BI__builtin_subcl:
1355   case Builtin::BI__builtin_subcll: {
1356
1357     // We translate all of these builtins from expressions of the form:
1358     //   int x = ..., y = ..., carryin = ..., carryout, result;
1359     //   result = __builtin_addc(x, y, carryin, &carryout);
1360     //
1361     // to LLVM IR of the form:
1362     //
1363     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
1364     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
1365     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
1366     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
1367     //                                                       i32 %carryin)
1368     //   %result = extractvalue {i32, i1} %tmp2, 0
1369     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
1370     //   %tmp3 = or i1 %carry1, %carry2
1371     //   %tmp4 = zext i1 %tmp3 to i32
1372     //   store i32 %tmp4, i32* %carryout
1373
1374     // Scalarize our inputs.
1375     llvm::Value *X = EmitScalarExpr(E->getArg(0));
1376     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1377     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
1378     std::pair<llvm::Value*, unsigned> CarryOutPtr =
1379       EmitPointerWithAlignment(E->getArg(3));
1380
1381     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
1382     llvm::Intrinsic::ID IntrinsicId;
1383     switch (BuiltinID) {
1384     default: llvm_unreachable("Unknown multiprecision builtin id.");
1385     case Builtin::BI__builtin_addcs:
1386     case Builtin::BI__builtin_addc:
1387     case Builtin::BI__builtin_addcl:
1388     case Builtin::BI__builtin_addcll:
1389       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1390       break;
1391     case Builtin::BI__builtin_subcs:
1392     case Builtin::BI__builtin_subc:
1393     case Builtin::BI__builtin_subcl:
1394     case Builtin::BI__builtin_subcll:
1395       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1396       break;
1397     }
1398
1399     // Construct our resulting LLVM IR expression.
1400     llvm::Value *Carry1;
1401     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
1402                                               X, Y, Carry1);
1403     llvm::Value *Carry2;
1404     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
1405                                               Sum1, Carryin, Carry2);
1406     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
1407                                                X->getType());
1408     llvm::StoreInst *CarryOutStore = Builder.CreateStore(CarryOut,
1409                                                          CarryOutPtr.first);
1410     CarryOutStore->setAlignment(CarryOutPtr.second);
1411     return RValue::get(Sum2);
1412   }
1413   case Builtin::BI__noop:
1414     return RValue::get(0);
1415   }
1416
1417   // If this is an alias for a lib function (e.g. __builtin_sin), emit
1418   // the call using the normal call path, but using the unmangled
1419   // version of the function name.
1420   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
1421     return emitLibraryCall(*this, FD, E,
1422                            CGM.getBuiltinLibFunction(FD, BuiltinID));
1423
1424   // If this is a predefined lib function (e.g. malloc), emit the call
1425   // using exactly the normal call path.
1426   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1427     return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
1428
1429   // See if we have a target specific intrinsic.
1430   const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1431   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1432   if (const char *Prefix =
1433       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()))
1434     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1435
1436   if (IntrinsicID != Intrinsic::not_intrinsic) {
1437     SmallVector<Value*, 16> Args;
1438
1439     // Find out if any arguments are required to be integer constant
1440     // expressions.
1441     unsigned ICEArguments = 0;
1442     ASTContext::GetBuiltinTypeError Error;
1443     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1444     assert(Error == ASTContext::GE_None && "Should not codegen an error");
1445
1446     Function *F = CGM.getIntrinsic(IntrinsicID);
1447     llvm::FunctionType *FTy = F->getFunctionType();
1448
1449     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1450       Value *ArgValue;
1451       // If this is a normal argument, just emit it as a scalar.
1452       if ((ICEArguments & (1 << i)) == 0) {
1453         ArgValue = EmitScalarExpr(E->getArg(i));
1454       } else {
1455         // If this is required to be a constant, constant fold it so that we
1456         // know that the generated intrinsic gets a ConstantInt.
1457         llvm::APSInt Result;
1458         bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1459         assert(IsConst && "Constant arg isn't actually constant?");
1460         (void)IsConst;
1461         ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1462       }
1463
1464       // If the intrinsic arg type is different from the builtin arg type
1465       // we need to do a bit cast.
1466       llvm::Type *PTy = FTy->getParamType(i);
1467       if (PTy != ArgValue->getType()) {
1468         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1469                "Must be able to losslessly bit cast to param");
1470         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1471       }
1472
1473       Args.push_back(ArgValue);
1474     }
1475
1476     Value *V = Builder.CreateCall(F, Args);
1477     QualType BuiltinRetType = E->getType();
1478
1479     llvm::Type *RetTy = VoidTy;
1480     if (!BuiltinRetType->isVoidType())
1481       RetTy = ConvertType(BuiltinRetType);
1482
1483     if (RetTy != V->getType()) {
1484       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1485              "Must be able to losslessly bit cast result type");
1486       V = Builder.CreateBitCast(V, RetTy);
1487     }
1488
1489     return RValue::get(V);
1490   }
1491
1492   // See if we have a target specific builtin that needs to be lowered.
1493   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1494     return RValue::get(V);
1495
1496   ErrorUnsupported(E, "builtin function");
1497
1498   // Unknown builtin, for now just dump it out and return undef.
1499   return GetUndefRValue(E->getType());
1500 }
1501
1502 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1503                                               const CallExpr *E) {
1504   switch (getTarget().getTriple().getArch()) {
1505   case llvm::Triple::aarch64:
1506     return EmitAArch64BuiltinExpr(BuiltinID, E);
1507   case llvm::Triple::arm:
1508   case llvm::Triple::thumb:
1509     return EmitARMBuiltinExpr(BuiltinID, E);
1510   case llvm::Triple::x86:
1511   case llvm::Triple::x86_64:
1512     return EmitX86BuiltinExpr(BuiltinID, E);
1513   case llvm::Triple::ppc:
1514   case llvm::Triple::ppc64:
1515     return EmitPPCBuiltinExpr(BuiltinID, E);
1516   default:
1517     return 0;
1518   }
1519 }
1520
1521 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
1522                                      NeonTypeFlags TypeFlags) {
1523   int IsQuad = TypeFlags.isQuad();
1524   switch (TypeFlags.getEltType()) {
1525   case NeonTypeFlags::Int8:
1526   case NeonTypeFlags::Poly8:
1527     return llvm::VectorType::get(CGF->Int8Ty, 8 << IsQuad);
1528   case NeonTypeFlags::Int16:
1529   case NeonTypeFlags::Poly16:
1530   case NeonTypeFlags::Float16:
1531     return llvm::VectorType::get(CGF->Int16Ty, 4 << IsQuad);
1532   case NeonTypeFlags::Int32:
1533     return llvm::VectorType::get(CGF->Int32Ty, 2 << IsQuad);
1534   case NeonTypeFlags::Int64:
1535     return llvm::VectorType::get(CGF->Int64Ty, 1 << IsQuad);
1536   case NeonTypeFlags::Float32:
1537     return llvm::VectorType::get(CGF->FloatTy, 2 << IsQuad);
1538   }
1539   llvm_unreachable("Invalid NeonTypeFlags element type!");
1540 }
1541
1542 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1543   unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1544   Value* SV = llvm::ConstantVector::getSplat(nElts, C);
1545   return Builder.CreateShuffleVector(V, V, SV, "lane");
1546 }
1547
1548 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1549                                      const char *name,
1550                                      unsigned shift, bool rightshift) {
1551   unsigned j = 0;
1552   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1553        ai != ae; ++ai, ++j)
1554     if (shift > 0 && shift == j)
1555       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1556     else
1557       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1558
1559   return Builder.CreateCall(F, Ops, name);
1560 }
1561
1562 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
1563                                             bool neg) {
1564   int SV = cast<ConstantInt>(V)->getSExtValue();
1565
1566   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1567   llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1568   return llvm::ConstantVector::getSplat(VTy->getNumElements(), C);
1569 }
1570
1571 /// GetPointeeAlignment - Given an expression with a pointer type, find the
1572 /// alignment of the type referenced by the pointer.  Skip over implicit
1573 /// casts.
1574 std::pair<llvm::Value*, unsigned>
1575 CodeGenFunction::EmitPointerWithAlignment(const Expr *Addr) {
1576   assert(Addr->getType()->isPointerType());
1577   Addr = Addr->IgnoreParens();
1578   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Addr)) {
1579     if ((ICE->getCastKind() == CK_BitCast || ICE->getCastKind() == CK_NoOp) &&
1580         ICE->getSubExpr()->getType()->isPointerType()) {
1581       std::pair<llvm::Value*, unsigned> Ptr =
1582           EmitPointerWithAlignment(ICE->getSubExpr());
1583       Ptr.first = Builder.CreateBitCast(Ptr.first,
1584                                         ConvertType(Addr->getType()));
1585       return Ptr;
1586     } else if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1587       LValue LV = EmitLValue(ICE->getSubExpr());
1588       unsigned Align = LV.getAlignment().getQuantity();
1589       if (!Align) {
1590         // FIXME: Once LValues are fixed to always set alignment,
1591         // zap this code.
1592         QualType PtTy = ICE->getSubExpr()->getType();
1593         if (!PtTy->isIncompleteType())
1594           Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1595         else
1596           Align = 1;
1597       }
1598       return std::make_pair(LV.getAddress(), Align);
1599     }
1600   }
1601   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Addr)) {
1602     if (UO->getOpcode() == UO_AddrOf) {
1603       LValue LV = EmitLValue(UO->getSubExpr());
1604       unsigned Align = LV.getAlignment().getQuantity();
1605       if (!Align) {
1606         // FIXME: Once LValues are fixed to always set alignment,
1607         // zap this code.
1608         QualType PtTy = UO->getSubExpr()->getType();
1609         if (!PtTy->isIncompleteType())
1610           Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1611         else
1612           Align = 1;
1613       }
1614       return std::make_pair(LV.getAddress(), Align);
1615     }
1616   }
1617
1618   unsigned Align = 1;
1619   QualType PtTy = Addr->getType()->getPointeeType();
1620   if (!PtTy->isIncompleteType())
1621     Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1622
1623   return std::make_pair(EmitScalarExpr(Addr), Align);
1624 }
1625
1626 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
1627                                                const CallExpr *E) {
1628   if (BuiltinID == AArch64::BI__clear_cache) {
1629     assert(E->getNumArgs() == 2 &&
1630            "Variadic __clear_cache slipped through on AArch64");
1631
1632     const FunctionDecl *FD = E->getDirectCallee();
1633     SmallVector<Value *, 2> Ops;
1634     for (unsigned i = 0; i < E->getNumArgs(); i++)
1635       Ops.push_back(EmitScalarExpr(E->getArg(i)));
1636     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
1637     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
1638     StringRef Name = FD->getName();
1639     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
1640   }
1641
1642   return 0;
1643 }
1644
1645 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
1646                                            const CallExpr *E) {
1647   if (BuiltinID == ARM::BI__clear_cache) {
1648     const FunctionDecl *FD = E->getDirectCallee();
1649     // Oddly people write this call without args on occasion and gcc accepts
1650     // it - it's also marked as varargs in the description file.
1651     SmallVector<Value*, 2> Ops;
1652     for (unsigned i = 0; i < E->getNumArgs(); i++)
1653       Ops.push_back(EmitScalarExpr(E->getArg(i)));
1654     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
1655     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
1656     StringRef Name = FD->getName();
1657     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
1658   }
1659
1660   if (BuiltinID == ARM::BI__builtin_arm_ldrexd) {
1661     Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
1662
1663     Value *LdPtr = EmitScalarExpr(E->getArg(0));
1664     Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd");
1665
1666     Value *Val0 = Builder.CreateExtractValue(Val, 1);
1667     Value *Val1 = Builder.CreateExtractValue(Val, 0);
1668     Val0 = Builder.CreateZExt(Val0, Int64Ty);
1669     Val1 = Builder.CreateZExt(Val1, Int64Ty);
1670
1671     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
1672     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
1673     return Builder.CreateOr(Val, Val1);
1674   }
1675
1676   if (BuiltinID == ARM::BI__builtin_arm_strexd) {
1677     Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
1678     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
1679
1680     Value *One = llvm::ConstantInt::get(Int32Ty, 1);
1681     Value *Tmp = Builder.CreateAlloca(Int64Ty, One);
1682     Value *Val = EmitScalarExpr(E->getArg(0));
1683     Builder.CreateStore(Val, Tmp);
1684
1685     Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
1686     Val = Builder.CreateLoad(LdPtr);
1687
1688     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
1689     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
1690     Value *StPtr = EmitScalarExpr(E->getArg(1));
1691     return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
1692   }
1693
1694   SmallVector<Value*, 4> Ops;
1695   llvm::Value *Align = 0;
1696   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
1697     if (i == 0) {
1698       switch (BuiltinID) {
1699       case ARM::BI__builtin_neon_vld1_v:
1700       case ARM::BI__builtin_neon_vld1q_v:
1701       case ARM::BI__builtin_neon_vld1q_lane_v:
1702       case ARM::BI__builtin_neon_vld1_lane_v:
1703       case ARM::BI__builtin_neon_vld1_dup_v:
1704       case ARM::BI__builtin_neon_vld1q_dup_v:
1705       case ARM::BI__builtin_neon_vst1_v:
1706       case ARM::BI__builtin_neon_vst1q_v:
1707       case ARM::BI__builtin_neon_vst1q_lane_v:
1708       case ARM::BI__builtin_neon_vst1_lane_v:
1709       case ARM::BI__builtin_neon_vst2_v:
1710       case ARM::BI__builtin_neon_vst2q_v:
1711       case ARM::BI__builtin_neon_vst2_lane_v:
1712       case ARM::BI__builtin_neon_vst2q_lane_v:
1713       case ARM::BI__builtin_neon_vst3_v:
1714       case ARM::BI__builtin_neon_vst3q_v:
1715       case ARM::BI__builtin_neon_vst3_lane_v:
1716       case ARM::BI__builtin_neon_vst3q_lane_v:
1717       case ARM::BI__builtin_neon_vst4_v:
1718       case ARM::BI__builtin_neon_vst4q_v:
1719       case ARM::BI__builtin_neon_vst4_lane_v:
1720       case ARM::BI__builtin_neon_vst4q_lane_v:
1721         // Get the alignment for the argument in addition to the value;
1722         // we'll use it later.
1723         std::pair<llvm::Value*, unsigned> Src =
1724             EmitPointerWithAlignment(E->getArg(0));
1725         Ops.push_back(Src.first);
1726         Align = Builder.getInt32(Src.second);
1727         continue;
1728       }
1729     }
1730     if (i == 1) {
1731       switch (BuiltinID) {
1732       case ARM::BI__builtin_neon_vld2_v:
1733       case ARM::BI__builtin_neon_vld2q_v:
1734       case ARM::BI__builtin_neon_vld3_v:
1735       case ARM::BI__builtin_neon_vld3q_v:
1736       case ARM::BI__builtin_neon_vld4_v:
1737       case ARM::BI__builtin_neon_vld4q_v:
1738       case ARM::BI__builtin_neon_vld2_lane_v:
1739       case ARM::BI__builtin_neon_vld2q_lane_v:
1740       case ARM::BI__builtin_neon_vld3_lane_v:
1741       case ARM::BI__builtin_neon_vld3q_lane_v:
1742       case ARM::BI__builtin_neon_vld4_lane_v:
1743       case ARM::BI__builtin_neon_vld4q_lane_v:
1744       case ARM::BI__builtin_neon_vld2_dup_v:
1745       case ARM::BI__builtin_neon_vld3_dup_v:
1746       case ARM::BI__builtin_neon_vld4_dup_v:
1747         // Get the alignment for the argument in addition to the value;
1748         // we'll use it later.
1749         std::pair<llvm::Value*, unsigned> Src =
1750             EmitPointerWithAlignment(E->getArg(1));
1751         Ops.push_back(Src.first);
1752         Align = Builder.getInt32(Src.second);
1753         continue;
1754       }
1755     }
1756     Ops.push_back(EmitScalarExpr(E->getArg(i)));
1757   }
1758
1759   // vget_lane and vset_lane are not overloaded and do not have an extra
1760   // argument that specifies the vector type.
1761   switch (BuiltinID) {
1762   default: break;
1763   case ARM::BI__builtin_neon_vget_lane_i8:
1764   case ARM::BI__builtin_neon_vget_lane_i16:
1765   case ARM::BI__builtin_neon_vget_lane_i32:
1766   case ARM::BI__builtin_neon_vget_lane_i64:
1767   case ARM::BI__builtin_neon_vget_lane_f32:
1768   case ARM::BI__builtin_neon_vgetq_lane_i8:
1769   case ARM::BI__builtin_neon_vgetq_lane_i16:
1770   case ARM::BI__builtin_neon_vgetq_lane_i32:
1771   case ARM::BI__builtin_neon_vgetq_lane_i64:
1772   case ARM::BI__builtin_neon_vgetq_lane_f32:
1773     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
1774                                         "vget_lane");
1775   case ARM::BI__builtin_neon_vset_lane_i8:
1776   case ARM::BI__builtin_neon_vset_lane_i16:
1777   case ARM::BI__builtin_neon_vset_lane_i32:
1778   case ARM::BI__builtin_neon_vset_lane_i64:
1779   case ARM::BI__builtin_neon_vset_lane_f32:
1780   case ARM::BI__builtin_neon_vsetq_lane_i8:
1781   case ARM::BI__builtin_neon_vsetq_lane_i16:
1782   case ARM::BI__builtin_neon_vsetq_lane_i32:
1783   case ARM::BI__builtin_neon_vsetq_lane_i64:
1784   case ARM::BI__builtin_neon_vsetq_lane_f32:
1785     Ops.push_back(EmitScalarExpr(E->getArg(2)));
1786     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
1787   }
1788
1789   // Get the last argument, which specifies the vector type.
1790   llvm::APSInt Result;
1791   const Expr *Arg = E->getArg(E->getNumArgs()-1);
1792   if (!Arg->isIntegerConstantExpr(Result, getContext()))
1793     return 0;
1794
1795   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
1796       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
1797     // Determine the overloaded type of this builtin.
1798     llvm::Type *Ty;
1799     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
1800       Ty = FloatTy;
1801     else
1802       Ty = DoubleTy;
1803
1804     // Determine whether this is an unsigned conversion or not.
1805     bool usgn = Result.getZExtValue() == 1;
1806     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
1807
1808     // Call the appropriate intrinsic.
1809     Function *F = CGM.getIntrinsic(Int, Ty);
1810     return Builder.CreateCall(F, Ops, "vcvtr");
1811   }
1812
1813   // Determine the type of this overloaded NEON intrinsic.
1814   NeonTypeFlags Type(Result.getZExtValue());
1815   bool usgn = Type.isUnsigned();
1816   bool quad = Type.isQuad();
1817   bool rightShift = false;
1818
1819   llvm::VectorType *VTy = GetNeonType(this, Type);
1820   llvm::Type *Ty = VTy;
1821   if (!Ty)
1822     return 0;
1823
1824   unsigned Int;
1825   switch (BuiltinID) {
1826   default: return 0;
1827   case ARM::BI__builtin_neon_vbsl_v:
1828   case ARM::BI__builtin_neon_vbslq_v:
1829     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty),
1830                         Ops, "vbsl");
1831   case ARM::BI__builtin_neon_vabd_v:
1832   case ARM::BI__builtin_neon_vabdq_v:
1833     Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
1834     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
1835   case ARM::BI__builtin_neon_vabs_v:
1836   case ARM::BI__builtin_neon_vabsq_v:
1837     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty),
1838                         Ops, "vabs");
1839   case ARM::BI__builtin_neon_vaddhn_v:
1840     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vaddhn, Ty),
1841                         Ops, "vaddhn");
1842   case ARM::BI__builtin_neon_vcale_v:
1843     std::swap(Ops[0], Ops[1]);
1844   case ARM::BI__builtin_neon_vcage_v: {
1845     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
1846     return EmitNeonCall(F, Ops, "vcage");
1847   }
1848   case ARM::BI__builtin_neon_vcaleq_v:
1849     std::swap(Ops[0], Ops[1]);
1850   case ARM::BI__builtin_neon_vcageq_v: {
1851     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
1852     return EmitNeonCall(F, Ops, "vcage");
1853   }
1854   case ARM::BI__builtin_neon_vcalt_v:
1855     std::swap(Ops[0], Ops[1]);
1856   case ARM::BI__builtin_neon_vcagt_v: {
1857     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
1858     return EmitNeonCall(F, Ops, "vcagt");
1859   }
1860   case ARM::BI__builtin_neon_vcaltq_v:
1861     std::swap(Ops[0], Ops[1]);
1862   case ARM::BI__builtin_neon_vcagtq_v: {
1863     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
1864     return EmitNeonCall(F, Ops, "vcagt");
1865   }
1866   case ARM::BI__builtin_neon_vcls_v:
1867   case ARM::BI__builtin_neon_vclsq_v: {
1868     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty);
1869     return EmitNeonCall(F, Ops, "vcls");
1870   }
1871   case ARM::BI__builtin_neon_vclz_v:
1872   case ARM::BI__builtin_neon_vclzq_v: {
1873     // Generate target-independent intrinsic; also need to add second argument
1874     // for whether or not clz of zero is undefined; on ARM it isn't.
1875     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ty);
1876     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
1877     return EmitNeonCall(F, Ops, "vclz");
1878   }
1879   case ARM::BI__builtin_neon_vcnt_v:
1880   case ARM::BI__builtin_neon_vcntq_v: {
1881     // generate target-independent intrinsic
1882     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, Ty);
1883     return EmitNeonCall(F, Ops, "vctpop");
1884   }
1885   case ARM::BI__builtin_neon_vcvt_f16_v: {
1886     assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
1887            "unexpected vcvt_f16_v builtin");
1888     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
1889     return EmitNeonCall(F, Ops, "vcvt");
1890   }
1891   case ARM::BI__builtin_neon_vcvt_f32_f16: {
1892     assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
1893            "unexpected vcvt_f32_f16 builtin");
1894     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
1895     return EmitNeonCall(F, Ops, "vcvt");
1896   }
1897   case ARM::BI__builtin_neon_vcvt_f32_v:
1898   case ARM::BI__builtin_neon_vcvtq_f32_v:
1899     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1900     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
1901     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
1902                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
1903   case ARM::BI__builtin_neon_vcvt_s32_v:
1904   case ARM::BI__builtin_neon_vcvt_u32_v:
1905   case ARM::BI__builtin_neon_vcvtq_s32_v:
1906   case ARM::BI__builtin_neon_vcvtq_u32_v: {
1907     llvm::Type *FloatTy =
1908       GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
1909     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
1910     return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
1911                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
1912   }
1913   case ARM::BI__builtin_neon_vcvt_n_f32_v:
1914   case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
1915     llvm::Type *FloatTy =
1916       GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
1917     llvm::Type *Tys[2] = { FloatTy, Ty };
1918     Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp
1919                : Intrinsic::arm_neon_vcvtfxs2fp;
1920     Function *F = CGM.getIntrinsic(Int, Tys);
1921     return EmitNeonCall(F, Ops, "vcvt_n");
1922   }
1923   case ARM::BI__builtin_neon_vcvt_n_s32_v:
1924   case ARM::BI__builtin_neon_vcvt_n_u32_v:
1925   case ARM::BI__builtin_neon_vcvtq_n_s32_v:
1926   case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
1927     llvm::Type *FloatTy =
1928       GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
1929     llvm::Type *Tys[2] = { Ty, FloatTy };
1930     Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu
1931                : Intrinsic::arm_neon_vcvtfp2fxs;
1932     Function *F = CGM.getIntrinsic(Int, Tys);
1933     return EmitNeonCall(F, Ops, "vcvt_n");
1934   }
1935   case ARM::BI__builtin_neon_vext_v:
1936   case ARM::BI__builtin_neon_vextq_v: {
1937     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
1938     SmallVector<Constant*, 16> Indices;
1939     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1940       Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
1941
1942     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1943     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1944     Value *SV = llvm::ConstantVector::get(Indices);
1945     return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
1946   }
1947   case ARM::BI__builtin_neon_vhadd_v:
1948   case ARM::BI__builtin_neon_vhaddq_v:
1949     Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
1950     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd");
1951   case ARM::BI__builtin_neon_vhsub_v:
1952   case ARM::BI__builtin_neon_vhsubq_v:
1953     Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
1954     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub");
1955   case ARM::BI__builtin_neon_vld1_v:
1956   case ARM::BI__builtin_neon_vld1q_v:
1957     Ops.push_back(Align);
1958     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty),
1959                         Ops, "vld1");
1960   case ARM::BI__builtin_neon_vld1q_lane_v:
1961     // Handle 64-bit integer elements as a special case.  Use shuffles of
1962     // one-element vectors to avoid poor code for i64 in the backend.
1963     if (VTy->getElementType()->isIntegerTy(64)) {
1964       // Extract the other lane.
1965       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1966       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
1967       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
1968       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
1969       // Load the value as a one-element vector.
1970       Ty = llvm::VectorType::get(VTy->getElementType(), 1);
1971       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty);
1972       Value *Ld = Builder.CreateCall2(F, Ops[0], Align);
1973       // Combine them.
1974       SmallVector<Constant*, 2> Indices;
1975       Indices.push_back(ConstantInt::get(Int32Ty, 1-Lane));
1976       Indices.push_back(ConstantInt::get(Int32Ty, Lane));
1977       SV = llvm::ConstantVector::get(Indices);
1978       return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
1979     }
1980     // fall through
1981   case ARM::BI__builtin_neon_vld1_lane_v: {
1982     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1983     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1984     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1985     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
1986     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
1987     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
1988   }
1989   case ARM::BI__builtin_neon_vld1_dup_v:
1990   case ARM::BI__builtin_neon_vld1q_dup_v: {
1991     Value *V = UndefValue::get(Ty);
1992     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1993     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1994     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
1995     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
1996     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1997     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
1998     return EmitNeonSplat(Ops[0], CI);
1999   }
2000   case ARM::BI__builtin_neon_vld2_v:
2001   case ARM::BI__builtin_neon_vld2q_v: {
2002     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty);
2003     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
2004     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2005     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2006     return Builder.CreateStore(Ops[1], Ops[0]);
2007   }
2008   case ARM::BI__builtin_neon_vld3_v:
2009   case ARM::BI__builtin_neon_vld3q_v: {
2010     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty);
2011     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
2012     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2013     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2014     return Builder.CreateStore(Ops[1], Ops[0]);
2015   }
2016   case ARM::BI__builtin_neon_vld4_v:
2017   case ARM::BI__builtin_neon_vld4q_v: {
2018     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty);
2019     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
2020     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2021     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2022     return Builder.CreateStore(Ops[1], Ops[0]);
2023   }
2024   case ARM::BI__builtin_neon_vld2_lane_v:
2025   case ARM::BI__builtin_neon_vld2q_lane_v: {
2026     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty);
2027     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2028     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
2029     Ops.push_back(Align);
2030     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
2031     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2032     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2033     return Builder.CreateStore(Ops[1], Ops[0]);
2034   }
2035   case ARM::BI__builtin_neon_vld3_lane_v:
2036   case ARM::BI__builtin_neon_vld3q_lane_v: {
2037     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty);
2038     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2039     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
2040     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
2041     Ops.push_back(Align);
2042     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
2043     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2044     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2045     return Builder.CreateStore(Ops[1], Ops[0]);
2046   }
2047   case ARM::BI__builtin_neon_vld4_lane_v:
2048   case ARM::BI__builtin_neon_vld4q_lane_v: {
2049     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty);
2050     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2051     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
2052     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
2053     Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
2054     Ops.push_back(Align);
2055     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
2056     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2057     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2058     return Builder.CreateStore(Ops[1], Ops[0]);
2059   }
2060   case ARM::BI__builtin_neon_vld2_dup_v:
2061   case ARM::BI__builtin_neon_vld3_dup_v:
2062   case ARM::BI__builtin_neon_vld4_dup_v: {
2063     // Handle 64-bit elements as a special-case.  There is no "dup" needed.
2064     if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
2065       switch (BuiltinID) {
2066       case ARM::BI__builtin_neon_vld2_dup_v:
2067         Int = Intrinsic::arm_neon_vld2;
2068         break;
2069       case ARM::BI__builtin_neon_vld3_dup_v:
2070         Int = Intrinsic::arm_neon_vld3;
2071         break;
2072       case ARM::BI__builtin_neon_vld4_dup_v:
2073         Int = Intrinsic::arm_neon_vld4;
2074         break;
2075       default: llvm_unreachable("unknown vld_dup intrinsic?");
2076       }
2077       Function *F = CGM.getIntrinsic(Int, Ty);
2078       Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
2079       Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2080       Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2081       return Builder.CreateStore(Ops[1], Ops[0]);
2082     }
2083     switch (BuiltinID) {
2084     case ARM::BI__builtin_neon_vld2_dup_v:
2085       Int = Intrinsic::arm_neon_vld2lane;
2086       break;
2087     case ARM::BI__builtin_neon_vld3_dup_v:
2088       Int = Intrinsic::arm_neon_vld3lane;
2089       break;
2090     case ARM::BI__builtin_neon_vld4_dup_v:
2091       Int = Intrinsic::arm_neon_vld4lane;
2092       break;
2093     default: llvm_unreachable("unknown vld_dup intrinsic?");
2094     }
2095     Function *F = CGM.getIntrinsic(Int, Ty);
2096     llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
2097
2098     SmallVector<Value*, 6> Args;
2099     Args.push_back(Ops[1]);
2100     Args.append(STy->getNumElements(), UndefValue::get(Ty));
2101
2102     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
2103     Args.push_back(CI);
2104     Args.push_back(Align);
2105
2106     Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
2107     // splat lane 0 to all elts in each vector of the result.
2108     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2109       Value *Val = Builder.CreateExtractValue(Ops[1], i);
2110       Value *Elt = Builder.CreateBitCast(Val, Ty);
2111       Elt = EmitNeonSplat(Elt, CI);
2112       Elt = Builder.CreateBitCast(Elt, Val->getType());
2113       Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
2114     }
2115     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2116     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2117     return Builder.CreateStore(Ops[1], Ops[0]);
2118   }
2119   case ARM::BI__builtin_neon_vmax_v:
2120   case ARM::BI__builtin_neon_vmaxq_v:
2121     Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
2122     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
2123   case ARM::BI__builtin_neon_vmin_v:
2124   case ARM::BI__builtin_neon_vminq_v:
2125     Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
2126     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
2127   case ARM::BI__builtin_neon_vmovl_v: {
2128     llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
2129     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
2130     if (usgn)
2131       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
2132     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
2133   }
2134   case ARM::BI__builtin_neon_vmovn_v: {
2135     llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
2136     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
2137     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
2138   }
2139   case ARM::BI__builtin_neon_vmul_v:
2140   case ARM::BI__builtin_neon_vmulq_v:
2141     assert(Type.isPoly() && "vmul builtin only supported for polynomial types");
2142     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty),
2143                         Ops, "vmul");
2144   case ARM::BI__builtin_neon_vmull_v:
2145     Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
2146     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
2147     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
2148   case ARM::BI__builtin_neon_vfma_v:
2149   case ARM::BI__builtin_neon_vfmaq_v: {
2150     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
2151     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2152     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2153     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2154
2155     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
2156     return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
2157   }
2158   case ARM::BI__builtin_neon_vpadal_v:
2159   case ARM::BI__builtin_neon_vpadalq_v: {
2160     Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
2161     // The source operand type has twice as many elements of half the size.
2162     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
2163     llvm::Type *EltTy =
2164       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
2165     llvm::Type *NarrowTy =
2166       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
2167     llvm::Type *Tys[2] = { Ty, NarrowTy };
2168     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal");
2169   }
2170   case ARM::BI__builtin_neon_vpadd_v:
2171     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty),
2172                         Ops, "vpadd");
2173   case ARM::BI__builtin_neon_vpaddl_v:
2174   case ARM::BI__builtin_neon_vpaddlq_v: {
2175     Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
2176     // The source operand type has twice as many elements of half the size.
2177     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
2178     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
2179     llvm::Type *NarrowTy =
2180       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
2181     llvm::Type *Tys[2] = { Ty, NarrowTy };
2182     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
2183   }
2184   case ARM::BI__builtin_neon_vpmax_v:
2185     Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
2186     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
2187   case ARM::BI__builtin_neon_vpmin_v:
2188     Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
2189     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
2190   case ARM::BI__builtin_neon_vqabs_v:
2191   case ARM::BI__builtin_neon_vqabsq_v:
2192     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty),
2193                         Ops, "vqabs");
2194   case ARM::BI__builtin_neon_vqadd_v:
2195   case ARM::BI__builtin_neon_vqaddq_v:
2196     Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
2197     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd");
2198   case ARM::BI__builtin_neon_vqdmlal_v:
2199     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlal, Ty),
2200                         Ops, "vqdmlal");
2201   case ARM::BI__builtin_neon_vqdmlsl_v:
2202     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlsl, Ty),
2203                         Ops, "vqdmlsl");
2204   case ARM::BI__builtin_neon_vqdmulh_v:
2205   case ARM::BI__builtin_neon_vqdmulhq_v:
2206     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty),
2207                         Ops, "vqdmulh");
2208   case ARM::BI__builtin_neon_vqdmull_v:
2209     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
2210                         Ops, "vqdmull");
2211   case ARM::BI__builtin_neon_vqmovn_v:
2212     Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
2213     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn");
2214   case ARM::BI__builtin_neon_vqmovun_v:
2215     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty),
2216                         Ops, "vqdmull");
2217   case ARM::BI__builtin_neon_vqneg_v:
2218   case ARM::BI__builtin_neon_vqnegq_v:
2219     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty),
2220                         Ops, "vqneg");
2221   case ARM::BI__builtin_neon_vqrdmulh_v:
2222   case ARM::BI__builtin_neon_vqrdmulhq_v:
2223     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty),
2224                         Ops, "vqrdmulh");
2225   case ARM::BI__builtin_neon_vqrshl_v:
2226   case ARM::BI__builtin_neon_vqrshlq_v:
2227     Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
2228     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl");
2229   case ARM::BI__builtin_neon_vqrshrn_n_v:
2230     Int =
2231       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
2232     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
2233                         1, true);
2234   case ARM::BI__builtin_neon_vqrshrun_n_v:
2235     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
2236                         Ops, "vqrshrun_n", 1, true);
2237   case ARM::BI__builtin_neon_vqshl_v:
2238   case ARM::BI__builtin_neon_vqshlq_v:
2239     Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
2240     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl");
2241   case ARM::BI__builtin_neon_vqshl_n_v:
2242   case ARM::BI__builtin_neon_vqshlq_n_v:
2243     Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
2244     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
2245                         1, false);
2246   case ARM::BI__builtin_neon_vqshlu_n_v:
2247   case ARM::BI__builtin_neon_vqshluq_n_v:
2248     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty),
2249                         Ops, "vqshlu", 1, false);
2250   case ARM::BI__builtin_neon_vqshrn_n_v:
2251     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
2252     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
2253                         1, true);
2254   case ARM::BI__builtin_neon_vqshrun_n_v:
2255     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
2256                         Ops, "vqshrun_n", 1, true);
2257   case ARM::BI__builtin_neon_vqsub_v:
2258   case ARM::BI__builtin_neon_vqsubq_v:
2259     Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
2260     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub");
2261   case ARM::BI__builtin_neon_vraddhn_v:
2262     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty),
2263                         Ops, "vraddhn");
2264   case ARM::BI__builtin_neon_vrecpe_v:
2265   case ARM::BI__builtin_neon_vrecpeq_v:
2266     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
2267                         Ops, "vrecpe");
2268   case ARM::BI__builtin_neon_vrecps_v:
2269   case ARM::BI__builtin_neon_vrecpsq_v:
2270     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty),
2271                         Ops, "vrecps");
2272   case ARM::BI__builtin_neon_vrhadd_v:
2273   case ARM::BI__builtin_neon_vrhaddq_v:
2274     Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
2275     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd");
2276   case ARM::BI__builtin_neon_vrshl_v:
2277   case ARM::BI__builtin_neon_vrshlq_v:
2278     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
2279     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl");
2280   case ARM::BI__builtin_neon_vrshrn_n_v:
2281     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
2282                         Ops, "vrshrn_n", 1, true);
2283   case ARM::BI__builtin_neon_vrshr_n_v:
2284   case ARM::BI__builtin_neon_vrshrq_n_v:
2285     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
2286     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true);
2287   case ARM::BI__builtin_neon_vrsqrte_v:
2288   case ARM::BI__builtin_neon_vrsqrteq_v:
2289     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty),
2290                         Ops, "vrsqrte");
2291   case ARM::BI__builtin_neon_vrsqrts_v:
2292   case ARM::BI__builtin_neon_vrsqrtsq_v:
2293     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty),
2294                         Ops, "vrsqrts");
2295   case ARM::BI__builtin_neon_vrsra_n_v:
2296   case ARM::BI__builtin_neon_vrsraq_n_v:
2297     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2298     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2299     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
2300     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
2301     Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
2302     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
2303   case ARM::BI__builtin_neon_vrsubhn_v:
2304     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty),
2305                         Ops, "vrsubhn");
2306   case ARM::BI__builtin_neon_vshl_v:
2307   case ARM::BI__builtin_neon_vshlq_v:
2308     Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
2309     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl");
2310   case ARM::BI__builtin_neon_vshll_n_v:
2311     Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
2312     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1);
2313   case ARM::BI__builtin_neon_vshl_n_v:
2314   case ARM::BI__builtin_neon_vshlq_n_v:
2315     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
2316     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
2317                              "vshl_n");
2318   case ARM::BI__builtin_neon_vshrn_n_v:
2319     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty),
2320                         Ops, "vshrn_n", 1, true);
2321   case ARM::BI__builtin_neon_vshr_n_v:
2322   case ARM::BI__builtin_neon_vshrq_n_v:
2323     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2324     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
2325     if (usgn)
2326       return Builder.CreateLShr(Ops[0], Ops[1], "vshr_n");
2327     else
2328       return Builder.CreateAShr(Ops[0], Ops[1], "vshr_n");
2329   case ARM::BI__builtin_neon_vsri_n_v:
2330   case ARM::BI__builtin_neon_vsriq_n_v:
2331     rightShift = true;
2332   case ARM::BI__builtin_neon_vsli_n_v:
2333   case ARM::BI__builtin_neon_vsliq_n_v:
2334     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
2335     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
2336                         Ops, "vsli_n");
2337   case ARM::BI__builtin_neon_vsra_n_v:
2338   case ARM::BI__builtin_neon_vsraq_n_v:
2339     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2340     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2341     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, false);
2342     if (usgn)
2343       Ops[1] = Builder.CreateLShr(Ops[1], Ops[2], "vsra_n");
2344     else
2345       Ops[1] = Builder.CreateAShr(Ops[1], Ops[2], "vsra_n");
2346     return Builder.CreateAdd(Ops[0], Ops[1]);
2347   case ARM::BI__builtin_neon_vst1_v:
2348   case ARM::BI__builtin_neon_vst1q_v:
2349     Ops.push_back(Align);
2350     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty),
2351                         Ops, "");
2352   case ARM::BI__builtin_neon_vst1q_lane_v:
2353     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
2354     // a one-element vector and avoid poor code for i64 in the backend.
2355     if (VTy->getElementType()->isIntegerTy(64)) {
2356       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2357       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
2358       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
2359       Ops[2] = Align;
2360       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
2361                                                  Ops[1]->getType()), Ops);
2362     }
2363     // fall through
2364   case ARM::BI__builtin_neon_vst1_lane_v: {
2365     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2366     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
2367     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2368     StoreInst *St = Builder.CreateStore(Ops[1],
2369                                         Builder.CreateBitCast(Ops[0], Ty));
2370     St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
2371     return St;
2372   }
2373   case ARM::BI__builtin_neon_vst2_v:
2374   case ARM::BI__builtin_neon_vst2q_v:
2375     Ops.push_back(Align);
2376     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty),
2377                         Ops, "");
2378   case ARM::BI__builtin_neon_vst2_lane_v:
2379   case ARM::BI__builtin_neon_vst2q_lane_v:
2380     Ops.push_back(Align);
2381     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty),
2382                         Ops, "");
2383   case ARM::BI__builtin_neon_vst3_v:
2384   case ARM::BI__builtin_neon_vst3q_v:
2385     Ops.push_back(Align);
2386     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty),
2387                         Ops, "");
2388   case ARM::BI__builtin_neon_vst3_lane_v:
2389   case ARM::BI__builtin_neon_vst3q_lane_v:
2390     Ops.push_back(Align);
2391     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty),
2392                         Ops, "");
2393   case ARM::BI__builtin_neon_vst4_v:
2394   case ARM::BI__builtin_neon_vst4q_v:
2395     Ops.push_back(Align);
2396     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty),
2397                         Ops, "");
2398   case ARM::BI__builtin_neon_vst4_lane_v:
2399   case ARM::BI__builtin_neon_vst4q_lane_v:
2400     Ops.push_back(Align);
2401     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty),
2402                         Ops, "");
2403   case ARM::BI__builtin_neon_vsubhn_v:
2404     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vsubhn, Ty),
2405                         Ops, "vsubhn");
2406   case ARM::BI__builtin_neon_vtbl1_v:
2407     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
2408                         Ops, "vtbl1");
2409   case ARM::BI__builtin_neon_vtbl2_v:
2410     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
2411                         Ops, "vtbl2");
2412   case ARM::BI__builtin_neon_vtbl3_v:
2413     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
2414                         Ops, "vtbl3");
2415   case ARM::BI__builtin_neon_vtbl4_v:
2416     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
2417                         Ops, "vtbl4");
2418   case ARM::BI__builtin_neon_vtbx1_v:
2419     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
2420                         Ops, "vtbx1");
2421   case ARM::BI__builtin_neon_vtbx2_v:
2422     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
2423                         Ops, "vtbx2");
2424   case ARM::BI__builtin_neon_vtbx3_v:
2425     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
2426                         Ops, "vtbx3");
2427   case ARM::BI__builtin_neon_vtbx4_v:
2428     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
2429                         Ops, "vtbx4");
2430   case ARM::BI__builtin_neon_vtst_v:
2431   case ARM::BI__builtin_neon_vtstq_v: {
2432     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2433     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2434     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
2435     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
2436                                 ConstantAggregateZero::get(Ty));
2437     return Builder.CreateSExt(Ops[0], Ty, "vtst");
2438   }
2439   case ARM::BI__builtin_neon_vtrn_v:
2440   case ARM::BI__builtin_neon_vtrnq_v: {
2441     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
2442     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2443     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2444     Value *SV = 0;
2445
2446     for (unsigned vi = 0; vi != 2; ++vi) {
2447       SmallVector<Constant*, 16> Indices;
2448       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
2449         Indices.push_back(Builder.getInt32(i+vi));
2450         Indices.push_back(Builder.getInt32(i+e+vi));
2451       }
2452       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
2453       SV = llvm::ConstantVector::get(Indices);
2454       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
2455       SV = Builder.CreateStore(SV, Addr);
2456     }
2457     return SV;
2458   }
2459   case ARM::BI__builtin_neon_vuzp_v:
2460   case ARM::BI__builtin_neon_vuzpq_v: {
2461     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
2462     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2463     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2464     Value *SV = 0;
2465
2466     for (unsigned vi = 0; vi != 2; ++vi) {
2467       SmallVector<Constant*, 16> Indices;
2468       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
2469         Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
2470
2471       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
2472       SV = llvm::ConstantVector::get(Indices);
2473       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
2474       SV = Builder.CreateStore(SV, Addr);
2475     }
2476     return SV;
2477   }
2478   case ARM::BI__builtin_neon_vzip_v:
2479   case ARM::BI__builtin_neon_vzipq_v: {
2480     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
2481     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2482     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2483     Value *SV = 0;
2484
2485     for (unsigned vi = 0; vi != 2; ++vi) {
2486       SmallVector<Constant*, 16> Indices;
2487       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
2488         Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
2489         Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
2490       }
2491       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
2492       SV = llvm::ConstantVector::get(Indices);
2493       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
2494       SV = Builder.CreateStore(SV, Addr);
2495     }
2496     return SV;
2497   }
2498   }
2499 }
2500
2501 llvm::Value *CodeGenFunction::
2502 BuildVector(ArrayRef<llvm::Value*> Ops) {
2503   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
2504          "Not a power-of-two sized vector!");
2505   bool AllConstants = true;
2506   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
2507     AllConstants &= isa<Constant>(Ops[i]);
2508
2509   // If this is a constant vector, create a ConstantVector.
2510   if (AllConstants) {
2511     SmallVector<llvm::Constant*, 16> CstOps;
2512     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2513       CstOps.push_back(cast<Constant>(Ops[i]));
2514     return llvm::ConstantVector::get(CstOps);
2515   }
2516
2517   // Otherwise, insertelement the values to build the vector.
2518   Value *Result =
2519     llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
2520
2521   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2522     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
2523
2524   return Result;
2525 }
2526
2527 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
2528                                            const CallExpr *E) {
2529   SmallVector<Value*, 4> Ops;
2530
2531   // Find out if any arguments are required to be integer constant expressions.
2532   unsigned ICEArguments = 0;
2533   ASTContext::GetBuiltinTypeError Error;
2534   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
2535   assert(Error == ASTContext::GE_None && "Should not codegen an error");
2536
2537   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
2538     // If this is a normal argument, just emit it as a scalar.
2539     if ((ICEArguments & (1 << i)) == 0) {
2540       Ops.push_back(EmitScalarExpr(E->getArg(i)));
2541       continue;
2542     }
2543
2544     // If this is required to be a constant, constant fold it so that we know
2545     // that the generated intrinsic gets a ConstantInt.
2546     llvm::APSInt Result;
2547     bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
2548     assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
2549     Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
2550   }
2551
2552   switch (BuiltinID) {
2553   default: return 0;
2554   case X86::BI__builtin_ia32_vec_init_v8qi:
2555   case X86::BI__builtin_ia32_vec_init_v4hi:
2556   case X86::BI__builtin_ia32_vec_init_v2si:
2557     return Builder.CreateBitCast(BuildVector(Ops),
2558                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
2559   case X86::BI__builtin_ia32_vec_ext_v2si:
2560     return Builder.CreateExtractElement(Ops[0],
2561                                   llvm::ConstantInt::get(Ops[1]->getType(), 0));
2562   case X86::BI__builtin_ia32_ldmxcsr: {
2563     llvm::Type *PtrTy = Int8PtrTy;
2564     Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2565     Value *Tmp = Builder.CreateAlloca(Int32Ty, One);
2566     Builder.CreateStore(Ops[0], Tmp);
2567     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
2568                               Builder.CreateBitCast(Tmp, PtrTy));
2569   }
2570   case X86::BI__builtin_ia32_stmxcsr: {
2571     llvm::Type *PtrTy = Int8PtrTy;
2572     Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2573     Value *Tmp = Builder.CreateAlloca(Int32Ty, One);
2574     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
2575                        Builder.CreateBitCast(Tmp, PtrTy));
2576     return Builder.CreateLoad(Tmp, "stmxcsr");
2577   }
2578   case X86::BI__builtin_ia32_storehps:
2579   case X86::BI__builtin_ia32_storelps: {
2580     llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
2581     llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2582
2583     // cast val v2i64
2584     Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
2585
2586     // extract (0, 1)
2587     unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
2588     llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
2589     Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
2590
2591     // cast pointer to i64 & store
2592     Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
2593     return Builder.CreateStore(Ops[1], Ops[0]);
2594   }
2595   case X86::BI__builtin_ia32_palignr: {
2596     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2597
2598     // If palignr is shifting the pair of input vectors less than 9 bytes,
2599     // emit a shuffle instruction.
2600     if (shiftVal <= 8) {
2601       SmallVector<llvm::Constant*, 8> Indices;
2602       for (unsigned i = 0; i != 8; ++i)
2603         Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2604
2605       Value* SV = llvm::ConstantVector::get(Indices);
2606       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2607     }
2608
2609     // If palignr is shifting the pair of input vectors more than 8 but less
2610     // than 16 bytes, emit a logical right shift of the destination.
2611     if (shiftVal < 16) {
2612       // MMX has these as 1 x i64 vectors for some odd optimization reasons.
2613       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
2614
2615       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2616       Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
2617
2618       // create i32 constant
2619       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
2620       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
2621     }
2622
2623     // If palignr is shifting the pair of vectors more than 16 bytes, emit zero.
2624     return llvm::Constant::getNullValue(ConvertType(E->getType()));
2625   }
2626   case X86::BI__builtin_ia32_palignr128: {
2627     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2628
2629     // If palignr is shifting the pair of input vectors less than 17 bytes,
2630     // emit a shuffle instruction.
2631     if (shiftVal <= 16) {
2632       SmallVector<llvm::Constant*, 16> Indices;
2633       for (unsigned i = 0; i != 16; ++i)
2634         Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2635
2636       Value* SV = llvm::ConstantVector::get(Indices);
2637       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2638     }
2639
2640     // If palignr is shifting the pair of input vectors more than 16 but less
2641     // than 32 bytes, emit a logical right shift of the destination.
2642     if (shiftVal < 32) {
2643       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2644
2645       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2646       Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
2647
2648       // create i32 constant
2649       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
2650       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
2651     }
2652
2653     // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2654     return llvm::Constant::getNullValue(ConvertType(E->getType()));
2655   }
2656   case X86::BI__builtin_ia32_palignr256: {
2657     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2658
2659     // If palignr is shifting the pair of input vectors less than 17 bytes,
2660     // emit a shuffle instruction.
2661     if (shiftVal <= 16) {
2662       SmallVector<llvm::Constant*, 32> Indices;
2663       // 256-bit palignr operates on 128-bit lanes so we need to handle that
2664       for (unsigned l = 0; l != 2; ++l) {
2665         unsigned LaneStart = l * 16;
2666         unsigned LaneEnd = (l+1) * 16;
2667         for (unsigned i = 0; i != 16; ++i) {
2668           unsigned Idx = shiftVal + i + LaneStart;
2669           if (Idx >= LaneEnd) Idx += 16; // end of lane, switch operand
2670           Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx));
2671         }
2672       }
2673
2674       Value* SV = llvm::ConstantVector::get(Indices);
2675       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2676     }
2677
2678     // If palignr is shifting the pair of input vectors more than 16 but less
2679     // than 32 bytes, emit a logical right shift of the destination.
2680     if (shiftVal < 32) {
2681       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 4);
2682
2683       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2684       Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
2685
2686       // create i32 constant
2687       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_avx2_psrl_dq);
2688       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
2689     }
2690
2691     // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2692     return llvm::Constant::getNullValue(ConvertType(E->getType()));
2693   }
2694   case X86::BI__builtin_ia32_movntps:
2695   case X86::BI__builtin_ia32_movntps256:
2696   case X86::BI__builtin_ia32_movntpd:
2697   case X86::BI__builtin_ia32_movntpd256:
2698   case X86::BI__builtin_ia32_movntdq:
2699   case X86::BI__builtin_ia32_movntdq256:
2700   case X86::BI__builtin_ia32_movnti: {
2701     llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
2702                                            Builder.getInt32(1));
2703
2704     // Convert the type of the pointer to a pointer to the stored type.
2705     Value *BC = Builder.CreateBitCast(Ops[0],
2706                                 llvm::PointerType::getUnqual(Ops[1]->getType()),
2707                                       "cast");
2708     StoreInst *SI = Builder.CreateStore(Ops[1], BC);
2709     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
2710     SI->setAlignment(16);
2711     return SI;
2712   }
2713   // 3DNow!
2714   case X86::BI__builtin_ia32_pswapdsf:
2715   case X86::BI__builtin_ia32_pswapdsi: {
2716     const char *name = 0;
2717     Intrinsic::ID ID = Intrinsic::not_intrinsic;
2718     switch(BuiltinID) {
2719     default: llvm_unreachable("Unsupported intrinsic!");
2720     case X86::BI__builtin_ia32_pswapdsf:
2721     case X86::BI__builtin_ia32_pswapdsi:
2722       name = "pswapd";
2723       ID = Intrinsic::x86_3dnowa_pswapd;
2724       break;
2725     }
2726     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
2727     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
2728     llvm::Function *F = CGM.getIntrinsic(ID);
2729     return Builder.CreateCall(F, Ops, name);
2730   }
2731   case X86::BI__builtin_ia32_rdrand16_step:
2732   case X86::BI__builtin_ia32_rdrand32_step:
2733   case X86::BI__builtin_ia32_rdrand64_step:
2734   case X86::BI__builtin_ia32_rdseed16_step:
2735   case X86::BI__builtin_ia32_rdseed32_step:
2736   case X86::BI__builtin_ia32_rdseed64_step: {
2737     Intrinsic::ID ID;
2738     switch (BuiltinID) {
2739     default: llvm_unreachable("Unsupported intrinsic!");
2740     case X86::BI__builtin_ia32_rdrand16_step:
2741       ID = Intrinsic::x86_rdrand_16;
2742       break;
2743     case X86::BI__builtin_ia32_rdrand32_step:
2744       ID = Intrinsic::x86_rdrand_32;
2745       break;
2746     case X86::BI__builtin_ia32_rdrand64_step:
2747       ID = Intrinsic::x86_rdrand_64;
2748       break;
2749     case X86::BI__builtin_ia32_rdseed16_step:
2750       ID = Intrinsic::x86_rdseed_16;
2751       break;
2752     case X86::BI__builtin_ia32_rdseed32_step:
2753       ID = Intrinsic::x86_rdseed_32;
2754       break;
2755     case X86::BI__builtin_ia32_rdseed64_step:
2756       ID = Intrinsic::x86_rdseed_64;
2757       break;
2758     }
2759
2760     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
2761     Builder.CreateStore(Builder.CreateExtractValue(Call, 0), Ops[0]);
2762     return Builder.CreateExtractValue(Call, 1);
2763   }
2764   }
2765 }
2766
2767
2768 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
2769                                            const CallExpr *E) {
2770   SmallVector<Value*, 4> Ops;
2771
2772   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
2773     Ops.push_back(EmitScalarExpr(E->getArg(i)));
2774
2775   Intrinsic::ID ID = Intrinsic::not_intrinsic;
2776
2777   switch (BuiltinID) {
2778   default: return 0;
2779
2780   // vec_ld, vec_lvsl, vec_lvsr
2781   case PPC::BI__builtin_altivec_lvx:
2782   case PPC::BI__builtin_altivec_lvxl:
2783   case PPC::BI__builtin_altivec_lvebx:
2784   case PPC::BI__builtin_altivec_lvehx:
2785   case PPC::BI__builtin_altivec_lvewx:
2786   case PPC::BI__builtin_altivec_lvsl:
2787   case PPC::BI__builtin_altivec_lvsr:
2788   {
2789     Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
2790
2791     Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
2792     Ops.pop_back();
2793
2794     switch (BuiltinID) {
2795     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
2796     case PPC::BI__builtin_altivec_lvx:
2797       ID = Intrinsic::ppc_altivec_lvx;
2798       break;
2799     case PPC::BI__builtin_altivec_lvxl:
2800       ID = Intrinsic::ppc_altivec_lvxl;
2801       break;
2802     case PPC::BI__builtin_altivec_lvebx:
2803       ID = Intrinsic::ppc_altivec_lvebx;
2804       break;
2805     case PPC::BI__builtin_altivec_lvehx:
2806       ID = Intrinsic::ppc_altivec_lvehx;
2807       break;
2808     case PPC::BI__builtin_altivec_lvewx:
2809       ID = Intrinsic::ppc_altivec_lvewx;
2810       break;
2811     case PPC::BI__builtin_altivec_lvsl:
2812       ID = Intrinsic::ppc_altivec_lvsl;
2813       break;
2814     case PPC::BI__builtin_altivec_lvsr:
2815       ID = Intrinsic::ppc_altivec_lvsr;
2816       break;
2817     }
2818     llvm::Function *F = CGM.getIntrinsic(ID);
2819     return Builder.CreateCall(F, Ops, "");
2820   }
2821
2822   // vec_st
2823   case PPC::BI__builtin_altivec_stvx:
2824   case PPC::BI__builtin_altivec_stvxl:
2825   case PPC::BI__builtin_altivec_stvebx:
2826   case PPC::BI__builtin_altivec_stvehx:
2827   case PPC::BI__builtin_altivec_stvewx:
2828   {
2829     Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
2830     Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
2831     Ops.pop_back();
2832
2833     switch (BuiltinID) {
2834     default: llvm_unreachable("Unsupported st intrinsic!");
2835     case PPC::BI__builtin_altivec_stvx:
2836       ID = Intrinsic::ppc_altivec_stvx;
2837       break;
2838     case PPC::BI__builtin_altivec_stvxl:
2839       ID = Intrinsic::ppc_altivec_stvxl;
2840       break;
2841     case PPC::BI__builtin_altivec_stvebx:
2842       ID = Intrinsic::ppc_altivec_stvebx;
2843       break;
2844     case PPC::BI__builtin_altivec_stvehx:
2845       ID = Intrinsic::ppc_altivec_stvehx;
2846       break;
2847     case PPC::BI__builtin_altivec_stvewx:
2848       ID = Intrinsic::ppc_altivec_stvewx;
2849       break;
2850     }
2851     llvm::Function *F = CGM.getIntrinsic(ID);
2852     return Builder.CreateCall(F, Ops, "");
2853   }
2854   }
2855 }