]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CodeGenTypes.cpp
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / llvm / tools / clang / lib / CodeGen / CodeGenTypes.cpp
1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenTypes.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Module.h"
28 using namespace clang;
29 using namespace CodeGen;
30
31 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
32   : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
33     TheDataLayout(cgm.getDataLayout()),
34     Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
35     CodeGenOpts(cgm.getCodeGenOpts()),
36     TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
37   SkippedLayout = false;
38 }
39
40 CodeGenTypes::~CodeGenTypes() {
41   for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
42          I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
43       I != E; ++I)
44     delete I->second;
45
46   for (llvm::FoldingSet<CGFunctionInfo>::iterator
47        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
48     delete &*I++;
49 }
50
51 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
52                                      llvm::StructType *Ty,
53                                      StringRef suffix) {
54   SmallString<256> TypeName;
55   llvm::raw_svector_ostream OS(TypeName);
56   OS << RD->getKindName() << '.';
57   
58   // Name the codegen type after the typedef name
59   // if there is no tag type name available
60   if (RD->getIdentifier()) {
61     // FIXME: We should not have to check for a null decl context here.
62     // Right now we do it because the implicit Obj-C decls don't have one.
63     if (RD->getDeclContext())
64       RD->printQualifiedName(OS);
65     else
66       RD->printName(OS);
67   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
68     // FIXME: We should not have to check for a null decl context here.
69     // Right now we do it because the implicit Obj-C decls don't have one.
70     if (TDD->getDeclContext())
71       TDD->printQualifiedName(OS);
72     else
73       TDD->printName(OS);
74   } else
75     OS << "anon";
76
77   if (!suffix.empty())
78     OS << suffix;
79
80   Ty->setName(OS.str());
81 }
82
83 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
84 /// ConvertType in that it is used to convert to the memory representation for
85 /// a type.  For example, the scalar representation for _Bool is i1, but the
86 /// memory representation is usually i8 or i32, depending on the target.
87 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
88   llvm::Type *R = ConvertType(T);
89
90   // If this is a non-bool type, don't map it.
91   if (!R->isIntegerTy(1))
92     return R;
93
94   // Otherwise, return an integer of the target-specified size.
95   return llvm::IntegerType::get(getLLVMContext(),
96                                 (unsigned)Context.getTypeSize(T));
97 }
98
99
100 /// isRecordLayoutComplete - Return true if the specified type is already
101 /// completely laid out.
102 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
103   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = 
104   RecordDeclTypes.find(Ty);
105   return I != RecordDeclTypes.end() && !I->second->isOpaque();
106 }
107
108 static bool
109 isSafeToConvert(QualType T, CodeGenTypes &CGT,
110                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
111
112
113 /// isSafeToConvert - Return true if it is safe to convert the specified record
114 /// decl to IR and lay it out, false if doing so would cause us to get into a
115 /// recursive compilation mess.
116 static bool 
117 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
118                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
119   // If we have already checked this type (maybe the same type is used by-value
120   // multiple times in multiple structure fields, don't check again.
121   if (!AlreadyChecked.insert(RD)) return true;
122   
123   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
124   
125   // If this type is already laid out, converting it is a noop.
126   if (CGT.isRecordLayoutComplete(Key)) return true;
127   
128   // If this type is currently being laid out, we can't recursively compile it.
129   if (CGT.isRecordBeingLaidOut(Key))
130     return false;
131   
132   // If this type would require laying out bases that are currently being laid
133   // out, don't do it.  This includes virtual base classes which get laid out
134   // when a class is translated, even though they aren't embedded by-value into
135   // the class.
136   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
137     for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
138          E = CRD->bases_end(); I != E; ++I)
139       if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
140                            CGT, AlreadyChecked))
141         return false;
142   }
143   
144   // If this type would require laying out members that are currently being laid
145   // out, don't do it.
146   for (RecordDecl::field_iterator I = RD->field_begin(),
147        E = RD->field_end(); I != E; ++I)
148     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
149       return false;
150   
151   // If there are no problems, lets do it.
152   return true;
153 }
154
155 /// isSafeToConvert - Return true if it is safe to convert this field type,
156 /// which requires the structure elements contained by-value to all be
157 /// recursively safe to convert.
158 static bool
159 isSafeToConvert(QualType T, CodeGenTypes &CGT,
160                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
161   T = T.getCanonicalType();
162   
163   // If this is a record, check it.
164   if (const RecordType *RT = dyn_cast<RecordType>(T))
165     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
166   
167   // If this is an array, check the elements, which are embedded inline.
168   if (const ArrayType *AT = dyn_cast<ArrayType>(T))
169     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
170
171   // Otherwise, there is no concern about transforming this.  We only care about
172   // things that are contained by-value in a structure that can have another 
173   // structure as a member.
174   return true;
175 }
176
177
178 /// isSafeToConvert - Return true if it is safe to convert the specified record
179 /// decl to IR and lay it out, false if doing so would cause us to get into a
180 /// recursive compilation mess.
181 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
182   // If no structs are being laid out, we can certainly do this one.
183   if (CGT.noRecordsBeingLaidOut()) return true;
184   
185   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
186   return isSafeToConvert(RD, CGT, AlreadyChecked);
187 }
188
189
190 /// isFuncTypeArgumentConvertible - Return true if the specified type in a 
191 /// function argument or result position can be converted to an IR type at this
192 /// point.  This boils down to being whether it is complete, as well as whether
193 /// we've temporarily deferred expanding the type because we're in a recursive
194 /// context.
195 bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
196   // If this isn't a tagged type, we can convert it!
197   const TagType *TT = Ty->getAs<TagType>();
198   if (TT == 0) return true;
199     
200   // Incomplete types cannot be converted.
201   if (TT->isIncompleteType())
202     return false;
203   
204   // If this is an enum, then it is always safe to convert.
205   const RecordType *RT = dyn_cast<RecordType>(TT);
206   if (RT == 0) return true;
207
208   // Otherwise, we have to be careful.  If it is a struct that we're in the
209   // process of expanding, then we can't convert the function type.  That's ok
210   // though because we must be in a pointer context under the struct, so we can
211   // just convert it to a dummy type.
212   //
213   // We decide this by checking whether ConvertRecordDeclType returns us an
214   // opaque type for a struct that we know is defined.
215   return isSafeToConvert(RT->getDecl(), *this);
216 }
217
218
219 /// Code to verify a given function type is complete, i.e. the return type
220 /// and all of the argument types are complete.  Also check to see if we are in
221 /// a RS_StructPointer context, and if so whether any struct types have been
222 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
223 /// that cannot be converted to an IR type.
224 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
225   if (!isFuncTypeArgumentConvertible(FT->getResultType()))
226     return false;
227   
228   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
229     for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
230       if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
231         return false;
232
233   return true;
234 }
235
236 /// UpdateCompletedType - When we find the full definition for a TagDecl,
237 /// replace the 'opaque' type we previously made for it if applicable.
238 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
239   // If this is an enum being completed, then we flush all non-struct types from
240   // the cache.  This allows function types and other things that may be derived
241   // from the enum to be recomputed.
242   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
243     // Only flush the cache if we've actually already converted this type.
244     if (TypeCache.count(ED->getTypeForDecl())) {
245       // Okay, we formed some types based on this.  We speculated that the enum
246       // would be lowered to i32, so we only need to flush the cache if this
247       // didn't happen.
248       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
249         TypeCache.clear();
250     }
251     return;
252   }
253   
254   // If we completed a RecordDecl that we previously used and converted to an
255   // anonymous type, then go ahead and complete it now.
256   const RecordDecl *RD = cast<RecordDecl>(TD);
257   if (RD->isDependentType()) return;
258
259   // Only complete it if we converted it already.  If we haven't converted it
260   // yet, we'll just do it lazily.
261   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
262     ConvertRecordDeclType(RD);
263 }
264
265 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
266                                     const llvm::fltSemantics &format,
267                                     bool UseNativeHalf = false) {
268   if (&format == &llvm::APFloat::IEEEhalf) {
269     if (UseNativeHalf)
270       return llvm::Type::getHalfTy(VMContext);
271     else
272       return llvm::Type::getInt16Ty(VMContext);
273   }
274   if (&format == &llvm::APFloat::IEEEsingle)
275     return llvm::Type::getFloatTy(VMContext);
276   if (&format == &llvm::APFloat::IEEEdouble)
277     return llvm::Type::getDoubleTy(VMContext);
278   if (&format == &llvm::APFloat::IEEEquad)
279     return llvm::Type::getFP128Ty(VMContext);
280   if (&format == &llvm::APFloat::PPCDoubleDouble)
281     return llvm::Type::getPPC_FP128Ty(VMContext);
282   if (&format == &llvm::APFloat::x87DoubleExtended)
283     return llvm::Type::getX86_FP80Ty(VMContext);
284   llvm_unreachable("Unknown float format!");
285 }
286
287 /// ConvertType - Convert the specified type to its LLVM form.
288 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
289   T = Context.getCanonicalType(T);
290
291   const Type *Ty = T.getTypePtr();
292
293   // RecordTypes are cached and processed specially.
294   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
295     return ConvertRecordDeclType(RT->getDecl());
296   
297   // See if type is already cached.
298   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
299   // If type is found in map then use it. Otherwise, convert type T.
300   if (TCI != TypeCache.end())
301     return TCI->second;
302
303   // If we don't have it in the cache, convert it now.
304   llvm::Type *ResultType = 0;
305   switch (Ty->getTypeClass()) {
306   case Type::Record: // Handled above.
307 #define TYPE(Class, Base)
308 #define ABSTRACT_TYPE(Class, Base)
309 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
310 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
311 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
312 #include "clang/AST/TypeNodes.def"
313     llvm_unreachable("Non-canonical or dependent types aren't possible.");
314
315   case Type::Builtin: {
316     switch (cast<BuiltinType>(Ty)->getKind()) {
317     case BuiltinType::Void:
318     case BuiltinType::ObjCId:
319     case BuiltinType::ObjCClass:
320     case BuiltinType::ObjCSel:
321       // LLVM void type can only be used as the result of a function call.  Just
322       // map to the same as char.
323       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
324       break;
325
326     case BuiltinType::Bool:
327       // Note that we always return bool as i1 for use as a scalar type.
328       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
329       break;
330
331     case BuiltinType::Char_S:
332     case BuiltinType::Char_U:
333     case BuiltinType::SChar:
334     case BuiltinType::UChar:
335     case BuiltinType::Short:
336     case BuiltinType::UShort:
337     case BuiltinType::Int:
338     case BuiltinType::UInt:
339     case BuiltinType::Long:
340     case BuiltinType::ULong:
341     case BuiltinType::LongLong:
342     case BuiltinType::ULongLong:
343     case BuiltinType::WChar_S:
344     case BuiltinType::WChar_U:
345     case BuiltinType::Char16:
346     case BuiltinType::Char32:
347       ResultType = llvm::IntegerType::get(getLLVMContext(),
348                                  static_cast<unsigned>(Context.getTypeSize(T)));
349       break;
350
351     case BuiltinType::Half:
352       // Half FP can either be storage-only (lowered to i16) or native.
353       ResultType = getTypeForFormat(getLLVMContext(),
354           Context.getFloatTypeSemantics(T),
355           Context.getLangOpts().NativeHalfType);
356       break;
357     case BuiltinType::Float:
358     case BuiltinType::Double:
359     case BuiltinType::LongDouble:
360       ResultType = getTypeForFormat(getLLVMContext(),
361                                     Context.getFloatTypeSemantics(T),
362                                     /* UseNativeHalf = */ false);
363       break;
364
365     case BuiltinType::NullPtr:
366       // Model std::nullptr_t as i8*
367       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
368       break;
369         
370     case BuiltinType::UInt128:
371     case BuiltinType::Int128:
372       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
373       break;
374
375     case BuiltinType::OCLImage1d:
376     case BuiltinType::OCLImage1dArray:
377     case BuiltinType::OCLImage1dBuffer:
378     case BuiltinType::OCLImage2d:
379     case BuiltinType::OCLImage2dArray:
380     case BuiltinType::OCLImage3d:
381     case BuiltinType::OCLSampler:
382     case BuiltinType::OCLEvent:
383       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
384       break;
385     
386     case BuiltinType::Dependent:
387 #define BUILTIN_TYPE(Id, SingletonId)
388 #define PLACEHOLDER_TYPE(Id, SingletonId) \
389     case BuiltinType::Id:
390 #include "clang/AST/BuiltinTypes.def"
391       llvm_unreachable("Unexpected placeholder builtin type!");
392     }
393     break;
394   }
395   case Type::Auto:
396     llvm_unreachable("Unexpected undeduced auto type!");
397   case Type::Complex: {
398     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
399     ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
400     break;
401   }
402   case Type::LValueReference:
403   case Type::RValueReference: {
404     const ReferenceType *RTy = cast<ReferenceType>(Ty);
405     QualType ETy = RTy->getPointeeType();
406     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
407     unsigned AS = Context.getTargetAddressSpace(ETy);
408     ResultType = llvm::PointerType::get(PointeeType, AS);
409     break;
410   }
411   case Type::Pointer: {
412     const PointerType *PTy = cast<PointerType>(Ty);
413     QualType ETy = PTy->getPointeeType();
414     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
415     if (PointeeType->isVoidTy())
416       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
417     unsigned AS = Context.getTargetAddressSpace(ETy);
418     ResultType = llvm::PointerType::get(PointeeType, AS);
419     break;
420   }
421
422   case Type::VariableArray: {
423     const VariableArrayType *A = cast<VariableArrayType>(Ty);
424     assert(A->getIndexTypeCVRQualifiers() == 0 &&
425            "FIXME: We only handle trivial array types so far!");
426     // VLAs resolve to the innermost element type; this matches
427     // the return of alloca, and there isn't any obviously better choice.
428     ResultType = ConvertTypeForMem(A->getElementType());
429     break;
430   }
431   case Type::IncompleteArray: {
432     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
433     assert(A->getIndexTypeCVRQualifiers() == 0 &&
434            "FIXME: We only handle trivial array types so far!");
435     // int X[] -> [0 x int], unless the element type is not sized.  If it is
436     // unsized (e.g. an incomplete struct) just use [0 x i8].
437     ResultType = ConvertTypeForMem(A->getElementType());
438     if (!ResultType->isSized()) {
439       SkippedLayout = true;
440       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
441     }
442     ResultType = llvm::ArrayType::get(ResultType, 0);
443     break;
444   }
445   case Type::ConstantArray: {
446     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
447     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
448     
449     // Lower arrays of undefined struct type to arrays of i8 just to have a 
450     // concrete type.
451     if (!EltTy->isSized()) {
452       SkippedLayout = true;
453       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
454     }
455
456     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
457     break;
458   }
459   case Type::ExtVector:
460   case Type::Vector: {
461     const VectorType *VT = cast<VectorType>(Ty);
462     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
463                                        VT->getNumElements());
464     break;
465   }
466   case Type::FunctionNoProto:
467   case Type::FunctionProto: {
468     const FunctionType *FT = cast<FunctionType>(Ty);
469     // First, check whether we can build the full function type.  If the
470     // function type depends on an incomplete type (e.g. a struct or enum), we
471     // cannot lower the function type.
472     if (!isFuncTypeConvertible(FT)) {
473       // This function's type depends on an incomplete tag type.
474
475       // Force conversion of all the relevant record types, to make sure
476       // we re-convert the FunctionType when appropriate.
477       if (const RecordType *RT = FT->getResultType()->getAs<RecordType>())
478         ConvertRecordDeclType(RT->getDecl());
479       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
480         for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
481           if (const RecordType *RT = FPT->getArgType(i)->getAs<RecordType>())
482             ConvertRecordDeclType(RT->getDecl());
483
484       // Return a placeholder type.
485       ResultType = llvm::StructType::get(getLLVMContext());
486
487       SkippedLayout = true;
488       break;
489     }
490
491     // While we're converting the argument types for a function, we don't want
492     // to recursively convert any pointed-to structs.  Converting directly-used
493     // structs is ok though.
494     if (!RecordsBeingLaidOut.insert(Ty)) {
495       ResultType = llvm::StructType::get(getLLVMContext());
496       
497       SkippedLayout = true;
498       break;
499     }
500     
501     // The function type can be built; call the appropriate routines to
502     // build it.
503     const CGFunctionInfo *FI;
504     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
505       FI = &arrangeFreeFunctionType(
506                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
507     } else {
508       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
509       FI = &arrangeFreeFunctionType(
510                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
511     }
512     
513     // If there is something higher level prodding our CGFunctionInfo, then
514     // don't recurse into it again.
515     if (FunctionsBeingProcessed.count(FI)) {
516
517       ResultType = llvm::StructType::get(getLLVMContext());
518       SkippedLayout = true;
519     } else {
520
521       // Otherwise, we're good to go, go ahead and convert it.
522       ResultType = GetFunctionType(*FI);
523     }
524
525     RecordsBeingLaidOut.erase(Ty);
526
527     if (SkippedLayout)
528       TypeCache.clear();
529     
530     if (RecordsBeingLaidOut.empty())
531       while (!DeferredRecords.empty())
532         ConvertRecordDeclType(DeferredRecords.pop_back_val());
533     break;
534   }
535
536   case Type::ObjCObject:
537     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
538     break;
539
540   case Type::ObjCInterface: {
541     // Objective-C interfaces are always opaque (outside of the
542     // runtime, which can do whatever it likes); we never refine
543     // these.
544     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
545     if (!T)
546       T = llvm::StructType::create(getLLVMContext());
547     ResultType = T;
548     break;
549   }
550
551   case Type::ObjCObjectPointer: {
552     // Protocol qualifications do not influence the LLVM type, we just return a
553     // pointer to the underlying interface type. We don't need to worry about
554     // recursive conversion.
555     llvm::Type *T =
556       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
557     ResultType = T->getPointerTo();
558     break;
559   }
560
561   case Type::Enum: {
562     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
563     if (ED->isCompleteDefinition() || ED->isFixed())
564       return ConvertType(ED->getIntegerType());
565     // Return a placeholder 'i32' type.  This can be changed later when the
566     // type is defined (see UpdateCompletedType), but is likely to be the
567     // "right" answer.
568     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
569     break;
570   }
571
572   case Type::BlockPointer: {
573     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
574     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
575     unsigned AS = Context.getTargetAddressSpace(FTy);
576     ResultType = llvm::PointerType::get(PointeeType, AS);
577     break;
578   }
579
580   case Type::MemberPointer: {
581     ResultType = 
582       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
583     break;
584   }
585
586   case Type::Atomic: {
587     QualType valueType = cast<AtomicType>(Ty)->getValueType();
588     ResultType = ConvertTypeForMem(valueType);
589
590     // Pad out to the inflated size if necessary.
591     uint64_t valueSize = Context.getTypeSize(valueType);
592     uint64_t atomicSize = Context.getTypeSize(Ty);
593     if (valueSize != atomicSize) {
594       assert(valueSize < atomicSize);
595       llvm::Type *elts[] = {
596         ResultType,
597         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
598       };
599       ResultType = llvm::StructType::get(getLLVMContext(),
600                                          llvm::makeArrayRef(elts));
601     }
602     break;
603   }
604   }
605   
606   assert(ResultType && "Didn't convert a type?");
607   
608   TypeCache[Ty] = ResultType;
609   return ResultType;
610 }
611
612 bool CodeGenModule::isPaddedAtomicType(QualType type) {
613   return isPaddedAtomicType(type->castAs<AtomicType>());
614 }
615
616 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
617   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
618 }
619
620 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
621 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
622   // TagDecl's are not necessarily unique, instead use the (clang)
623   // type connected to the decl.
624   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
625
626   llvm::StructType *&Entry = RecordDeclTypes[Key];
627
628   // If we don't have a StructType at all yet, create the forward declaration.
629   if (Entry == 0) {
630     Entry = llvm::StructType::create(getLLVMContext());
631     addRecordTypeName(RD, Entry, "");
632   }
633   llvm::StructType *Ty = Entry;
634
635   // If this is still a forward declaration, or the LLVM type is already
636   // complete, there's nothing more to do.
637   RD = RD->getDefinition();
638   if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
639     return Ty;
640   
641   // If converting this type would cause us to infinitely loop, don't do it!
642   if (!isSafeToConvert(RD, *this)) {
643     DeferredRecords.push_back(RD);
644     return Ty;
645   }
646
647   // Okay, this is a definition of a type.  Compile the implementation now.
648   bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
649   assert(InsertResult && "Recursively compiling a struct?");
650   
651   // Force conversion of non-virtual base classes recursively.
652   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
653     for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
654          e = CRD->bases_end(); i != e; ++i) {
655       if (i->isVirtual()) continue;
656       
657       ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
658     }
659   }
660
661   // Layout fields.
662   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
663   CGRecordLayouts[Key] = Layout;
664
665   // We're done laying out this struct.
666   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
667   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
668    
669   // If this struct blocked a FunctionType conversion, then recompute whatever
670   // was derived from that.
671   // FIXME: This is hugely overconservative.
672   if (SkippedLayout)
673     TypeCache.clear();
674     
675   // If we're done converting the outer-most record, then convert any deferred
676   // structs as well.
677   if (RecordsBeingLaidOut.empty())
678     while (!DeferredRecords.empty())
679       ConvertRecordDeclType(DeferredRecords.pop_back_val());
680
681   return Ty;
682 }
683
684 /// getCGRecordLayout - Return record layout info for the given record decl.
685 const CGRecordLayout &
686 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
687   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
688
689   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
690   if (!Layout) {
691     // Compute the type information.
692     ConvertRecordDeclType(RD);
693
694     // Now try again.
695     Layout = CGRecordLayouts.lookup(Key);
696   }
697
698   assert(Layout && "Unable to find record layout information for type");
699   return *Layout;
700 }
701
702 bool CodeGenTypes::isZeroInitializable(QualType T) {
703   // No need to check for member pointers when not compiling C++.
704   if (!Context.getLangOpts().CPlusPlus)
705     return true;
706   
707   T = Context.getBaseElementType(T);
708   
709   // Records are non-zero-initializable if they contain any
710   // non-zero-initializable subobjects.
711   if (const RecordType *RT = T->getAs<RecordType>()) {
712     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
713     return isZeroInitializable(RD);
714   }
715
716   // We have to ask the ABI about member pointers.
717   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
718     return getCXXABI().isZeroInitializable(MPT);
719   
720   // Everything else is okay.
721   return true;
722 }
723
724 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
725   return getCGRecordLayout(RD).isZeroInitializable();
726 }