]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaExceptionSpec.cpp
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / llvm / tools / clang / lib / Sema / SemaExceptionSpec.cpp
1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ exception specification testing.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/Diagnostic.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24
25 namespace clang {
26
27 static const FunctionProtoType *GetUnderlyingFunction(QualType T)
28 {
29   if (const PointerType *PtrTy = T->getAs<PointerType>())
30     T = PtrTy->getPointeeType();
31   else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
32     T = RefTy->getPointeeType();
33   else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
34     T = MPTy->getPointeeType();
35   return T->getAs<FunctionProtoType>();
36 }
37
38 /// CheckSpecifiedExceptionType - Check if the given type is valid in an
39 /// exception specification. Incomplete types, or pointers to incomplete types
40 /// other than void are not allowed.
41 ///
42 /// \param[in,out] T  The exception type. This will be decayed to a pointer type
43 ///                   when the input is an array or a function type.
44 bool Sema::CheckSpecifiedExceptionType(QualType &T, const SourceRange &Range) {
45   // C++11 [except.spec]p2:
46   //   A type cv T, "array of T", or "function returning T" denoted
47   //   in an exception-specification is adjusted to type T, "pointer to T", or
48   //   "pointer to function returning T", respectively.
49   //
50   // We also apply this rule in C++98.
51   if (T->isArrayType())
52     T = Context.getArrayDecayedType(T);
53   else if (T->isFunctionType())
54     T = Context.getPointerType(T);
55
56   int Kind = 0;
57   QualType PointeeT = T;
58   if (const PointerType *PT = T->getAs<PointerType>()) {
59     PointeeT = PT->getPointeeType();
60     Kind = 1;
61
62     // cv void* is explicitly permitted, despite being a pointer to an
63     // incomplete type.
64     if (PointeeT->isVoidType())
65       return false;
66   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
67     PointeeT = RT->getPointeeType();
68     Kind = 2;
69
70     if (RT->isRValueReferenceType()) {
71       // C++11 [except.spec]p2:
72       //   A type denoted in an exception-specification shall not denote [...]
73       //   an rvalue reference type.
74       Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
75         << T << Range;
76       return true;
77     }
78   }
79
80   // C++11 [except.spec]p2:
81   //   A type denoted in an exception-specification shall not denote an
82   //   incomplete type other than a class currently being defined [...].
83   //   A type denoted in an exception-specification shall not denote a
84   //   pointer or reference to an incomplete type, other than (cv) void* or a
85   //   pointer or reference to a class currently being defined.
86   if (!(PointeeT->isRecordType() &&
87         PointeeT->getAs<RecordType>()->isBeingDefined()) &&
88       RequireCompleteType(Range.getBegin(), PointeeT,
89                           diag::err_incomplete_in_exception_spec, Kind, Range))
90     return true;
91
92   return false;
93 }
94
95 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
96 /// to member to a function with an exception specification. This means that
97 /// it is invalid to add another level of indirection.
98 bool Sema::CheckDistantExceptionSpec(QualType T) {
99   if (const PointerType *PT = T->getAs<PointerType>())
100     T = PT->getPointeeType();
101   else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
102     T = PT->getPointeeType();
103   else
104     return false;
105
106   const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
107   if (!FnT)
108     return false;
109
110   return FnT->hasExceptionSpec();
111 }
112
113 const FunctionProtoType *
114 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
115   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
116     return FPT;
117
118   FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
119   const FunctionProtoType *SourceFPT =
120       SourceDecl->getType()->castAs<FunctionProtoType>();
121
122   // If the exception specification has already been resolved, just return it.
123   if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
124     return SourceFPT;
125
126   // Compute or instantiate the exception specification now.
127   if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
128     EvaluateImplicitExceptionSpec(Loc, cast<CXXMethodDecl>(SourceDecl));
129   else
130     InstantiateExceptionSpec(Loc, SourceDecl);
131
132   return SourceDecl->getType()->castAs<FunctionProtoType>();
133 }
134
135 /// Determine whether a function has an implicitly-generated exception
136 /// specification.
137 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
138   if (!isa<CXXDestructorDecl>(Decl) &&
139       Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
140       Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
141     return false;
142
143   // If the user didn't declare the function, its exception specification must
144   // be implicit.
145   if (!Decl->getTypeSourceInfo())
146     return true;
147
148   const FunctionProtoType *Ty =
149     Decl->getTypeSourceInfo()->getType()->getAs<FunctionProtoType>();
150   return !Ty->hasExceptionSpec();
151 }
152
153 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
154   OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
155   bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
156   bool MissingExceptionSpecification = false;
157   bool MissingEmptyExceptionSpecification = false;
158   unsigned DiagID = diag::err_mismatched_exception_spec;
159   if (getLangOpts().MicrosoftExt)
160     DiagID = diag::warn_mismatched_exception_spec; 
161
162   // Check the types as written: they must match before any exception
163   // specification adjustment is applied.
164   if (!CheckEquivalentExceptionSpec(
165         PDiag(DiagID), PDiag(diag::note_previous_declaration),
166         Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
167         New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
168         &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
169         /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
170     // C++11 [except.spec]p4 [DR1492]:
171     //   If a declaration of a function has an implicit
172     //   exception-specification, other declarations of the function shall
173     //   not specify an exception-specification.
174     if (getLangOpts().CPlusPlus11 &&
175         hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
176       Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
177         << hasImplicitExceptionSpec(Old);
178       if (!Old->getLocation().isInvalid())
179         Diag(Old->getLocation(), diag::note_previous_declaration);
180     }
181     return false;
182   }
183
184   // The failure was something other than an empty exception
185   // specification; return an error.
186   if (!MissingExceptionSpecification && !MissingEmptyExceptionSpecification)
187     return true;
188
189   const FunctionProtoType *NewProto =
190     New->getType()->getAs<FunctionProtoType>();
191
192   // The new function declaration is only missing an empty exception
193   // specification "throw()". If the throw() specification came from a
194   // function in a system header that has C linkage, just add an empty
195   // exception specification to the "new" declaration. This is an
196   // egregious workaround for glibc, which adds throw() specifications
197   // to many libc functions as an optimization. Unfortunately, that
198   // optimization isn't permitted by the C++ standard, so we're forced
199   // to work around it here.
200   if (MissingEmptyExceptionSpecification && NewProto &&
201       (Old->getLocation().isInvalid() ||
202        Context.getSourceManager().isInSystemHeader(Old->getLocation())) &&
203       Old->isExternC()) {
204     FunctionProtoType::ExtProtoInfo EPI = NewProto->getExtProtoInfo();
205     EPI.ExceptionSpecType = EST_DynamicNone;
206     QualType NewType =
207       Context.getFunctionType(NewProto->getResultType(),
208                               ArrayRef<QualType>(NewProto->arg_type_begin(),
209                                                  NewProto->getNumArgs()),
210                               EPI);
211     New->setType(NewType);
212     return false;
213   }
214
215   if (MissingExceptionSpecification && NewProto) {
216     const FunctionProtoType *OldProto =
217       Old->getType()->getAs<FunctionProtoType>();
218
219     FunctionProtoType::ExtProtoInfo EPI = NewProto->getExtProtoInfo();
220     EPI.ExceptionSpecType = OldProto->getExceptionSpecType();
221     if (EPI.ExceptionSpecType == EST_Dynamic) {
222       EPI.NumExceptions = OldProto->getNumExceptions();
223       EPI.Exceptions = OldProto->exception_begin();
224     } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
225       // FIXME: We can't just take the expression from the old prototype. It
226       // likely contains references to the old prototype's parameters.
227     }
228
229     // Update the type of the function with the appropriate exception
230     // specification.
231     QualType NewType =
232       Context.getFunctionType(NewProto->getResultType(),
233                               ArrayRef<QualType>(NewProto->arg_type_begin(),
234                                                  NewProto->getNumArgs()),
235                               EPI);
236     New->setType(NewType);
237
238     // If exceptions are disabled, suppress the warning about missing
239     // exception specifications for new and delete operators.
240     if (!getLangOpts().CXXExceptions) {
241       switch (New->getDeclName().getCXXOverloadedOperator()) {
242       case OO_New:
243       case OO_Array_New:
244       case OO_Delete:
245       case OO_Array_Delete:
246         if (New->getDeclContext()->isTranslationUnit())
247           return false;
248         break;
249
250       default:
251         break;
252       }
253     } 
254
255     // Warn about the lack of exception specification.
256     SmallString<128> ExceptionSpecString;
257     llvm::raw_svector_ostream OS(ExceptionSpecString);
258     switch (OldProto->getExceptionSpecType()) {
259     case EST_DynamicNone:
260       OS << "throw()";
261       break;
262
263     case EST_Dynamic: {
264       OS << "throw(";
265       bool OnFirstException = true;
266       for (FunctionProtoType::exception_iterator E = OldProto->exception_begin(),
267                                               EEnd = OldProto->exception_end();
268            E != EEnd;
269            ++E) {
270         if (OnFirstException)
271           OnFirstException = false;
272         else
273           OS << ", ";
274         
275         OS << E->getAsString(getPrintingPolicy());
276       }
277       OS << ")";
278       break;
279     }
280
281     case EST_BasicNoexcept:
282       OS << "noexcept";
283       break;
284
285     case EST_ComputedNoexcept:
286       OS << "noexcept(";
287       OldProto->getNoexceptExpr()->printPretty(OS, 0, getPrintingPolicy());
288       OS << ")";
289       break;
290
291     default:
292       llvm_unreachable("This spec type is compatible with none.");
293     }
294     OS.flush();
295
296     SourceLocation FixItLoc;
297     if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
298       TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
299       if (FunctionTypeLoc FTLoc = TL.getAs<FunctionTypeLoc>())
300         FixItLoc = PP.getLocForEndOfToken(FTLoc.getLocalRangeEnd());
301     }
302
303     if (FixItLoc.isInvalid())
304       Diag(New->getLocation(), diag::warn_missing_exception_specification)
305         << New << OS.str();
306     else {
307       // FIXME: This will get more complicated with C++0x
308       // late-specified return types.
309       Diag(New->getLocation(), diag::warn_missing_exception_specification)
310         << New << OS.str()
311         << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
312     }
313
314     if (!Old->getLocation().isInvalid())
315       Diag(Old->getLocation(), diag::note_previous_declaration);
316
317     return false;    
318   }
319
320   Diag(New->getLocation(), DiagID);
321   Diag(Old->getLocation(), diag::note_previous_declaration);
322   return true;
323 }
324
325 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent
326 /// exception specifications. Exception specifications are equivalent if
327 /// they allow exactly the same set of exception types. It does not matter how
328 /// that is achieved. See C++ [except.spec]p2.
329 bool Sema::CheckEquivalentExceptionSpec(
330     const FunctionProtoType *Old, SourceLocation OldLoc,
331     const FunctionProtoType *New, SourceLocation NewLoc) {
332   unsigned DiagID = diag::err_mismatched_exception_spec;
333   if (getLangOpts().MicrosoftExt)
334     DiagID = diag::warn_mismatched_exception_spec; 
335   return CheckEquivalentExceptionSpec(PDiag(DiagID),
336                                       PDiag(diag::note_previous_declaration),
337                                       Old, OldLoc, New, NewLoc);
338 }
339
340 /// CheckEquivalentExceptionSpec - Check if the two types have compatible
341 /// exception specifications. See C++ [except.spec]p3.
342 ///
343 /// \return \c false if the exception specifications match, \c true if there is
344 /// a problem. If \c true is returned, either a diagnostic has already been
345 /// produced or \c *MissingExceptionSpecification is set to \c true.
346 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
347                                         const PartialDiagnostic & NoteID,
348                                         const FunctionProtoType *Old,
349                                         SourceLocation OldLoc,
350                                         const FunctionProtoType *New,
351                                         SourceLocation NewLoc,
352                                         bool *MissingExceptionSpecification,
353                                         bool*MissingEmptyExceptionSpecification,
354                                         bool AllowNoexceptAllMatchWithNoSpec,
355                                         bool IsOperatorNew) {
356   // Just completely ignore this under -fno-exceptions.
357   if (!getLangOpts().CXXExceptions)
358     return false;
359
360   if (MissingExceptionSpecification)
361     *MissingExceptionSpecification = false;
362
363   if (MissingEmptyExceptionSpecification)
364     *MissingEmptyExceptionSpecification = false;
365
366   Old = ResolveExceptionSpec(NewLoc, Old);
367   if (!Old)
368     return false;
369   New = ResolveExceptionSpec(NewLoc, New);
370   if (!New)
371     return false;
372
373   // C++0x [except.spec]p3: Two exception-specifications are compatible if:
374   //   - both are non-throwing, regardless of their form,
375   //   - both have the form noexcept(constant-expression) and the constant-
376   //     expressions are equivalent,
377   //   - both are dynamic-exception-specifications that have the same set of
378   //     adjusted types.
379   //
380   // C++0x [except.spec]p12: An exception-specifcation is non-throwing if it is
381   //   of the form throw(), noexcept, or noexcept(constant-expression) where the
382   //   constant-expression yields true.
383   //
384   // C++0x [except.spec]p4: If any declaration of a function has an exception-
385   //   specifier that is not a noexcept-specification allowing all exceptions,
386   //   all declarations [...] of that function shall have a compatible
387   //   exception-specification.
388   //
389   // That last point basically means that noexcept(false) matches no spec.
390   // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
391
392   ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
393   ExceptionSpecificationType NewEST = New->getExceptionSpecType();
394
395   assert(!isUnresolvedExceptionSpec(OldEST) &&
396          !isUnresolvedExceptionSpec(NewEST) &&
397          "Shouldn't see unknown exception specifications here");
398
399   // Shortcut the case where both have no spec.
400   if (OldEST == EST_None && NewEST == EST_None)
401     return false;
402
403   FunctionProtoType::NoexceptResult OldNR = Old->getNoexceptSpec(Context);
404   FunctionProtoType::NoexceptResult NewNR = New->getNoexceptSpec(Context);
405   if (OldNR == FunctionProtoType::NR_BadNoexcept ||
406       NewNR == FunctionProtoType::NR_BadNoexcept)
407     return false;
408
409   // Dependent noexcept specifiers are compatible with each other, but nothing
410   // else.
411   // One noexcept is compatible with another if the argument is the same
412   if (OldNR == NewNR &&
413       OldNR != FunctionProtoType::NR_NoNoexcept &&
414       NewNR != FunctionProtoType::NR_NoNoexcept)
415     return false;
416   if (OldNR != NewNR &&
417       OldNR != FunctionProtoType::NR_NoNoexcept &&
418       NewNR != FunctionProtoType::NR_NoNoexcept) {
419     Diag(NewLoc, DiagID);
420     if (NoteID.getDiagID() != 0)
421       Diag(OldLoc, NoteID);
422     return true;
423   }
424
425   // The MS extension throw(...) is compatible with itself.
426   if (OldEST == EST_MSAny && NewEST == EST_MSAny)
427     return false;
428
429   // It's also compatible with no spec.
430   if ((OldEST == EST_None && NewEST == EST_MSAny) ||
431       (OldEST == EST_MSAny && NewEST == EST_None))
432     return false;
433
434   // It's also compatible with noexcept(false).
435   if (OldEST == EST_MSAny && NewNR == FunctionProtoType::NR_Throw)
436     return false;
437   if (NewEST == EST_MSAny && OldNR == FunctionProtoType::NR_Throw)
438     return false;
439
440   // As described above, noexcept(false) matches no spec only for functions.
441   if (AllowNoexceptAllMatchWithNoSpec) {
442     if (OldEST == EST_None && NewNR == FunctionProtoType::NR_Throw)
443       return false;
444     if (NewEST == EST_None && OldNR == FunctionProtoType::NR_Throw)
445       return false;
446   }
447
448   // Any non-throwing specifications are compatible.
449   bool OldNonThrowing = OldNR == FunctionProtoType::NR_Nothrow ||
450                         OldEST == EST_DynamicNone;
451   bool NewNonThrowing = NewNR == FunctionProtoType::NR_Nothrow ||
452                         NewEST == EST_DynamicNone;
453   if (OldNonThrowing && NewNonThrowing)
454     return false;
455
456   // As a special compatibility feature, under C++0x we accept no spec and
457   // throw(std::bad_alloc) as equivalent for operator new and operator new[].
458   // This is because the implicit declaration changed, but old code would break.
459   if (getLangOpts().CPlusPlus11 && IsOperatorNew) {
460     const FunctionProtoType *WithExceptions = 0;
461     if (OldEST == EST_None && NewEST == EST_Dynamic)
462       WithExceptions = New;
463     else if (OldEST == EST_Dynamic && NewEST == EST_None)
464       WithExceptions = Old;
465     if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
466       // One has no spec, the other throw(something). If that something is
467       // std::bad_alloc, all conditions are met.
468       QualType Exception = *WithExceptions->exception_begin();
469       if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
470         IdentifierInfo* Name = ExRecord->getIdentifier();
471         if (Name && Name->getName() == "bad_alloc") {
472           // It's called bad_alloc, but is it in std?
473           DeclContext* DC = ExRecord->getDeclContext();
474           DC = DC->getEnclosingNamespaceContext();
475           if (NamespaceDecl* NS = dyn_cast<NamespaceDecl>(DC)) {
476             IdentifierInfo* NSName = NS->getIdentifier();
477             DC = DC->getParent();
478             if (NSName && NSName->getName() == "std" &&
479                 DC->getEnclosingNamespaceContext()->isTranslationUnit()) {
480               return false;
481             }
482           }
483         }
484       }
485     }
486   }
487
488   // At this point, the only remaining valid case is two matching dynamic
489   // specifications. We return here unless both specifications are dynamic.
490   if (OldEST != EST_Dynamic || NewEST != EST_Dynamic) {
491     if (MissingExceptionSpecification && Old->hasExceptionSpec() &&
492         !New->hasExceptionSpec()) {
493       // The old type has an exception specification of some sort, but
494       // the new type does not.
495       *MissingExceptionSpecification = true;
496
497       if (MissingEmptyExceptionSpecification && OldNonThrowing) {
498         // The old type has a throw() or noexcept(true) exception specification
499         // and the new type has no exception specification, and the caller asked
500         // to handle this itself.
501         *MissingEmptyExceptionSpecification = true;
502       }
503
504       return true;
505     }
506
507     Diag(NewLoc, DiagID);
508     if (NoteID.getDiagID() != 0)
509       Diag(OldLoc, NoteID);
510     return true;
511   }
512
513   assert(OldEST == EST_Dynamic && NewEST == EST_Dynamic &&
514       "Exception compatibility logic error: non-dynamic spec slipped through.");
515
516   bool Success = true;
517   // Both have a dynamic exception spec. Collect the first set, then compare
518   // to the second.
519   llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
520   for (FunctionProtoType::exception_iterator I = Old->exception_begin(),
521        E = Old->exception_end(); I != E; ++I)
522     OldTypes.insert(Context.getCanonicalType(*I).getUnqualifiedType());
523
524   for (FunctionProtoType::exception_iterator I = New->exception_begin(),
525        E = New->exception_end(); I != E && Success; ++I) {
526     CanQualType TypePtr = Context.getCanonicalType(*I).getUnqualifiedType();
527     if(OldTypes.count(TypePtr))
528       NewTypes.insert(TypePtr);
529     else
530       Success = false;
531   }
532
533   Success = Success && OldTypes.size() == NewTypes.size();
534
535   if (Success) {
536     return false;
537   }
538   Diag(NewLoc, DiagID);
539   if (NoteID.getDiagID() != 0)
540     Diag(OldLoc, NoteID);
541   return true;
542 }
543
544 /// CheckExceptionSpecSubset - Check whether the second function type's
545 /// exception specification is a subset (or equivalent) of the first function
546 /// type. This is used by override and pointer assignment checks.
547 bool Sema::CheckExceptionSpecSubset(
548     const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
549     const FunctionProtoType *Superset, SourceLocation SuperLoc,
550     const FunctionProtoType *Subset, SourceLocation SubLoc) {
551
552   // Just auto-succeed under -fno-exceptions.
553   if (!getLangOpts().CXXExceptions)
554     return false;
555
556   // FIXME: As usual, we could be more specific in our error messages, but
557   // that better waits until we've got types with source locations.
558
559   if (!SubLoc.isValid())
560     SubLoc = SuperLoc;
561
562   // Resolve the exception specifications, if needed.
563   Superset = ResolveExceptionSpec(SuperLoc, Superset);
564   if (!Superset)
565     return false;
566   Subset = ResolveExceptionSpec(SubLoc, Subset);
567   if (!Subset)
568     return false;
569
570   ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
571
572   // If superset contains everything, we're done.
573   if (SuperEST == EST_None || SuperEST == EST_MSAny)
574     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
575
576   // If there are dependent noexcept specs, assume everything is fine. Unlike
577   // with the equivalency check, this is safe in this case, because we don't
578   // want to merge declarations. Checks after instantiation will catch any
579   // omissions we make here.
580   // We also shortcut checking if a noexcept expression was bad.
581
582   FunctionProtoType::NoexceptResult SuperNR =Superset->getNoexceptSpec(Context);
583   if (SuperNR == FunctionProtoType::NR_BadNoexcept ||
584       SuperNR == FunctionProtoType::NR_Dependent)
585     return false;
586
587   // Another case of the superset containing everything.
588   if (SuperNR == FunctionProtoType::NR_Throw)
589     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
590
591   ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
592
593   assert(!isUnresolvedExceptionSpec(SuperEST) &&
594          !isUnresolvedExceptionSpec(SubEST) &&
595          "Shouldn't see unknown exception specifications here");
596
597   // It does not. If the subset contains everything, we've failed.
598   if (SubEST == EST_None || SubEST == EST_MSAny) {
599     Diag(SubLoc, DiagID);
600     if (NoteID.getDiagID() != 0)
601       Diag(SuperLoc, NoteID);
602     return true;
603   }
604
605   FunctionProtoType::NoexceptResult SubNR = Subset->getNoexceptSpec(Context);
606   if (SubNR == FunctionProtoType::NR_BadNoexcept ||
607       SubNR == FunctionProtoType::NR_Dependent)
608     return false;
609
610   // Another case of the subset containing everything.
611   if (SubNR == FunctionProtoType::NR_Throw) {
612     Diag(SubLoc, DiagID);
613     if (NoteID.getDiagID() != 0)
614       Diag(SuperLoc, NoteID);
615     return true;
616   }
617
618   // If the subset contains nothing, we're done.
619   if (SubEST == EST_DynamicNone || SubNR == FunctionProtoType::NR_Nothrow)
620     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
621
622   // Otherwise, if the superset contains nothing, we've failed.
623   if (SuperEST == EST_DynamicNone || SuperNR == FunctionProtoType::NR_Nothrow) {
624     Diag(SubLoc, DiagID);
625     if (NoteID.getDiagID() != 0)
626       Diag(SuperLoc, NoteID);
627     return true;
628   }
629
630   assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
631          "Exception spec subset: non-dynamic case slipped through.");
632
633   // Neither contains everything or nothing. Do a proper comparison.
634   for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(),
635        SubE = Subset->exception_end(); SubI != SubE; ++SubI) {
636     // Take one type from the subset.
637     QualType CanonicalSubT = Context.getCanonicalType(*SubI);
638     // Unwrap pointers and references so that we can do checks within a class
639     // hierarchy. Don't unwrap member pointers; they don't have hierarchy
640     // conversions on the pointee.
641     bool SubIsPointer = false;
642     if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
643       CanonicalSubT = RefTy->getPointeeType();
644     if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
645       CanonicalSubT = PtrTy->getPointeeType();
646       SubIsPointer = true;
647     }
648     bool SubIsClass = CanonicalSubT->isRecordType();
649     CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType();
650
651     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
652                        /*DetectVirtual=*/false);
653
654     bool Contained = false;
655     // Make sure it's in the superset.
656     for (FunctionProtoType::exception_iterator SuperI =
657            Superset->exception_begin(), SuperE = Superset->exception_end();
658          SuperI != SuperE; ++SuperI) {
659       QualType CanonicalSuperT = Context.getCanonicalType(*SuperI);
660       // SubT must be SuperT or derived from it, or pointer or reference to
661       // such types.
662       if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
663         CanonicalSuperT = RefTy->getPointeeType();
664       if (SubIsPointer) {
665         if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
666           CanonicalSuperT = PtrTy->getPointeeType();
667         else {
668           continue;
669         }
670       }
671       CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType();
672       // If the types are the same, move on to the next type in the subset.
673       if (CanonicalSubT == CanonicalSuperT) {
674         Contained = true;
675         break;
676       }
677
678       // Otherwise we need to check the inheritance.
679       if (!SubIsClass || !CanonicalSuperT->isRecordType())
680         continue;
681
682       Paths.clear();
683       if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
684         continue;
685
686       if (Paths.isAmbiguous(Context.getCanonicalType(CanonicalSuperT)))
687         continue;
688
689       // Do this check from a context without privileges.
690       switch (CheckBaseClassAccess(SourceLocation(),
691                                    CanonicalSuperT, CanonicalSubT,
692                                    Paths.front(),
693                                    /*Diagnostic*/ 0,
694                                    /*ForceCheck*/ true,
695                                    /*ForceUnprivileged*/ true)) {
696       case AR_accessible: break;
697       case AR_inaccessible: continue;
698       case AR_dependent:
699         llvm_unreachable("access check dependent for unprivileged context");
700       case AR_delayed:
701         llvm_unreachable("access check delayed in non-declaration");
702       }
703
704       Contained = true;
705       break;
706     }
707     if (!Contained) {
708       Diag(SubLoc, DiagID);
709       if (NoteID.getDiagID() != 0)
710         Diag(SuperLoc, NoteID);
711       return true;
712     }
713   }
714   // We've run half the gauntlet.
715   return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
716 }
717
718 static bool CheckSpecForTypesEquivalent(Sema &S,
719     const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
720     QualType Target, SourceLocation TargetLoc,
721     QualType Source, SourceLocation SourceLoc)
722 {
723   const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
724   if (!TFunc)
725     return false;
726   const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
727   if (!SFunc)
728     return false;
729
730   return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
731                                         SFunc, SourceLoc);
732 }
733
734 /// CheckParamExceptionSpec - Check if the parameter and return types of the
735 /// two functions have equivalent exception specs. This is part of the
736 /// assignment and override compatibility check. We do not check the parameters
737 /// of parameter function pointers recursively, as no sane programmer would
738 /// even be able to write such a function type.
739 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic & NoteID,
740     const FunctionProtoType *Target, SourceLocation TargetLoc,
741     const FunctionProtoType *Source, SourceLocation SourceLoc)
742 {
743   if (CheckSpecForTypesEquivalent(*this,
744                            PDiag(diag::err_deep_exception_specs_differ) << 0, 
745                                   PDiag(),
746                                   Target->getResultType(), TargetLoc,
747                                   Source->getResultType(), SourceLoc))
748     return true;
749
750   // We shouldn't even be testing this unless the arguments are otherwise
751   // compatible.
752   assert(Target->getNumArgs() == Source->getNumArgs() &&
753          "Functions have different argument counts.");
754   for (unsigned i = 0, E = Target->getNumArgs(); i != E; ++i) {
755     if (CheckSpecForTypesEquivalent(*this,
756                            PDiag(diag::err_deep_exception_specs_differ) << 1, 
757                                     PDiag(),
758                                     Target->getArgType(i), TargetLoc,
759                                     Source->getArgType(i), SourceLoc))
760       return true;
761   }
762   return false;
763 }
764
765 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType)
766 {
767   // First we check for applicability.
768   // Target type must be a function, function pointer or function reference.
769   const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
770   if (!ToFunc)
771     return false;
772
773   // SourceType must be a function or function pointer.
774   const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
775   if (!FromFunc)
776     return false;
777
778   // Now we've got the correct types on both sides, check their compatibility.
779   // This means that the source of the conversion can only throw a subset of
780   // the exceptions of the target, and any exception specs on arguments or
781   // return types must be equivalent.
782   return CheckExceptionSpecSubset(PDiag(diag::err_incompatible_exception_specs),
783                                   PDiag(), ToFunc, 
784                                   From->getSourceRange().getBegin(),
785                                   FromFunc, SourceLocation());
786 }
787
788 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
789                                                 const CXXMethodDecl *Old) {
790   if (getLangOpts().CPlusPlus11 && isa<CXXDestructorDecl>(New)) {
791     // Don't check uninstantiated template destructors at all. We can only
792     // synthesize correct specs after the template is instantiated.
793     if (New->getParent()->isDependentType())
794       return false;
795     if (New->getParent()->isBeingDefined()) {
796       // The destructor might be updated once the definition is finished. So
797       // remember it and check later.
798       DelayedDestructorExceptionSpecChecks.push_back(std::make_pair(
799         cast<CXXDestructorDecl>(New), cast<CXXDestructorDecl>(Old)));
800       return false;
801     }
802   }
803   unsigned DiagID = diag::err_override_exception_spec;
804   if (getLangOpts().MicrosoftExt)
805     DiagID = diag::warn_override_exception_spec;
806   return CheckExceptionSpecSubset(PDiag(DiagID),
807                                   PDiag(diag::note_overridden_virtual_function),
808                                   Old->getType()->getAs<FunctionProtoType>(),
809                                   Old->getLocation(),
810                                   New->getType()->getAs<FunctionProtoType>(),
811                                   New->getLocation());
812 }
813
814 static CanThrowResult canSubExprsThrow(Sema &S, const Expr *CE) {
815   Expr *E = const_cast<Expr*>(CE);
816   CanThrowResult R = CT_Cannot;
817   for (Expr::child_range I = E->children(); I && R != CT_Can; ++I)
818     R = mergeCanThrow(R, S.canThrow(cast<Expr>(*I)));
819   return R;
820 }
821
822 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E,
823                                            const Decl *D,
824                                            bool NullThrows = true) {
825   if (!D)
826     return NullThrows ? CT_Can : CT_Cannot;
827
828   // See if we can get a function type from the decl somehow.
829   const ValueDecl *VD = dyn_cast<ValueDecl>(D);
830   if (!VD) // If we have no clue what we're calling, assume the worst.
831     return CT_Can;
832
833   // As an extension, we assume that __attribute__((nothrow)) functions don't
834   // throw.
835   if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
836     return CT_Cannot;
837
838   QualType T = VD->getType();
839   const FunctionProtoType *FT;
840   if ((FT = T->getAs<FunctionProtoType>())) {
841   } else if (const PointerType *PT = T->getAs<PointerType>())
842     FT = PT->getPointeeType()->getAs<FunctionProtoType>();
843   else if (const ReferenceType *RT = T->getAs<ReferenceType>())
844     FT = RT->getPointeeType()->getAs<FunctionProtoType>();
845   else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
846     FT = MT->getPointeeType()->getAs<FunctionProtoType>();
847   else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
848     FT = BT->getPointeeType()->getAs<FunctionProtoType>();
849
850   if (!FT)
851     return CT_Can;
852
853   FT = S.ResolveExceptionSpec(E->getLocStart(), FT);
854   if (!FT)
855     return CT_Can;
856
857   return FT->isNothrow(S.Context) ? CT_Cannot : CT_Can;
858 }
859
860 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
861   if (DC->isTypeDependent())
862     return CT_Dependent;
863
864   if (!DC->getTypeAsWritten()->isReferenceType())
865     return CT_Cannot;
866
867   if (DC->getSubExpr()->isTypeDependent())
868     return CT_Dependent;
869
870   return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
871 }
872
873 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
874   if (DC->isTypeOperand())
875     return CT_Cannot;
876
877   Expr *Op = DC->getExprOperand();
878   if (Op->isTypeDependent())
879     return CT_Dependent;
880
881   const RecordType *RT = Op->getType()->getAs<RecordType>();
882   if (!RT)
883     return CT_Cannot;
884
885   if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
886     return CT_Cannot;
887
888   if (Op->Classify(S.Context).isPRValue())
889     return CT_Cannot;
890
891   return CT_Can;
892 }
893
894 CanThrowResult Sema::canThrow(const Expr *E) {
895   // C++ [expr.unary.noexcept]p3:
896   //   [Can throw] if in a potentially-evaluated context the expression would
897   //   contain:
898   switch (E->getStmtClass()) {
899   case Expr::CXXThrowExprClass:
900     //   - a potentially evaluated throw-expression
901     return CT_Can;
902
903   case Expr::CXXDynamicCastExprClass: {
904     //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
905     //     where T is a reference type, that requires a run-time check
906     CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E));
907     if (CT == CT_Can)
908       return CT;
909     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
910   }
911
912   case Expr::CXXTypeidExprClass:
913     //   - a potentially evaluated typeid expression applied to a glvalue
914     //     expression whose type is a polymorphic class type
915     return canTypeidThrow(*this, cast<CXXTypeidExpr>(E));
916
917     //   - a potentially evaluated call to a function, member function, function
918     //     pointer, or member function pointer that does not have a non-throwing
919     //     exception-specification
920   case Expr::CallExprClass:
921   case Expr::CXXMemberCallExprClass:
922   case Expr::CXXOperatorCallExprClass:
923   case Expr::UserDefinedLiteralClass: {
924     const CallExpr *CE = cast<CallExpr>(E);
925     CanThrowResult CT;
926     if (E->isTypeDependent())
927       CT = CT_Dependent;
928     else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
929       CT = CT_Cannot;
930     else
931       CT = canCalleeThrow(*this, E, CE->getCalleeDecl());
932     if (CT == CT_Can)
933       return CT;
934     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
935   }
936
937   case Expr::CXXConstructExprClass:
938   case Expr::CXXTemporaryObjectExprClass: {
939     CanThrowResult CT = canCalleeThrow(*this, E,
940         cast<CXXConstructExpr>(E)->getConstructor());
941     if (CT == CT_Can)
942       return CT;
943     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
944   }
945
946   case Expr::LambdaExprClass: {
947     const LambdaExpr *Lambda = cast<LambdaExpr>(E);
948     CanThrowResult CT = CT_Cannot;
949     for (LambdaExpr::capture_init_iterator Cap = Lambda->capture_init_begin(),
950                                         CapEnd = Lambda->capture_init_end();
951          Cap != CapEnd; ++Cap)
952       CT = mergeCanThrow(CT, canThrow(*Cap));
953     return CT;
954   }
955
956   case Expr::CXXNewExprClass: {
957     CanThrowResult CT;
958     if (E->isTypeDependent())
959       CT = CT_Dependent;
960     else
961       CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew());
962     if (CT == CT_Can)
963       return CT;
964     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
965   }
966
967   case Expr::CXXDeleteExprClass: {
968     CanThrowResult CT;
969     QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType();
970     if (DTy.isNull() || DTy->isDependentType()) {
971       CT = CT_Dependent;
972     } else {
973       CT = canCalleeThrow(*this, E,
974                           cast<CXXDeleteExpr>(E)->getOperatorDelete());
975       if (const RecordType *RT = DTy->getAs<RecordType>()) {
976         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
977         CT = mergeCanThrow(CT, canCalleeThrow(*this, E, RD->getDestructor()));
978       }
979       if (CT == CT_Can)
980         return CT;
981     }
982     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
983   }
984
985   case Expr::CXXBindTemporaryExprClass: {
986     // The bound temporary has to be destroyed again, which might throw.
987     CanThrowResult CT = canCalleeThrow(*this, E,
988       cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor());
989     if (CT == CT_Can)
990       return CT;
991     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
992   }
993
994     // ObjC message sends are like function calls, but never have exception
995     // specs.
996   case Expr::ObjCMessageExprClass:
997   case Expr::ObjCPropertyRefExprClass:
998   case Expr::ObjCSubscriptRefExprClass:
999     return CT_Can;
1000
1001     // All the ObjC literals that are implemented as calls are
1002     // potentially throwing unless we decide to close off that
1003     // possibility.
1004   case Expr::ObjCArrayLiteralClass:
1005   case Expr::ObjCDictionaryLiteralClass:
1006   case Expr::ObjCBoxedExprClass:
1007     return CT_Can;
1008
1009     // Many other things have subexpressions, so we have to test those.
1010     // Some are simple:
1011   case Expr::ConditionalOperatorClass:
1012   case Expr::CompoundLiteralExprClass:
1013   case Expr::CXXConstCastExprClass:
1014   case Expr::CXXReinterpretCastExprClass:
1015   case Expr::DesignatedInitExprClass:
1016   case Expr::ExprWithCleanupsClass:
1017   case Expr::ExtVectorElementExprClass:
1018   case Expr::InitListExprClass:
1019   case Expr::MemberExprClass:
1020   case Expr::ObjCIsaExprClass:
1021   case Expr::ObjCIvarRefExprClass:
1022   case Expr::ParenExprClass:
1023   case Expr::ParenListExprClass:
1024   case Expr::ShuffleVectorExprClass:
1025   case Expr::VAArgExprClass:
1026     return canSubExprsThrow(*this, E);
1027
1028     // Some might be dependent for other reasons.
1029   case Expr::ArraySubscriptExprClass:
1030   case Expr::BinaryOperatorClass:
1031   case Expr::CompoundAssignOperatorClass:
1032   case Expr::CStyleCastExprClass:
1033   case Expr::CXXStaticCastExprClass:
1034   case Expr::CXXFunctionalCastExprClass:
1035   case Expr::ImplicitCastExprClass:
1036   case Expr::MaterializeTemporaryExprClass:
1037   case Expr::UnaryOperatorClass: {
1038     CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot;
1039     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
1040   }
1041
1042     // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
1043   case Expr::StmtExprClass:
1044     return CT_Can;
1045
1046   case Expr::CXXDefaultArgExprClass:
1047     return canThrow(cast<CXXDefaultArgExpr>(E)->getExpr());
1048
1049   case Expr::CXXDefaultInitExprClass:
1050     return canThrow(cast<CXXDefaultInitExpr>(E)->getExpr());
1051
1052   case Expr::ChooseExprClass:
1053     if (E->isTypeDependent() || E->isValueDependent())
1054       return CT_Dependent;
1055     return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr(Context));
1056
1057   case Expr::GenericSelectionExprClass:
1058     if (cast<GenericSelectionExpr>(E)->isResultDependent())
1059       return CT_Dependent;
1060     return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr());
1061
1062     // Some expressions are always dependent.
1063   case Expr::CXXDependentScopeMemberExprClass:
1064   case Expr::CXXUnresolvedConstructExprClass:
1065   case Expr::DependentScopeDeclRefExprClass:
1066     return CT_Dependent;
1067
1068   case Expr::AsTypeExprClass:
1069   case Expr::BinaryConditionalOperatorClass:
1070   case Expr::BlockExprClass:
1071   case Expr::CUDAKernelCallExprClass:
1072   case Expr::DeclRefExprClass:
1073   case Expr::ObjCBridgedCastExprClass:
1074   case Expr::ObjCIndirectCopyRestoreExprClass:
1075   case Expr::ObjCProtocolExprClass:
1076   case Expr::ObjCSelectorExprClass:
1077   case Expr::OffsetOfExprClass:
1078   case Expr::PackExpansionExprClass:
1079   case Expr::PseudoObjectExprClass:
1080   case Expr::SubstNonTypeTemplateParmExprClass:
1081   case Expr::SubstNonTypeTemplateParmPackExprClass:
1082   case Expr::FunctionParmPackExprClass:
1083   case Expr::UnaryExprOrTypeTraitExprClass:
1084   case Expr::UnresolvedLookupExprClass:
1085   case Expr::UnresolvedMemberExprClass:
1086     // FIXME: Can any of the above throw?  If so, when?
1087     return CT_Cannot;
1088
1089   case Expr::AddrLabelExprClass:
1090   case Expr::ArrayTypeTraitExprClass:
1091   case Expr::AtomicExprClass:
1092   case Expr::BinaryTypeTraitExprClass:
1093   case Expr::TypeTraitExprClass:
1094   case Expr::CXXBoolLiteralExprClass:
1095   case Expr::CXXNoexceptExprClass:
1096   case Expr::CXXNullPtrLiteralExprClass:
1097   case Expr::CXXPseudoDestructorExprClass:
1098   case Expr::CXXScalarValueInitExprClass:
1099   case Expr::CXXThisExprClass:
1100   case Expr::CXXUuidofExprClass:
1101   case Expr::CharacterLiteralClass:
1102   case Expr::ExpressionTraitExprClass:
1103   case Expr::FloatingLiteralClass:
1104   case Expr::GNUNullExprClass:
1105   case Expr::ImaginaryLiteralClass:
1106   case Expr::ImplicitValueInitExprClass:
1107   case Expr::IntegerLiteralClass:
1108   case Expr::ObjCEncodeExprClass:
1109   case Expr::ObjCStringLiteralClass:
1110   case Expr::ObjCBoolLiteralExprClass:
1111   case Expr::OpaqueValueExprClass:
1112   case Expr::PredefinedExprClass:
1113   case Expr::SizeOfPackExprClass:
1114   case Expr::StringLiteralClass:
1115   case Expr::UnaryTypeTraitExprClass:
1116     // These expressions can never throw.
1117     return CT_Cannot;
1118
1119   case Expr::MSPropertyRefExprClass:
1120     llvm_unreachable("Invalid class for expression");
1121
1122 #define STMT(CLASS, PARENT) case Expr::CLASS##Class:
1123 #define STMT_RANGE(Base, First, Last)
1124 #define LAST_STMT_RANGE(BASE, FIRST, LAST)
1125 #define EXPR(CLASS, PARENT)
1126 #define ABSTRACT_STMT(STMT)
1127 #include "clang/AST/StmtNodes.inc"
1128   case Expr::NoStmtClass:
1129     llvm_unreachable("Invalid class for expression");
1130   }
1131   llvm_unreachable("Bogus StmtClass");
1132 }
1133
1134 } // end namespace clang