]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CoreEngine.cpp
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / llvm / tools / clang / lib / StaticAnalyzer / Core / CoreEngine.cpp
1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines a generic engine for intraprocedural, path-sensitive,
11 //  dataflow analysis via graph reachability engine.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "CoreEngine"
16
17 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/StmtCXX.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Support/Casting.h"
25
26 using namespace clang;
27 using namespace ento;
28
29 STATISTIC(NumSteps,
30             "The # of steps executed.");
31 STATISTIC(NumReachedMaxSteps,
32             "The # of times we reached the max number of steps.");
33 STATISTIC(NumPathsExplored,
34             "The # of paths explored by the analyzer.");
35
36 //===----------------------------------------------------------------------===//
37 // Worklist classes for exploration of reachable states.
38 //===----------------------------------------------------------------------===//
39
40 WorkList::Visitor::~Visitor() {}
41
42 namespace {
43 class DFS : public WorkList {
44   SmallVector<WorkListUnit,20> Stack;
45 public:
46   virtual bool hasWork() const {
47     return !Stack.empty();
48   }
49
50   virtual void enqueue(const WorkListUnit& U) {
51     Stack.push_back(U);
52   }
53
54   virtual WorkListUnit dequeue() {
55     assert (!Stack.empty());
56     const WorkListUnit& U = Stack.back();
57     Stack.pop_back(); // This technically "invalidates" U, but we are fine.
58     return U;
59   }
60   
61   virtual bool visitItemsInWorkList(Visitor &V) {
62     for (SmallVectorImpl<WorkListUnit>::iterator
63          I = Stack.begin(), E = Stack.end(); I != E; ++I) {
64       if (V.visit(*I))
65         return true;
66     }
67     return false;
68   }
69 };
70
71 class BFS : public WorkList {
72   std::deque<WorkListUnit> Queue;
73 public:
74   virtual bool hasWork() const {
75     return !Queue.empty();
76   }
77
78   virtual void enqueue(const WorkListUnit& U) {
79     Queue.push_back(U);
80   }
81
82   virtual WorkListUnit dequeue() {
83     WorkListUnit U = Queue.front();
84     Queue.pop_front();
85     return U;
86   }
87   
88   virtual bool visitItemsInWorkList(Visitor &V) {
89     for (std::deque<WorkListUnit>::iterator
90          I = Queue.begin(), E = Queue.end(); I != E; ++I) {
91       if (V.visit(*I))
92         return true;
93     }
94     return false;
95   }
96 };
97
98 } // end anonymous namespace
99
100 // Place the dstor for WorkList here because it contains virtual member
101 // functions, and we the code for the dstor generated in one compilation unit.
102 WorkList::~WorkList() {}
103
104 WorkList *WorkList::makeDFS() { return new DFS(); }
105 WorkList *WorkList::makeBFS() { return new BFS(); }
106
107 namespace {
108   class BFSBlockDFSContents : public WorkList {
109     std::deque<WorkListUnit> Queue;
110     SmallVector<WorkListUnit,20> Stack;
111   public:
112     virtual bool hasWork() const {
113       return !Queue.empty() || !Stack.empty();
114     }
115
116     virtual void enqueue(const WorkListUnit& U) {
117       if (U.getNode()->getLocation().getAs<BlockEntrance>())
118         Queue.push_front(U);
119       else
120         Stack.push_back(U);
121     }
122
123     virtual WorkListUnit dequeue() {
124       // Process all basic blocks to completion.
125       if (!Stack.empty()) {
126         const WorkListUnit& U = Stack.back();
127         Stack.pop_back(); // This technically "invalidates" U, but we are fine.
128         return U;
129       }
130
131       assert(!Queue.empty());
132       // Don't use const reference.  The subsequent pop_back() might make it
133       // unsafe.
134       WorkListUnit U = Queue.front();
135       Queue.pop_front();
136       return U;
137     }
138     virtual bool visitItemsInWorkList(Visitor &V) {
139       for (SmallVectorImpl<WorkListUnit>::iterator
140            I = Stack.begin(), E = Stack.end(); I != E; ++I) {
141         if (V.visit(*I))
142           return true;
143       }
144       for (std::deque<WorkListUnit>::iterator
145            I = Queue.begin(), E = Queue.end(); I != E; ++I) {
146         if (V.visit(*I))
147           return true;
148       }
149       return false;
150     }
151
152   };
153 } // end anonymous namespace
154
155 WorkList* WorkList::makeBFSBlockDFSContents() {
156   return new BFSBlockDFSContents();
157 }
158
159 //===----------------------------------------------------------------------===//
160 // Core analysis engine.
161 //===----------------------------------------------------------------------===//
162
163 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
164 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
165                                    ProgramStateRef InitState) {
166
167   if (G->num_roots() == 0) { // Initialize the analysis by constructing
168     // the root if none exists.
169
170     const CFGBlock *Entry = &(L->getCFG()->getEntry());
171
172     assert (Entry->empty() &&
173             "Entry block must be empty.");
174
175     assert (Entry->succ_size() == 1 &&
176             "Entry block must have 1 successor.");
177
178     // Mark the entry block as visited.
179     FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(),
180                                              L->getDecl(),
181                                              L->getCFG()->getNumBlockIDs());
182
183     // Get the solitary successor.
184     const CFGBlock *Succ = *(Entry->succ_begin());
185
186     // Construct an edge representing the
187     // starting location in the function.
188     BlockEdge StartLoc(Entry, Succ, L);
189
190     // Set the current block counter to being empty.
191     WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
192
193     if (!InitState)
194       // Generate the root.
195       generateNode(StartLoc, SubEng.getInitialState(L), 0);
196     else
197       generateNode(StartLoc, InitState, 0);
198   }
199
200   // Check if we have a steps limit
201   bool UnlimitedSteps = Steps == 0;
202
203   while (WList->hasWork()) {
204     if (!UnlimitedSteps) {
205       if (Steps == 0) {
206         NumReachedMaxSteps++;
207         break;
208       }
209       --Steps;
210     }
211
212     NumSteps++;
213
214     const WorkListUnit& WU = WList->dequeue();
215
216     // Set the current block counter.
217     WList->setBlockCounter(WU.getBlockCounter());
218
219     // Retrieve the node.
220     ExplodedNode *Node = WU.getNode();
221
222     dispatchWorkItem(Node, Node->getLocation(), WU);
223   }
224   SubEng.processEndWorklist(hasWorkRemaining());
225   return WList->hasWork();
226 }
227
228 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
229                                   const WorkListUnit& WU) {
230   // Dispatch on the location type.
231   switch (Loc.getKind()) {
232     case ProgramPoint::BlockEdgeKind:
233       HandleBlockEdge(Loc.castAs<BlockEdge>(), Pred);
234       break;
235
236     case ProgramPoint::BlockEntranceKind:
237       HandleBlockEntrance(Loc.castAs<BlockEntrance>(), Pred);
238       break;
239
240     case ProgramPoint::BlockExitKind:
241       assert (false && "BlockExit location never occur in forward analysis.");
242       break;
243
244     case ProgramPoint::CallEnterKind: {
245       CallEnter CEnter = Loc.castAs<CallEnter>();
246       SubEng.processCallEnter(CEnter, Pred);
247       break;
248     }
249
250     case ProgramPoint::CallExitBeginKind:
251       SubEng.processCallExit(Pred);
252       break;
253
254     case ProgramPoint::EpsilonKind: {
255       assert(Pred->hasSinglePred() &&
256              "Assume epsilon has exactly one predecessor by construction");
257       ExplodedNode *PNode = Pred->getFirstPred();
258       dispatchWorkItem(Pred, PNode->getLocation(), WU);
259       break;
260     }
261     default:
262       assert(Loc.getAs<PostStmt>() ||
263              Loc.getAs<PostInitializer>() ||
264              Loc.getAs<PostImplicitCall>() ||
265              Loc.getAs<CallExitEnd>());
266       HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred);
267       break;
268   }
269 }
270
271 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
272                                                  unsigned Steps,
273                                                  ProgramStateRef InitState, 
274                                                  ExplodedNodeSet &Dst) {
275   bool DidNotFinish = ExecuteWorkList(L, Steps, InitState);
276   for (ExplodedGraph::eop_iterator I = G->eop_begin(), 
277                                    E = G->eop_end(); I != E; ++I) {
278     Dst.Add(*I);
279   }
280   return DidNotFinish;
281 }
282
283 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {
284
285   const CFGBlock *Blk = L.getDst();
286   NodeBuilderContext BuilderCtx(*this, Blk, Pred);
287
288   // Mark this block as visited.
289   const LocationContext *LC = Pred->getLocationContext();
290   FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(),
291                                            LC->getDecl(),
292                                            LC->getCFG()->getNumBlockIDs());
293
294   // Check if we are entering the EXIT block.
295   if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
296
297     assert (L.getLocationContext()->getCFG()->getExit().size() == 0
298             && "EXIT block cannot contain Stmts.");
299
300     // Process the final state transition.
301     SubEng.processEndOfFunction(BuilderCtx, Pred);
302
303     // This path is done. Don't enqueue any more nodes.
304     return;
305   }
306
307   // Call into the SubEngine to process entering the CFGBlock.
308   ExplodedNodeSet dstNodes;
309   BlockEntrance BE(Blk, Pred->getLocationContext());
310   NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE);
311   SubEng.processCFGBlockEntrance(L, nodeBuilder, Pred);
312
313   // Auto-generate a node.
314   if (!nodeBuilder.hasGeneratedNodes()) {
315     nodeBuilder.generateNode(Pred->State, Pred);
316   }
317
318   // Enqueue nodes onto the worklist.
319   enqueue(dstNodes);
320 }
321
322 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
323                                        ExplodedNode *Pred) {
324
325   // Increment the block counter.
326   const LocationContext *LC = Pred->getLocationContext();
327   unsigned BlockId = L.getBlock()->getBlockID();
328   BlockCounter Counter = WList->getBlockCounter();
329   Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(),
330                                            BlockId);
331   WList->setBlockCounter(Counter);
332
333   // Process the entrance of the block.
334   if (Optional<CFGElement> E = L.getFirstElement()) {
335     NodeBuilderContext Ctx(*this, L.getBlock(), Pred);
336     SubEng.processCFGElement(*E, Pred, 0, &Ctx);
337   }
338   else
339     HandleBlockExit(L.getBlock(), Pred);
340 }
341
342 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {
343
344   if (const Stmt *Term = B->getTerminator()) {
345     switch (Term->getStmtClass()) {
346       default:
347         llvm_unreachable("Analysis for this terminator not implemented.");
348
349       // Model static initializers.
350       case Stmt::DeclStmtClass:
351         HandleStaticInit(cast<DeclStmt>(Term), B, Pred);
352         return;
353
354       case Stmt::BinaryOperatorClass: // '&&' and '||'
355         HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
356         return;
357
358       case Stmt::BinaryConditionalOperatorClass:
359       case Stmt::ConditionalOperatorClass:
360         HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
361                      Term, B, Pred);
362         return;
363
364         // FIXME: Use constant-folding in CFG construction to simplify this
365         // case.
366
367       case Stmt::ChooseExprClass:
368         HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
369         return;
370
371       case Stmt::CXXTryStmtClass: {
372         // Generate a node for each of the successors.
373         // Our logic for EH analysis can certainly be improved.
374         for (CFGBlock::const_succ_iterator it = B->succ_begin(),
375              et = B->succ_end(); it != et; ++it) {
376           if (const CFGBlock *succ = *it) {
377             generateNode(BlockEdge(B, succ, Pred->getLocationContext()),
378                          Pred->State, Pred);
379           }
380         }
381         return;
382       }
383         
384       case Stmt::DoStmtClass:
385         HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
386         return;
387
388       case Stmt::CXXForRangeStmtClass:
389         HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
390         return;
391
392       case Stmt::ForStmtClass:
393         HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
394         return;
395
396       case Stmt::ContinueStmtClass:
397       case Stmt::BreakStmtClass:
398       case Stmt::GotoStmtClass:
399         break;
400
401       case Stmt::IfStmtClass:
402         HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
403         return;
404
405       case Stmt::IndirectGotoStmtClass: {
406         // Only 1 successor: the indirect goto dispatch block.
407         assert (B->succ_size() == 1);
408
409         IndirectGotoNodeBuilder
410            builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
411                    *(B->succ_begin()), this);
412
413         SubEng.processIndirectGoto(builder);
414         return;
415       }
416
417       case Stmt::ObjCForCollectionStmtClass: {
418         // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
419         //
420         //  (1) inside a basic block, which represents the binding of the
421         //      'element' variable to a value.
422         //  (2) in a terminator, which represents the branch.
423         //
424         // For (1), subengines will bind a value (i.e., 0 or 1) indicating
425         // whether or not collection contains any more elements.  We cannot
426         // just test to see if the element is nil because a container can
427         // contain nil elements.
428         HandleBranch(Term, Term, B, Pred);
429         return;
430       }
431
432       case Stmt::SwitchStmtClass: {
433         SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
434                                     this);
435
436         SubEng.processSwitch(builder);
437         return;
438       }
439
440       case Stmt::WhileStmtClass:
441         HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
442         return;
443     }
444   }
445
446   assert (B->succ_size() == 1 &&
447           "Blocks with no terminator should have at most 1 successor.");
448
449   generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
450                Pred->State, Pred);
451 }
452
453 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term, 
454                                 const CFGBlock * B, ExplodedNode *Pred) {
455   assert(B->succ_size() == 2);
456   NodeBuilderContext Ctx(*this, B, Pred);
457   ExplodedNodeSet Dst;
458   SubEng.processBranch(Cond, Term, Ctx, Pred, Dst,
459                        *(B->succ_begin()), *(B->succ_begin()+1));
460   // Enqueue the new frontier onto the worklist.
461   enqueue(Dst);
462 }
463
464
465 void CoreEngine::HandleStaticInit(const DeclStmt *DS, const CFGBlock *B,
466                                   ExplodedNode *Pred) {
467   assert(B->succ_size() == 2);
468   NodeBuilderContext Ctx(*this, B, Pred);
469   ExplodedNodeSet Dst;
470   SubEng.processStaticInitializer(DS, Ctx, Pred, Dst,
471                                   *(B->succ_begin()), *(B->succ_begin()+1));
472   // Enqueue the new frontier onto the worklist.
473   enqueue(Dst);
474 }
475
476
477 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, 
478                                   ExplodedNode *Pred) {
479   assert(B);
480   assert(!B->empty());
481
482   if (StmtIdx == B->size())
483     HandleBlockExit(B, Pred);
484   else {
485     NodeBuilderContext Ctx(*this, B, Pred);
486     SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx);
487   }
488 }
489
490 /// generateNode - Utility method to generate nodes, hook up successors,
491 ///  and add nodes to the worklist.
492 void CoreEngine::generateNode(const ProgramPoint &Loc,
493                               ProgramStateRef State,
494                               ExplodedNode *Pred) {
495
496   bool IsNew;
497   ExplodedNode *Node = G->getNode(Loc, State, false, &IsNew);
498
499   if (Pred)
500     Node->addPredecessor(Pred, *G);  // Link 'Node' with its predecessor.
501   else {
502     assert (IsNew);
503     G->addRoot(Node);  // 'Node' has no predecessor.  Make it a root.
504   }
505
506   // Only add 'Node' to the worklist if it was freshly generated.
507   if (IsNew) WList->enqueue(Node);
508 }
509
510 void CoreEngine::enqueueStmtNode(ExplodedNode *N,
511                                  const CFGBlock *Block, unsigned Idx) {
512   assert(Block);
513   assert (!N->isSink());
514
515   // Check if this node entered a callee.
516   if (N->getLocation().getAs<CallEnter>()) {
517     // Still use the index of the CallExpr. It's needed to create the callee
518     // StackFrameContext.
519     WList->enqueue(N, Block, Idx);
520     return;
521   }
522
523   // Do not create extra nodes. Move to the next CFG element.
524   if (N->getLocation().getAs<PostInitializer>() ||
525       N->getLocation().getAs<PostImplicitCall>()) {
526     WList->enqueue(N, Block, Idx+1);
527     return;
528   }
529
530   if (N->getLocation().getAs<EpsilonPoint>()) {
531     WList->enqueue(N, Block, Idx);
532     return;
533   }
534
535   // At this point, we know we're processing a normal statement.
536   CFGStmt CS = (*Block)[Idx].castAs<CFGStmt>();
537   PostStmt Loc(CS.getStmt(), N->getLocationContext());
538
539   if (Loc == N->getLocation()) {
540     // Note: 'N' should be a fresh node because otherwise it shouldn't be
541     // a member of Deferred.
542     WList->enqueue(N, Block, Idx+1);
543     return;
544   }
545
546   bool IsNew;
547   ExplodedNode *Succ = G->getNode(Loc, N->getState(), false, &IsNew);
548   Succ->addPredecessor(N, *G);
549
550   if (IsNew)
551     WList->enqueue(Succ, Block, Idx+1);
552 }
553
554 ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N) {
555   // Create a CallExitBegin node and enqueue it.
556   const StackFrameContext *LocCtx
557                          = cast<StackFrameContext>(N->getLocationContext());
558
559   // Use the callee location context.
560   CallExitBegin Loc(LocCtx);
561
562   bool isNew;
563   ExplodedNode *Node = G->getNode(Loc, N->getState(), false, &isNew);
564   Node->addPredecessor(N, *G);
565   return isNew ? Node : 0;
566 }
567
568
569 void CoreEngine::enqueue(ExplodedNodeSet &Set) {
570   for (ExplodedNodeSet::iterator I = Set.begin(),
571                                  E = Set.end(); I != E; ++I) {
572     WList->enqueue(*I);
573   }
574 }
575
576 void CoreEngine::enqueue(ExplodedNodeSet &Set,
577                          const CFGBlock *Block, unsigned Idx) {
578   for (ExplodedNodeSet::iterator I = Set.begin(),
579                                  E = Set.end(); I != E; ++I) {
580     enqueueStmtNode(*I, Block, Idx);
581   }
582 }
583
584 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) {
585   for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) {
586     ExplodedNode *N = *I;
587     // If we are in an inlined call, generate CallExitBegin node.
588     if (N->getLocationContext()->getParent()) {
589       N = generateCallExitBeginNode(N);
590       if (N)
591         WList->enqueue(N);
592     } else {
593       // TODO: We should run remove dead bindings here.
594       G->addEndOfPath(N);
595       NumPathsExplored++;
596     }
597   }
598 }
599
600
601 void NodeBuilder::anchor() { }
602
603 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc,
604                                             ProgramStateRef State,
605                                             ExplodedNode *FromN,
606                                             bool MarkAsSink) {
607   HasGeneratedNodes = true;
608   bool IsNew;
609   ExplodedNode *N = C.Eng.G->getNode(Loc, State, MarkAsSink, &IsNew);
610   N->addPredecessor(FromN, *C.Eng.G);
611   Frontier.erase(FromN);
612
613   if (!IsNew)
614     return 0;
615
616   if (!MarkAsSink)
617     Frontier.Add(N);
618
619   return N;
620 }
621
622 void NodeBuilderWithSinks::anchor() { }
623
624 StmtNodeBuilder::~StmtNodeBuilder() {
625   if (EnclosingBldr)
626     for (ExplodedNodeSet::iterator I = Frontier.begin(),
627                                    E = Frontier.end(); I != E; ++I )
628       EnclosingBldr->addNodes(*I);
629 }
630
631 void BranchNodeBuilder::anchor() { }
632
633 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State,
634                                               bool branch,
635                                               ExplodedNode *NodePred) {
636   // If the branch has been marked infeasible we should not generate a node.
637   if (!isFeasible(branch))
638     return NULL;
639
640   ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF,
641                                NodePred->getLocationContext());
642   ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred);
643   return Succ;
644 }
645
646 ExplodedNode*
647 IndirectGotoNodeBuilder::generateNode(const iterator &I,
648                                       ProgramStateRef St,
649                                       bool IsSink) {
650   bool IsNew;
651   ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
652                                       Pred->getLocationContext()), St,
653                                       IsSink, &IsNew);
654   Succ->addPredecessor(Pred, *Eng.G);
655
656   if (!IsNew)
657     return 0;
658
659   if (!IsSink)
660     Eng.WList->enqueue(Succ);
661
662   return Succ;
663 }
664
665
666 ExplodedNode*
667 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
668                                         ProgramStateRef St) {
669
670   bool IsNew;
671   ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
672                                       Pred->getLocationContext()), St,
673                                       false, &IsNew);
674   Succ->addPredecessor(Pred, *Eng.G);
675   if (!IsNew)
676     return 0;
677
678   Eng.WList->enqueue(Succ);
679   return Succ;
680 }
681
682
683 ExplodedNode*
684 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St,
685                                            bool IsSink) {
686   // Get the block for the default case.
687   assert(Src->succ_rbegin() != Src->succ_rend());
688   CFGBlock *DefaultBlock = *Src->succ_rbegin();
689
690   // Sanity check for default blocks that are unreachable and not caught
691   // by earlier stages.
692   if (!DefaultBlock)
693     return NULL;
694   
695   bool IsNew;
696   ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock,
697                                       Pred->getLocationContext()), St,
698                                       IsSink, &IsNew);
699   Succ->addPredecessor(Pred, *Eng.G);
700
701   if (!IsNew)
702     return 0;
703
704   if (!IsSink)
705     Eng.WList->enqueue(Succ);
706
707   return Succ;
708 }