]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/llvm/tools/lldb/include/lldb/Target/ThreadPlan.h
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / llvm / tools / lldb / include / lldb / Target / ThreadPlan.h
1 //===-- ThreadPlan.h --------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #ifndef liblldb_ThreadPlan_h_
11 #define liblldb_ThreadPlan_h_
12
13 // C Includes
14 // C++ Includes
15 #include <string>
16 // Other libraries and framework includes
17 // Project includes
18 #include "lldb/lldb-private.h"
19 #include "lldb/Core/UserID.h"
20 #include "lldb/Host/Mutex.h"
21 #include "lldb/Target/Process.h"
22 #include "lldb/Target/Target.h"
23 #include "lldb/Target/Thread.h"
24 #include "lldb/Target/ThreadPlanTracer.h"
25 #include "lldb/Target/StopInfo.h"
26
27 namespace lldb_private {
28
29 //------------------------------------------------------------------
30 //  ThreadPlan:
31 //  This is the pure virtual base class for thread plans.
32 //
33 //  The thread plans provide the "atoms" of behavior that
34 //  all the logical process control, either directly from commands or through
35 //  more complex composite plans will rely on.
36 //
37 //  Plan Stack:
38 //
39 //  The thread maintaining a thread plan stack, and you program the actions of a particular thread
40 //  by pushing plans onto the plan stack.
41 //  There is always a "Current" plan, which is the head of the plan stack, though in some cases
42 //  a plan may defer to plans higher in the stack for some piece of information.
43 //
44 //  The plan stack is never empty, there is always a Base Plan which persists through the life
45 //  of the running process.
46 //
47 //
48 //  Creating Plans:
49 //
50 //  The thread plan is generally created and added to the plan stack through the QueueThreadPlanFor... API
51 //  in lldb::Thread.  Those API's will return the plan that performs the named operation in a manner
52 //  appropriate for the current process.  The plans in lldb/source/Target are generic
53 //  implementations, but a Process plugin can override them.
54 //
55 //  ValidatePlan is then called.  If it returns false, the plan is unshipped.  This is a little
56 //  convenience which keeps us from having to error out of the constructor.
57 //
58 //  Then the plan is added to the plan stack.  When the plan is added to the plan stack its DidPush
59 //  will get called.  This is useful if a plan wants to push any additional plans as it is constructed,
60 //  since you need to make sure you're already on the stack before you push additional plans.
61 //
62 //  Completed Plans:
63 //
64 //  When the target process stops the plans are queried, among other things, for whether their job is done.
65 //  If it is they are moved from the plan stack to the Completed Plan stack in reverse order from their position
66 //  on the plan stack (since multiple plans may be done at a given stop.)  This is used primarily so that
67 //  the lldb::Thread::StopInfo for the thread can be set properly.  If one plan pushes another to achieve part of
68 //  its job, but it doesn't want that sub-plan to be the one that sets the StopInfo, then call SetPrivate on the
69 //  sub-plan when you create it, and the Thread will pass over that plan in reporting the reason for the stop.
70 //
71 //  Discarded plans:
72 //
73 //  Your plan may also get discarded, i.e. moved from the plan stack to the "discarded plan stack".  This can
74 //  happen, for instance, if the plan is calling a function and the function call crashes and you want
75 //  to unwind the attempt to call.  So don't assume that your plan will always successfully stop.  Which leads to:
76 //
77 //  Cleaning up after your plans:
78 //
79 //  When the plan is moved from the plan stack its WillPop method is always called, no matter why.  Once it is
80 //  moved off the plan stack it is done, and won't get a chance to run again.  So you should
81 //  undo anything that affects target state in this method.  But be sure to leave the plan able to correctly 
82 //  fill the StopInfo, however.
83 //  N.B. Don't wait to do clean up target state till the destructor, since that will usually get called when 
84 //  the target resumes, and you want to leave the target state correct for new plans in the time between when
85 //  your plan gets unshipped and the next resume.
86 //
87 //  Over the lifetime of the plan, various methods of the ThreadPlan are then called in response to changes of state in
88 //  the process we are debugging as follows:
89 //
90 //  Resuming:
91 //
92 //  When the target process is about to be restarted, the plan's WillResume method is called,
93 //  giving the plan a chance to prepare for the run.  If WillResume returns false, then the
94 //  process is not restarted.  Be sure to set an appropriate error value in the Process if
95 //  you have to do this.  Note, ThreadPlans actually implement DoWillResume, WillResume wraps that call.
96 //
97 //  Next the "StopOthers" method of all the threads are polled, and if one thread's Current plan
98 //  returns "true" then only that thread gets to run.  If more than one returns "true" the threads that want to run solo
99 //  get run one by one round robin fashion.  Otherwise all are let to run.
100 //
101 //  Note, the way StopOthers is implemented, the base class implementation just asks the previous plan.  So if your plan
102 //  has no opinion about whether it should run stopping others or not, just don't implement StopOthers, and the parent
103 //  will be asked.
104 //
105 //  Finally, for each thread that is running, it run state is set to the return of RunState from the
106 //  thread's Current plan.
107 //
108 //  Responding to a stop:
109 //
110 //  When the target process stops, the plan is called in the following stages:
111 //
112 //  First the thread asks the Current Plan if it can handle this stop by calling PlanExplainsStop.
113 //  If the Current plan answers "true" then it is asked if the stop should percolate all the way to the
114 //  user by calling the ShouldStop method.  If the current plan doesn't explain the stop, then we query down
115 //  the plan stack for a plan that does explain the stop.  The plan that does explain the stop then needs to
116 //  figure out what to do about the plans below it in the stack.  If the stop is recoverable, then the plan that
117 //  understands it can just do what it needs to set up to restart, and then continue.
118 //  Otherwise, the plan that understood the stop should call DiscardPlanStack to clean up the stack below it.
119 //  Note, plans actually implement DoPlanExplainsStop, the result is cached in PlanExplainsStop so the DoPlanExplainsStop
120 //  itself will only get called once per stop.
121 //
122 //  Master plans:
123 //
124 //  In the normal case, when we decide to stop, we will  collapse the plan stack up to the point of the plan that understood
125 //  the stop reason.  However, if a plan wishes to stay on the stack after an event it didn't directly handle
126 //  it can designate itself a "Master" plan by responding true to IsMasterPlan, and then if it wants not to be
127 //  discarded, it can return true to OkayToDiscard, and it and all its dependent plans will be preserved when
128 //  we resume execution.
129 //
130 //  The other effect of being a master plan is that when the Master plan is done , if it has set "OkayToDiscard" to false,
131 //  then it will be popped & execution will stop and return to the user.  Remember that if OkayToDiscard is false, the
132 //  plan will be popped and control will be given to the next plan above it on the stack  So setting OkayToDiscard to
133 //  false means the user will regain control when the MasterPlan is completed.
134 //
135 //  Between these two controls this allows things like: a MasterPlan/DontDiscard Step Over to hit a breakpoint, stop and
136 //  return control to the user, but then when the user continues, the step out succeeds.
137 //  Even more tricky, when the breakpoint is hit, the user can continue to step in/step over/etc, and finally when they
138 //  continue, they will finish up the Step Over.
139 //
140 //  FIXME: MasterPlan & OkayToDiscard aren't really orthogonal.  MasterPlan designation means that this plan controls
141 //  it's fate and the fate of plans below it.  OkayToDiscard tells whether the MasterPlan wants to stay on the stack.  I
142 //  originally thought "MasterPlan-ness" would need to be a fixed characteristic of a ThreadPlan, in which case you needed
143 //  the extra control.  But that doesn't seem to be true.  So we should be able to convert to only MasterPlan status to mean
144 //  the current "MasterPlan/DontDiscard".  Then no plans would be MasterPlans by default, and you would set the ones you
145 //  wanted to be "user level" in this way.
146 //
147 //
148 //  Actually Stopping:
149 //
150 //  If a plan says responds "true" to ShouldStop, then it is asked if it's job is complete by calling
151 //  MischiefManaged.  If that returns true, the thread is popped from the plan stack and added to the
152 //  Completed Plan Stack.  Then the next plan in the stack is asked if it ShouldStop, and  it returns "true",
153 //  it is asked if it is done, and if yes popped, and so on till we reach a plan that is not done.
154 //
155 //  Since you often know in the ShouldStop method whether your plan is complete, as a convenience you can call
156 //  SetPlanComplete and the ThreadPlan implementation of MischiefManaged will return "true", without your having
157 //  to redo the calculation when your sub-classes MischiefManaged is called.  If you call SetPlanComplete, you can
158 //  later use IsPlanComplete to determine whether the plan is complete.  This is only a convenience for sub-classes,
159 //  the logic in lldb::Thread will only call MischiefManaged.
160 //
161 //  One slightly tricky point is you have to be careful using SetPlanComplete in PlanExplainsStop because you
162 //  are not guaranteed that PlanExplainsStop for a plan will get called before ShouldStop gets called.  If your sub-plan
163 //  explained the stop and then popped itself, only your ShouldStop will get called.
164 //
165 //  If ShouldStop for any thread returns "true", then the WillStop method of the Current plan of
166 //  all threads will be called, the stop event is placed on the Process's public broadcaster, and
167 //  control returns to the upper layers of the debugger.
168 //
169 //  Reporting the stop:
170 //
171 //  When the process stops, the thread is given a StopReason, in the form of a StopInfo object.  If there is a completed
172 //  plan corresponding to the stop, then the "actual" stop reason will be suppressed, and instead a StopInfoThreadPlan
173 //  object will be cons'ed up from the highest completed plan in the stack.  However, if the plan doesn't want to be
174 //  the stop reason, then it can call SetPlanComplete and pass in "false" for the "success" parameter.  In that case,
175 //  the real stop reason will be used instead.  One exapmle of this is the "StepRangeStepIn" thread plan.  If it stops
176 //  because of a crash or breakpoint hit, it wants to unship itself, because it isn't so useful to have step in keep going
177 //  after a breakpoint hit.  But it can't be the reason for the stop or no-one would see that they had hit a breakpoint.
178 //
179 //  Cleaning up the plan stack:
180 //
181 //  One of the complications of MasterPlans is that you may get past the limits of a plan without triggering it to clean
182 //  itself up.  For instance, if you are doing a MasterPlan StepOver, and hit a breakpoint in a called function, then
183 //  step over enough times to step out of the initial StepOver range, each of the step overs will explain the stop & 
184 //  take themselves off the stack, but control would never be returned to the original StepOver.  Eventually, the user 
185 //  will continue, and when that continue stops, the old stale StepOver plan that was left on the stack will get woken 
186 //  up and notice it is done. But that can leave junk on the stack for a while.  To avoid that, the plans implement a
187 //  "IsPlanStale" method, that can check whether it is relevant anymore.  On stop, after the regular plan negotiation, 
188 //  the remaining plan stack is consulted and if any plan says it is stale, it and the plans below it are discarded from
189 //  the stack.
190 //
191 //  Automatically Resuming:
192 //
193 //  If ShouldStop for all threads returns "false", then the target process will resume.  This then cycles back to
194 //  Resuming above.
195 //
196 //  Reporting eStateStopped events when the target is restarted:
197 //
198 //  If a plan decides to auto-continue the target by returning "false" from ShouldStop, then it will be asked
199 //  whether the Stopped event should still be reported.  For instance, if you hit a breakpoint that is a User set
200 //  breakpoint, but the breakpoint callback said to continue the target process, you might still want to inform
201 //  the upper layers of lldb that the stop had happened.
202 //  The way this works is every thread gets to vote on whether to report the stop.  If all votes are eVoteNoOpinion,
203 //  then the thread list will decide what to do (at present it will pretty much always suppress these stopped events.)
204 //  If there is an eVoteYes, then the event will be reported regardless of the other votes.  If there is an eVoteNo
205 //  and no eVoteYes's, then the event won't be reported.
206 //
207 //  One other little detail here, sometimes a plan will push another plan onto the plan stack to do some part of
208 //  the first plan's job, and it would be convenient to tell that plan how it should respond to ShouldReportStop.
209 //  You can do that by setting the stop_vote in the child plan when you create it.
210 //
211 //  Suppressing the initial eStateRunning event:
212 //
213 //  The private process running thread will take care of ensuring that only one "eStateRunning" event will be
214 //  delivered to the public Process broadcaster per public eStateStopped event.  However there are some cases
215 //  where the public state of this process is eStateStopped, but a thread plan needs to restart the target, but
216 //  doesn't want the running event to be publically broadcast.  The obvious example of this is running functions
217 //  by hand as part of expression evaluation.  To suppress the running event return eVoteNo from ShouldReportStop,
218 //  to force a running event to be reported return eVoteYes, in general though you should return eVoteNoOpinion
219 //  which will allow the ThreadList to figure out the right thing to do.
220 //  The run_vote argument to the constructor works like stop_vote, and is a way for a plan to instruct a sub-plan
221 //  on how to respond to ShouldReportStop.
222 //
223 //------------------------------------------------------------------
224
225 class ThreadPlan :
226     public UserID
227 {
228 public:
229     typedef enum
230     {
231         eAllThreads,
232         eSomeThreads,
233         eThisThread
234     } ThreadScope;
235
236     // We use these enums so that we can cast a base thread plan to it's real type without having to resort
237     // to dynamic casting.
238     typedef enum
239     {
240         eKindGeneric,
241         eKindNull,
242         eKindBase,
243         eKindCallFunction,
244         eKindStepInstruction,
245         eKindStepOut,
246         eKindStepOverBreakpoint,
247         eKindStepOverRange,
248         eKindStepInRange,
249         eKindRunToAddress,
250         eKindStepThrough,
251         eKindStepUntil,
252         eKindTestCondition
253         
254     } ThreadPlanKind;
255     
256     //------------------------------------------------------------------
257     // Constructors and Destructors
258     //------------------------------------------------------------------
259     ThreadPlan (ThreadPlanKind kind,
260                 const char *name,
261                 Thread &thread,
262                 Vote stop_vote,
263                 Vote run_vote);
264
265     virtual
266     ~ThreadPlan();
267
268     //------------------------------------------------------------------
269     /// Returns the name of this thread plan.
270     ///
271     /// @return
272     ///   A const char * pointer to the thread plan's name.
273     //------------------------------------------------------------------
274     const char *
275     GetName () const
276     {
277         return m_name.c_str();
278     }
279     
280     //------------------------------------------------------------------
281     /// Returns the Thread that is using this thread plan.
282     ///
283     /// @return
284     ///   A  pointer to the thread plan's owning thread.
285     //------------------------------------------------------------------
286     Thread &
287     GetThread()
288     {
289         return m_thread;
290     }
291
292     const Thread &
293     GetThread() const
294     {
295         return m_thread;
296     }
297     
298     Target &
299     GetTarget()
300     {
301         return m_thread.GetProcess()->GetTarget();
302     }
303
304     const Target &
305     GetTarget() const
306     {
307         return m_thread.GetProcess()->GetTarget();
308     }
309
310     //------------------------------------------------------------------
311     /// Print a description of this thread to the stream \a s.
312     /// \a thread.
313     ///
314     /// @param[in] s
315     ///    The stream to which to print the description.
316     ///
317     /// @param[in] level
318     ///    The level of description desired.  Note that eDescriptionLevelBrief
319     ///    will be used in the stop message printed when the plan is complete.
320     //------------------------------------------------------------------
321     virtual void
322     GetDescription (Stream *s,
323                     lldb::DescriptionLevel level) = 0;
324
325     //------------------------------------------------------------------
326     /// Returns whether this plan could be successfully created.
327     ///
328     /// @param[in] error
329     ///    A stream to which to print some reason why the plan could not be created.
330     ///    Can be NULL.
331     ///
332     /// @return
333     ///   \b true if the plan should be queued, \b false otherwise.
334     //------------------------------------------------------------------
335     virtual bool
336     ValidatePlan (Stream *error) = 0;
337
338     bool
339     TracerExplainsStop ()
340     {
341         if (!m_tracer_sp)
342             return false;
343         else
344             return m_tracer_sp->TracerExplainsStop();
345     }
346
347
348     lldb::StateType
349     RunState ();
350
351     bool
352     PlanExplainsStop (Event *event_ptr);
353     
354     virtual bool
355     ShouldStop (Event *event_ptr) = 0;
356     
357     virtual bool
358     ShouldAutoContinue (Event *event_ptr)
359     {
360         return false;
361     }
362
363     // Whether a "stop class" event should be reported to the "outside world".  In general
364     // if a thread plan is active, events should not be reported.
365
366     virtual Vote
367     ShouldReportStop (Event *event_ptr);
368
369     virtual Vote
370     ShouldReportRun (Event *event_ptr);
371
372     virtual void
373     SetStopOthers (bool new_value);
374     
375     virtual bool
376     StopOthers ();
377
378     // This is the wrapper for DoWillResume that does generic ThreadPlan logic, then
379     // calls DoWillResume.
380     bool
381     WillResume (lldb::StateType resume_state, bool current_plan);
382     
383     virtual bool
384     WillStop () = 0;
385
386     bool
387     IsMasterPlan()
388     {
389         return m_is_master_plan;
390     }
391     
392     bool
393     SetIsMasterPlan (bool value)
394     {
395         bool old_value = m_is_master_plan;
396         m_is_master_plan = value;
397         return old_value;
398     }
399
400     virtual bool
401     OkayToDiscard();
402
403     void
404     SetOkayToDiscard (bool value)
405     {
406         m_okay_to_discard = value;
407     }
408     
409     // The base class MischiefManaged does some cleanup - so you have to call it
410     // in your MischiefManaged derived class.
411     virtual bool
412     MischiefManaged ();
413
414     virtual void
415     ThreadDestroyed ()
416     {
417         // Any cleanup that a plan might want to do in case the thread goes away
418         // in the middle of the plan being queued on a thread can be done here.
419     }
420
421     bool
422     GetPrivate ()
423     {
424         return m_plan_private;
425     }
426
427     void
428     SetPrivate (bool input)
429     {
430         m_plan_private = input;
431     }
432
433     virtual void
434     DidPush();
435
436     virtual void
437     WillPop();
438
439     // This pushes a plan onto the plan stack of the current plan's thread.
440     void
441     PushPlan (lldb::ThreadPlanSP &thread_plan_sp)
442     {
443         m_thread.PushPlan (thread_plan_sp);
444     }
445     
446     ThreadPlanKind GetKind() const
447     {
448         return m_kind;
449     }
450     
451     bool
452     IsPlanComplete();
453     
454     void
455     SetPlanComplete (bool success = true);
456     
457     virtual bool
458     IsPlanStale ()
459     {
460         return false;
461     }
462     
463     bool
464     PlanSucceeded ()
465     {
466         return m_plan_succeeded;
467     }
468     
469     virtual bool
470     IsBasePlan()
471     {
472         return false;
473     }
474     
475     lldb::ThreadPlanTracerSP &
476     GetThreadPlanTracer()
477     {
478         return m_tracer_sp;
479     }
480     
481     void
482     SetThreadPlanTracer (lldb::ThreadPlanTracerSP new_tracer_sp)
483     {
484         m_tracer_sp = new_tracer_sp;
485     }
486     
487     void
488     DoTraceLog ()
489     {
490         if (m_tracer_sp && m_tracer_sp->TracingEnabled())
491             m_tracer_sp->Log();
492     }
493
494     // Some thread plans hide away the actual stop info which caused any particular stop.  For
495     // instance the ThreadPlanCallFunction restores the original stop reason so that stopping and 
496     // calling a few functions won't lose the history of the run.
497     // This call can be implemented to get you back to the real stop info.
498     virtual lldb::StopInfoSP
499     GetRealStopInfo ()
500     {
501         return m_thread.GetStopInfo ();
502     }
503     
504     virtual lldb::ValueObjectSP
505     GetReturnValueObject ()
506     {
507         return lldb::ValueObjectSP();
508     }
509     
510     // If a thread plan stores the state before it was run, then you might
511     // want to restore the state when it is done.  This will do that job.
512     // This is mostly useful for artificial plans like CallFunction plans.
513     
514     virtual bool
515     RestoreThreadState()
516     {
517         // Nothing to do in general.
518         return true;
519     }
520
521     virtual bool
522     IsVirtualStep()
523     {
524         return false;
525     }
526     
527 protected:
528     //------------------------------------------------------------------
529     // Classes that inherit from ThreadPlan can see and modify these
530     //------------------------------------------------------------------
531
532     virtual bool
533     DoWillResume (lldb::StateType resume_state, bool current_plan) { return true; };
534
535     virtual bool
536     DoPlanExplainsStop (Event *event_ptr) = 0;
537     
538     // This gets the previous plan to the current plan (for forwarding requests).
539     // This is mostly a formal requirement, it allows us to make the Thread's
540     // GetPreviousPlan protected, but only friend ThreadPlan to thread.
541
542     ThreadPlan *
543     GetPreviousPlan ()
544     {
545         return m_thread.GetPreviousPlan (this);
546     }
547     
548     // This forwards the private Thread::GetPrivateStopInfo which is generally what
549     // ThreadPlan's need to know.
550     
551     lldb::StopInfoSP 
552     GetPrivateStopInfo()
553     {
554         return m_thread.GetPrivateStopInfo ();
555     }
556     
557     void
558     SetStopInfo (lldb::StopInfoSP stop_reason_sp)
559     {
560         m_thread.SetStopInfo (stop_reason_sp);
561     }
562     
563     void
564     CachePlanExplainsStop (bool does_explain)
565     {
566         m_cached_plan_explains_stop = does_explain ? eLazyBoolYes : eLazyBoolNo;
567     }
568     
569     LazyBool
570     GetCachedPlanExplainsStop () const
571     {
572         return m_cached_plan_explains_stop;
573     }
574     
575     virtual lldb::StateType
576     GetPlanRunState () = 0;
577
578     Thread &m_thread;
579     Vote m_stop_vote;
580     Vote m_run_vote;
581
582 private:
583     //------------------------------------------------------------------
584     // For ThreadPlan only
585     //------------------------------------------------------------------
586     static lldb::user_id_t GetNextID ();
587
588     ThreadPlanKind m_kind;
589     std::string m_name;
590     Mutex m_plan_complete_mutex;
591     LazyBool m_cached_plan_explains_stop;
592     bool m_plan_complete;
593     bool m_plan_private;
594     bool m_okay_to_discard;
595     bool m_is_master_plan;
596     bool m_plan_succeeded;
597     
598     lldb::ThreadPlanTracerSP m_tracer_sp;
599
600 private:
601     DISALLOW_COPY_AND_ASSIGN(ThreadPlan);
602 };
603
604 //----------------------------------------------------------------------
605 // ThreadPlanNull:
606 // Threads are assumed to always have at least one plan on the plan stack.
607 // This is put on the plan stack when a thread is destroyed so that if you
608 // accidentally access a thread after it is destroyed you won't crash.
609 // But asking questions of the ThreadPlanNull is definitely an error.
610 //----------------------------------------------------------------------
611
612 class ThreadPlanNull : public ThreadPlan
613 {
614 public:
615     ThreadPlanNull (Thread &thread);
616     virtual ~ThreadPlanNull ();
617     
618     virtual void
619     GetDescription (Stream *s,
620                     lldb::DescriptionLevel level);
621
622     virtual bool
623     ValidatePlan (Stream *error);
624
625     virtual bool
626     ShouldStop (Event *event_ptr);
627
628     virtual bool
629     MischiefManaged ();
630
631     virtual bool
632     WillStop ();
633
634     virtual bool
635     IsBasePlan()
636     {
637         return true;
638     }
639     
640     virtual bool
641     OkayToDiscard ()
642     {
643         return false;
644     }
645
646 protected:
647     virtual bool
648     DoPlanExplainsStop (Event *event_ptr);
649     
650     virtual lldb::StateType
651     GetPlanRunState ();
652     
653 };
654
655
656 } // namespace lldb_private
657
658 #endif  // liblldb_ThreadPlan_h_