]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/ntp/parseutil/dcfd.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / ntp / parseutil / dcfd.c
1 /*
2  * /src/NTP/REPOSITORY/ntp4-dev/parseutil/dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
3  *  
4  * dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
5  *
6  * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line)
7  *
8  * Features:
9  *  DCF77 decoding
10  *  simple NTP loopfilter logic for local clock
11  *  interactive display for debugging
12  *
13  * Lacks:
14  *  Leap second handling (at that level you should switch to NTP Version 4 - really!)
15  *
16  * Copyright (c) 1995-2005 by Frank Kardel <kardel <AT> ntp.org>
17  * Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. Neither the name of the author nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  */
44
45 #ifdef HAVE_CONFIG_H
46 # include <config.h>
47 #endif
48
49 #include <sys/ioctl.h>
50 #include <unistd.h>
51 #include <stdio.h>
52 #include <fcntl.h>
53 #include <sys/types.h>
54 #include <sys/time.h>
55 #include <signal.h>
56 #include <syslog.h>
57 #include <time.h>
58
59 /*
60  * NTP compilation environment
61  */
62 #include "ntp_stdlib.h"
63 #include "ntpd.h"   /* indirectly include ntp.h to get YEAR_PIVOT   Y2KFixes */
64
65 /*
66  * select which terminal handling to use (currently only SysV variants)
67  */
68 #if defined(HAVE_TERMIOS_H) || defined(STREAM)
69 #include <termios.h>
70 #define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_))
71 #define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_))
72 #else  /* not HAVE_TERMIOS_H || STREAM */
73 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
74 #  include <termio.h>
75 #  define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_))
76 #  define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_))
77 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
78 #endif /* not HAVE_TERMIOS_H || STREAM */
79
80
81 #ifndef TTY_GETATTR
82 #include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'"
83 #endif
84
85 #ifndef days_per_year
86 #define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366))
87 #endif
88
89 #define timernormalize(_a_) \
90         if ((_a_)->tv_usec >= 1000000) \
91         { \
92                 (_a_)->tv_sec  += (_a_)->tv_usec / 1000000; \
93                 (_a_)->tv_usec  = (_a_)->tv_usec % 1000000; \
94         } \
95         if ((_a_)->tv_usec < 0) \
96         { \
97                 (_a_)->tv_sec  -= 1 + (-(_a_)->tv_usec / 1000000); \
98                 (_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \
99         }
100
101 #ifdef timeradd
102 #undef timeradd
103 #endif
104 #define timeradd(_a_, _b_) \
105         (_a_)->tv_sec  += (_b_)->tv_sec; \
106         (_a_)->tv_usec += (_b_)->tv_usec; \
107         timernormalize((_a_))
108
109 #ifdef timersub
110 #undef timersub
111 #endif
112 #define timersub(_a_, _b_) \
113         (_a_)->tv_sec  -= (_b_)->tv_sec; \
114         (_a_)->tv_usec -= (_b_)->tv_usec; \
115         timernormalize((_a_))
116
117 /*
118  * debug macros
119  */
120 #define PRINTF if (interactive) printf
121 #define LPRINTF if (interactive && loop_filter_debug) printf
122
123 #ifdef DEBUG
124 #define dprintf(_x_) LPRINTF _x_
125 #else
126 #define dprintf(_x_)
127 #endif
128
129 #ifdef DECL_ERRNO
130      extern int errno;
131 #endif
132
133 static char *revision = "4.18";
134
135 /*
136  * display received data (avoids also detaching from tty)
137  */
138 static int interactive = 0;
139
140 /*
141  * display loopfilter (clock control) variables
142  */
143 static int loop_filter_debug = 0;
144
145 /*
146  * do not set/adjust system time
147  */
148 static int no_set = 0;
149
150 /*
151  * time that passes between start of DCF impulse and time stamping (fine
152  * adjustment) in microseconds (receiver/OS dependent)
153  */
154 #define DEFAULT_DELAY   230000  /* rough estimate */
155
156 /*
157  * The two states we can be in - eithe we receive nothing
158  * usable or we have the correct time
159  */
160 #define NO_SYNC         0x01
161 #define SYNC            0x02
162
163 static int    sync_state = NO_SYNC;
164 static time_t last_sync;
165
166 static unsigned long ticks = 0;
167
168 static char pat[] = "-\\|/";
169
170 #define LINES           (24-2)  /* error lines after which the two headlines are repeated */
171
172 #define MAX_UNSYNC      (10*60) /* allow synchronisation loss for 10 minutes */
173 #define NOTICE_INTERVAL (20*60) /* mention missing synchronisation every 20 minutes */
174
175 /*
176  * clock adjustment PLL - see NTP protocol spec (RFC1305) for details
177  */
178
179 #define USECSCALE       10
180 #define TIMECONSTANT    2
181 #define ADJINTERVAL     0
182 #define FREQ_WEIGHT     18
183 #define PHASE_WEIGHT    7
184 #define MAX_DRIFT       0x3FFFFFFF
185
186 #define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_)))
187
188 static struct timeval max_adj_offset = { 0, 128000 };
189
190 static long clock_adjust = 0;   /* current adjustment value (usec * 2^USECSCALE) */
191 static long accum_drift   = 0;  /* accumulated drift value  (usec / ADJINTERVAL) */
192 static long adjustments  = 0;
193 static char skip_adjust  = 1;   /* discard first adjustment (bad samples) */
194
195 /*
196  * DCF77 state flags
197  */
198 #define DCFB_ANNOUNCE           0x0001 /* switch time zone warning (DST switch) */
199 #define DCFB_DST                0x0002 /* DST in effect */
200 #define DCFB_LEAP               0x0004 /* LEAP warning (1 hour prior to occurrence) */
201 #define DCFB_ALTERNATE          0x0008 /* alternate antenna used */
202
203 struct clocktime                /* clock time broken up from time code */
204 {
205         long wday;              /* Day of week: 1: Monday - 7: Sunday */
206         long day;
207         long month;
208         long year;
209         long hour;
210         long minute;
211         long second;
212         long usecond;
213         long utcoffset; /* in minutes */
214         long flags;             /* current clock status  (DCF77 state flags) */
215 };
216
217 typedef struct clocktime clocktime_t;
218
219 /*
220  * (usually) quick constant multiplications
221  */
222 #define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1))      /* *8 + *2 */
223 #define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3))      /* *16 + *8 */
224 #define TIMES60(_X_) ((((_X_) << 4)  - (_X_)) << 2)     /* *(16 - 1) *4 */
225 /*
226  * generic l_abs() function
227  */
228 #define l_abs(_x_)     (((_x_) < 0) ? -(_x_) : (_x_))
229
230 /*
231  * conversion related return/error codes
232  */
233 #define CVT_MASK        0x0000000F /* conversion exit code */
234 #define   CVT_NONE      0x00000001 /* format not applicable */
235 #define   CVT_FAIL      0x00000002 /* conversion failed - error code returned */
236 #define   CVT_OK        0x00000004 /* conversion succeeded */
237 #define CVT_BADFMT      0x00000010 /* general format error - (unparsable) */
238 #define CVT_BADDATE     0x00000020 /* invalid date */
239 #define CVT_BADTIME     0x00000040 /* invalid time */
240
241 /*
242  * DCF77 raw time code
243  *
244  * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig
245  * und Berlin, Maerz 1989
246  *
247  * Timecode transmission:
248  * AM:
249  *      time marks are send every second except for the second before the
250  *      next minute mark
251  *      time marks consist of a reduction of transmitter power to 25%
252  *      of the nominal level
253  *      the falling edge is the time indication (on time)
254  *      time marks of a 100ms duration constitute a logical 0
255  *      time marks of a 200ms duration constitute a logical 1
256  * FM:
257  *      see the spec. (basically a (non-)inverted psuedo random phase shift)
258  *
259  * Encoding:
260  * Second       Contents
261  * 0  - 10      AM: free, FM: 0
262  * 11 - 14      free
263  * 15           R     - alternate antenna
264  * 16           A1    - expect zone change (1 hour before)
265  * 17 - 18      Z1,Z2 - time zone
266  *               0  0 illegal
267  *               0  1 MEZ  (MET)
268  *               1  0 MESZ (MED, MET DST)
269  *               1  1 illegal
270  * 19           A2    - expect leap insertion/deletion (1 hour before)
271  * 20           S     - start of time code (1)
272  * 21 - 24      M1    - BCD (lsb first) Minutes
273  * 25 - 27      M10   - BCD (lsb first) 10 Minutes
274  * 28           P1    - Minute Parity (even)
275  * 29 - 32      H1    - BCD (lsb first) Hours
276  * 33 - 34      H10   - BCD (lsb first) 10 Hours
277  * 35           P2    - Hour Parity (even)
278  * 36 - 39      D1    - BCD (lsb first) Days
279  * 40 - 41      D10   - BCD (lsb first) 10 Days
280  * 42 - 44      DW    - BCD (lsb first) day of week (1: Monday -> 7: Sunday)
281  * 45 - 49      MO    - BCD (lsb first) Month
282  * 50           MO0   - 10 Months
283  * 51 - 53      Y1    - BCD (lsb first) Years
284  * 54 - 57      Y10   - BCD (lsb first) 10 Years
285  * 58           P3    - Date Parity (even)
286  * 59                 - usually missing (minute indication), except for leap insertion
287  */
288
289 /*-----------------------------------------------------------------------
290  * conversion table to map DCF77 bit stream into data fields.
291  * Encoding:
292  *   Each field of the DCF77 code is described with two adjacent entries in
293  *   this table. The first entry specifies the offset into the DCF77 data stream
294  *   while the length is given as the difference between the start index and
295  *   the start index of the following field.
296  */
297 static struct rawdcfcode 
298 {
299         char offset;                    /* start bit */
300 } rawdcfcode[] =
301 {
302         {  0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 },
303         { 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 }
304 };
305
306 /*-----------------------------------------------------------------------
307  * symbolic names for the fields of DCF77 describes in "rawdcfcode".
308  * see comment above for the structure of the DCF77 data
309  */
310 #define DCF_M   0
311 #define DCF_R   1
312 #define DCF_A1  2
313 #define DCF_Z   3
314 #define DCF_A2  4
315 #define DCF_S   5
316 #define DCF_M1  6
317 #define DCF_M10 7
318 #define DCF_P1  8
319 #define DCF_H1  9
320 #define DCF_H10 10
321 #define DCF_P2  11
322 #define DCF_D1  12
323 #define DCF_D10 13
324 #define DCF_DW  14
325 #define DCF_MO  15
326 #define DCF_MO0 16
327 #define DCF_Y1  17
328 #define DCF_Y10 18
329 #define DCF_P3  19
330
331 /*-----------------------------------------------------------------------
332  * parity field table (same encoding as rawdcfcode)
333  * This table describes the sections of the DCF77 code that are
334  * parity protected
335  */
336 static struct partab
337 {
338         char offset;                    /* start bit of parity field */
339 } partab[] =
340 {
341         { 21 }, { 29 }, { 36 }, { 59 }
342 };
343
344 /*-----------------------------------------------------------------------
345  * offsets for parity field descriptions
346  */
347 #define DCF_P_P1        0
348 #define DCF_P_P2        1
349 #define DCF_P_P3        2
350
351 /*-----------------------------------------------------------------------
352  * legal values for time zone information
353  */
354 #define DCF_Z_MET 0x2
355 #define DCF_Z_MED 0x1
356
357 /*-----------------------------------------------------------------------
358  * symbolic representation if the DCF77 data stream
359  */
360 static struct dcfparam
361 {
362         unsigned char onebits[60];
363         unsigned char zerobits[60];
364 } dcfparam = 
365 {
366         "###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */
367         "--------------------s-------p------p----------------------p"  /* 'ZERO' representation */
368 };
369
370 /*-----------------------------------------------------------------------
371  * extract a bitfield from DCF77 datastream
372  * All numeric fields are LSB first.
373  * buf holds a pointer to a DCF77 data buffer in symbolic
374  *     representation
375  * idx holds the index to the field description in rawdcfcode
376  */
377 static unsigned long
378 ext_bf(
379         register unsigned char *buf,
380         register int   idx
381         )
382 {
383         register unsigned long sum = 0;
384         register int i, first;
385
386         first = rawdcfcode[idx].offset;
387   
388         for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--)
389         {
390                 sum <<= 1;
391                 sum |= (buf[i] != dcfparam.zerobits[i]);
392         }
393         return sum;
394 }
395
396 /*-----------------------------------------------------------------------
397  * check even parity integrity for a bitfield
398  *
399  * buf holds a pointer to a DCF77 data buffer in symbolic
400  *     representation
401  * idx holds the index to the field description in partab
402  */
403 static unsigned
404 pcheck(
405         register unsigned char *buf,
406         register int   idx
407         )
408 {
409         register int i,last;
410         register unsigned psum = 1;
411
412         last = partab[idx+1].offset;
413
414         for (i = partab[idx].offset; i < last; i++)
415             psum ^= (buf[i] != dcfparam.zerobits[i]);
416
417         return psum;
418 }
419
420 /*-----------------------------------------------------------------------
421  * convert a DCF77 data buffer into wall clock time + flags
422  *
423  * buffer holds a pointer to a DCF77 data buffer in symbolic
424  *        representation
425  * size   describes the length of DCF77 information in bits (represented
426  *        as chars in symbolic notation
427  * clock  points to a wall clock time description of the DCF77 data (result)
428  */
429 static unsigned long
430 convert_rawdcf(
431                unsigned char   *buffer,
432                int              size,
433                clocktime_t     *clock_time
434                )
435 {
436         if (size < 57)
437         {
438                 PRINTF("%-30s", "*** INCOMPLETE");
439                 return CVT_NONE;
440         }
441   
442         /*
443          * check Start and Parity bits
444          */
445         if ((ext_bf(buffer, DCF_S) == 1) &&
446             pcheck(buffer, DCF_P_P1) &&
447             pcheck(buffer, DCF_P_P2) &&
448             pcheck(buffer, DCF_P_P3))
449         {
450                 /*
451                  * buffer OK - extract all fields and build wall clock time from them
452                  */
453
454                 clock_time->flags  = 0;
455                 clock_time->usecond= 0;
456                 clock_time->second = 0;
457                 clock_time->minute = ext_bf(buffer, DCF_M10);
458                 clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1);
459                 clock_time->hour   = ext_bf(buffer, DCF_H10);
460                 clock_time->hour   = TIMES10(clock_time->hour)   + ext_bf(buffer, DCF_H1);
461                 clock_time->day    = ext_bf(buffer, DCF_D10);
462                 clock_time->day    = TIMES10(clock_time->day)    + ext_bf(buffer, DCF_D1);
463                 clock_time->month  = ext_bf(buffer, DCF_MO0);
464                 clock_time->month  = TIMES10(clock_time->month)  + ext_bf(buffer, DCF_MO);
465                 clock_time->year   = ext_bf(buffer, DCF_Y10);
466                 clock_time->year   = TIMES10(clock_time->year)   + ext_bf(buffer, DCF_Y1);
467                 clock_time->wday   = ext_bf(buffer, DCF_DW);
468
469                 /*
470                  * determine offset to UTC by examining the time zone
471                  */
472                 switch (ext_bf(buffer, DCF_Z))
473                 {
474                     case DCF_Z_MET:
475                         clock_time->utcoffset = -60;
476                         break;
477
478                     case DCF_Z_MED:
479                         clock_time->flags     |= DCFB_DST;
480                         clock_time->utcoffset  = -120;
481                         break;
482
483                     default:
484                         PRINTF("%-30s", "*** BAD TIME ZONE");
485                         return CVT_FAIL|CVT_BADFMT;
486                 }
487
488                 /*
489                  * extract various warnings from DCF77
490                  */
491                 if (ext_bf(buffer, DCF_A1))
492                     clock_time->flags |= DCFB_ANNOUNCE;
493
494                 if (ext_bf(buffer, DCF_A2))
495                     clock_time->flags |= DCFB_LEAP;
496
497                 if (ext_bf(buffer, DCF_R))
498                     clock_time->flags |= DCFB_ALTERNATE;
499
500                 return CVT_OK;
501         }
502         else
503         {
504                 /*
505                  * bad format - not for us
506                  */
507                 PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)");
508                 return CVT_FAIL|CVT_BADFMT;
509         }
510 }
511
512 /*-----------------------------------------------------------------------
513  * raw dcf input routine - fix up 50 baud
514  * characters for 1/0 decision
515  */
516 static unsigned long
517 cvt_rawdcf(
518            unsigned char   *buffer,
519            int              size,
520            clocktime_t     *clock_time
521            )
522 {
523         register unsigned char *s = buffer;
524         register unsigned char *e = buffer + size;
525         register unsigned char *b = dcfparam.onebits;
526         register unsigned char *c = dcfparam.zerobits;
527         register unsigned rtc = CVT_NONE;
528         register unsigned int i, lowmax, highmax, cutoff, span;
529 #define BITS 9
530         unsigned char     histbuf[BITS];
531         /*
532          * the input buffer contains characters with runs of consecutive
533          * bits set. These set bits are an indication of the DCF77 pulse
534          * length. We assume that we receive the pulse at 50 Baud. Thus
535          * a 100ms pulse would generate a 4 bit train (20ms per bit and
536          * start bit)
537          * a 200ms pulse would create all zeroes (and probably a frame error)
538          *
539          * The basic idea is that on corret reception we must have two
540          * maxima in the pulse length distribution histogram. (one for
541          * the zero representing pulses and one for the one representing
542          * pulses)
543          * There will always be ones in the datastream, thus we have to see
544          * two maxima.
545          * The best point to cut for a 1/0 decision is the minimum between those
546          * between the maxima. The following code tries to find this cutoff point.
547          */
548
549         /*
550          * clear histogram buffer
551          */
552         for (i = 0; i < BITS; i++)
553         {
554                 histbuf[i] = 0;
555         }
556
557         cutoff = 0;
558         lowmax = 0;
559
560         /*
561          * convert sequences of set bits into bits counts updating
562          * the histogram alongway
563          */
564         while (s < e)
565         {
566                 register unsigned int ch = *s ^ 0xFF;
567                 /*
568                  * check integrity and update histogramm
569                  */
570                 if (!((ch+1) & ch) || !*s)
571                 {
572                         /*
573                          * character ok
574                          */
575                         for (i = 0; ch; i++)
576                         {
577                                 ch >>= 1;
578                         }
579
580                         *s = i;
581                         histbuf[i]++;
582                         cutoff += i;
583                         lowmax++;
584                 }
585                 else
586                 {
587                         /*
588                          * invalid character (no consecutive bit sequence)
589                          */
590                         dprintf(("parse: cvt_rawdcf: character check for 0x%x@%d FAILED\n", *s, s - buffer));
591                         *s = (unsigned char)~0;
592                         rtc = CVT_FAIL|CVT_BADFMT;
593                 }
594                 s++;
595         }
596
597         /*
598          * first cutoff estimate (average bit count - must be between both
599          * maxima)
600          */
601         if (lowmax)
602         {
603                 cutoff /= lowmax;
604         }
605         else
606         {
607                 cutoff = 4;     /* doesn't really matter - it'll fail anyway, but gives error output */
608         }
609
610         dprintf(("parse: cvt_rawdcf: average bit count: %d\n", cutoff));
611
612         lowmax = 0;  /* weighted sum */
613         highmax = 0; /* bitcount */
614
615         /*
616          * collect weighted sum of lower bits (left of initial guess)
617          */
618         dprintf(("parse: cvt_rawdcf: histogram:"));
619         for (i = 0; i <= cutoff; i++)
620         {
621                 lowmax  += histbuf[i] * i;
622                 highmax += histbuf[i];
623                 dprintf((" %d", histbuf[i]));
624         }
625         dprintf((" <M>"));
626
627         /*
628          * round up
629          */
630         lowmax += highmax / 2;
631
632         /*
633          * calculate lower bit maximum (weighted sum / bit count)
634          *
635          * avoid divide by zero
636          */
637         if (highmax)
638         {
639                 lowmax /= highmax;
640         }
641         else
642         {
643                 lowmax = 0;
644         }
645
646         highmax = 0; /* weighted sum of upper bits counts */
647         cutoff = 0;  /* bitcount */
648
649         /*
650          * collect weighted sum of lower bits (right of initial guess)
651          */
652         for (; i < BITS; i++)
653         {
654                 highmax+=histbuf[i] * i;
655                 cutoff +=histbuf[i];
656                 dprintf((" %d", histbuf[i]));
657         }
658         dprintf(("\n"));
659
660         /*
661          * determine upper maximum (weighted sum / bit count)
662          */
663         if (cutoff)
664         {
665                 highmax /= cutoff;
666         }
667         else
668         {
669                 highmax = BITS-1;
670         }
671
672         /*
673          * following now holds:
674          * lowmax <= cutoff(initial guess) <= highmax
675          * best cutoff is the minimum nearest to higher bits
676          */
677
678         /*
679          * find the minimum between lowmax and highmax (detecting
680          * possibly a minimum span)
681          */
682         span = cutoff = lowmax;
683         for (i = lowmax; i <= highmax; i++)
684         {
685                 if (histbuf[cutoff] > histbuf[i])
686                 {
687                         /*
688                          * got a new minimum move beginning of minimum (cutoff) and
689                          * end of minimum (span) there
690                          */
691                         cutoff = span = i;
692                 }
693                 else
694                     if (histbuf[cutoff] == histbuf[i])
695                     {
696                             /*
697                              * minimum not better yet - but it spans more than
698                              * one bit value - follow it
699                              */
700                             span = i;
701                     }
702         }
703
704         /*
705          * cutoff point for 1/0 decision is the middle of the minimum section
706          * in the histogram
707          */
708         cutoff = (cutoff + span) / 2;
709
710         dprintf(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff));
711
712         /*
713          * convert the bit counts to symbolic 1/0 information for data conversion
714          */
715         s = buffer;
716         while ((s < e) && *c && *b)
717         {
718                 if (*s == (unsigned char)~0)
719                 {
720                         /*
721                          * invalid character
722                          */
723                         *s = '?';
724                 }
725                 else
726                 {
727                         /*
728                          * symbolic 1/0 representation
729                          */
730                         *s = (*s >= cutoff) ? *b : *c;
731                 }
732                 s++;
733                 b++;
734                 c++;
735         }
736
737         /*
738          * if everything went well so far return the result of the symbolic
739          * conversion routine else just the accumulated errors
740          */
741         if (rtc != CVT_NONE) 
742         {
743                 PRINTF("%-30s", "*** BAD DATA");
744         }
745
746         return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc;
747 }
748
749 /*-----------------------------------------------------------------------
750  * convert a wall clock time description of DCF77 to a Unix time (seconds
751  * since 1.1. 1970 UTC)
752  */
753 static time_t
754 dcf_to_unixtime(
755                 clocktime_t   *clock_time,
756                 unsigned *cvtrtc
757                 )
758 {
759 #define SETRTC(_X_)     { if (cvtrtc) *cvtrtc = (_X_); }
760         static int days_of_month[] = 
761         {
762                 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
763         };
764         register int i;
765         time_t t;
766   
767         /*
768          * map 2 digit years to 19xx (DCF77 is a 20th century item)
769          */
770         if ( clock_time->year < YEAR_PIVOT )    /* in case of      Y2KFixes [ */
771                 clock_time->year += 100;        /* *year%100, make tm_year */
772                                                 /* *(do we need this?) */
773         if ( clock_time->year < YEAR_BREAK )    /* (failsafe if) */
774             clock_time->year += 1900;                           /* Y2KFixes ] */
775
776         /*
777          * must have been a really bad year code - drop it
778          */
779         if (clock_time->year < (YEAR_PIVOT + 1900) )            /* Y2KFixes */
780         {
781                 SETRTC(CVT_FAIL|CVT_BADDATE);
782                 return -1;
783         }
784         /*
785          * sorry, slow section here - but it's not time critical anyway
786          */
787
788         /*
789          * calculate days since 1970 (watching leap years)
790          */
791         t = julian0( clock_time->year ) - julian0( 1970 );
792
793                                 /* month */
794         if (clock_time->month <= 0 || clock_time->month > 12)
795         {
796                 SETRTC(CVT_FAIL|CVT_BADDATE);
797                 return -1;              /* bad month */
798         }
799                                 /* adjust current leap year */
800 #if 0
801         if (clock_time->month < 3 && days_per_year(clock_time->year) == 366)
802             t--;
803 #endif
804
805         /*
806          * collect days from months excluding the current one
807          */
808         for (i = 1; i < clock_time->month; i++)
809         {
810                 t += days_of_month[i];
811         }
812                                 /* day */
813         if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ?
814                                clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month]))
815         {
816                 SETRTC(CVT_FAIL|CVT_BADDATE);
817                 return -1;              /* bad day */
818         }
819
820         /*
821          * collect days from date excluding the current one
822          */
823         t += clock_time->day - 1;
824
825                                 /* hour */
826         if (clock_time->hour < 0 || clock_time->hour >= 24)
827         {
828                 SETRTC(CVT_FAIL|CVT_BADTIME);
829                 return -1;              /* bad hour */
830         }
831
832         /*
833          * calculate hours from 1. 1. 1970
834          */
835         t = TIMES24(t) + clock_time->hour;
836
837                                 /* min */
838         if (clock_time->minute < 0 || clock_time->minute > 59)
839         {
840                 SETRTC(CVT_FAIL|CVT_BADTIME);
841                 return -1;              /* bad min */
842         }
843
844         /*
845          * calculate minutes from 1. 1. 1970
846          */
847         t = TIMES60(t) + clock_time->minute;
848                                 /* sec */
849   
850         /*
851          * calculate UTC in minutes
852          */
853         t += clock_time->utcoffset;
854
855         if (clock_time->second < 0 || clock_time->second > 60)  /* allow for LEAPs */
856         {
857                 SETRTC(CVT_FAIL|CVT_BADTIME);
858                 return -1;              /* bad sec */
859         }
860
861         /*
862          * calculate UTC in seconds - phew !
863          */
864         t  = TIMES60(t) + clock_time->second;
865                                 /* done */
866         return t;
867 }
868
869 /*-----------------------------------------------------------------------
870  * cheap half baked 1/0 decision - for interactive operation only
871  */
872 static char
873 type(
874      unsigned int c
875      )
876 {
877         c ^= 0xFF;
878         return (c > 0xF);
879 }
880
881 /*-----------------------------------------------------------------------
882  * week day representation
883  */
884 static const char *wday[8] =
885 {
886         "??",
887         "Mo",
888         "Tu",
889         "We",
890         "Th",
891         "Fr",
892         "Sa",
893         "Su"
894 };
895
896 /*-----------------------------------------------------------------------
897  * generate a string representation for a timeval
898  */
899 static char *
900 pr_timeval(
901            struct timeval *val
902            )
903 {
904         static char buf[20];
905
906         if (val->tv_sec == 0)
907             sprintf(buf, "%c0.%06ld", (val->tv_usec < 0) ? '-' : '+', (long int)l_abs(val->tv_usec));
908         else
909             sprintf(buf, "%ld.%06ld", (long int)val->tv_sec, (long int)l_abs(val->tv_usec));
910         return buf;
911 }
912
913 /*-----------------------------------------------------------------------
914  * correct the current time by an offset by setting the time rigorously
915  */
916 static void
917 set_time(
918          struct timeval *offset
919          )
920 {
921         struct timeval the_time;
922
923         if (no_set)
924             return;
925
926         LPRINTF("set_time: %s ", pr_timeval(offset));
927         syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset));
928
929         if (gettimeofday(&the_time, 0L) == -1)
930         {
931                 perror("gettimeofday()");
932         }
933         else
934         {
935                 timeradd(&the_time, offset);
936                 if (settimeofday(&the_time, 0L) == -1)
937                 {
938                         perror("settimeofday()");
939                 }
940         }
941 }
942
943 /*-----------------------------------------------------------------------
944  * slew the time by a given offset
945  */
946 static void
947 adj_time(
948          long offset
949          )
950 {
951         struct timeval time_offset;
952
953         if (no_set)
954             return;
955
956         time_offset.tv_sec  = offset / 1000000;
957         time_offset.tv_usec = offset % 1000000;
958
959         LPRINTF("adj_time: %ld us ", (long int)offset);
960         if (adjtime(&time_offset, 0L) == -1)
961             perror("adjtime()");
962 }
963
964 /*-----------------------------------------------------------------------
965  * read in a possibly previously written drift value
966  */
967 static void
968 read_drift(
969            const char *drift_file
970            )
971 {
972         FILE *df;
973
974         df = fopen(drift_file, "r");
975         if (df != NULL)
976         {
977                 int idrift = 0, fdrift = 0;
978
979                 fscanf(df, "%4d.%03d", &idrift, &fdrift);
980                 fclose(df);
981                 LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift);
982
983                 accum_drift = idrift << USECSCALE;
984                 fdrift     = (fdrift << USECSCALE) / 1000;
985                 accum_drift += fdrift & (1<<USECSCALE);
986                 LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift);
987         }
988 }
989
990 /*-----------------------------------------------------------------------
991  * write out the current drift value
992  */
993 static void
994 update_drift(
995              const char *drift_file,
996              long offset,
997              time_t reftime
998              )
999 {
1000         FILE *df;
1001
1002         df = fopen(drift_file, "w");
1003         if (df != NULL)
1004         {
1005                 int idrift = R_SHIFT(accum_drift, USECSCALE);
1006                 int fdrift = accum_drift & ((1<<USECSCALE)-1);
1007
1008                 LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift);
1009                 fdrift = (fdrift * 1000) / (1<<USECSCALE);
1010                 fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift,
1011                         (offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000),
1012                         (long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime)));
1013                 fclose(df);
1014                 LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift);
1015         }
1016 }
1017
1018 /*-----------------------------------------------------------------------
1019  * process adjustments derived from the DCF77 observation
1020  * (controls clock PLL)
1021  */
1022 static void
1023 adjust_clock(
1024              struct timeval *offset,
1025              const char *drift_file,
1026              time_t reftime
1027              )
1028 {
1029         struct timeval toffset;
1030         register long usecoffset;
1031         int tmp;
1032
1033         if (no_set)
1034             return;
1035
1036         if (skip_adjust)
1037         {
1038                 skip_adjust = 0;
1039                 return;
1040         }
1041
1042         toffset = *offset;
1043         toffset.tv_sec  = l_abs(toffset.tv_sec);
1044         toffset.tv_usec = l_abs(toffset.tv_usec);
1045         if (timercmp(&toffset, &max_adj_offset, >))
1046         {
1047                 /*
1048                  * hopeless - set the clock - and clear the timing
1049                  */
1050                 set_time(offset);
1051                 clock_adjust = 0;
1052                 skip_adjust  = 1;
1053                 return;
1054         }
1055
1056         usecoffset   = offset->tv_sec * 1000000 + offset->tv_usec;
1057
1058         clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT);       /* adjustment to make for next period */
1059
1060         tmp = 0;
1061         while (adjustments > (1 << tmp))
1062             tmp++;
1063         adjustments = 0;
1064         if (tmp > FREQ_WEIGHT)
1065             tmp = FREQ_WEIGHT;
1066
1067         accum_drift  += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp);
1068
1069         if (accum_drift > MAX_DRIFT)            /* clamp into interval */
1070             accum_drift = MAX_DRIFT;
1071         else
1072             if (accum_drift < -MAX_DRIFT)
1073                 accum_drift = -MAX_DRIFT;
1074
1075         update_drift(drift_file, usecoffset, reftime);
1076         LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ",
1077                 pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE),
1078                 (long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift);
1079 }
1080
1081 /*-----------------------------------------------------------------------
1082  * adjust the clock by a small mount to simulate frequency correction
1083  */
1084 static void
1085 periodic_adjust(
1086                 void
1087                 )
1088 {
1089         register long adjustment;
1090
1091         adjustments++;
1092
1093         adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT);
1094
1095         clock_adjust -= adjustment;
1096
1097         adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL);
1098
1099         adj_time(adjustment);
1100 }
1101
1102 /*-----------------------------------------------------------------------
1103  * control synchronisation status (warnings) and do periodic adjusts
1104  * (frequency control simulation)
1105  */
1106 static void
1107 tick(
1108      int signum
1109      )
1110 {
1111         static unsigned long last_notice = 0;
1112
1113 #if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC)
1114         (void)signal(SIGALRM, tick);
1115 #endif
1116
1117         periodic_adjust();
1118
1119         ticks += 1<<ADJINTERVAL;
1120
1121         if ((ticks - last_sync) > MAX_UNSYNC)
1122         {
1123                 /*
1124                  * not getting time for a while
1125                  */
1126                 if (sync_state == SYNC)
1127                 {
1128                         /*
1129                          * completely lost information
1130                          */
1131                         sync_state = NO_SYNC;
1132                         syslog(LOG_INFO, "DCF77 reception lost (timeout)");
1133                         last_notice = ticks;
1134                 }
1135                 else
1136                     /*
1137                      * in NO_SYNC state - look whether its time to speak up again
1138                      */
1139                     if ((ticks - last_notice) > NOTICE_INTERVAL)
1140                     {
1141                             syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal");
1142                             last_notice = ticks;
1143                     }
1144         }
1145
1146 #ifndef ITIMER_REAL
1147         (void) alarm(1<<ADJINTERVAL);
1148 #endif
1149 }
1150
1151 /*-----------------------------------------------------------------------
1152  * break association from terminal to avoid catching terminal
1153  * or process group related signals (-> daemon operation)
1154  */
1155 static void
1156 detach(
1157        void
1158        )
1159 {
1160 #   ifdef HAVE_DAEMON
1161         daemon(0, 0);
1162 #   else /* not HAVE_DAEMON */
1163         if (fork())
1164             exit(0);
1165
1166         {
1167                 u_long s;
1168                 int max_fd;
1169
1170 #if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX)
1171                 max_fd = sysconf(_SC_OPEN_MAX);
1172 #else /* HAVE_SYSCONF && _SC_OPEN_MAX */
1173                 max_fd = getdtablesize();
1174 #endif /* HAVE_SYSCONF && _SC_OPEN_MAX */
1175                 for (s = 0; s < max_fd; s++)
1176                     (void) close((int)s);
1177                 (void) open("/", 0);
1178                 (void) dup2(0, 1);
1179                 (void) dup2(0, 2);
1180 #ifdef SYS_DOMAINOS
1181                 {
1182                         uid_$t puid;
1183                         status_$t st;
1184
1185                         proc2_$who_am_i(&puid);
1186                         proc2_$make_server(&puid, &st);
1187                 }
1188 #endif /* SYS_DOMAINOS */
1189 #if defined(HAVE_SETPGID) || defined(HAVE_SETSID)
1190 # ifdef HAVE_SETSID
1191                 if (setsid() == (pid_t)-1)
1192                     syslog(LOG_ERR, "dcfd: setsid(): %m");
1193 # else
1194                 if (setpgid(0, 0) == -1)
1195                     syslog(LOG_ERR, "dcfd: setpgid(): %m");
1196 # endif
1197 #else /* HAVE_SETPGID || HAVE_SETSID */
1198                 {
1199                         int fid;
1200
1201                         fid = open("/dev/tty", 2);
1202                         if (fid >= 0)
1203                         {
1204                                 (void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0);
1205                                 (void) close(fid);
1206                         }
1207 # ifdef HAVE_SETPGRP_0
1208                         (void) setpgrp();
1209 # else /* HAVE_SETPGRP_0 */
1210                         (void) setpgrp(0, getpid());
1211 # endif /* HAVE_SETPGRP_0 */
1212                 }
1213 #endif /* HAVE_SETPGID || HAVE_SETSID */
1214         }
1215 #endif /* not HAVE_DAEMON */
1216 }
1217
1218 /*-----------------------------------------------------------------------
1219  * list possible arguments and options
1220  */
1221 static void
1222 usage(
1223       char *program
1224       )
1225 {
1226   fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program);
1227         fprintf(stderr, "\t-n              do not change time\n");
1228         fprintf(stderr, "\t-i              interactive\n");
1229         fprintf(stderr, "\t-t              trace (print all datagrams)\n");
1230         fprintf(stderr, "\t-f              print all databits (includes PTB private data)\n");
1231         fprintf(stderr, "\t-l              print loop filter debug information\n");
1232         fprintf(stderr, "\t-o              print offet average for current minute\n");
1233         fprintf(stderr, "\t-Y              make internal Y2K checks then exit\n");      /* Y2KFixes */
1234         fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n");
1235         fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n");
1236 }
1237
1238 /*-----------------------------------------------------------------------
1239  * check_y2k() - internal check of Y2K logic
1240  *      (a lot of this logic lifted from ../ntpd/check_y2k.c)
1241  */
1242 static int
1243 check_y2k( void )
1244
1245     int  year;                  /* current working year */
1246     int  year0 = 1900;          /* sarting year for NTP time */
1247     int  yearend;               /* ending year we test for NTP time.
1248                                     * 32-bit systems: through 2036, the
1249                                       **year in which NTP time overflows.
1250                                     * 64-bit systems: a reasonable upper
1251                                       **limit (well, maybe somewhat beyond
1252                                       **reasonable, but well before the
1253                                       **max time, by which time the earth
1254                                       **will be dead.) */
1255     time_t Time;
1256     struct tm LocalTime;
1257
1258     int Fatals, Warnings;
1259 #define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \
1260         Warnings++; else Fatals++
1261
1262     Fatals = Warnings = 0;
1263
1264     Time = time( (time_t *)NULL );
1265     LocalTime = *localtime( &Time );
1266
1267     year = ( sizeof( u_long ) > 4 )     /* save max span using year as temp */
1268                 ? ( 400 * 3 )           /* three greater gregorian cycles */
1269                 : ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/
1270                         /* NOTE: will automacially expand test years on
1271                          * 64 bit machines.... this may cause some of the
1272                          * existing ntp logic to fail for years beyond
1273                          * 2036 (the current 32-bit limit). If all checks
1274                          * fail ONLY beyond year 2036 you may ignore such
1275                          * errors, at least for a decade or so. */
1276     yearend = year0 + year;
1277
1278     year = 1900+YEAR_PIVOT;
1279     printf( "  starting year %04d\n", (int) year );
1280     printf( "  ending year   %04d\n", (int) yearend );
1281
1282     for ( ; year < yearend; year++ )
1283     {
1284         clocktime_t  ct;
1285         time_t       Observed;
1286         time_t       Expected;
1287         unsigned     Flag;
1288         unsigned long t;
1289
1290         ct.day = 1;
1291         ct.month = 1;
1292         ct.year = year;
1293         ct.hour = ct.minute = ct.second = ct.usecond = 0;
1294         ct.utcoffset = 0;
1295         ct.flags = 0;
1296
1297         Flag = 0;
1298         Observed = dcf_to_unixtime( &ct, &Flag );
1299                 /* seems to be a clone of parse_to_unixtime() with
1300                  * *a minor difference to arg2 type */
1301         if ( ct.year != year )
1302         {
1303             fprintf( stdout, 
1304                "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n",
1305                (int)year, (int)Flag, (int)ct.year );
1306             Error(year);
1307             break;
1308         }
1309         t = julian0(year) - julian0(1970);      /* Julian day from 1970 */
1310         Expected = t * 24 * 60 * 60;
1311         if ( Observed != Expected  ||  Flag )
1312         {   /* time difference */
1313             fprintf( stdout, 
1314                "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1315                year, (int)Flag, 
1316                (unsigned long)Observed, (unsigned long)Expected,
1317                ((long)Observed - (long)Expected) );
1318             Error(year);
1319             break;
1320         }
1321
1322         if ( year >= YEAR_PIVOT+1900 )
1323         {
1324             /* check year % 100 code we put into dcf_to_unixtime() */
1325             ct.year = year % 100;
1326             Flag = 0;
1327
1328             Observed = dcf_to_unixtime( &ct, &Flag );
1329
1330             if ( Observed != Expected  ||  Flag )
1331             {   /* time difference */
1332                 fprintf( stdout, 
1333 "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1334                    year, (int)ct.year, (int)Flag, 
1335                    (unsigned long)Observed, (unsigned long)Expected,
1336                    ((long)Observed - (long)Expected) );
1337                 Error(year);
1338                 break;
1339             }
1340
1341             /* check year - 1900 code we put into dcf_to_unixtime() */
1342             ct.year = year - 1900;
1343             Flag = 0;
1344
1345             Observed = dcf_to_unixtime( &ct, &Flag );
1346
1347             if ( Observed != Expected  ||  Flag ) {   /* time difference */
1348                     fprintf( stdout, 
1349                              "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1350                              year, (int)ct.year, (int)Flag, 
1351                              (unsigned long)Observed, (unsigned long)Expected,
1352                              ((long)Observed - (long)Expected) );
1353                     Error(year);
1354                 break;
1355             }
1356
1357
1358         }
1359     }
1360
1361     return ( Fatals );
1362 }
1363
1364 /*--------------------------------------------------
1365  * rawdcf_init - set up modem lines for RAWDCF receivers
1366  */
1367 #if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR))
1368 static void
1369 rawdcf_init(
1370         int fd
1371         )
1372 {
1373         /*
1374          * You can use the RS232 to supply the power for a DCF77 receiver.
1375          * Here a voltage between the DTR and the RTS line is used. Unfortunately
1376          * the name has changed from CIOCM_DTR to TIOCM_DTR recently.
1377          */
1378         
1379 #ifdef TIOCM_DTR
1380         int sl232 = TIOCM_DTR;  /* turn on DTR for power supply */
1381 #else
1382         int sl232 = CIOCM_DTR;  /* turn on DTR for power supply */
1383 #endif
1384
1385         if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1)
1386         {
1387                 syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m");
1388         }
1389 }
1390 #else
1391 static void
1392 rawdcf_init(
1393             int fd
1394         )
1395 {
1396         syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules");
1397 }
1398 #endif  /* DTR initialisation type */
1399
1400 /*-----------------------------------------------------------------------
1401  * main loop - argument interpreter / setup / main loop
1402  */
1403 int
1404 main(
1405      int argc,
1406      char **argv
1407      )
1408 {
1409         unsigned char c;
1410         char **a = argv;
1411         int  ac = argc;
1412         char *file = NULL;
1413         const char *drift_file = "/etc/dcfd.drift";
1414         int fd;
1415         int offset = 15;
1416         int offsets = 0;
1417         int delay = DEFAULT_DELAY;      /* average delay from input edge to time stamping */
1418         int trace = 0;
1419         int errs = 0;
1420
1421         /*
1422          * process arguments
1423          */
1424         while (--ac)
1425         {
1426                 char *arg = *++a;
1427                 if (*arg == '-')
1428                     while ((c = *++arg))
1429                         switch (c)
1430                         {
1431                             case 't':
1432                                 trace = 1;
1433                                 interactive = 1;
1434                                 break;
1435
1436                             case 'f':
1437                                 offset = 0;
1438                                 interactive = 1;
1439                                 break;
1440
1441                             case 'l':
1442                                 loop_filter_debug = 1;
1443                                 offsets = 1;
1444                                 interactive = 1;
1445                                 break;
1446
1447                             case 'n':
1448                                 no_set = 1;
1449                                 break;
1450
1451                             case 'o':
1452                                 offsets = 1;
1453                                 interactive = 1;
1454                                 break;
1455
1456                             case 'i':
1457                                 interactive = 1;
1458                                 break;
1459
1460                             case 'D':
1461                                 if (ac > 1)
1462                                 {
1463                                         delay = atoi(*++a);
1464                                         ac--;
1465                                 }
1466                                 else
1467                                 {
1468                                         fprintf(stderr, "%s: -D requires integer argument\n", argv[0]);
1469                                         errs=1;
1470                                 }
1471                                 break;
1472               
1473                             case 'd':
1474                                 if (ac > 1)
1475                                 {
1476                                         drift_file = *++a;
1477                                         ac--;
1478                                 }
1479                                 else
1480                                 {
1481                                         fprintf(stderr, "%s: -d requires file name argument\n", argv[0]);
1482                                         errs=1;
1483                                 }
1484                                 break;
1485               
1486                             case 'Y':   
1487                                 errs=check_y2k();
1488                                 exit( errs ? 1 : 0 );
1489
1490                             default:
1491                                 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);
1492                                 errs=1;
1493                                 break;
1494                         }
1495                 else
1496                     if (file == NULL)
1497                         file = arg;
1498                     else
1499                     {
1500                             fprintf(stderr, "%s: device specified twice\n", argv[0]);
1501                             errs=1;
1502                     }
1503         }
1504
1505         if (errs)
1506         {
1507                 usage(argv[0]);
1508                 exit(1);
1509         }
1510         else
1511             if (file == NULL)
1512             {
1513                     fprintf(stderr, "%s: device not specified\n", argv[0]);
1514                     usage(argv[0]);
1515                     exit(1);
1516             }
1517
1518         errs = LINES+1;
1519
1520         /*
1521          * get access to DCF77 tty port
1522          */
1523         fd = open(file, O_RDONLY);
1524         if (fd == -1)
1525         {
1526                 perror(file);
1527                 exit(1);
1528         }
1529         else
1530         {
1531                 int i, rrc;
1532                 struct timeval t, tt, tlast;
1533                 struct timeval timeout;
1534                 struct timeval phase;
1535                 struct timeval time_offset;
1536                 char pbuf[61];          /* printable version */
1537                 char buf[61];           /* raw data */
1538                 clocktime_t clock_time; /* wall clock time */
1539                 time_t utc_time = 0;
1540                 time_t last_utc_time = 0;
1541                 long usecerror = 0;
1542                 long lasterror = 0;
1543 #if defined(HAVE_TERMIOS_H) || defined(STREAM)
1544                 struct termios term;
1545 #else  /* not HAVE_TERMIOS_H || STREAM */
1546 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
1547                 struct termio term;
1548 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
1549 #endif /* not HAVE_TERMIOS_H || STREAM */
1550                 unsigned int rtc = CVT_NONE;
1551
1552                 rawdcf_init(fd);
1553                 
1554                 timeout.tv_sec  = 1;
1555                 timeout.tv_usec = 500000;
1556
1557                 phase.tv_sec    = 0;
1558                 phase.tv_usec   = delay;
1559
1560                 /*
1561                  * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO)
1562                  */
1563                 if (TTY_GETATTR(fd,  &term) == -1)
1564                 {
1565                         perror("tcgetattr");
1566                         exit(1);
1567                 }
1568
1569                 memset(term.c_cc, 0, sizeof(term.c_cc));
1570                 term.c_cc[VMIN] = 1;
1571 #ifdef NO_PARENB_IGNPAR
1572                 term.c_cflag = CS8|CREAD|CLOCAL;
1573 #else
1574                 term.c_cflag = CS8|CREAD|CLOCAL|PARENB;
1575 #endif
1576                 term.c_iflag = IGNPAR;
1577                 term.c_oflag = 0;
1578                 term.c_lflag = 0;
1579
1580                 cfsetispeed(&term, B50);
1581                 cfsetospeed(&term, B50);
1582
1583                 if (TTY_SETATTR(fd, &term) == -1)
1584                 {
1585                         perror("tcsetattr");
1586                         exit(1);
1587                 }
1588
1589                 /*
1590                  * lose terminal if in daemon operation
1591                  */
1592                 if (!interactive)
1593                     detach();
1594       
1595                 /*
1596                  * get syslog() initialized
1597                  */
1598 #ifdef LOG_DAEMON
1599                 openlog("dcfd", LOG_PID, LOG_DAEMON);
1600 #else
1601                 openlog("dcfd", LOG_PID);
1602 #endif
1603
1604                 /*
1605                  * setup periodic operations (state control / frequency control)
1606                  */
1607 #ifdef HAVE_SIGACTION
1608                 {
1609                         struct sigaction act;
1610
1611 # ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION
1612                         act.sa_sigaction = (void (*) P((int, siginfo_t *, void *)))0;
1613 # endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */
1614                         act.sa_handler   = tick;
1615                         sigemptyset(&act.sa_mask);
1616                         act.sa_flags     = 0;
1617
1618                         if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1)
1619                         {
1620                                 syslog(LOG_ERR, "sigaction(SIGALRM): %m");
1621                                 exit(1);
1622                         }
1623                 }
1624 #else
1625 #ifdef HAVE_SIGVEC
1626                 {
1627                         struct sigvec vec;
1628
1629                         vec.sv_handler   = tick;
1630                         vec.sv_mask      = 0;
1631                         vec.sv_flags     = 0;
1632
1633                         if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1)
1634                         {
1635                                 syslog(LOG_ERR, "sigvec(SIGALRM): %m");
1636                                 exit(1);
1637                         }
1638                 }
1639 #else
1640                 (void) signal(SIGALRM, tick);
1641 #endif
1642 #endif
1643
1644 #ifdef ITIMER_REAL
1645                 {
1646                         struct itimerval it;
1647
1648                         it.it_interval.tv_sec  = 1<<ADJINTERVAL;
1649                         it.it_interval.tv_usec = 0;
1650                         it.it_value.tv_sec     = 1<<ADJINTERVAL;
1651                         it.it_value.tv_usec    = 0;
1652         
1653                         if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1)
1654                         {
1655                                 syslog(LOG_ERR, "setitimer: %m");
1656                                 exit(1);
1657                         }
1658                 }
1659 #else
1660                 (void) alarm(1<<ADJINTERVAL);
1661 #endif
1662
1663                 PRINTF("  DCF77 monitor %s - Copyright (C) 1993-2005 by Frank Kardel\n\n", revision);
1664
1665                 pbuf[60] = '\0';
1666                 for ( i = 0; i < 60; i++)
1667                     pbuf[i] = '.';
1668
1669                 read_drift(drift_file);
1670
1671                 /*
1672                  * what time is it now (for interval measurement)
1673                  */
1674                 gettimeofday(&tlast, 0L);
1675                 i = 0;
1676                 /*
1677                  * loop until input trouble ...
1678                  */
1679                 do
1680                 {
1681                         /*
1682                          * get an impulse
1683                          */
1684                         while ((rrc = read(fd, &c, 1)) == 1)
1685                         {
1686                                 gettimeofday(&t, 0L);
1687                                 tt = t;
1688                                 timersub(&t, &tlast);
1689
1690                                 if (errs > LINES)
1691                                 {
1692                                         PRINTF("  %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]);
1693                                         PRINTF("  %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]);
1694                                         errs = 0;
1695                                 }
1696
1697                                 /*
1698                                  * timeout -> possible minute mark -> interpretation
1699                                  */
1700                                 if (timercmp(&t, &timeout, >))
1701                                 {
1702                                         PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1703
1704                                         if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK)
1705                                         {
1706                                                 /*
1707                                                  * this data was bad - well - forget synchronisation for now
1708                                                  */
1709                                                 PRINTF("\n");
1710                                                 if (sync_state == SYNC)
1711                                                 {
1712                                                         sync_state = NO_SYNC;
1713                                                         syslog(LOG_INFO, "DCF77 reception lost (bad data)");
1714                                                 }
1715                                                 errs++;
1716                                         }
1717                                         else
1718                                             if (trace)
1719                                             {
1720                                                     PRINTF("\r  %.*s ", 59 - offset, &buf[offset]);
1721                                             }
1722
1723
1724                                         buf[0] = c;
1725
1726                                         /*
1727                                          * collect first character
1728                                          */
1729                                         if (((c^0xFF)+1) & (c^0xFF))
1730                                             pbuf[0] = '?';
1731                                         else
1732                                             pbuf[0] = type(c) ? '#' : '-';
1733
1734                                         for ( i = 1; i < 60; i++)
1735                                             pbuf[i] = '.';
1736
1737                                         i = 0;
1738                                 }
1739                                 else
1740                                 {
1741                                         /*
1742                                          * collect character
1743                                          */
1744                                         buf[i] = c;
1745
1746                                         /*
1747                                          * initial guess (usually correct)
1748                                          */
1749                                         if (((c^0xFF)+1) & (c^0xFF))
1750                                             pbuf[i] = '?';
1751                                         else
1752                                             pbuf[i] = type(c) ? '#' : '-';
1753
1754                                         PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1755                                 }
1756
1757                                 if (i == 0 && rtc == CVT_OK)
1758                                 {
1759                                         /*
1760                                          * we got a good time code here - try to convert it to
1761                                          * UTC
1762                                          */
1763                                         if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1)
1764                                         {
1765                                                 PRINTF("*** BAD CONVERSION\n");
1766                                         }
1767
1768                                         if (utc_time != (last_utc_time + 60))
1769                                         {
1770                                                 /*
1771                                                  * well, two successive sucessful telegrams are not 60 seconds
1772                                                  * apart
1773                                                  */
1774                                                 PRINTF("*** NO MINUTE INC\n");
1775                                                 if (sync_state == SYNC)
1776                                                 {
1777                                                         sync_state = NO_SYNC;
1778                                                         syslog(LOG_INFO, "DCF77 reception lost (data mismatch)");
1779                                                 }
1780                                                 errs++;
1781                                                 rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE;
1782                                         }
1783                                         else
1784                                             usecerror = 0;
1785
1786                                         last_utc_time = utc_time;
1787                                 }
1788
1789                                 if (rtc == CVT_OK)
1790                                 {
1791                                         if (i == 0)
1792                                         {
1793                                                 /*
1794                                                  * valid time code - determine offset and
1795                                                  * note regained reception
1796                                                  */
1797                                                 last_sync = ticks;
1798                                                 if (sync_state == NO_SYNC)
1799                                                 {
1800                                                         syslog(LOG_INFO, "receiving DCF77");
1801                                                 }
1802                                                 else
1803                                                 {
1804                                                         /*
1805                                                          * we had at least one minute SYNC - thus
1806                                                          * last error is valid
1807                                                          */
1808                                                         time_offset.tv_sec  = lasterror / 1000000;
1809                                                         time_offset.tv_usec = lasterror % 1000000;
1810                                                         adjust_clock(&time_offset, drift_file, utc_time);
1811                                                 }
1812                                                 sync_state = SYNC;
1813                                         }
1814
1815                                         time_offset.tv_sec  = utc_time + i;
1816                                         time_offset.tv_usec = 0;
1817
1818                                         timeradd(&time_offset, &phase);
1819
1820                                         usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec
1821                                                 -tt.tv_usec;
1822
1823                                         /*
1824                                          * output interpreted DCF77 data
1825                                          */
1826                                         PRINTF(offsets ? "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s> (%c%ld.%06lds)" :
1827                                                "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s>",
1828                                                wday[clock_time.wday],
1829                                                clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month,
1830                                                clock_time.year,
1831                                                (clock_time.flags & DCFB_ALTERNATE) ? "R" : "_",
1832                                                (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_",
1833                                                (clock_time.flags & DCFB_DST) ? "D" : "_",
1834                                                (clock_time.flags & DCFB_LEAP) ? "L" : "_",
1835                                                (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000
1836                                                );
1837
1838                                         if (trace && (i == 0))
1839                                         {
1840                                                 PRINTF("\n");
1841                                                 errs++;
1842                                         }
1843                                         lasterror = usecerror / (i+1);
1844                                 }
1845                                 else
1846                                 {
1847                                         lasterror = 0; /* we cannot calculate phase errors on bad reception */
1848                                 }
1849
1850                                 PRINTF("\r");
1851
1852                                 if (i < 60)
1853                                 {
1854                                         i++;
1855                                 }
1856
1857                                 tlast = tt;
1858
1859                                 if (interactive)
1860                                     fflush(stdout);
1861                         }
1862                 } while ((rrc == -1) && (errno == EINTR));
1863       
1864                 /*
1865                  * lost IO - sorry guys
1866                  */
1867                 syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file);
1868
1869                 (void)close(fd);
1870         }
1871
1872         closelog();
1873   
1874         return 0;
1875 }
1876
1877 /*
1878  * History:
1879  *
1880  * dcfd.c,v
1881  * Revision 4.18  2005/10/07 22:08:18  kardel
1882  * make dcfd.c compile on NetBSD 3.99.9 again (configure/sigvec compatibility fix)
1883  *
1884  * Revision 4.17.2.1  2005/10/03 19:15:16  kardel
1885  * work around configure not detecting a missing sigvec compatibility
1886  * interface on NetBSD 3.99.9 and above
1887  *
1888  * Revision 4.17  2005/08/10 10:09:44  kardel
1889  * output revision information
1890  *
1891  * Revision 4.16  2005/08/10 06:33:25  kardel
1892  * cleanup warnings
1893  *
1894  * Revision 4.15  2005/08/10 06:28:45  kardel
1895  * fix setting of baud rate
1896  *
1897  * Revision 4.14  2005/04/16 17:32:10  kardel
1898  * update copyright
1899  *
1900  * Revision 4.13  2004/11/14 15:29:41  kardel
1901  * support PPSAPI, upgrade Copyright to Berkeley style
1902  *
1903  */