]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - contrib/unbound/util/storage/dnstree.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / contrib / unbound / util / storage / dnstree.c
1 /*
2  * util/storage/dnstree.c - support for rbtree types suitable for DNS code.
3  *
4  * Copyright (c) 2008, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  * 
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  * 
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  * 
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  * 
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
27  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35
36 /**
37  * \file
38  *
39  * This file contains structures combining types and functions to
40  * manipulate those structures that help building DNS lookup trees.
41  */
42 #include "config.h"
43 #include "util/storage/dnstree.h"
44 #include "util/data/dname.h"
45 #include "util/net_help.h"
46
47 int name_tree_compare(const void* k1, const void* k2)
48 {
49         struct name_tree_node* x = (struct name_tree_node*)k1;
50         struct name_tree_node* y = (struct name_tree_node*)k2;
51         int m;
52         if(x->dclass != y->dclass) {
53                 if(x->dclass < y->dclass)
54                         return -1;
55                 return 1;
56         }
57         return dname_lab_cmp(x->name, x->labs, y->name, y->labs, &m);
58 }
59
60 int addr_tree_compare(const void* k1, const void* k2)
61 {
62         struct addr_tree_node* n1 = (struct addr_tree_node*)k1;
63         struct addr_tree_node* n2 = (struct addr_tree_node*)k2;
64         int r = sockaddr_cmp_addr(&n1->addr, n1->addrlen, &n2->addr,
65                 n2->addrlen);
66         if(r != 0) return r;
67         if(n1->net < n2->net)
68                 return -1;
69         if(n1->net > n2->net)
70                 return 1;
71         return 0;
72 }
73
74 void name_tree_init(rbtree_t* tree)
75 {
76         rbtree_init(tree, &name_tree_compare);
77 }
78
79 void addr_tree_init(rbtree_t* tree)
80 {
81         rbtree_init(tree, &addr_tree_compare);
82 }
83
84 int name_tree_insert(rbtree_t* tree, struct name_tree_node* node, 
85         uint8_t* name, size_t len, int labs, uint16_t dclass)
86 {
87         node->node.key = node;
88         node->name = name;
89         node->len = len;
90         node->labs = labs;
91         node->dclass = dclass;
92         node->parent = NULL;
93         return rbtree_insert(tree, &node->node) != NULL;
94 }
95
96 int addr_tree_insert(rbtree_t* tree, struct addr_tree_node* node,
97         struct sockaddr_storage* addr, socklen_t addrlen, int net)
98 {
99         node->node.key = node;
100         memcpy(&node->addr, addr, addrlen);
101         node->addrlen = addrlen;
102         node->net = net;
103         node->parent = NULL;
104         return rbtree_insert(tree, &node->node) != NULL;
105 }
106
107 void addr_tree_init_parents(rbtree_t* tree)
108 {
109         struct addr_tree_node* node, *prev = NULL, *p;
110         int m;
111         RBTREE_FOR(node, struct addr_tree_node*, tree) {
112                 node->parent = NULL;
113                 if(!prev || prev->addrlen != node->addrlen) {
114                         prev = node;
115                         continue;
116                 }
117                 m = addr_in_common(&prev->addr, prev->net, &node->addr,
118                         node->net, node->addrlen);
119                 /* sort order like: ::/0, 1::/2, 1::/4, ... 2::/2 */
120                 /* find the previous, or parent-parent-parent */
121                 for(p = prev; p; p = p->parent)
122                         if(p->net <= m) {
123                                 /* ==: since prev matched m, this is closest*/
124                                 /* <: prev matches more, but is not a parent,
125                                  * this one is a (grand)parent */
126                                 node->parent = p;
127                                 break;
128                         }
129                 prev = node;
130         }
131 }
132
133 void name_tree_init_parents(rbtree_t* tree)
134 {
135         struct name_tree_node* node, *prev = NULL, *p;
136         int m;
137         RBTREE_FOR(node, struct name_tree_node*, tree) {
138                 node->parent = NULL;
139                 if(!prev || prev->dclass != node->dclass) {
140                         prev = node;
141                         continue;
142                 }
143                 (void)dname_lab_cmp(prev->name, prev->labs, node->name,
144                         node->labs, &m); /* we know prev is smaller */
145                 /* sort order like: . com. bla.com. zwb.com. net. */
146                 /* find the previous, or parent-parent-parent */
147                 for(p = prev; p; p = p->parent)
148                         if(p->labs <= m) {
149                                 /* ==: since prev matched m, this is closest*/
150                                 /* <: prev matches more, but is not a parent,
151                                  * this one is a (grand)parent */
152                                 node->parent = p;
153                                 break;
154                         }
155                 prev = node;
156         }
157 }
158
159 struct name_tree_node* name_tree_find(rbtree_t* tree, uint8_t* name, 
160         size_t len, int labs, uint16_t dclass)
161 {
162         struct name_tree_node key;
163         key.node.key = &key;
164         key.name = name;
165         key.len = len;
166         key.labs = labs;
167         key.dclass = dclass;
168         return (struct name_tree_node*)rbtree_search(tree, &key);
169 }
170
171 struct name_tree_node* name_tree_lookup(rbtree_t* tree, uint8_t* name,
172         size_t len, int labs, uint16_t dclass)
173 {
174         rbnode_t* res = NULL;
175         struct name_tree_node *result;
176         struct name_tree_node key;
177         key.node.key = &key;
178         key.name = name;
179         key.len = len;
180         key.labs = labs;
181         key.dclass = dclass;
182         if(rbtree_find_less_equal(tree, &key, &res)) {
183                 /* exact */
184                 result = (struct name_tree_node*)res;
185         } else {
186                 /* smaller element (or no element) */
187                 int m;
188                 result = (struct name_tree_node*)res;
189                 if(!result || result->dclass != dclass)
190                         return NULL;
191                 /* count number of labels matched */
192                 (void)dname_lab_cmp(result->name, result->labs, key.name,
193                         key.labs, &m);
194                 while(result) { /* go up until qname is subdomain of stub */
195                         if(result->labs <= m)
196                                 break;
197                         result = result->parent;
198                 }
199         }
200         return result;
201 }
202
203 struct addr_tree_node* addr_tree_lookup(rbtree_t* tree, 
204         struct sockaddr_storage* addr, socklen_t addrlen)
205 {
206         rbnode_t* res = NULL;
207         struct addr_tree_node* result;
208         struct addr_tree_node key;
209         key.node.key = &key;
210         memcpy(&key.addr, addr, addrlen);
211         key.addrlen = addrlen;
212         key.net = (addr_is_ip6(addr, addrlen)?128:32);
213         if(rbtree_find_less_equal(tree, &key, &res)) {
214                 /* exact */
215                 return (struct addr_tree_node*)res;
216         } else {
217                 /* smaller element (or no element) */
218                 int m;
219                 result = (struct addr_tree_node*)res;
220                 if(!result || result->addrlen != addrlen)
221                         return 0;
222                 /* count number of bits matched */
223                 m = addr_in_common(&result->addr, result->net, addr,
224                         key.net, addrlen);
225                 while(result) { /* go up until addr is inside netblock */
226                         if(result->net <= m)
227                                 break;
228                         result = result->parent;
229                 }
230         }
231         return result;
232 }
233
234 int
235 name_tree_next_root(rbtree_t* tree, uint16_t* dclass)
236 {
237         struct name_tree_node key;
238         rbnode_t* n;
239         struct name_tree_node* p;
240         if(*dclass == 0) {
241                 /* first root item is first item in tree */
242                 n = rbtree_first(tree);
243                 if(n == RBTREE_NULL)
244                         return 0;
245                 p = (struct name_tree_node*)n;
246                 if(dname_is_root(p->name)) {
247                         *dclass = p->dclass;
248                         return 1;
249                 }
250                 /* root not first item? search for higher items */
251                 *dclass = p->dclass + 1;
252                 return name_tree_next_root(tree, dclass);
253         }
254         /* find class n in tree, we may get a direct hit, or if we don't
255          * this is the last item of the previous class so rbtree_next() takes
256          * us to the next root (if any) */
257         key.node.key = &key;
258         key.name = (uint8_t*)"\000";
259         key.len = 1;
260         key.labs = 0;
261         key.dclass = *dclass;
262         n = NULL;
263         if(rbtree_find_less_equal(tree, &key, &n)) {
264                 /* exact */
265                 return 1;
266         } else {
267                 /* smaller element */
268                 if(!n || n == RBTREE_NULL)
269                         return 0; /* nothing found */
270                 n = rbtree_next(n);
271                 if(n == RBTREE_NULL)
272                         return 0; /* no higher */
273                 p = (struct name_tree_node*)n;
274                 if(dname_is_root(p->name)) {
275                         *dclass = p->dclass;
276                         return 1;
277                 }
278                 /* not a root node, return next higher item */
279                 *dclass = p->dclass+1;
280                 return name_tree_next_root(tree, dclass);
281         }
282 }