]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - crypto/openssl/crypto/modes/asm/ghash-x86_64.pl
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / crypto / openssl / crypto / modes / asm / ghash-x86_64.pl
1 #!/usr/bin/env perl
2 #
3 # ====================================================================
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
9 #
10 # March, June 2010
11 #
12 # The module implements "4-bit" GCM GHASH function and underlying
13 # single multiplication operation in GF(2^128). "4-bit" means that
14 # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
15 # function features so called "528B" variant utilizing additional
16 # 256+16 bytes of per-key storage [+512 bytes shared table].
17 # Performance results are for this streamed GHASH subroutine and are
18 # expressed in cycles per processed byte, less is better:
19 #
20 #               gcc 3.4.x(*)    assembler
21 #
22 # P4            28.6            14.0            +100%
23 # Opteron       19.3            7.7             +150%
24 # Core2         17.8            8.1(**)         +120%
25 #
26 # (*)   comparison is not completely fair, because C results are
27 #       for vanilla "256B" implementation, while assembler results
28 #       are for "528B";-)
29 # (**)  it's mystery [to me] why Core2 result is not same as for
30 #       Opteron;
31
32 # May 2010
33 #
34 # Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
35 # See ghash-x86.pl for background information and details about coding
36 # techniques.
37 #
38 # Special thanks to David Woodhouse <dwmw2@infradead.org> for
39 # providing access to a Westmere-based system on behalf of Intel
40 # Open Source Technology Centre.
41
42 $flavour = shift;
43 $output  = shift;
44 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
45
46 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
47
48 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
49 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
50 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
51 die "can't locate x86_64-xlate.pl";
52
53 open OUT,"| \"$^X\" $xlate $flavour $output";
54 *STDOUT=*OUT;
55
56 # common register layout
57 $nlo="%rax";
58 $nhi="%rbx";
59 $Zlo="%r8";
60 $Zhi="%r9";
61 $tmp="%r10";
62 $rem_4bit = "%r11";
63
64 $Xi="%rdi";
65 $Htbl="%rsi";
66
67 # per-function register layout
68 $cnt="%rcx";
69 $rem="%rdx";
70
71 sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/     or
72                         $r =~ s/%[er]([sd]i)/%\1l/      or
73                         $r =~ s/%[er](bp)/%\1l/         or
74                         $r =~ s/%(r[0-9]+)[d]?/%\1b/;   $r; }
75
76 sub AUTOLOAD()          # thunk [simplified] 32-bit style perlasm
77 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
78   my $arg = pop;
79     $arg = "\$$arg" if ($arg*1 eq $arg);
80     $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
81 }
82 \f
83 { my $N;
84   sub loop() {
85   my $inp = shift;
86
87         $N++;
88 $code.=<<___;
89         xor     $nlo,$nlo
90         xor     $nhi,$nhi
91         mov     `&LB("$Zlo")`,`&LB("$nlo")`
92         mov     `&LB("$Zlo")`,`&LB("$nhi")`
93         shl     \$4,`&LB("$nlo")`
94         mov     \$14,$cnt
95         mov     8($Htbl,$nlo),$Zlo
96         mov     ($Htbl,$nlo),$Zhi
97         and     \$0xf0,`&LB("$nhi")`
98         mov     $Zlo,$rem
99         jmp     .Loop$N
100
101 .align  16
102 .Loop$N:
103         shr     \$4,$Zlo
104         and     \$0xf,$rem
105         mov     $Zhi,$tmp
106         mov     ($inp,$cnt),`&LB("$nlo")`
107         shr     \$4,$Zhi
108         xor     8($Htbl,$nhi),$Zlo
109         shl     \$60,$tmp
110         xor     ($Htbl,$nhi),$Zhi
111         mov     `&LB("$nlo")`,`&LB("$nhi")`
112         xor     ($rem_4bit,$rem,8),$Zhi
113         mov     $Zlo,$rem
114         shl     \$4,`&LB("$nlo")`
115         xor     $tmp,$Zlo
116         dec     $cnt
117         js      .Lbreak$N
118
119         shr     \$4,$Zlo
120         and     \$0xf,$rem
121         mov     $Zhi,$tmp
122         shr     \$4,$Zhi
123         xor     8($Htbl,$nlo),$Zlo
124         shl     \$60,$tmp
125         xor     ($Htbl,$nlo),$Zhi
126         and     \$0xf0,`&LB("$nhi")`
127         xor     ($rem_4bit,$rem,8),$Zhi
128         mov     $Zlo,$rem
129         xor     $tmp,$Zlo
130         jmp     .Loop$N
131
132 .align  16
133 .Lbreak$N:
134         shr     \$4,$Zlo
135         and     \$0xf,$rem
136         mov     $Zhi,$tmp
137         shr     \$4,$Zhi
138         xor     8($Htbl,$nlo),$Zlo
139         shl     \$60,$tmp
140         xor     ($Htbl,$nlo),$Zhi
141         and     \$0xf0,`&LB("$nhi")`
142         xor     ($rem_4bit,$rem,8),$Zhi
143         mov     $Zlo,$rem
144         xor     $tmp,$Zlo
145
146         shr     \$4,$Zlo
147         and     \$0xf,$rem
148         mov     $Zhi,$tmp
149         shr     \$4,$Zhi
150         xor     8($Htbl,$nhi),$Zlo
151         shl     \$60,$tmp
152         xor     ($Htbl,$nhi),$Zhi
153         xor     $tmp,$Zlo
154         xor     ($rem_4bit,$rem,8),$Zhi
155
156         bswap   $Zlo
157         bswap   $Zhi
158 ___
159 }}
160
161 $code=<<___;
162 .text
163
164 .globl  gcm_gmult_4bit
165 .type   gcm_gmult_4bit,\@function,2
166 .align  16
167 gcm_gmult_4bit:
168         push    %rbx
169         push    %rbp            # %rbp and %r12 are pushed exclusively in
170         push    %r12            # order to reuse Win64 exception handler...
171 .Lgmult_prologue:
172
173         movzb   15($Xi),$Zlo
174         lea     .Lrem_4bit(%rip),$rem_4bit
175 ___
176         &loop   ($Xi);
177 $code.=<<___;
178         mov     $Zlo,8($Xi)
179         mov     $Zhi,($Xi)
180
181         mov     16(%rsp),%rbx
182         lea     24(%rsp),%rsp
183 .Lgmult_epilogue:
184         ret
185 .size   gcm_gmult_4bit,.-gcm_gmult_4bit
186 ___
187 \f
188 # per-function register layout
189 $inp="%rdx";
190 $len="%rcx";
191 $rem_8bit=$rem_4bit;
192
193 $code.=<<___;
194 .globl  gcm_ghash_4bit
195 .type   gcm_ghash_4bit,\@function,4
196 .align  16
197 gcm_ghash_4bit:
198         push    %rbx
199         push    %rbp
200         push    %r12
201         push    %r13
202         push    %r14
203         push    %r15
204         sub     \$280,%rsp
205 .Lghash_prologue:
206         mov     $inp,%r14               # reassign couple of args
207         mov     $len,%r15
208 ___
209 { my $inp="%r14";
210   my $dat="%edx";
211   my $len="%r15";
212   my @nhi=("%ebx","%ecx");
213   my @rem=("%r12","%r13");
214   my $Hshr4="%rbp";
215
216         &sub    ($Htbl,-128);           # size optimization
217         &lea    ($Hshr4,"16+128(%rsp)");
218         { my @lo =($nlo,$nhi);
219           my @hi =($Zlo,$Zhi);
220
221           &xor  ($dat,$dat);
222           for ($i=0,$j=-2;$i<18;$i++,$j++) {
223             &mov        ("$j(%rsp)",&LB($dat))          if ($i>1);
224             &or         ($lo[0],$tmp)                   if ($i>1);
225             &mov        (&LB($dat),&LB($lo[1]))         if ($i>0 && $i<17);
226             &shr        ($lo[1],4)                      if ($i>0 && $i<17);
227             &mov        ($tmp,$hi[1])                   if ($i>0 && $i<17);
228             &shr        ($hi[1],4)                      if ($i>0 && $i<17);
229             &mov        ("8*$j($Hshr4)",$hi[0])         if ($i>1);
230             &mov        ($hi[0],"16*$i+0-128($Htbl)")   if ($i<16);
231             &shl        (&LB($dat),4)                   if ($i>0 && $i<17);
232             &mov        ("8*$j-128($Hshr4)",$lo[0])     if ($i>1);
233             &mov        ($lo[0],"16*$i+8-128($Htbl)")   if ($i<16);
234             &shl        ($tmp,60)                       if ($i>0 && $i<17);
235
236             push        (@lo,shift(@lo));
237             push        (@hi,shift(@hi));
238           }
239         }
240         &add    ($Htbl,-128);
241         &mov    ($Zlo,"8($Xi)");
242         &mov    ($Zhi,"0($Xi)");
243         &add    ($len,$inp);            # pointer to the end of data
244         &lea    ($rem_8bit,".Lrem_8bit(%rip)");
245         &jmp    (".Louter_loop");
246
247 $code.=".align  16\n.Louter_loop:\n";
248         &xor    ($Zhi,"($inp)");
249         &mov    ("%rdx","8($inp)");
250         &lea    ($inp,"16($inp)");
251         &xor    ("%rdx",$Zlo);
252         &mov    ("($Xi)",$Zhi);
253         &mov    ("8($Xi)","%rdx");
254         &shr    ("%rdx",32);
255
256         &xor    ($nlo,$nlo);
257         &rol    ($dat,8);
258         &mov    (&LB($nlo),&LB($dat));
259         &movz   ($nhi[0],&LB($dat));
260         &shl    (&LB($nlo),4);
261         &shr    ($nhi[0],4);
262
263         for ($j=11,$i=0;$i<15;$i++) {
264             &rol        ($dat,8);
265             &xor        ($Zlo,"8($Htbl,$nlo)")                  if ($i>0);
266             &xor        ($Zhi,"($Htbl,$nlo)")                   if ($i>0);
267             &mov        ($Zlo,"8($Htbl,$nlo)")                  if ($i==0);
268             &mov        ($Zhi,"($Htbl,$nlo)")                   if ($i==0);
269
270             &mov        (&LB($nlo),&LB($dat));
271             &xor        ($Zlo,$tmp)                             if ($i>0);
272             &movzw      ($rem[1],"($rem_8bit,$rem[1],2)")       if ($i>0);
273
274             &movz       ($nhi[1],&LB($dat));
275             &shl        (&LB($nlo),4);
276             &movzb      ($rem[0],"(%rsp,$nhi[0])");
277
278             &shr        ($nhi[1],4)                             if ($i<14);
279             &and        ($nhi[1],0xf0)                          if ($i==14);
280             &shl        ($rem[1],48)                            if ($i>0);
281             &xor        ($rem[0],$Zlo);
282
283             &mov        ($tmp,$Zhi);
284             &xor        ($Zhi,$rem[1])                          if ($i>0);
285             &shr        ($Zlo,8);
286
287             &movz       ($rem[0],&LB($rem[0]));
288             &mov        ($dat,"$j($Xi)")                        if (--$j%4==0);
289             &shr        ($Zhi,8);
290
291             &xor        ($Zlo,"-128($Hshr4,$nhi[0],8)");
292             &shl        ($tmp,56);
293             &xor        ($Zhi,"($Hshr4,$nhi[0],8)");
294
295             unshift     (@nhi,pop(@nhi));               # "rotate" registers
296             unshift     (@rem,pop(@rem));
297         }
298         &movzw  ($rem[1],"($rem_8bit,$rem[1],2)");
299         &xor    ($Zlo,"8($Htbl,$nlo)");
300         &xor    ($Zhi,"($Htbl,$nlo)");
301
302         &shl    ($rem[1],48);
303         &xor    ($Zlo,$tmp);
304
305         &xor    ($Zhi,$rem[1]);
306         &movz   ($rem[0],&LB($Zlo));
307         &shr    ($Zlo,4);
308
309         &mov    ($tmp,$Zhi);
310         &shl    (&LB($rem[0]),4);
311         &shr    ($Zhi,4);
312
313         &xor    ($Zlo,"8($Htbl,$nhi[0])");
314         &movzw  ($rem[0],"($rem_8bit,$rem[0],2)");
315         &shl    ($tmp,60);
316
317         &xor    ($Zhi,"($Htbl,$nhi[0])");
318         &xor    ($Zlo,$tmp);
319         &shl    ($rem[0],48);
320
321         &bswap  ($Zlo);
322         &xor    ($Zhi,$rem[0]);
323
324         &bswap  ($Zhi);
325         &cmp    ($inp,$len);
326         &jb     (".Louter_loop");
327 }
328 $code.=<<___;
329         mov     $Zlo,8($Xi)
330         mov     $Zhi,($Xi)
331
332         lea     280(%rsp),%rsi
333         mov     0(%rsi),%r15
334         mov     8(%rsi),%r14
335         mov     16(%rsi),%r13
336         mov     24(%rsi),%r12
337         mov     32(%rsi),%rbp
338         mov     40(%rsi),%rbx
339         lea     48(%rsi),%rsp
340 .Lghash_epilogue:
341         ret
342 .size   gcm_ghash_4bit,.-gcm_ghash_4bit
343 ___
344 \f
345 ######################################################################
346 # PCLMULQDQ version.
347
348 @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") :  # Win64 order
349                 ("%rdi","%rsi","%rdx","%rcx");  # Unix order
350
351 ($Xi,$Xhi)=("%xmm0","%xmm1");   $Hkey="%xmm2";
352 ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
353
354 sub clmul64x64_T2 {     # minimal register pressure
355 my ($Xhi,$Xi,$Hkey,$modulo)=@_;
356
357 $code.=<<___ if (!defined($modulo));
358         movdqa          $Xi,$Xhi                #
359         pshufd          \$0b01001110,$Xi,$T1
360         pshufd          \$0b01001110,$Hkey,$T2
361         pxor            $Xi,$T1                 #
362         pxor            $Hkey,$T2
363 ___
364 $code.=<<___;
365         pclmulqdq       \$0x00,$Hkey,$Xi        #######
366         pclmulqdq       \$0x11,$Hkey,$Xhi       #######
367         pclmulqdq       \$0x00,$T2,$T1          #######
368         pxor            $Xi,$T1                 #
369         pxor            $Xhi,$T1                #
370
371         movdqa          $T1,$T2                 #
372         psrldq          \$8,$T1
373         pslldq          \$8,$T2                 #
374         pxor            $T1,$Xhi
375         pxor            $T2,$Xi                 #
376 ___
377 }
378
379 sub reduction_alg9 {    # 17/13 times faster than Intel version
380 my ($Xhi,$Xi) = @_;
381
382 $code.=<<___;
383         # 1st phase
384         movdqa          $Xi,$T1                 #
385         psllq           \$1,$Xi
386         pxor            $T1,$Xi                 #
387         psllq           \$5,$Xi                 #
388         pxor            $T1,$Xi                 #
389         psllq           \$57,$Xi                #
390         movdqa          $Xi,$T2                 #
391         pslldq          \$8,$Xi
392         psrldq          \$8,$T2                 #       
393         pxor            $T1,$Xi
394         pxor            $T2,$Xhi                #
395
396         # 2nd phase
397         movdqa          $Xi,$T2
398         psrlq           \$5,$Xi
399         pxor            $T2,$Xi                 #
400         psrlq           \$1,$Xi                 #
401         pxor            $T2,$Xi                 #
402         pxor            $Xhi,$T2
403         psrlq           \$1,$Xi                 #
404         pxor            $T2,$Xi                 #
405 ___
406 }
407 \f
408 { my ($Htbl,$Xip)=@_4args;
409
410 $code.=<<___;
411 .globl  gcm_init_clmul
412 .type   gcm_init_clmul,\@abi-omnipotent
413 .align  16
414 gcm_init_clmul:
415         movdqu          ($Xip),$Hkey
416         pshufd          \$0b01001110,$Hkey,$Hkey        # dword swap
417
418         # <<1 twist
419         pshufd          \$0b11111111,$Hkey,$T2  # broadcast uppermost dword
420         movdqa          $Hkey,$T1
421         psllq           \$1,$Hkey
422         pxor            $T3,$T3                 #
423         psrlq           \$63,$T1
424         pcmpgtd         $T2,$T3                 # broadcast carry bit
425         pslldq          \$8,$T1
426         por             $T1,$Hkey               # H<<=1
427
428         # magic reduction
429         pand            .L0x1c2_polynomial(%rip),$T3
430         pxor            $T3,$Hkey               # if(carry) H^=0x1c2_polynomial
431
432         # calculate H^2
433         movdqa          $Hkey,$Xi
434 ___
435         &clmul64x64_T2  ($Xhi,$Xi,$Hkey);
436         &reduction_alg9 ($Xhi,$Xi);
437 $code.=<<___;
438         movdqu          $Hkey,($Htbl)           # save H
439         movdqu          $Xi,16($Htbl)           # save H^2
440         ret
441 .size   gcm_init_clmul,.-gcm_init_clmul
442 ___
443 }
444
445 { my ($Xip,$Htbl)=@_4args;
446
447 $code.=<<___;
448 .globl  gcm_gmult_clmul
449 .type   gcm_gmult_clmul,\@abi-omnipotent
450 .align  16
451 gcm_gmult_clmul:
452         movdqu          ($Xip),$Xi
453         movdqa          .Lbswap_mask(%rip),$T3
454         movdqu          ($Htbl),$Hkey
455         pshufb          $T3,$Xi
456 ___
457         &clmul64x64_T2  ($Xhi,$Xi,$Hkey);
458         &reduction_alg9 ($Xhi,$Xi);
459 $code.=<<___;
460         pshufb          $T3,$Xi
461         movdqu          $Xi,($Xip)
462         ret
463 .size   gcm_gmult_clmul,.-gcm_gmult_clmul
464 ___
465 }
466 \f
467 { my ($Xip,$Htbl,$inp,$len)=@_4args;
468   my $Xn="%xmm6";
469   my $Xhn="%xmm7";
470   my $Hkey2="%xmm8";
471   my $T1n="%xmm9";
472   my $T2n="%xmm10";
473
474 $code.=<<___;
475 .globl  gcm_ghash_clmul
476 .type   gcm_ghash_clmul,\@abi-omnipotent
477 .align  16
478 gcm_ghash_clmul:
479 ___
480 $code.=<<___ if ($win64);
481 .LSEH_begin_gcm_ghash_clmul:
482         # I can't trust assembler to use specific encoding:-(
483         .byte   0x48,0x83,0xec,0x58             #sub    \$0x58,%rsp
484         .byte   0x0f,0x29,0x34,0x24             #movaps %xmm6,(%rsp)
485         .byte   0x0f,0x29,0x7c,0x24,0x10        #movdqa %xmm7,0x10(%rsp)
486         .byte   0x44,0x0f,0x29,0x44,0x24,0x20   #movaps %xmm8,0x20(%rsp)
487         .byte   0x44,0x0f,0x29,0x4c,0x24,0x30   #movaps %xmm9,0x30(%rsp)
488         .byte   0x44,0x0f,0x29,0x54,0x24,0x40   #movaps %xmm10,0x40(%rsp)
489 ___
490 $code.=<<___;
491         movdqa          .Lbswap_mask(%rip),$T3
492
493         movdqu          ($Xip),$Xi
494         movdqu          ($Htbl),$Hkey
495         pshufb          $T3,$Xi
496
497         sub             \$0x10,$len
498         jz              .Lodd_tail
499
500         movdqu          16($Htbl),$Hkey2
501         #######
502         # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
503         #       [(H*Ii+1) + (H*Xi+1)] mod P =
504         #       [(H*Ii+1) + H^2*(Ii+Xi)] mod P
505         #
506         movdqu          ($inp),$T1              # Ii
507         movdqu          16($inp),$Xn            # Ii+1
508         pshufb          $T3,$T1
509         pshufb          $T3,$Xn
510         pxor            $T1,$Xi                 # Ii+Xi
511 ___
512         &clmul64x64_T2  ($Xhn,$Xn,$Hkey);       # H*Ii+1
513 $code.=<<___;
514         movdqa          $Xi,$Xhi                #
515         pshufd          \$0b01001110,$Xi,$T1
516         pshufd          \$0b01001110,$Hkey2,$T2
517         pxor            $Xi,$T1                 #
518         pxor            $Hkey2,$T2
519
520         lea             32($inp),$inp           # i+=2
521         sub             \$0x20,$len
522         jbe             .Leven_tail
523
524 .Lmod_loop:
525 ___
526         &clmul64x64_T2  ($Xhi,$Xi,$Hkey2,1);    # H^2*(Ii+Xi)
527 $code.=<<___;
528         movdqu          ($inp),$T1              # Ii
529         pxor            $Xn,$Xi                 # (H*Ii+1) + H^2*(Ii+Xi)
530         pxor            $Xhn,$Xhi
531
532         movdqu          16($inp),$Xn            # Ii+1
533         pshufb          $T3,$T1
534         pshufb          $T3,$Xn
535
536         movdqa          $Xn,$Xhn                #
537         pshufd          \$0b01001110,$Xn,$T1n
538         pshufd          \$0b01001110,$Hkey,$T2n
539         pxor            $Xn,$T1n                #
540         pxor            $Hkey,$T2n
541          pxor           $T1,$Xhi                # "Ii+Xi", consume early
542
543           movdqa        $Xi,$T1                 # 1st phase
544           psllq         \$1,$Xi
545           pxor          $T1,$Xi                 #
546           psllq         \$5,$Xi                 #
547           pxor          $T1,$Xi                 #
548         pclmulqdq       \$0x00,$Hkey,$Xn        #######
549           psllq         \$57,$Xi                #
550           movdqa        $Xi,$T2                 #
551           pslldq        \$8,$Xi
552           psrldq        \$8,$T2                 #       
553           pxor          $T1,$Xi
554           pxor          $T2,$Xhi                #
555
556         pclmulqdq       \$0x11,$Hkey,$Xhn       #######
557           movdqa        $Xi,$T2                 # 2nd phase
558           psrlq         \$5,$Xi
559           pxor          $T2,$Xi                 #
560           psrlq         \$1,$Xi                 #
561           pxor          $T2,$Xi                 #
562           pxor          $Xhi,$T2
563           psrlq         \$1,$Xi                 #
564           pxor          $T2,$Xi                 #
565
566         pclmulqdq       \$0x00,$T2n,$T1n        #######
567          movdqa         $Xi,$Xhi                #
568          pshufd         \$0b01001110,$Xi,$T1
569          pshufd         \$0b01001110,$Hkey2,$T2
570          pxor           $Xi,$T1                 #
571          pxor           $Hkey2,$T2
572
573         pxor            $Xn,$T1n                #
574         pxor            $Xhn,$T1n               #
575         movdqa          $T1n,$T2n               #
576         psrldq          \$8,$T1n
577         pslldq          \$8,$T2n                #
578         pxor            $T1n,$Xhn
579         pxor            $T2n,$Xn                #
580
581         lea             32($inp),$inp
582         sub             \$0x20,$len
583         ja              .Lmod_loop
584
585 .Leven_tail:
586 ___
587         &clmul64x64_T2  ($Xhi,$Xi,$Hkey2,1);    # H^2*(Ii+Xi)
588 $code.=<<___;
589         pxor            $Xn,$Xi                 # (H*Ii+1) + H^2*(Ii+Xi)
590         pxor            $Xhn,$Xhi
591 ___
592         &reduction_alg9 ($Xhi,$Xi);
593 $code.=<<___;
594         test            $len,$len
595         jnz             .Ldone
596
597 .Lodd_tail:
598         movdqu          ($inp),$T1              # Ii
599         pshufb          $T3,$T1
600         pxor            $T1,$Xi                 # Ii+Xi
601 ___
602         &clmul64x64_T2  ($Xhi,$Xi,$Hkey);       # H*(Ii+Xi)
603         &reduction_alg9 ($Xhi,$Xi);
604 $code.=<<___;
605 .Ldone:
606         pshufb          $T3,$Xi
607         movdqu          $Xi,($Xip)
608 ___
609 $code.=<<___ if ($win64);
610         movaps  (%rsp),%xmm6
611         movaps  0x10(%rsp),%xmm7
612         movaps  0x20(%rsp),%xmm8
613         movaps  0x30(%rsp),%xmm9
614         movaps  0x40(%rsp),%xmm10
615         add     \$0x58,%rsp
616 ___
617 $code.=<<___;
618         ret
619 .LSEH_end_gcm_ghash_clmul:
620 .size   gcm_ghash_clmul,.-gcm_ghash_clmul
621 ___
622 }
623
624 $code.=<<___;
625 .align  64
626 .Lbswap_mask:
627         .byte   15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
628 .L0x1c2_polynomial:
629         .byte   1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
630 .align  64
631 .type   .Lrem_4bit,\@object
632 .Lrem_4bit:
633         .long   0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
634         .long   0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
635         .long   0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
636         .long   0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
637 .type   .Lrem_8bit,\@object
638 .Lrem_8bit:
639         .value  0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
640         .value  0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
641         .value  0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
642         .value  0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
643         .value  0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
644         .value  0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
645         .value  0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
646         .value  0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
647         .value  0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
648         .value  0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
649         .value  0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
650         .value  0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
651         .value  0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
652         .value  0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
653         .value  0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
654         .value  0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
655         .value  0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
656         .value  0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
657         .value  0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
658         .value  0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
659         .value  0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
660         .value  0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
661         .value  0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
662         .value  0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
663         .value  0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
664         .value  0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
665         .value  0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
666         .value  0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
667         .value  0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
668         .value  0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
669         .value  0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
670         .value  0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
671
672 .asciz  "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
673 .align  64
674 ___
675 \f
676 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
677 #               CONTEXT *context,DISPATCHER_CONTEXT *disp)
678 if ($win64) {
679 $rec="%rcx";
680 $frame="%rdx";
681 $context="%r8";
682 $disp="%r9";
683
684 $code.=<<___;
685 .extern __imp_RtlVirtualUnwind
686 .type   se_handler,\@abi-omnipotent
687 .align  16
688 se_handler:
689         push    %rsi
690         push    %rdi
691         push    %rbx
692         push    %rbp
693         push    %r12
694         push    %r13
695         push    %r14
696         push    %r15
697         pushfq
698         sub     \$64,%rsp
699
700         mov     120($context),%rax      # pull context->Rax
701         mov     248($context),%rbx      # pull context->Rip
702
703         mov     8($disp),%rsi           # disp->ImageBase
704         mov     56($disp),%r11          # disp->HandlerData
705
706         mov     0(%r11),%r10d           # HandlerData[0]
707         lea     (%rsi,%r10),%r10        # prologue label
708         cmp     %r10,%rbx               # context->Rip<prologue label
709         jb      .Lin_prologue
710
711         mov     152($context),%rax      # pull context->Rsp
712
713         mov     4(%r11),%r10d           # HandlerData[1]
714         lea     (%rsi,%r10),%r10        # epilogue label
715         cmp     %r10,%rbx               # context->Rip>=epilogue label
716         jae     .Lin_prologue
717
718         lea     24(%rax),%rax           # adjust "rsp"
719
720         mov     -8(%rax),%rbx
721         mov     -16(%rax),%rbp
722         mov     -24(%rax),%r12
723         mov     %rbx,144($context)      # restore context->Rbx
724         mov     %rbp,160($context)      # restore context->Rbp
725         mov     %r12,216($context)      # restore context->R12
726
727 .Lin_prologue:
728         mov     8(%rax),%rdi
729         mov     16(%rax),%rsi
730         mov     %rax,152($context)      # restore context->Rsp
731         mov     %rsi,168($context)      # restore context->Rsi
732         mov     %rdi,176($context)      # restore context->Rdi
733
734         mov     40($disp),%rdi          # disp->ContextRecord
735         mov     $context,%rsi           # context
736         mov     \$`1232/8`,%ecx         # sizeof(CONTEXT)
737         .long   0xa548f3fc              # cld; rep movsq
738
739         mov     $disp,%rsi
740         xor     %rcx,%rcx               # arg1, UNW_FLAG_NHANDLER
741         mov     8(%rsi),%rdx            # arg2, disp->ImageBase
742         mov     0(%rsi),%r8             # arg3, disp->ControlPc
743         mov     16(%rsi),%r9            # arg4, disp->FunctionEntry
744         mov     40(%rsi),%r10           # disp->ContextRecord
745         lea     56(%rsi),%r11           # &disp->HandlerData
746         lea     24(%rsi),%r12           # &disp->EstablisherFrame
747         mov     %r10,32(%rsp)           # arg5
748         mov     %r11,40(%rsp)           # arg6
749         mov     %r12,48(%rsp)           # arg7
750         mov     %rcx,56(%rsp)           # arg8, (NULL)
751         call    *__imp_RtlVirtualUnwind(%rip)
752
753         mov     \$1,%eax                # ExceptionContinueSearch
754         add     \$64,%rsp
755         popfq
756         pop     %r15
757         pop     %r14
758         pop     %r13
759         pop     %r12
760         pop     %rbp
761         pop     %rbx
762         pop     %rdi
763         pop     %rsi
764         ret
765 .size   se_handler,.-se_handler
766
767 .section        .pdata
768 .align  4
769         .rva    .LSEH_begin_gcm_gmult_4bit
770         .rva    .LSEH_end_gcm_gmult_4bit
771         .rva    .LSEH_info_gcm_gmult_4bit
772
773         .rva    .LSEH_begin_gcm_ghash_4bit
774         .rva    .LSEH_end_gcm_ghash_4bit
775         .rva    .LSEH_info_gcm_ghash_4bit
776
777         .rva    .LSEH_begin_gcm_ghash_clmul
778         .rva    .LSEH_end_gcm_ghash_clmul
779         .rva    .LSEH_info_gcm_ghash_clmul
780
781 .section        .xdata
782 .align  8
783 .LSEH_info_gcm_gmult_4bit:
784         .byte   9,0,0,0
785         .rva    se_handler
786         .rva    .Lgmult_prologue,.Lgmult_epilogue       # HandlerData
787 .LSEH_info_gcm_ghash_4bit:
788         .byte   9,0,0,0
789         .rva    se_handler
790         .rva    .Lghash_prologue,.Lghash_epilogue       # HandlerData
791 .LSEH_info_gcm_ghash_clmul:
792         .byte   0x01,0x1f,0x0b,0x00
793         .byte   0x1f,0xa8,0x04,0x00     #movaps 0x40(rsp),xmm10
794         .byte   0x19,0x98,0x03,0x00     #movaps 0x30(rsp),xmm9
795         .byte   0x13,0x88,0x02,0x00     #movaps 0x20(rsp),xmm8
796         .byte   0x0d,0x78,0x01,0x00     #movaps 0x10(rsp),xmm7
797         .byte   0x08,0x68,0x00,0x00     #movaps (rsp),xmm6
798         .byte   0x04,0xa2,0x00,0x00     #sub    rsp,0x58
799 ___
800 }
801 \f
802 $code =~ s/\`([^\`]*)\`/eval($1)/gem;
803
804 print $code;
805
806 close STDOUT;