]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - lib/msun/src/e_jnf.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / lib / msun / src / e_jnf.c
1 /* e_jnf.c -- float version of e_jn.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18
19 #include "math.h"
20 #include "math_private.h"
21
22 static const float
23 two   =  2.0000000000e+00, /* 0x40000000 */
24 one   =  1.0000000000e+00; /* 0x3F800000 */
25
26 static const float zero  =  0.0000000000e+00;
27
28 float
29 __ieee754_jnf(int n, float x)
30 {
31         int32_t i,hx,ix, sgn;
32         float a, b, temp, di;
33         float z, w;
34
35     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
36      * Thus, J(-n,x) = J(n,-x)
37      */
38         GET_FLOAT_WORD(hx,x);
39         ix = 0x7fffffff&hx;
40     /* if J(n,NaN) is NaN */
41         if(ix>0x7f800000) return x+x;
42         if(n<0){
43                 n = -n;
44                 x = -x;
45                 hx ^= 0x80000000;
46         }
47         if(n==0) return(__ieee754_j0f(x));
48         if(n==1) return(__ieee754_j1f(x));
49         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
50         x = fabsf(x);
51         if(ix==0||ix>=0x7f800000)       /* if x is 0 or inf */
52             b = zero;
53         else if((float)n<=x) {
54                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
55             a = __ieee754_j0f(x);
56             b = __ieee754_j1f(x);
57             for(i=1;i<n;i++){
58                 temp = b;
59                 b = b*((float)(i+i)/x) - a; /* avoid underflow */
60                 a = temp;
61             }
62         } else {
63             if(ix<0x30800000) { /* x < 2**-29 */
64     /* x is tiny, return the first Taylor expansion of J(n,x)
65      * J(n,x) = 1/n!*(x/2)^n  - ...
66      */
67                 if(n>33)        /* underflow */
68                     b = zero;
69                 else {
70                     temp = x*(float)0.5; b = temp;
71                     for (a=one,i=2;i<=n;i++) {
72                         a *= (float)i;          /* a = n! */
73                         b *= temp;              /* b = (x/2)^n */
74                     }
75                     b = b/a;
76                 }
77             } else {
78                 /* use backward recurrence */
79                 /*                      x      x^2      x^2
80                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
81                  *                      2n  - 2(n+1) - 2(n+2)
82                  *
83                  *                      1      1        1
84                  *  (for large x)   =  ----  ------   ------   .....
85                  *                      2n   2(n+1)   2(n+2)
86                  *                      -- - ------ - ------ -
87                  *                       x     x         x
88                  *
89                  * Let w = 2n/x and h=2/x, then the above quotient
90                  * is equal to the continued fraction:
91                  *                  1
92                  *      = -----------------------
93                  *                     1
94                  *         w - -----------------
95                  *                        1
96                  *              w+h - ---------
97                  *                     w+2h - ...
98                  *
99                  * To determine how many terms needed, let
100                  * Q(0) = w, Q(1) = w(w+h) - 1,
101                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
102                  * When Q(k) > 1e4      good for single
103                  * When Q(k) > 1e9      good for double
104                  * When Q(k) > 1e17     good for quadruple
105                  */
106             /* determine k */
107                 float t,v;
108                 float q0,q1,h,tmp; int32_t k,m;
109                 w  = (n+n)/(float)x; h = (float)2.0/(float)x;
110                 q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
111                 while(q1<(float)1.0e9) {
112                         k += 1; z += h;
113                         tmp = z*q1 - q0;
114                         q0 = q1;
115                         q1 = tmp;
116                 }
117                 m = n+n;
118                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
119                 a = t;
120                 b = one;
121                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
122                  *  Hence, if n*(log(2n/x)) > ...
123                  *  single 8.8722839355e+01
124                  *  double 7.09782712893383973096e+02
125                  *  long double 1.1356523406294143949491931077970765006170e+04
126                  *  then recurrent value may overflow and the result is
127                  *  likely underflow to zero
128                  */
129                 tmp = n;
130                 v = two/x;
131                 tmp = tmp*__ieee754_logf(fabsf(v*tmp));
132                 if(tmp<(float)8.8721679688e+01) {
133                     for(i=n-1,di=(float)(i+i);i>0;i--){
134                         temp = b;
135                         b *= di;
136                         b  = b/x - a;
137                         a = temp;
138                         di -= two;
139                     }
140                 } else {
141                     for(i=n-1,di=(float)(i+i);i>0;i--){
142                         temp = b;
143                         b *= di;
144                         b  = b/x - a;
145                         a = temp;
146                         di -= two;
147                     /* scale b to avoid spurious overflow */
148                         if(b>(float)1e10) {
149                             a /= b;
150                             t /= b;
151                             b  = one;
152                         }
153                     }
154                 }
155                 z = __ieee754_j0f(x);
156                 w = __ieee754_j1f(x);
157                 if (fabsf(z) >= fabsf(w))
158                     b = (t*z/b);
159                 else
160                     b = (t*w/a);
161             }
162         }
163         if(sgn==1) return -b; else return b;
164 }
165
166 float
167 __ieee754_ynf(int n, float x)
168 {
169         int32_t i,hx,ix,ib;
170         int32_t sign;
171         float a, b, temp;
172
173         GET_FLOAT_WORD(hx,x);
174         ix = 0x7fffffff&hx;
175     /* if Y(n,NaN) is NaN */
176         if(ix>0x7f800000) return x+x;
177         if(ix==0) return -one/zero;
178         if(hx<0) return zero/zero;
179         sign = 1;
180         if(n<0){
181                 n = -n;
182                 sign = 1 - ((n&1)<<1);
183         }
184         if(n==0) return(__ieee754_y0f(x));
185         if(n==1) return(sign*__ieee754_y1f(x));
186         if(ix==0x7f800000) return zero;
187
188         a = __ieee754_y0f(x);
189         b = __ieee754_y1f(x);
190         /* quit if b is -inf */
191         GET_FLOAT_WORD(ib,b);
192         for(i=1;i<n&&ib!=0xff800000;i++){
193             temp = b;
194             b = ((float)(i+i)/x)*b - a;
195             GET_FLOAT_WORD(ib,b);
196             a = temp;
197         }
198         if(sign>0) return b; else return -b;
199 }