]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/arm/mv/common.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / arm / mv / common.c
1 /*-
2  * Copyright (C) 2008-2011 MARVELL INTERNATIONAL LTD.
3  * All rights reserved.
4  *
5  * Developed by Semihalf.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of MARVELL nor the names of contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 #include "opt_global.h"
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/kdb.h>
43 #include <sys/reboot.h>
44
45 #include <dev/fdt/fdt_common.h>
46 #include <dev/ofw/openfirm.h>
47
48 #include <machine/bus.h>
49 #include <machine/fdt.h>
50 #include <machine/vmparam.h>
51
52 #include <arm/mv/mvreg.h>
53 #include <arm/mv/mvvar.h>
54 #include <arm/mv/mvwin.h>
55
56
57 MALLOC_DEFINE(M_IDMA, "idma", "idma dma test memory");
58
59 #define IDMA_DEBUG
60 #undef IDMA_DEBUG
61
62 #define MAX_CPU_WIN     5
63
64 #ifdef DEBUG
65 #define debugf(fmt, args...) do { printf("%s(): ", __func__);   \
66     printf(fmt,##args); } while (0)
67 #else
68 #define debugf(fmt, args...)
69 #endif
70
71 #ifdef DEBUG
72 #define MV_DUMP_WIN     1
73 #else
74 #define MV_DUMP_WIN     0
75 #endif
76
77 static int win_eth_can_remap(int i);
78
79 #ifndef SOC_MV_FREY
80 static int decode_win_cpu_valid(void);
81 #endif
82 static int decode_win_usb_valid(void);
83 static int decode_win_eth_valid(void);
84 static int decode_win_pcie_valid(void);
85 static int decode_win_sata_valid(void);
86
87 static int decode_win_idma_valid(void);
88 static int decode_win_xor_valid(void);
89
90 #ifndef SOC_MV_FREY
91 static void decode_win_cpu_setup(void);
92 #endif
93 #ifdef SOC_MV_ARMADAXP
94 static int decode_win_sdram_fixup(void);
95 #endif
96 static void decode_win_usb_setup(u_long);
97 static void decode_win_eth_setup(u_long);
98 static void decode_win_sata_setup(u_long);
99
100 static void decode_win_idma_setup(u_long);
101 static void decode_win_xor_setup(u_long);
102
103 static void decode_win_usb_dump(u_long);
104 static void decode_win_eth_dump(u_long base);
105 static void decode_win_idma_dump(u_long base);
106 static void decode_win_xor_dump(u_long base);
107
108 static int fdt_get_ranges(const char *, void *, int, int *, int *);
109
110 static int win_cpu_from_dt(void);
111 static int fdt_win_setup(void);
112
113 static uint32_t dev_mask = 0;
114 static int cpu_wins_no = 0;
115 static int eth_port = 0;
116 static int usb_port = 0;
117
118 static struct decode_win cpu_win_tbl[MAX_CPU_WIN];
119
120 const struct decode_win *cpu_wins = cpu_win_tbl;
121
122 typedef void (*decode_win_setup_t)(u_long);
123 typedef void (*dump_win_t)(u_long);
124
125 struct soc_node_spec {
126         const char              *compat;
127         decode_win_setup_t      decode_handler;
128         dump_win_t              dump_handler;
129 };
130
131 static struct soc_node_spec soc_nodes[] = {
132         { "mrvl,ge", &decode_win_eth_setup, &decode_win_eth_dump },
133         { "mrvl,usb-ehci", &decode_win_usb_setup, &decode_win_usb_dump },
134         { "mrvl,sata", &decode_win_sata_setup, NULL },
135         { "mrvl,xor", &decode_win_xor_setup, &decode_win_xor_dump },
136         { "mrvl,idma", &decode_win_idma_setup, &decode_win_idma_dump },
137         { "mrvl,pcie", &decode_win_pcie_setup, NULL },
138         { NULL, NULL, NULL },
139 };
140
141 struct fdt_pm_mask_entry fdt_pm_mask_table[] = {
142         { "mrvl,ge",            CPU_PM_CTRL_GE(0) },
143         { "mrvl,ge",            CPU_PM_CTRL_GE(1) },
144         { "mrvl,usb-ehci",      CPU_PM_CTRL_USB(0) },
145         { "mrvl,usb-ehci",      CPU_PM_CTRL_USB(1) },
146         { "mrvl,usb-ehci",      CPU_PM_CTRL_USB(2) },
147         { "mrvl,xor",           CPU_PM_CTRL_XOR },
148         { "mrvl,sata",          CPU_PM_CTRL_SATA },
149
150         { NULL, 0 }
151 };
152
153 static __inline int
154 pm_is_disabled(uint32_t mask)
155 {
156
157         return (soc_power_ctrl_get(mask) == mask ? 0 : 1);
158 }
159
160 /*
161  * Disable device using power management register.
162  * 1 - Device Power On
163  * 0 - Device Power Off
164  * Mask can be set in loader.
165  * EXAMPLE:
166  * loader> set hw.pm-disable-mask=0x2
167  *
168  * Common mask:
169  * |-------------------------------|
170  * | Device | Kirkwood | Discovery |
171  * |-------------------------------|
172  * | USB0   | 0x00008  | 0x020000  |
173  * |-------------------------------|
174  * | USB1   |     -    | 0x040000  |
175  * |-------------------------------|
176  * | USB2   |     -    | 0x080000  |
177  * |-------------------------------|
178  * | GE0    | 0x00001  | 0x000002  |
179  * |-------------------------------|
180  * | GE1    |     -    | 0x000004  |
181  * |-------------------------------|
182  * | IDMA   |     -    | 0x100000  |
183  * |-------------------------------|
184  * | XOR    | 0x10000  | 0x200000  |
185  * |-------------------------------|
186  * | CESA   | 0x20000  | 0x400000  |
187  * |-------------------------------|
188  * | SATA   | 0x04000  | 0x004000  |
189  * --------------------------------|
190  * This feature can be used only on Kirkwood and Discovery
191  * machines.
192  */
193 static __inline void
194 pm_disable_device(int mask)
195 {
196 #ifdef DIAGNOSTIC
197         uint32_t reg;
198
199         reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
200         printf("Power Management Register: 0%x\n", reg);
201
202         reg &= ~mask;
203         soc_power_ctrl_set(reg);
204         printf("Device %x is disabled\n", mask);
205
206         reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
207         printf("Power Management Register: 0%x\n", reg);
208 #endif
209 }
210
211 int
212 fdt_pm(phandle_t node)
213 {
214         uint32_t cpu_pm_ctrl;
215         int i, ena, compat;
216
217         ena = 1;
218         cpu_pm_ctrl = read_cpu_ctrl(CPU_PM_CTRL);
219         for (i = 0; fdt_pm_mask_table[i].compat != NULL; i++) {
220                 if (dev_mask & (1 << i))
221                         continue;
222
223                 compat = fdt_is_compatible(node, fdt_pm_mask_table[i].compat);
224
225                 if (compat && (~cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
226                         dev_mask |= (1 << i);
227                         ena = 0;
228                         break;
229                 } else if (compat) {
230                         dev_mask |= (1 << i);
231                         break;
232                 }
233         }
234
235         return (ena);
236 }
237
238 uint32_t
239 read_cpu_ctrl(uint32_t reg)
240 {
241
242         return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg));
243 }
244
245 void
246 write_cpu_ctrl(uint32_t reg, uint32_t val)
247 {
248
249         bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg, val);
250 }
251
252 #if defined(SOC_MV_ARMADAXP)
253 uint32_t
254 read_cpu_mp_clocks(uint32_t reg)
255 {
256
257         return (bus_space_read_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg));
258 }
259
260 void
261 write_cpu_mp_clocks(uint32_t reg, uint32_t val)
262 {
263
264         bus_space_write_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg, val);
265 }
266
267 uint32_t
268 read_cpu_misc(uint32_t reg)
269 {
270
271         return (bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE, reg));
272 }
273
274 void
275 write_cpu_misc(uint32_t reg, uint32_t val)
276 {
277
278         bus_space_write_4(fdtbus_bs_tag, MV_MISC_BASE, reg, val);
279 }
280 #endif
281
282 void
283 cpu_reset(void)
284 {
285
286 #if defined(SOC_MV_ARMADAXP)
287         write_cpu_misc(RSTOUTn_MASK, SOFT_RST_OUT_EN);
288         write_cpu_misc(SYSTEM_SOFT_RESET, SYS_SOFT_RST);
289 #else
290         write_cpu_ctrl(RSTOUTn_MASK, SOFT_RST_OUT_EN);
291         write_cpu_ctrl(SYSTEM_SOFT_RESET, SYS_SOFT_RST);
292 #endif
293         while (1);
294 }
295
296 uint32_t
297 cpu_extra_feat(void)
298 {
299         uint32_t dev, rev;
300         uint32_t ef = 0;
301
302         soc_id(&dev, &rev);
303
304         switch (dev) {
305         case MV_DEV_88F6281:
306         case MV_DEV_88F6282:
307         case MV_DEV_88RC8180:
308         case MV_DEV_MV78100_Z0:
309         case MV_DEV_MV78100:
310                 __asm __volatile("mrc p15, 1, %0, c15, c1, 0" : "=r" (ef));
311                 break;
312         case MV_DEV_88F5182:
313         case MV_DEV_88F5281:
314                 __asm __volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (ef));
315                 break;
316         default:
317                 if (bootverbose)
318                         printf("This ARM Core does not support any extra features\n");
319         }
320
321         return (ef);
322 }
323
324 /*
325  * Get the power status of device. This feature is only supported on
326  * Kirkwood and Discovery SoCs.
327  */
328 uint32_t
329 soc_power_ctrl_get(uint32_t mask)
330 {
331
332 #if !defined(SOC_MV_ORION) && !defined(SOC_MV_LOKIPLUS) && !defined(SOC_MV_FREY)
333         if (mask != CPU_PM_CTRL_NONE)
334                 mask &= read_cpu_ctrl(CPU_PM_CTRL);
335
336         return (mask);
337 #else
338         return (mask);
339 #endif
340 }
341
342 /*
343  * Set the power status of device. This feature is only supported on
344  * Kirkwood and Discovery SoCs.
345  */
346 void
347 soc_power_ctrl_set(uint32_t mask)
348 {
349
350 #if !defined(SOC_MV_ORION) && !defined(SOC_MV_LOKIPLUS)
351         if (mask != CPU_PM_CTRL_NONE)
352                 write_cpu_ctrl(CPU_PM_CTRL, mask);
353 #endif
354 }
355
356 void
357 soc_id(uint32_t *dev, uint32_t *rev)
358 {
359
360         /*
361          * Notice: system identifiers are available in the registers range of
362          * PCIE controller, so using this function is only allowed (and
363          * possible) after the internal registers range has been mapped in via
364          * pmap_devmap_bootstrap().
365          */
366         *dev = bus_space_read_4(fdtbus_bs_tag, MV_PCIE_BASE, 0) >> 16;
367         *rev = bus_space_read_4(fdtbus_bs_tag, MV_PCIE_BASE, 8) & 0xff;
368 }
369
370 static void
371 soc_identify(void)
372 {
373         uint32_t d, r, size, mode;
374         const char *dev;
375         const char *rev;
376
377         soc_id(&d, &r);
378
379         printf("SOC: ");
380         if (bootverbose)
381                 printf("(0x%4x:0x%02x) ", d, r);
382
383         rev = "";
384         switch (d) {
385         case MV_DEV_88F5181:
386                 dev = "Marvell 88F5181";
387                 if (r == 3)
388                         rev = "B1";
389                 break;
390         case MV_DEV_88F5182:
391                 dev = "Marvell 88F5182";
392                 if (r == 2)
393                         rev = "A2";
394                 break;
395         case MV_DEV_88F5281:
396                 dev = "Marvell 88F5281";
397                 if (r == 4)
398                         rev = "D0";
399                 else if (r == 5)
400                         rev = "D1";
401                 else if (r == 6)
402                         rev = "D2";
403                 break;
404         case MV_DEV_88F6281:
405                 dev = "Marvell 88F6281";
406                 if (r == 0)
407                         rev = "Z0";
408                 else if (r == 2)
409                         rev = "A0";
410                 else if (r == 3)
411                         rev = "A1";
412                 break;
413         case MV_DEV_88RC8180:
414                 dev = "Marvell 88RC8180";
415                 break;
416         case MV_DEV_88RC9480:
417                 dev = "Marvell 88RC9480";
418                 break;
419         case MV_DEV_88RC9580:
420                 dev = "Marvell 88RC9580";
421                 break;
422         case MV_DEV_88F6781:
423                 dev = "Marvell 88F6781";
424                 if (r == 2)
425                         rev = "Y0";
426                 break;
427         case MV_DEV_88F6282:
428                 dev = "Marvell 88F6282";
429                 if (r == 0)
430                         rev = "A0";
431                 else if (r == 1)
432                         rev = "A1";
433                 break;
434         case MV_DEV_MV78100_Z0:
435                 dev = "Marvell MV78100 Z0";
436                 break;
437         case MV_DEV_MV78100:
438                 dev = "Marvell MV78100";
439                 break;
440         case MV_DEV_MV78160:
441                 dev = "Marvell MV78160";
442                 break;
443         case MV_DEV_MV78260:
444                 dev = "Marvell MV78260";
445                 break;
446         case MV_DEV_MV78460:
447                 dev = "Marvell MV78460";
448                 break;
449         default:
450                 dev = "UNKNOWN";
451                 break;
452         }
453
454         printf("%s", dev);
455         if (*rev != '\0')
456                 printf(" rev %s", rev);
457         printf(", TClock %dMHz\n", get_tclk() / 1000 / 1000);
458
459         mode = read_cpu_ctrl(CPU_CONFIG);
460         printf("  Instruction cache prefetch %s, data cache prefetch %s\n",
461             (mode & CPU_CONFIG_IC_PREF) ? "enabled" : "disabled",
462             (mode & CPU_CONFIG_DC_PREF) ? "enabled" : "disabled");
463
464         switch (d) {
465         case MV_DEV_88F6281:
466         case MV_DEV_88F6282:
467                 mode = read_cpu_ctrl(CPU_L2_CONFIG) & CPU_L2_CONFIG_MODE;
468                 printf("  256KB 4-way set-associative %s unified L2 cache\n",
469                     mode ? "write-through" : "write-back");
470                 break;
471         case MV_DEV_MV78100:
472                 mode = read_cpu_ctrl(CPU_CONTROL);
473                 size = mode & CPU_CONTROL_L2_SIZE;
474                 mode = mode & CPU_CONTROL_L2_MODE;
475                 printf("  %s set-associative %s unified L2 cache\n",
476                     size ? "256KB 4-way" : "512KB 8-way",
477                     mode ? "write-through" : "write-back");
478                 break;
479         default:
480                 break;
481         }
482 }
483
484 static void
485 platform_identify(void *dummy)
486 {
487
488         soc_identify();
489
490         /*
491          * XXX Board identification e.g. read out from FPGA or similar should
492          * go here
493          */
494 }
495 SYSINIT(platform_identify, SI_SUB_CPU, SI_ORDER_SECOND, platform_identify,
496     NULL);
497
498 #ifdef KDB
499 static void
500 mv_enter_debugger(void *dummy)
501 {
502
503         if (boothowto & RB_KDB)
504                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
505 }
506 SYSINIT(mv_enter_debugger, SI_SUB_CPU, SI_ORDER_ANY, mv_enter_debugger, NULL);
507 #endif
508
509 int
510 soc_decode_win(void)
511 {
512         uint32_t dev, rev;
513         int mask, err;
514
515         mask = 0;
516         TUNABLE_INT_FETCH("hw.pm-disable-mask", &mask);
517
518         if (mask != 0)
519                 pm_disable_device(mask);
520
521         /* Retrieve data about physical addresses from device tree. */
522         if ((err = win_cpu_from_dt()) != 0)
523                 return (err);
524
525         /* Retrieve our ID: some windows facilities vary between SoC models */
526         soc_id(&dev, &rev);
527
528 #ifdef SOC_MV_ARMADAXP
529         if ((err = decode_win_sdram_fixup()) != 0)
530                 return(err);
531 #endif
532
533 #ifndef SOC_MV_FREY
534         if (!decode_win_cpu_valid() || !decode_win_usb_valid() ||
535             !decode_win_eth_valid() || !decode_win_idma_valid() ||
536             !decode_win_pcie_valid() || !decode_win_sata_valid() ||
537             !decode_win_xor_valid())
538                 return (EINVAL);
539
540         decode_win_cpu_setup();
541 #else
542         if (!decode_win_usb_valid() ||
543             !decode_win_eth_valid() || !decode_win_idma_valid() ||
544             !decode_win_pcie_valid() || !decode_win_sata_valid() ||
545             !decode_win_xor_valid())
546                 return (EINVAL);
547 #endif
548         if (MV_DUMP_WIN)
549                 soc_dump_decode_win();
550
551         eth_port = 0;
552         usb_port = 0;
553         if ((err = fdt_win_setup()) != 0)
554                 return (err);
555
556         return (0);
557 }
558
559 /**************************************************************************
560  * Decode windows registers accessors
561  **************************************************************************/
562 #if !defined(SOC_MV_FREY)
563 WIN_REG_IDX_RD(win_cpu, cr, MV_WIN_CPU_CTRL, MV_MBUS_BRIDGE_BASE)
564 WIN_REG_IDX_RD(win_cpu, br, MV_WIN_CPU_BASE, MV_MBUS_BRIDGE_BASE)
565 WIN_REG_IDX_RD(win_cpu, remap_l, MV_WIN_CPU_REMAP_LO, MV_MBUS_BRIDGE_BASE)
566 WIN_REG_IDX_RD(win_cpu, remap_h, MV_WIN_CPU_REMAP_HI, MV_MBUS_BRIDGE_BASE)
567 WIN_REG_IDX_WR(win_cpu, cr, MV_WIN_CPU_CTRL, MV_MBUS_BRIDGE_BASE)
568 WIN_REG_IDX_WR(win_cpu, br, MV_WIN_CPU_BASE, MV_MBUS_BRIDGE_BASE)
569 WIN_REG_IDX_WR(win_cpu, remap_l, MV_WIN_CPU_REMAP_LO, MV_MBUS_BRIDGE_BASE)
570 WIN_REG_IDX_WR(win_cpu, remap_h, MV_WIN_CPU_REMAP_HI, MV_MBUS_BRIDGE_BASE)
571 #endif
572
573 WIN_REG_BASE_IDX_RD(win_usb, cr, MV_WIN_USB_CTRL)
574 WIN_REG_BASE_IDX_RD(win_usb, br, MV_WIN_USB_BASE)
575 WIN_REG_BASE_IDX_WR(win_usb, cr, MV_WIN_USB_CTRL)
576 WIN_REG_BASE_IDX_WR(win_usb, br, MV_WIN_USB_BASE)
577
578 WIN_REG_BASE_IDX_RD(win_eth, br, MV_WIN_ETH_BASE)
579 WIN_REG_BASE_IDX_RD(win_eth, sz, MV_WIN_ETH_SIZE)
580 WIN_REG_BASE_IDX_RD(win_eth, har, MV_WIN_ETH_REMAP)
581 WIN_REG_BASE_IDX_WR(win_eth, br, MV_WIN_ETH_BASE)
582 WIN_REG_BASE_IDX_WR(win_eth, sz, MV_WIN_ETH_SIZE)
583 WIN_REG_BASE_IDX_WR(win_eth, har, MV_WIN_ETH_REMAP)
584
585 WIN_REG_BASE_IDX_RD2(win_xor, br, MV_WIN_XOR_BASE)
586 WIN_REG_BASE_IDX_RD2(win_xor, sz, MV_WIN_XOR_SIZE)
587 WIN_REG_BASE_IDX_RD2(win_xor, har, MV_WIN_XOR_REMAP)
588 WIN_REG_BASE_IDX_RD2(win_xor, ctrl, MV_WIN_XOR_CTRL)
589 WIN_REG_BASE_IDX_WR2(win_xor, br, MV_WIN_XOR_BASE)
590 WIN_REG_BASE_IDX_WR2(win_xor, sz, MV_WIN_XOR_SIZE)
591 WIN_REG_BASE_IDX_WR2(win_xor, har, MV_WIN_XOR_REMAP)
592 WIN_REG_BASE_IDX_WR2(win_xor, ctrl, MV_WIN_XOR_CTRL)
593
594 WIN_REG_BASE_RD(win_eth, bare, 0x290)
595 WIN_REG_BASE_RD(win_eth, epap, 0x294)
596 WIN_REG_BASE_WR(win_eth, bare, 0x290)
597 WIN_REG_BASE_WR(win_eth, epap, 0x294)
598
599 WIN_REG_BASE_IDX_RD(win_pcie, cr, MV_WIN_PCIE_CTRL);
600 WIN_REG_BASE_IDX_RD(win_pcie, br, MV_WIN_PCIE_BASE);
601 WIN_REG_BASE_IDX_RD(win_pcie, remap, MV_WIN_PCIE_REMAP);
602 WIN_REG_BASE_IDX_WR(win_pcie, cr, MV_WIN_PCIE_CTRL);
603 WIN_REG_BASE_IDX_WR(win_pcie, br, MV_WIN_PCIE_BASE);
604 WIN_REG_BASE_IDX_WR(win_pcie, remap, MV_WIN_PCIE_REMAP);
605 WIN_REG_BASE_IDX_RD(pcie_bar, br, MV_PCIE_BAR_BASE);
606 WIN_REG_BASE_IDX_WR(pcie_bar, br, MV_PCIE_BAR_BASE);
607 WIN_REG_BASE_IDX_WR(pcie_bar, brh, MV_PCIE_BAR_BASE_H);
608 WIN_REG_BASE_IDX_WR(pcie_bar, cr, MV_PCIE_BAR_CTRL);
609
610 WIN_REG_BASE_IDX_RD(win_idma, br, MV_WIN_IDMA_BASE)
611 WIN_REG_BASE_IDX_RD(win_idma, sz, MV_WIN_IDMA_SIZE)
612 WIN_REG_BASE_IDX_RD(win_idma, har, MV_WIN_IDMA_REMAP)
613 WIN_REG_BASE_IDX_RD(win_idma, cap, MV_WIN_IDMA_CAP)
614 WIN_REG_BASE_IDX_WR(win_idma, br, MV_WIN_IDMA_BASE)
615 WIN_REG_BASE_IDX_WR(win_idma, sz, MV_WIN_IDMA_SIZE)
616 WIN_REG_BASE_IDX_WR(win_idma, har, MV_WIN_IDMA_REMAP)
617 WIN_REG_BASE_IDX_WR(win_idma, cap, MV_WIN_IDMA_CAP)
618 WIN_REG_BASE_RD(win_idma, bare, 0xa80)
619 WIN_REG_BASE_WR(win_idma, bare, 0xa80)
620
621 WIN_REG_BASE_IDX_RD(win_sata, cr, MV_WIN_SATA_CTRL);
622 WIN_REG_BASE_IDX_RD(win_sata, br, MV_WIN_SATA_BASE);
623 WIN_REG_BASE_IDX_WR(win_sata, cr, MV_WIN_SATA_CTRL);
624 WIN_REG_BASE_IDX_WR(win_sata, br, MV_WIN_SATA_BASE);
625 #ifndef SOC_MV_DOVE
626 WIN_REG_IDX_RD(ddr, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
627 WIN_REG_IDX_RD(ddr, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
628 WIN_REG_IDX_WR(ddr, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
629 WIN_REG_IDX_WR(ddr, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
630 #else
631 /*
632  * On 88F6781 (Dove) SoC DDR Controller is accessed through
633  * single MBUS <-> AXI bridge. In this case we provide emulated
634  * ddr_br_read() and ddr_sz_read() functions to keep compatibility
635  * with common decoding windows setup code.
636  */
637
638 static inline uint32_t ddr_br_read(int i)
639 {
640         uint32_t mmap;
641
642         /* Read Memory Address Map Register for CS i */
643         mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
644
645         /* Return CS i base address */
646         return (mmap & 0xFF000000);
647 }
648
649 static inline uint32_t ddr_sz_read(int i)
650 {
651         uint32_t mmap, size;
652
653         /* Read Memory Address Map Register for CS i */
654         mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
655
656         /* Extract size of CS space in 64kB units */
657         size = (1 << ((mmap >> 16) & 0x0F));
658
659         /* Return CS size and enable/disable status */
660         return (((size - 1) << 16) | (mmap & 0x01));
661 }
662 #endif
663
664 #if !defined(SOC_MV_FREY)
665 /**************************************************************************
666  * Decode windows helper routines
667  **************************************************************************/
668 void
669 soc_dump_decode_win(void)
670 {
671         uint32_t dev, rev;
672         int i;
673
674         soc_id(&dev, &rev);
675
676         for (i = 0; i < MV_WIN_CPU_MAX; i++) {
677                 printf("CPU window#%d: c 0x%08x, b 0x%08x", i,
678                     win_cpu_cr_read(i),
679                     win_cpu_br_read(i));
680
681                 if (win_cpu_can_remap(i))
682                         printf(", rl 0x%08x, rh 0x%08x",
683                             win_cpu_remap_l_read(i),
684                             win_cpu_remap_h_read(i));
685
686                 printf("\n");
687         }
688         printf("Internal regs base: 0x%08x\n",
689             bus_space_read_4(fdtbus_bs_tag, MV_INTREGS_BASE, 0));
690
691         for (i = 0; i < MV_WIN_DDR_MAX; i++)
692                 printf("DDR CS#%d: b 0x%08x, s 0x%08x\n", i,
693                     ddr_br_read(i), ddr_sz_read(i));
694 }
695
696 /**************************************************************************
697  * CPU windows routines
698  **************************************************************************/
699 int
700 win_cpu_can_remap(int i)
701 {
702         uint32_t dev, rev;
703
704         soc_id(&dev, &rev);
705
706         /* Depending on the SoC certain windows have remap capability */
707         if ((dev == MV_DEV_88F5182 && i < 2) ||
708             (dev == MV_DEV_88F5281 && i < 4) ||
709             (dev == MV_DEV_88F6281 && i < 4) ||
710             (dev == MV_DEV_88F6282 && i < 4) ||
711             (dev == MV_DEV_88RC8180 && i < 2) ||
712             (dev == MV_DEV_88F6781 && i < 4) ||
713             (dev == MV_DEV_MV78100_Z0 && i < 8) ||
714             ((dev & MV_DEV_FAMILY_MASK) == MV_DEV_DISCOVERY && i < 8))
715                 return (1);
716
717         return (0);
718 }
719
720 /* XXX This should check for overlapping remap fields too.. */
721 int
722 decode_win_overlap(int win, int win_no, const struct decode_win *wintab)
723 {
724         const struct decode_win *tab;
725         int i;
726
727         tab = wintab;
728
729         for (i = 0; i < win_no; i++, tab++) {
730                 if (i == win)
731                         /* Skip self */
732                         continue;
733
734                 if ((tab->base + tab->size - 1) < (wintab + win)->base)
735                         continue;
736
737                 else if (((wintab + win)->base + (wintab + win)->size - 1) <
738                     tab->base)
739                         continue;
740                 else
741                         return (i);
742         }
743
744         return (-1);
745 }
746
747 static int
748 decode_win_cpu_valid(void)
749 {
750         int i, j, rv;
751         uint32_t b, e, s;
752
753         if (cpu_wins_no > MV_WIN_CPU_MAX) {
754                 printf("CPU windows: too many entries: %d\n", cpu_wins_no);
755                 return (0);
756         }
757
758         rv = 1;
759         for (i = 0; i < cpu_wins_no; i++) {
760
761                 if (cpu_wins[i].target == 0) {
762                         printf("CPU window#%d: DDR target window is not "
763                             "supposed to be reprogrammed!\n", i);
764                         rv = 0;
765                 }
766
767                 if (cpu_wins[i].remap != ~0 && win_cpu_can_remap(i) != 1) {
768                         printf("CPU window#%d: not capable of remapping, but "
769                             "val 0x%08x defined\n", i, cpu_wins[i].remap);
770                         rv = 0;
771                 }
772
773                 s = cpu_wins[i].size;
774                 b = cpu_wins[i].base;
775                 e = b + s - 1;
776                 if (s > (0xFFFFFFFF - b + 1)) {
777                         /*
778                          * XXX this boundary check should account for 64bit
779                          * and remapping..
780                          */
781                         printf("CPU window#%d: no space for size 0x%08x at "
782                             "0x%08x\n", i, s, b);
783                         rv = 0;
784                         continue;
785                 }
786
787                 if (b != (b & ~(s - 1))) {
788                         printf("CPU window#%d: address 0x%08x is not aligned "
789                             "to 0x%08x\n", i, b, s);
790                         rv = 0;
791                         continue;
792                 }
793
794                 j = decode_win_overlap(i, cpu_wins_no, &cpu_wins[0]);
795                 if (j >= 0) {
796                         printf("CPU window#%d: (0x%08x - 0x%08x) overlaps "
797                             "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
798                             cpu_wins[j].base,
799                             cpu_wins[j].base + cpu_wins[j].size - 1);
800                         rv = 0;
801                 }
802         }
803
804         return (rv);
805 }
806
807 int
808 decode_win_cpu_set(int target, int attr, vm_paddr_t base, uint32_t size,
809     vm_paddr_t remap)
810 {
811         uint32_t br, cr;
812         int win, i;
813
814         if (remap == ~0) {
815                 win = MV_WIN_CPU_MAX - 1;
816                 i = -1;
817         } else {
818                 win = 0;
819                 i = 1;
820         }
821
822         while ((win >= 0) && (win < MV_WIN_CPU_MAX)) {
823                 cr = win_cpu_cr_read(win);
824                 if ((cr & MV_WIN_CPU_ENABLE_BIT) == 0)
825                         break;
826                 if ((cr & ((0xff << MV_WIN_CPU_ATTR_SHIFT) |
827                     (0x1f << MV_WIN_CPU_TARGET_SHIFT))) ==
828                     ((attr << MV_WIN_CPU_ATTR_SHIFT) |
829                     (target << MV_WIN_CPU_TARGET_SHIFT)))
830                         break;
831                 win += i;
832         }
833         if ((win < 0) || (win >= MV_WIN_CPU_MAX) ||
834             ((remap != ~0) && (win_cpu_can_remap(win) == 0)))
835                 return (-1);
836
837         br = base & 0xffff0000;
838         win_cpu_br_write(win, br);
839
840         if (win_cpu_can_remap(win)) {
841                 if (remap != ~0) {
842                         win_cpu_remap_l_write(win, remap & 0xffff0000);
843                         win_cpu_remap_h_write(win, 0);
844                 } else {
845                         /*
846                          * Remap function is not used for a given window
847                          * (capable of remapping) - set remap field with the
848                          * same value as base.
849                          */
850                         win_cpu_remap_l_write(win, base & 0xffff0000);
851                         win_cpu_remap_h_write(win, 0);
852                 }
853         }
854
855         cr = ((size - 1) & 0xffff0000) | (attr << MV_WIN_CPU_ATTR_SHIFT) |
856             (target << MV_WIN_CPU_TARGET_SHIFT) | MV_WIN_CPU_ENABLE_BIT;
857         win_cpu_cr_write(win, cr);
858
859         return (0);
860 }
861
862 static void
863 decode_win_cpu_setup(void)
864 {
865         int i;
866
867         /* Disable all CPU windows */
868         for (i = 0; i < MV_WIN_CPU_MAX; i++) {
869                 win_cpu_cr_write(i, 0);
870                 win_cpu_br_write(i, 0);
871                 if (win_cpu_can_remap(i)) {
872                         win_cpu_remap_l_write(i, 0);
873                         win_cpu_remap_h_write(i, 0);
874                 }
875         }
876
877         for (i = 0; i < cpu_wins_no; i++)
878                 if (cpu_wins[i].target > 0)
879                         decode_win_cpu_set(cpu_wins[i].target,
880                             cpu_wins[i].attr, cpu_wins[i].base,
881                             cpu_wins[i].size, cpu_wins[i].remap);
882
883 }
884 #endif
885
886 #ifdef SOC_MV_ARMADAXP
887 static int
888 decode_win_sdram_fixup(void)
889 {
890         struct mem_region mr[FDT_MEM_REGIONS];
891         uint8_t window_valid[MV_WIN_DDR_MAX];
892         int mr_cnt, memsize, err, i, j;
893         uint32_t valid_win_num = 0;
894
895         /* Grab physical memory regions information from device tree. */
896         err = fdt_get_mem_regions(mr, &mr_cnt, &memsize);
897         if (err != 0)
898                 return (err);
899
900         for (i = 0; i < MV_WIN_DDR_MAX; i++)
901                 window_valid[i] = 0;
902
903         /* Try to match entries from device tree with settings from u-boot */
904         for (i = 0; i < mr_cnt; i++) {
905                 for (j = 0; j < MV_WIN_DDR_MAX; j++) {
906                         if (ddr_is_active(j) &&
907                             (ddr_base(j) == mr[i].mr_start) &&
908                             (ddr_size(j) == mr[i].mr_size)) {
909                                 window_valid[j] = 1;
910                                 valid_win_num++;
911                         }
912                 }
913         }
914
915         if (mr_cnt != valid_win_num)
916                 return (EINVAL);
917
918         /* Destroy windows without corresponding device tree entry */
919         for (j = 0; j < MV_WIN_DDR_MAX; j++) {
920                 if (ddr_is_active(j) && (window_valid[j] != 1)) {
921                         printf("Disabling SDRAM decoding window: %d\n", j);
922                         ddr_disable(j);
923                 }
924         }
925
926         return (0);
927 }
928 #endif
929 /*
930  * Check if we're able to cover all active DDR banks.
931  */
932 static int
933 decode_win_can_cover_ddr(int max)
934 {
935         int i, c;
936
937         c = 0;
938         for (i = 0; i < MV_WIN_DDR_MAX; i++)
939                 if (ddr_is_active(i))
940                         c++;
941
942         if (c > max) {
943                 printf("Unable to cover all active DDR banks: "
944                     "%d, available windows: %d\n", c, max);
945                 return (0);
946         }
947
948         return (1);
949 }
950
951 /**************************************************************************
952  * DDR windows routines
953  **************************************************************************/
954 int
955 ddr_is_active(int i)
956 {
957
958         if (ddr_sz_read(i) & 0x1)
959                 return (1);
960
961         return (0);
962 }
963
964 void
965 ddr_disable(int i)
966 {
967
968         ddr_sz_write(i, 0);
969         ddr_br_write(i, 0);
970 }
971
972 uint32_t
973 ddr_base(int i)
974 {
975
976         return (ddr_br_read(i) & 0xff000000);
977 }
978
979 uint32_t
980 ddr_size(int i)
981 {
982
983         return ((ddr_sz_read(i) | 0x00ffffff) + 1);
984 }
985
986 uint32_t
987 ddr_attr(int i)
988 {
989         uint32_t dev, rev;
990
991         soc_id(&dev, &rev);
992         if (dev == MV_DEV_88RC8180)
993                 return ((ddr_sz_read(i) & 0xf0) >> 4);
994         if (dev == MV_DEV_88F6781)
995                 return (0);
996
997         return (i == 0 ? 0xe :
998             (i == 1 ? 0xd :
999             (i == 2 ? 0xb :
1000             (i == 3 ? 0x7 : 0xff))));
1001 }
1002
1003 uint32_t
1004 ddr_target(int i)
1005 {
1006         uint32_t dev, rev;
1007
1008         soc_id(&dev, &rev);
1009         if (dev == MV_DEV_88RC8180) {
1010                 i = (ddr_sz_read(i) & 0xf0) >> 4;
1011                 return (i == 0xe ? 0xc :
1012                     (i == 0xd ? 0xd :
1013                     (i == 0xb ? 0xe :
1014                     (i == 0x7 ? 0xf : 0xc))));
1015         }
1016
1017         /*
1018          * On SOCs other than 88RC8180 Mbus unit ID for
1019          * DDR SDRAM controller is always 0x0.
1020          */
1021         return (0);
1022 }
1023
1024 /**************************************************************************
1025  * USB windows routines
1026  **************************************************************************/
1027 static int
1028 decode_win_usb_valid(void)
1029 {
1030
1031         return (decode_win_can_cover_ddr(MV_WIN_USB_MAX));
1032 }
1033
1034 static void
1035 decode_win_usb_dump(u_long base)
1036 {
1037         int i;
1038
1039         if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port - 1)))
1040                 return;
1041
1042         for (i = 0; i < MV_WIN_USB_MAX; i++)
1043                 printf("USB window#%d: c 0x%08x, b 0x%08x\n", i,
1044                     win_usb_cr_read(base, i), win_usb_br_read(base, i));
1045 }
1046
1047 /*
1048  * Set USB decode windows.
1049  */
1050 static void
1051 decode_win_usb_setup(u_long base)
1052 {
1053         uint32_t br, cr;
1054         int i, j;
1055
1056
1057         if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port)))
1058                 return;
1059
1060         usb_port++;
1061
1062         for (i = 0; i < MV_WIN_USB_MAX; i++) {
1063                 win_usb_cr_write(base, i, 0);
1064                 win_usb_br_write(base, i, 0);
1065         }
1066
1067         /* Only access to active DRAM banks is required */
1068         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1069                 if (ddr_is_active(i)) {
1070                         br = ddr_base(i);
1071                         /*
1072                          * XXX for 6281 we should handle Mbus write
1073                          * burst limit field in the ctrl reg
1074                          */
1075                         cr = (((ddr_size(i) - 1) & 0xffff0000) |
1076                             (ddr_attr(i) << 8) |
1077                             (ddr_target(i) << 4) | 1);
1078
1079                         /* Set the first free USB window */
1080                         for (j = 0; j < MV_WIN_USB_MAX; j++) {
1081                                 if (win_usb_cr_read(base, j) & 0x1)
1082                                         continue;
1083
1084                                 win_usb_br_write(base, j, br);
1085                                 win_usb_cr_write(base, j, cr);
1086                                 break;
1087                         }
1088                 }
1089         }
1090 }
1091
1092 /**************************************************************************
1093  * ETH windows routines
1094  **************************************************************************/
1095
1096 static int
1097 win_eth_can_remap(int i)
1098 {
1099
1100         /* ETH encode windows 0-3 have remap capability */
1101         if (i < 4)
1102                 return (1);
1103
1104         return (0);
1105 }
1106
1107 static int
1108 eth_bare_read(uint32_t base, int i)
1109 {
1110         uint32_t v;
1111
1112         v = win_eth_bare_read(base);
1113         v &= (1 << i);
1114
1115         return (v >> i);
1116 }
1117
1118 static void
1119 eth_bare_write(uint32_t base, int i, int val)
1120 {
1121         uint32_t v;
1122
1123         v = win_eth_bare_read(base);
1124         v &= ~(1 << i);
1125         v |= (val << i);
1126         win_eth_bare_write(base, v);
1127 }
1128
1129 static void
1130 eth_epap_write(uint32_t base, int i, int val)
1131 {
1132         uint32_t v;
1133
1134         v = win_eth_epap_read(base);
1135         v &= ~(0x3 << (i * 2));
1136         v |= (val << (i * 2));
1137         win_eth_epap_write(base, v);
1138 }
1139
1140 static void
1141 decode_win_eth_dump(u_long base)
1142 {
1143         int i;
1144
1145         if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port - 1)))
1146                 return;
1147
1148         for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1149                 printf("ETH window#%d: b 0x%08x, s 0x%08x", i,
1150                     win_eth_br_read(base, i),
1151                     win_eth_sz_read(base, i));
1152
1153                 if (win_eth_can_remap(i))
1154                         printf(", ha 0x%08x",
1155                             win_eth_har_read(base, i));
1156
1157                 printf("\n");
1158         }
1159         printf("ETH windows: bare 0x%08x, epap 0x%08x\n",
1160             win_eth_bare_read(base),
1161             win_eth_epap_read(base));
1162 }
1163
1164 #if defined(SOC_MV_LOKIPLUS)
1165 #define MV_WIN_ETH_DDR_TRGT(n)  0
1166 #else
1167 #define MV_WIN_ETH_DDR_TRGT(n)  ddr_target(n)
1168 #endif
1169
1170 static void
1171 decode_win_eth_setup(u_long base)
1172 {
1173         uint32_t br, sz;
1174         int i, j;
1175
1176         if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port)))
1177                 return;
1178
1179         eth_port++;
1180
1181         /* Disable, clear and revoke protection for all ETH windows */
1182         for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1183
1184                 eth_bare_write(base, i, 1);
1185                 eth_epap_write(base, i, 0);
1186                 win_eth_br_write(base, i, 0);
1187                 win_eth_sz_write(base, i, 0);
1188                 if (win_eth_can_remap(i))
1189                         win_eth_har_write(base, i, 0);
1190         }
1191
1192         /* Only access to active DRAM banks is required */
1193         for (i = 0; i < MV_WIN_DDR_MAX; i++)
1194                 if (ddr_is_active(i)) {
1195
1196                         br = ddr_base(i) | (ddr_attr(i) << 8) | MV_WIN_ETH_DDR_TRGT(i);
1197                         sz = ((ddr_size(i) - 1) & 0xffff0000);
1198
1199                         /* Set the first free ETH window */
1200                         for (j = 0; j < MV_WIN_ETH_MAX; j++) {
1201                                 if (eth_bare_read(base, j) == 0)
1202                                         continue;
1203
1204                                 win_eth_br_write(base, j, br);
1205                                 win_eth_sz_write(base, j, sz);
1206
1207                                 /* XXX remapping ETH windows not supported */
1208
1209                                 /* Set protection RW */
1210                                 eth_epap_write(base, j, 0x3);
1211
1212                                 /* Enable window */
1213                                 eth_bare_write(base, j, 0);
1214                                 break;
1215                         }
1216                 }
1217 }
1218
1219 static int
1220 decode_win_eth_valid(void)
1221 {
1222
1223         return (decode_win_can_cover_ddr(MV_WIN_ETH_MAX));
1224 }
1225
1226 /**************************************************************************
1227  * PCIE windows routines
1228  **************************************************************************/
1229
1230 void
1231 decode_win_pcie_setup(u_long base)
1232 {
1233         uint32_t size = 0, ddrbase = ~0;
1234         uint32_t cr, br;
1235         int i, j;
1236
1237         for (i = 0; i < MV_PCIE_BAR_MAX; i++) {
1238                 pcie_bar_br_write(base, i,
1239                     MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1240                 if (i < 3)
1241                         pcie_bar_brh_write(base, i, 0);
1242                 if (i > 0)
1243                         pcie_bar_cr_write(base, i, 0);
1244         }
1245
1246         for (i = 0; i < MV_WIN_PCIE_MAX; i++) {
1247                 win_pcie_cr_write(base, i, 0);
1248                 win_pcie_br_write(base, i, 0);
1249                 win_pcie_remap_write(base, i, 0);
1250         }
1251
1252         /* On End-Point only set BAR size to 1MB regardless of DDR size */
1253         if ((bus_space_read_4(fdtbus_bs_tag, base, MV_PCIE_CONTROL)
1254             & MV_PCIE_ROOT_CMPLX) == 0) {
1255                 pcie_bar_cr_write(base, 1, 0xf0000 | 1);
1256                 return;
1257         }
1258
1259         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1260                 if (ddr_is_active(i)) {
1261                         /* Map DDR to BAR 1 */
1262                         cr = (ddr_size(i) - 1) & 0xffff0000;
1263                         size += ddr_size(i) & 0xffff0000;
1264                         cr |= (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
1265                         br = ddr_base(i);
1266                         if (br < ddrbase)
1267                                 ddrbase = br;
1268
1269                         /* Use the first available PCIE window */
1270                         for (j = 0; j < MV_WIN_PCIE_MAX; j++) {
1271                                 if (win_pcie_cr_read(base, j) != 0)
1272                                         continue;
1273
1274                                 win_pcie_br_write(base, j, br);
1275                                 win_pcie_cr_write(base, j, cr);
1276                                 break;
1277                         }
1278                 }
1279         }
1280
1281         /*
1282          * Upper 16 bits in BAR register is interpreted as BAR size
1283          * (in 64 kB units) plus 64kB, so substract 0x10000
1284          * form value passed to register to get correct value.
1285          */
1286         size -= 0x10000;
1287         pcie_bar_cr_write(base, 1, size | 1);
1288         pcie_bar_br_write(base, 1, ddrbase |
1289             MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1290         pcie_bar_br_write(base, 0, fdt_immr_pa |
1291             MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1292 }
1293
1294 static int
1295 decode_win_pcie_valid(void)
1296 {
1297
1298         return (decode_win_can_cover_ddr(MV_WIN_PCIE_MAX));
1299 }
1300
1301 /**************************************************************************
1302  * IDMA windows routines
1303  **************************************************************************/
1304 #if defined(SOC_MV_ORION) || defined(SOC_MV_DISCOVERY)
1305 static int
1306 idma_bare_read(u_long base, int i)
1307 {
1308         uint32_t v;
1309
1310         v = win_idma_bare_read(base);
1311         v &= (1 << i);
1312
1313         return (v >> i);
1314 }
1315
1316 static void
1317 idma_bare_write(u_long base, int i, int val)
1318 {
1319         uint32_t v;
1320
1321         v = win_idma_bare_read(base);
1322         v &= ~(1 << i);
1323         v |= (val << i);
1324         win_idma_bare_write(base, v);
1325 }
1326
1327 /*
1328  * Sets channel protection 'val' for window 'w' on channel 'c'
1329  */
1330 static void
1331 idma_cap_write(u_long base, int c, int w, int val)
1332 {
1333         uint32_t v;
1334
1335         v = win_idma_cap_read(base, c);
1336         v &= ~(0x3 << (w * 2));
1337         v |= (val << (w * 2));
1338         win_idma_cap_write(base, c, v);
1339 }
1340
1341 /*
1342  * Set protection 'val' on all channels for window 'w'
1343  */
1344 static void
1345 idma_set_prot(u_long base, int w, int val)
1346 {
1347         int c;
1348
1349         for (c = 0; c < MV_IDMA_CHAN_MAX; c++)
1350                 idma_cap_write(base, c, w, val);
1351 }
1352
1353 static int
1354 win_idma_can_remap(int i)
1355 {
1356
1357         /* IDMA decode windows 0-3 have remap capability */
1358         if (i < 4)
1359                 return (1);
1360
1361         return (0);
1362 }
1363
1364 void
1365 decode_win_idma_setup(u_long base)
1366 {
1367         uint32_t br, sz;
1368         int i, j;
1369
1370         if (pm_is_disabled(CPU_PM_CTRL_IDMA))
1371                 return;
1372         /*
1373          * Disable and clear all IDMA windows, revoke protection for all channels
1374          */
1375         for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
1376
1377                 idma_bare_write(base, i, 1);
1378                 win_idma_br_write(base, i, 0);
1379                 win_idma_sz_write(base, i, 0);
1380                 if (win_idma_can_remap(i) == 1)
1381                         win_idma_har_write(base, i, 0);
1382         }
1383         for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
1384                 win_idma_cap_write(base, i, 0);
1385
1386         /*
1387          * Set up access to all active DRAM banks
1388          */
1389         for (i = 0; i < MV_WIN_DDR_MAX; i++)
1390                 if (ddr_is_active(i)) {
1391                         br = ddr_base(i) | (ddr_attr(i) << 8) | ddr_target(i);
1392                         sz = ((ddr_size(i) - 1) & 0xffff0000);
1393
1394                         /* Place DDR entries in non-remapped windows */
1395                         for (j = 0; j < MV_WIN_IDMA_MAX; j++)
1396                                 if (win_idma_can_remap(j) != 1 &&
1397                                     idma_bare_read(base, j) == 1) {
1398
1399                                         /* Configure window */
1400                                         win_idma_br_write(base, j, br);
1401                                         win_idma_sz_write(base, j, sz);
1402
1403                                         /* Set protection RW on all channels */
1404                                         idma_set_prot(base, j, 0x3);
1405
1406                                         /* Enable window */
1407                                         idma_bare_write(base, j, 0);
1408                                         break;
1409                                 }
1410                 }
1411
1412         /*
1413          * Remaining targets -- from statically defined table
1414          */
1415         for (i = 0; i < idma_wins_no; i++)
1416                 if (idma_wins[i].target > 0) {
1417                         br = (idma_wins[i].base & 0xffff0000) |
1418                             (idma_wins[i].attr << 8) | idma_wins[i].target;
1419                         sz = ((idma_wins[i].size - 1) & 0xffff0000);
1420
1421                         /* Set the first free IDMA window */
1422                         for (j = 0; j < MV_WIN_IDMA_MAX; j++) {
1423                                 if (idma_bare_read(base, j) == 0)
1424                                         continue;
1425
1426                                 /* Configure window */
1427                                 win_idma_br_write(base, j, br);
1428                                 win_idma_sz_write(base, j, sz);
1429                                 if (win_idma_can_remap(j) &&
1430                                     idma_wins[j].remap >= 0)
1431                                         win_idma_har_write(base, j,
1432                                             idma_wins[j].remap);
1433
1434                                 /* Set protection RW on all channels */
1435                                 idma_set_prot(base, j, 0x3);
1436
1437                                 /* Enable window */
1438                                 idma_bare_write(base, j, 0);
1439                                 break;
1440                         }
1441                 }
1442 }
1443
1444 int
1445 decode_win_idma_valid(void)
1446 {
1447         const struct decode_win *wintab;
1448         int c, i, j, rv;
1449         uint32_t b, e, s;
1450
1451         if (idma_wins_no > MV_WIN_IDMA_MAX) {
1452                 printf("IDMA windows: too many entries: %d\n", idma_wins_no);
1453                 return (0);
1454         }
1455         for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
1456                 if (ddr_is_active(i))
1457                         c++;
1458
1459         if (idma_wins_no > (MV_WIN_IDMA_MAX - c)) {
1460                 printf("IDMA windows: too many entries: %d, available: %d\n",
1461                     idma_wins_no, MV_WIN_IDMA_MAX - c);
1462                 return (0);
1463         }
1464
1465         wintab = idma_wins;
1466         rv = 1;
1467         for (i = 0; i < idma_wins_no; i++, wintab++) {
1468
1469                 if (wintab->target == 0) {
1470                         printf("IDMA window#%d: DDR target window is not "
1471                             "supposed to be reprogrammed!\n", i);
1472                         rv = 0;
1473                 }
1474
1475                 if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
1476                         printf("IDMA window#%d: not capable of remapping, but "
1477                             "val 0x%08x defined\n", i, wintab->remap);
1478                         rv = 0;
1479                 }
1480
1481                 s = wintab->size;
1482                 b = wintab->base;
1483                 e = b + s - 1;
1484                 if (s > (0xFFFFFFFF - b + 1)) {
1485                         /* XXX this boundary check should account for 64bit and
1486                          * remapping.. */
1487                         printf("IDMA window#%d: no space for size 0x%08x at "
1488                             "0x%08x\n", i, s, b);
1489                         rv = 0;
1490                         continue;
1491                 }
1492
1493                 j = decode_win_overlap(i, idma_wins_no, &idma_wins[0]);
1494                 if (j >= 0) {
1495                         printf("IDMA window#%d: (0x%08x - 0x%08x) overlaps "
1496                             "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
1497                             idma_wins[j].base,
1498                             idma_wins[j].base + idma_wins[j].size - 1);
1499                         rv = 0;
1500                 }
1501         }
1502
1503         return (rv);
1504 }
1505
1506 void
1507 decode_win_idma_dump(u_long base)
1508 {
1509         int i;
1510
1511         if (pm_is_disabled(CPU_PM_CTRL_IDMA))
1512                 return;
1513
1514         for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
1515                 printf("IDMA window#%d: b 0x%08x, s 0x%08x", i,
1516                     win_idma_br_read(base, i), win_idma_sz_read(base, i));
1517                 
1518                 if (win_idma_can_remap(i))
1519                         printf(", ha 0x%08x", win_idma_har_read(base, i));
1520
1521                 printf("\n");
1522         }
1523         for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
1524                 printf("IDMA channel#%d: ap 0x%08x\n", i,
1525                     win_idma_cap_read(base, i));
1526         printf("IDMA windows: bare 0x%08x\n", win_idma_bare_read(base));
1527 }
1528 #else
1529
1530 /* Provide dummy functions to satisfy the build for SoCs not equipped with IDMA */
1531 int
1532 decode_win_idma_valid(void)
1533 {
1534
1535         return (1);
1536 }
1537
1538 void
1539 decode_win_idma_setup(u_long base)
1540 {
1541 }
1542
1543 void
1544 decode_win_idma_dump(u_long base)
1545 {
1546 }
1547 #endif
1548
1549 /**************************************************************************
1550  * XOR windows routines
1551  **************************************************************************/
1552 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
1553 static int
1554 xor_ctrl_read(u_long base, int i, int c, int e)
1555 {
1556         uint32_t v;
1557         v = win_xor_ctrl_read(base, c, e);
1558         v &= (1 << i);
1559
1560         return (v >> i);
1561 }
1562
1563 static void
1564 xor_ctrl_write(u_long base, int i, int c, int e, int val)
1565 {
1566         uint32_t v;
1567
1568         v = win_xor_ctrl_read(base, c, e);
1569         v &= ~(1 << i);
1570         v |= (val << i);
1571         win_xor_ctrl_write(base, c, e, v);
1572 }
1573
1574 /*
1575  * Set channel protection 'val' for window 'w' on channel 'c'
1576  */
1577 static void
1578 xor_chan_write(u_long base, int c, int e, int w, int val)
1579 {
1580         uint32_t v;
1581
1582         v = win_xor_ctrl_read(base, c, e);
1583         v &= ~(0x3 << (w * 2 + 16));
1584         v |= (val << (w * 2 + 16));
1585         win_xor_ctrl_write(base, c, e, v);
1586 }
1587
1588 /*
1589  * Set protection 'val' on all channels for window 'w' on engine 'e'
1590  */
1591 static void
1592 xor_set_prot(u_long base, int w, int e, int val)
1593 {
1594         int c;
1595
1596         for (c = 0; c < MV_XOR_CHAN_MAX; c++)
1597                 xor_chan_write(base, c, e, w, val);
1598 }
1599
1600 static int
1601 win_xor_can_remap(int i)
1602 {
1603
1604         /* XOR decode windows 0-3 have remap capability */
1605         if (i < 4)
1606                 return (1);
1607
1608         return (0);
1609 }
1610
1611 static int
1612 xor_max_eng(void)
1613 {
1614         uint32_t dev, rev;
1615
1616         soc_id(&dev, &rev);
1617         switch (dev) {
1618         case MV_DEV_88F6281:
1619         case MV_DEV_88F6282:
1620         case MV_DEV_MV78130:
1621         case MV_DEV_MV78160:
1622         case MV_DEV_MV78230:
1623         case MV_DEV_MV78260:
1624         case MV_DEV_MV78460:
1625                 return (2);
1626         case MV_DEV_MV78100:
1627         case MV_DEV_MV78100_Z0:
1628                 return (1);
1629         default:
1630                 return (0);
1631         }
1632 }
1633
1634 static void
1635 xor_active_dram(u_long base, int c, int e, int *window)
1636 {
1637         uint32_t br, sz;
1638         int i, m, w;
1639
1640         /*
1641          * Set up access to all active DRAM banks
1642          */
1643         m = xor_max_eng();
1644         for (i = 0; i < m; i++)
1645                 if (ddr_is_active(i)) {
1646                         br = ddr_base(i) | (ddr_attr(i) << 8) |
1647                             ddr_target(i);
1648                         sz = ((ddr_size(i) - 1) & 0xffff0000);
1649
1650                         /* Place DDR entries in non-remapped windows */
1651                         for (w = 0; w < MV_WIN_XOR_MAX; w++)
1652                                 if (win_xor_can_remap(w) != 1 &&
1653                                     (xor_ctrl_read(base, w, c, e) == 0) &&
1654                                     w > *window) {
1655                                         /* Configure window */
1656                                         win_xor_br_write(base, w, e, br);
1657                                         win_xor_sz_write(base, w, e, sz);
1658
1659                                         /* Set protection RW on all channels */
1660                                         xor_set_prot(base, w, e, 0x3);
1661
1662                                         /* Enable window */
1663                                         xor_ctrl_write(base, w, c, e, 1);
1664                                         (*window)++;
1665                                         break;
1666                                 }
1667                 }
1668 }
1669
1670 void
1671 decode_win_xor_setup(u_long base)
1672 {
1673         uint32_t br, sz;
1674         int i, j, z, e = 1, m, window;
1675
1676         if (pm_is_disabled(CPU_PM_CTRL_XOR))
1677                 return;
1678
1679         /*
1680          * Disable and clear all XOR windows, revoke protection for all
1681          * channels
1682          */
1683         m = xor_max_eng();
1684         for (j = 0; j < m; j++, e--) {
1685
1686                 /* Number of non-remaped windows */
1687                 window = MV_XOR_NON_REMAP - 1;
1688
1689                 for (i = 0; i < MV_WIN_XOR_MAX; i++) {
1690                         win_xor_br_write(base, i, e, 0);
1691                         win_xor_sz_write(base, i, e, 0);
1692                 }
1693
1694                 if (win_xor_can_remap(i) == 1)
1695                         win_xor_har_write(base, i, e, 0);
1696
1697                 for (i = 0; i < MV_XOR_CHAN_MAX; i++) {
1698                         win_xor_ctrl_write(base, i, e, 0);
1699                         xor_active_dram(base, i, e, &window);
1700                 }
1701
1702                 /*
1703                  * Remaining targets -- from a statically defined table
1704                  */
1705                 for (i = 0; i < xor_wins_no; i++)
1706                         if (xor_wins[i].target > 0) {
1707                                 br = (xor_wins[i].base & 0xffff0000) |
1708                                     (xor_wins[i].attr << 8) |
1709                                     xor_wins[i].target;
1710                                 sz = ((xor_wins[i].size - 1) & 0xffff0000);
1711
1712                                 /* Set the first free XOR window */
1713                                 for (z = 0; z < MV_WIN_XOR_MAX; z++) {
1714                                         if (xor_ctrl_read(base, z, 0, e) &&
1715                                             xor_ctrl_read(base, z, 1, e))
1716                                                 continue;
1717
1718                                         /* Configure window */
1719                                         win_xor_br_write(base, z, e, br);
1720                                         win_xor_sz_write(base, z, e, sz);
1721                                         if (win_xor_can_remap(z) &&
1722                                             xor_wins[z].remap >= 0)
1723                                                 win_xor_har_write(base, z, e,
1724                                                     xor_wins[z].remap);
1725
1726                                         /* Set protection RW on all channels */
1727                                         xor_set_prot(base, z, e, 0x3);
1728
1729                                         /* Enable window */
1730                                         xor_ctrl_write(base, z, 0, e, 1);
1731                                         xor_ctrl_write(base, z, 1, e, 1);
1732                                         break;
1733                                 }
1734                         }
1735         }
1736 }
1737
1738 int
1739 decode_win_xor_valid(void)
1740 {
1741         const struct decode_win *wintab;
1742         int c, i, j, rv;
1743         uint32_t b, e, s;
1744
1745         if (xor_wins_no > MV_WIN_XOR_MAX) {
1746                 printf("XOR windows: too many entries: %d\n", xor_wins_no);
1747                 return (0);
1748         }
1749         for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
1750                 if (ddr_is_active(i))
1751                         c++;
1752
1753         if (xor_wins_no > (MV_WIN_XOR_MAX - c)) {
1754                 printf("XOR windows: too many entries: %d, available: %d\n",
1755                     xor_wins_no, MV_WIN_IDMA_MAX - c);
1756                 return (0);
1757         }
1758
1759         wintab = xor_wins;
1760         rv = 1;
1761         for (i = 0; i < xor_wins_no; i++, wintab++) {
1762
1763                 if (wintab->target == 0) {
1764                         printf("XOR window#%d: DDR target window is not "
1765                             "supposed to be reprogrammed!\n", i);
1766                         rv = 0;
1767                 }
1768
1769                 if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
1770                         printf("XOR window#%d: not capable of remapping, but "
1771                             "val 0x%08x defined\n", i, wintab->remap);
1772                         rv = 0;
1773                 }
1774
1775                 s = wintab->size;
1776                 b = wintab->base;
1777                 e = b + s - 1;
1778                 if (s > (0xFFFFFFFF - b + 1)) {
1779                         /*
1780                          * XXX this boundary check should account for 64bit
1781                          * and remapping..
1782                          */
1783                         printf("XOR window#%d: no space for size 0x%08x at "
1784                             "0x%08x\n", i, s, b);
1785                         rv = 0;
1786                         continue;
1787                 }
1788
1789                 j = decode_win_overlap(i, xor_wins_no, &xor_wins[0]);
1790                 if (j >= 0) {
1791                         printf("XOR window#%d: (0x%08x - 0x%08x) overlaps "
1792                             "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
1793                             xor_wins[j].base,
1794                             xor_wins[j].base + xor_wins[j].size - 1);
1795                         rv = 0;
1796                 }
1797         }
1798
1799         return (rv);
1800 }
1801
1802 void
1803 decode_win_xor_dump(u_long base)
1804 {
1805         int i, j;
1806         int e = 1;
1807
1808         if (pm_is_disabled(CPU_PM_CTRL_XOR))
1809                 return;
1810
1811         for (j = 0; j < xor_max_eng(); j++, e--) {
1812                 for (i = 0; i < MV_WIN_XOR_MAX; i++) {
1813                         printf("XOR window#%d: b 0x%08x, s 0x%08x", i,
1814                             win_xor_br_read(base, i, e), win_xor_sz_read(base, i, e));
1815
1816                         if (win_xor_can_remap(i))
1817                                 printf(", ha 0x%08x", win_xor_har_read(base, i, e));
1818
1819                         printf("\n");
1820                 }
1821                 for (i = 0; i < MV_XOR_CHAN_MAX; i++)
1822                         printf("XOR control#%d: 0x%08x\n", i,
1823                             win_xor_ctrl_read(base, i, e));
1824         }
1825 }
1826
1827 #else
1828 /* Provide dummy functions to satisfy the build for SoCs not equipped with XOR */
1829 static int
1830 decode_win_xor_valid(void)
1831 {
1832
1833         return (1);
1834 }
1835
1836 static void
1837 decode_win_xor_setup(u_long base)
1838 {
1839 }
1840
1841 static void
1842 decode_win_xor_dump(u_long base)
1843 {
1844 }
1845 #endif
1846
1847 /**************************************************************************
1848  * SATA windows routines
1849  **************************************************************************/
1850 static void
1851 decode_win_sata_setup(u_long base)
1852 {
1853         uint32_t cr, br;
1854         int i, j;
1855
1856         if (pm_is_disabled(CPU_PM_CTRL_SATA))
1857                 return;
1858
1859         for (i = 0; i < MV_WIN_SATA_MAX; i++) {
1860                 win_sata_cr_write(base, i, 0);
1861                 win_sata_br_write(base, i, 0);
1862         }
1863
1864         for (i = 0; i < MV_WIN_DDR_MAX; i++)
1865                 if (ddr_is_active(i)) {
1866                         cr = ((ddr_size(i) - 1) & 0xffff0000) |
1867                             (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
1868                         br = ddr_base(i);
1869
1870                         /* Use the first available SATA window */
1871                         for (j = 0; j < MV_WIN_SATA_MAX; j++) {
1872                                 if ((win_sata_cr_read(base, j) & 1) != 0)
1873                                         continue;
1874
1875                                 win_sata_br_write(base, j, br);
1876                                 win_sata_cr_write(base, j, cr);
1877                                 break;
1878                         }
1879                 }
1880 }
1881
1882 static int
1883 decode_win_sata_valid(void)
1884 {
1885         uint32_t dev, rev;
1886
1887         soc_id(&dev, &rev);
1888         if (dev == MV_DEV_88F5281)
1889                 return (1);
1890
1891         return (decode_win_can_cover_ddr(MV_WIN_SATA_MAX));
1892 }
1893
1894 /**************************************************************************
1895  * FDT parsing routines.
1896  **************************************************************************/
1897
1898 static int
1899 fdt_get_ranges(const char *nodename, void *buf, int size, int *tuples,
1900     int *tuplesize)
1901 {
1902         phandle_t node;
1903         pcell_t addr_cells, par_addr_cells, size_cells;
1904         int len, tuple_size, tuples_count;
1905
1906         node = OF_finddevice(nodename);
1907         if (node == -1)
1908                 return (EINVAL);
1909
1910         if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
1911                 return (ENXIO);
1912
1913         par_addr_cells = fdt_parent_addr_cells(node);
1914         if (par_addr_cells > 2)
1915                 return (ERANGE);
1916
1917         tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
1918             size_cells);
1919
1920         /* Note the OF_getprop_alloc() cannot be used at this early stage. */
1921         len = OF_getprop(node, "ranges", buf, size);
1922
1923         /*
1924          * XXX this does not handle the empty 'ranges;' case, which is
1925          * legitimate and should be allowed.
1926          */
1927         tuples_count = len / tuple_size;
1928         if (tuples_count <= 0)
1929                 return (ERANGE);
1930
1931         if (fdt_ranges_verify(buf, tuples_count, par_addr_cells,
1932             addr_cells, size_cells) != 0)
1933                 return (ERANGE);
1934
1935         *tuples = tuples_count;
1936         *tuplesize = tuple_size;
1937         return (0);
1938 }
1939
1940 static int
1941 win_cpu_from_dt(void)
1942 {
1943         pcell_t ranges[48];
1944         phandle_t node;
1945         int i, entry_size, err, t, tuple_size, tuples;
1946         u_long sram_base, sram_size;
1947
1948         t = 0;
1949         /* Retrieve 'ranges' property of '/localbus' node. */
1950         if ((err = fdt_get_ranges("/localbus", ranges, sizeof(ranges),
1951             &tuples, &tuple_size)) == 0) {
1952                 /*
1953                  * Fill CPU decode windows table.
1954                  */
1955                 bzero((void *)&cpu_win_tbl, sizeof(cpu_win_tbl));
1956
1957                 entry_size = tuple_size / sizeof(pcell_t);
1958                 cpu_wins_no = tuples;
1959
1960                 for (i = 0, t = 0; t < tuples; i += entry_size, t++) {
1961                         cpu_win_tbl[t].target = 1;
1962                         cpu_win_tbl[t].attr = fdt32_to_cpu(ranges[i + 1]);
1963                         cpu_win_tbl[t].base = fdt32_to_cpu(ranges[i + 2]);
1964                         cpu_win_tbl[t].size = fdt32_to_cpu(ranges[i + 3]);
1965                         cpu_win_tbl[t].remap = ~0;
1966                         debugf("target = 0x%0x attr = 0x%0x base = 0x%0x "
1967                             "size = 0x%0x remap = 0x%0x\n",
1968                             cpu_win_tbl[t].target,
1969                             cpu_win_tbl[t].attr, cpu_win_tbl[t].base,
1970                             cpu_win_tbl[t].size, cpu_win_tbl[t].remap);
1971                 }
1972         }
1973
1974         /*
1975          * Retrieve CESA SRAM data.
1976          */
1977         if ((node = OF_finddevice("sram")) != -1)
1978                 if (fdt_is_compatible(node, "mrvl,cesa-sram"))
1979                         goto moveon;
1980
1981         if ((node = OF_finddevice("/")) == 0)
1982                 return (ENXIO);
1983
1984         if ((node = fdt_find_compatible(node, "mrvl,cesa-sram", 0)) == 0)
1985                 /* SRAM block is not always present. */
1986                 return (0);
1987 moveon:
1988         sram_base = sram_size = 0;
1989         if (fdt_regsize(node, &sram_base, &sram_size) != 0)
1990                 return (EINVAL);
1991
1992         cpu_win_tbl[t].target = MV_WIN_CESA_TARGET;
1993         cpu_win_tbl[t].attr = MV_WIN_CESA_ATTR(1);
1994         cpu_win_tbl[t].base = sram_base;
1995         cpu_win_tbl[t].size = sram_size;
1996         cpu_win_tbl[t].remap = ~0;
1997         cpu_wins_no++;
1998         debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
1999
2000         return (0);
2001 }
2002
2003 static int
2004 fdt_win_setup(void)
2005 {
2006         phandle_t node, child;
2007         struct soc_node_spec *soc_node;
2008         u_long size, base;
2009         int err, i;
2010
2011         node = OF_finddevice("/");
2012         if (node == -1)
2013                 panic("fdt_win_setup: no root node");
2014
2015         /*
2016          * Traverse through all children of root and simple-bus nodes.
2017          * For each found device retrieve decode windows data (if applicable).
2018          */
2019         child = OF_child(node);
2020         while (child != 0) {
2021                 for (i = 0; soc_nodes[i].compat != NULL; i++) {
2022
2023                         soc_node = &soc_nodes[i];
2024
2025                         if (!fdt_is_compatible(child, soc_node->compat))
2026                                 continue;
2027
2028                         err = fdt_regsize(child, &base, &size);
2029                         if (err != 0)
2030                                 return (err);
2031
2032                         base = (base & 0x000fffff) | fdt_immr_va;
2033                         if (soc_node->decode_handler != NULL)
2034                                 soc_node->decode_handler(base);
2035                         else
2036                                 return (ENXIO);
2037
2038                         if (MV_DUMP_WIN && (soc_node->dump_handler != NULL))
2039                                 soc_node->dump_handler(base);
2040                 }
2041
2042                 /*
2043                  * Once done with root-level children let's move down to
2044                  * simple-bus and its children.
2045                  */
2046                 child = OF_peer(child);
2047                 if ((child == 0) && (node == OF_finddevice("/"))) {
2048                         node = fdt_find_compatible(node, "simple-bus", 1);
2049                         if (node == 0)
2050                                 return (ENXIO);
2051                         child = OF_child(node);
2052                 }
2053         }
2054
2055         return (0);
2056 }
2057
2058 static void
2059 fdt_fixup_busfreq(phandle_t root)
2060 {
2061         phandle_t sb;
2062         pcell_t freq;
2063
2064         freq = cpu_to_fdt32(get_tclk());
2065
2066         /*
2067          * Fix bus speed in cpu node
2068          */
2069         if ((sb = OF_finddevice("cpu")) != 0)
2070                 if (fdt_is_compatible_strict(sb, "ARM,88VS584"))
2071                         OF_setprop(sb, "bus-frequency", (void *)&freq,
2072                             sizeof(freq));
2073
2074         /*
2075          * This fixup sets the simple-bus bus-frequency property.
2076          */
2077         if ((sb = fdt_find_compatible(root, "simple-bus", 1)) != 0)
2078                 OF_setprop(sb, "bus-frequency", (void *)&freq, sizeof(freq));
2079 }
2080
2081 struct fdt_fixup_entry fdt_fixup_table[] = {
2082         { "mrvl,DB-88F6281", &fdt_fixup_busfreq },
2083         { "mrvl,DB-78460", &fdt_fixup_busfreq },
2084         { NULL, NULL }
2085 };
2086
2087 static int
2088 fdt_pic_decode_ic(phandle_t node, pcell_t *intr, int *interrupt, int *trig,
2089     int *pol)
2090 {
2091
2092         if (!fdt_is_compatible(node, "mrvl,pic") &&
2093             !fdt_is_compatible(node, "mrvl,mpic"))
2094                 return (ENXIO);
2095
2096         *interrupt = fdt32_to_cpu(intr[0]);
2097         *trig = INTR_TRIGGER_CONFORM;
2098         *pol = INTR_POLARITY_CONFORM;
2099
2100         return (0);
2101 }
2102
2103 fdt_pic_decode_t fdt_pic_table[] = {
2104         &fdt_pic_decode_ic,
2105         NULL
2106 };
2107
2108 uint64_t
2109 get_sar_value(void)
2110 {
2111         uint32_t sar_low, sar_high;
2112
2113 #if defined(SOC_MV_ARMADAXP)
2114         sar_high = bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE,
2115             SAMPLE_AT_RESET_HI);
2116         sar_low = bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE,
2117             SAMPLE_AT_RESET_LO);
2118 #else
2119         /*
2120          * TODO: Add getting proper values for other SoC configurations
2121          */
2122         sar_high = 0;
2123         sar_low = 0;
2124 #endif
2125
2126         return (((uint64_t)sar_high << 32) | sar_low);
2127 }