]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 by Delphix. All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/trim_map.h>
47
48 SYSCTL_DECL(_vfs_zfs);
49 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
50
51 /*
52  * Virtual device management.
53  */
54
55 /**
56  * The limit for ZFS to automatically increase a top-level vdev's ashift
57  * from logical ashift to physical ashift.
58  *
59  * Example: one or more 512B emulation child vdevs
60  *          child->vdev_ashift = 9 (512 bytes)
61  *          child->vdev_physical_ashift = 12 (4096 bytes)
62  *          zfs_max_auto_ashift = 11 (2048 bytes)
63  *
64  * On pool creation or the addition of a new top-leve vdev, ZFS will
65  * bump the ashift of the top-level vdev to 2048.
66  *
67  * Example: one or more 512B emulation child vdevs
68  *          child->vdev_ashift = 9 (512 bytes)
69  *          child->vdev_physical_ashift = 12 (4096 bytes)
70  *          zfs_max_auto_ashift = 13 (8192 bytes)
71  *
72  * On pool creation or the addition of a new top-leve vdev, ZFS will
73  * bump the ashift of the top-level vdev to 4096.
74  */
75 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
76
77 static int
78 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
79 {
80         uint64_t val;
81         int err;
82
83         val = zfs_max_auto_ashift;
84         err = sysctl_handle_64(oidp, &val, 0, req);
85         if (err != 0 || req->newptr == NULL)
86                 return (err);
87
88         if (val > SPA_MAXASHIFT)
89                 val = SPA_MAXASHIFT;
90
91         zfs_max_auto_ashift = val;
92
93         return (0);
94 }
95 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
96     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
97     sysctl_vfs_zfs_max_auto_ashift, "QU",
98     "Cap on logical -> physical ashift adjustment on new top-level vdevs.");
99
100 static vdev_ops_t *vdev_ops_table[] = {
101         &vdev_root_ops,
102         &vdev_raidz_ops,
103         &vdev_mirror_ops,
104         &vdev_replacing_ops,
105         &vdev_spare_ops,
106 #ifdef _KERNEL
107         &vdev_geom_ops,
108 #else
109         &vdev_disk_ops,
110 #endif
111         &vdev_file_ops,
112         &vdev_missing_ops,
113         &vdev_hole_ops,
114         NULL
115 };
116
117
118 /*
119  * Given a vdev type, return the appropriate ops vector.
120  */
121 static vdev_ops_t *
122 vdev_getops(const char *type)
123 {
124         vdev_ops_t *ops, **opspp;
125
126         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
127                 if (strcmp(ops->vdev_op_type, type) == 0)
128                         break;
129
130         return (ops);
131 }
132
133 /*
134  * Default asize function: return the MAX of psize with the asize of
135  * all children.  This is what's used by anything other than RAID-Z.
136  */
137 uint64_t
138 vdev_default_asize(vdev_t *vd, uint64_t psize)
139 {
140         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
141         uint64_t csize;
142
143         for (int c = 0; c < vd->vdev_children; c++) {
144                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
145                 asize = MAX(asize, csize);
146         }
147
148         return (asize);
149 }
150
151 /*
152  * Get the minimum allocatable size. We define the allocatable size as
153  * the vdev's asize rounded to the nearest metaslab. This allows us to
154  * replace or attach devices which don't have the same physical size but
155  * can still satisfy the same number of allocations.
156  */
157 uint64_t
158 vdev_get_min_asize(vdev_t *vd)
159 {
160         vdev_t *pvd = vd->vdev_parent;
161
162         /*
163          * If our parent is NULL (inactive spare or cache) or is the root,
164          * just return our own asize.
165          */
166         if (pvd == NULL)
167                 return (vd->vdev_asize);
168
169         /*
170          * The top-level vdev just returns the allocatable size rounded
171          * to the nearest metaslab.
172          */
173         if (vd == vd->vdev_top)
174                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
175
176         /*
177          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
178          * so each child must provide at least 1/Nth of its asize.
179          */
180         if (pvd->vdev_ops == &vdev_raidz_ops)
181                 return (pvd->vdev_min_asize / pvd->vdev_children);
182
183         return (pvd->vdev_min_asize);
184 }
185
186 void
187 vdev_set_min_asize(vdev_t *vd)
188 {
189         vd->vdev_min_asize = vdev_get_min_asize(vd);
190
191         for (int c = 0; c < vd->vdev_children; c++)
192                 vdev_set_min_asize(vd->vdev_child[c]);
193 }
194
195 vdev_t *
196 vdev_lookup_top(spa_t *spa, uint64_t vdev)
197 {
198         vdev_t *rvd = spa->spa_root_vdev;
199
200         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
201
202         if (vdev < rvd->vdev_children) {
203                 ASSERT(rvd->vdev_child[vdev] != NULL);
204                 return (rvd->vdev_child[vdev]);
205         }
206
207         return (NULL);
208 }
209
210 vdev_t *
211 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
212 {
213         vdev_t *mvd;
214
215         if (vd->vdev_guid == guid)
216                 return (vd);
217
218         for (int c = 0; c < vd->vdev_children; c++)
219                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
220                     NULL)
221                         return (mvd);
222
223         return (NULL);
224 }
225
226 void
227 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
228 {
229         size_t oldsize, newsize;
230         uint64_t id = cvd->vdev_id;
231         vdev_t **newchild;
232
233         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
234         ASSERT(cvd->vdev_parent == NULL);
235
236         cvd->vdev_parent = pvd;
237
238         if (pvd == NULL)
239                 return;
240
241         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
242
243         oldsize = pvd->vdev_children * sizeof (vdev_t *);
244         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
245         newsize = pvd->vdev_children * sizeof (vdev_t *);
246
247         newchild = kmem_zalloc(newsize, KM_SLEEP);
248         if (pvd->vdev_child != NULL) {
249                 bcopy(pvd->vdev_child, newchild, oldsize);
250                 kmem_free(pvd->vdev_child, oldsize);
251         }
252
253         pvd->vdev_child = newchild;
254         pvd->vdev_child[id] = cvd;
255
256         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
257         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
258
259         /*
260          * Walk up all ancestors to update guid sum.
261          */
262         for (; pvd != NULL; pvd = pvd->vdev_parent)
263                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
264 }
265
266 void
267 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
268 {
269         int c;
270         uint_t id = cvd->vdev_id;
271
272         ASSERT(cvd->vdev_parent == pvd);
273
274         if (pvd == NULL)
275                 return;
276
277         ASSERT(id < pvd->vdev_children);
278         ASSERT(pvd->vdev_child[id] == cvd);
279
280         pvd->vdev_child[id] = NULL;
281         cvd->vdev_parent = NULL;
282
283         for (c = 0; c < pvd->vdev_children; c++)
284                 if (pvd->vdev_child[c])
285                         break;
286
287         if (c == pvd->vdev_children) {
288                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
289                 pvd->vdev_child = NULL;
290                 pvd->vdev_children = 0;
291         }
292
293         /*
294          * Walk up all ancestors to update guid sum.
295          */
296         for (; pvd != NULL; pvd = pvd->vdev_parent)
297                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
298 }
299
300 /*
301  * Remove any holes in the child array.
302  */
303 void
304 vdev_compact_children(vdev_t *pvd)
305 {
306         vdev_t **newchild, *cvd;
307         int oldc = pvd->vdev_children;
308         int newc;
309
310         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
311
312         for (int c = newc = 0; c < oldc; c++)
313                 if (pvd->vdev_child[c])
314                         newc++;
315
316         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
317
318         for (int c = newc = 0; c < oldc; c++) {
319                 if ((cvd = pvd->vdev_child[c]) != NULL) {
320                         newchild[newc] = cvd;
321                         cvd->vdev_id = newc++;
322                 }
323         }
324
325         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
326         pvd->vdev_child = newchild;
327         pvd->vdev_children = newc;
328 }
329
330 /*
331  * Allocate and minimally initialize a vdev_t.
332  */
333 vdev_t *
334 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
335 {
336         vdev_t *vd;
337
338         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
339
340         if (spa->spa_root_vdev == NULL) {
341                 ASSERT(ops == &vdev_root_ops);
342                 spa->spa_root_vdev = vd;
343                 spa->spa_load_guid = spa_generate_guid(NULL);
344         }
345
346         if (guid == 0 && ops != &vdev_hole_ops) {
347                 if (spa->spa_root_vdev == vd) {
348                         /*
349                          * The root vdev's guid will also be the pool guid,
350                          * which must be unique among all pools.
351                          */
352                         guid = spa_generate_guid(NULL);
353                 } else {
354                         /*
355                          * Any other vdev's guid must be unique within the pool.
356                          */
357                         guid = spa_generate_guid(spa);
358                 }
359                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
360         }
361
362         vd->vdev_spa = spa;
363         vd->vdev_id = id;
364         vd->vdev_guid = guid;
365         vd->vdev_guid_sum = guid;
366         vd->vdev_ops = ops;
367         vd->vdev_state = VDEV_STATE_CLOSED;
368         vd->vdev_ishole = (ops == &vdev_hole_ops);
369
370         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
371         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
372         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
373         for (int t = 0; t < DTL_TYPES; t++) {
374                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
375                     &vd->vdev_dtl_lock);
376         }
377         txg_list_create(&vd->vdev_ms_list,
378             offsetof(struct metaslab, ms_txg_node));
379         txg_list_create(&vd->vdev_dtl_list,
380             offsetof(struct vdev, vdev_dtl_node));
381         vd->vdev_stat.vs_timestamp = gethrtime();
382         vdev_queue_init(vd);
383         vdev_cache_init(vd);
384
385         return (vd);
386 }
387
388 /*
389  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
390  * creating a new vdev or loading an existing one - the behavior is slightly
391  * different for each case.
392  */
393 int
394 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
395     int alloctype)
396 {
397         vdev_ops_t *ops;
398         char *type;
399         uint64_t guid = 0, islog, nparity;
400         vdev_t *vd;
401
402         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
403
404         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
405                 return (SET_ERROR(EINVAL));
406
407         if ((ops = vdev_getops(type)) == NULL)
408                 return (SET_ERROR(EINVAL));
409
410         /*
411          * If this is a load, get the vdev guid from the nvlist.
412          * Otherwise, vdev_alloc_common() will generate one for us.
413          */
414         if (alloctype == VDEV_ALLOC_LOAD) {
415                 uint64_t label_id;
416
417                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
418                     label_id != id)
419                         return (SET_ERROR(EINVAL));
420
421                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
422                         return (SET_ERROR(EINVAL));
423         } else if (alloctype == VDEV_ALLOC_SPARE) {
424                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
425                         return (SET_ERROR(EINVAL));
426         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
427                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
428                         return (SET_ERROR(EINVAL));
429         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
430                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
431                         return (SET_ERROR(EINVAL));
432         }
433
434         /*
435          * The first allocated vdev must be of type 'root'.
436          */
437         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
438                 return (SET_ERROR(EINVAL));
439
440         /*
441          * Determine whether we're a log vdev.
442          */
443         islog = 0;
444         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
445         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
446                 return (SET_ERROR(ENOTSUP));
447
448         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
449                 return (SET_ERROR(ENOTSUP));
450
451         /*
452          * Set the nparity property for RAID-Z vdevs.
453          */
454         nparity = -1ULL;
455         if (ops == &vdev_raidz_ops) {
456                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
457                     &nparity) == 0) {
458                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
459                                 return (SET_ERROR(EINVAL));
460                         /*
461                          * Previous versions could only support 1 or 2 parity
462                          * device.
463                          */
464                         if (nparity > 1 &&
465                             spa_version(spa) < SPA_VERSION_RAIDZ2)
466                                 return (SET_ERROR(ENOTSUP));
467                         if (nparity > 2 &&
468                             spa_version(spa) < SPA_VERSION_RAIDZ3)
469                                 return (SET_ERROR(ENOTSUP));
470                 } else {
471                         /*
472                          * We require the parity to be specified for SPAs that
473                          * support multiple parity levels.
474                          */
475                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
476                                 return (SET_ERROR(EINVAL));
477                         /*
478                          * Otherwise, we default to 1 parity device for RAID-Z.
479                          */
480                         nparity = 1;
481                 }
482         } else {
483                 nparity = 0;
484         }
485         ASSERT(nparity != -1ULL);
486
487         vd = vdev_alloc_common(spa, id, guid, ops);
488
489         vd->vdev_islog = islog;
490         vd->vdev_nparity = nparity;
491
492         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
493                 vd->vdev_path = spa_strdup(vd->vdev_path);
494         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
495                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
496         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
497             &vd->vdev_physpath) == 0)
498                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
499         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
500                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
501
502         /*
503          * Set the whole_disk property.  If it's not specified, leave the value
504          * as -1.
505          */
506         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
507             &vd->vdev_wholedisk) != 0)
508                 vd->vdev_wholedisk = -1ULL;
509
510         /*
511          * Look for the 'not present' flag.  This will only be set if the device
512          * was not present at the time of import.
513          */
514         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
515             &vd->vdev_not_present);
516
517         /*
518          * Get the alignment requirement.
519          */
520         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
521
522         /*
523          * Retrieve the vdev creation time.
524          */
525         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
526             &vd->vdev_crtxg);
527
528         /*
529          * If we're a top-level vdev, try to load the allocation parameters.
530          */
531         if (parent && !parent->vdev_parent &&
532             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
533                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
534                     &vd->vdev_ms_array);
535                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
536                     &vd->vdev_ms_shift);
537                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
538                     &vd->vdev_asize);
539                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
540                     &vd->vdev_removing);
541         }
542
543         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
544                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
545                     alloctype == VDEV_ALLOC_ADD ||
546                     alloctype == VDEV_ALLOC_SPLIT ||
547                     alloctype == VDEV_ALLOC_ROOTPOOL);
548                 vd->vdev_mg = metaslab_group_create(islog ?
549                     spa_log_class(spa) : spa_normal_class(spa), vd);
550         }
551
552         /*
553          * If we're a leaf vdev, try to load the DTL object and other state.
554          */
555         if (vd->vdev_ops->vdev_op_leaf &&
556             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
557             alloctype == VDEV_ALLOC_ROOTPOOL)) {
558                 if (alloctype == VDEV_ALLOC_LOAD) {
559                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
560                             &vd->vdev_dtl_smo.smo_object);
561                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
562                             &vd->vdev_unspare);
563                 }
564
565                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
566                         uint64_t spare = 0;
567
568                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
569                             &spare) == 0 && spare)
570                                 spa_spare_add(vd);
571                 }
572
573                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
574                     &vd->vdev_offline);
575
576                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
577                     &vd->vdev_resilver_txg);
578
579                 /*
580                  * When importing a pool, we want to ignore the persistent fault
581                  * state, as the diagnosis made on another system may not be
582                  * valid in the current context.  Local vdevs will
583                  * remain in the faulted state.
584                  */
585                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
586                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
587                             &vd->vdev_faulted);
588                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
589                             &vd->vdev_degraded);
590                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
591                             &vd->vdev_removed);
592
593                         if (vd->vdev_faulted || vd->vdev_degraded) {
594                                 char *aux;
595
596                                 vd->vdev_label_aux =
597                                     VDEV_AUX_ERR_EXCEEDED;
598                                 if (nvlist_lookup_string(nv,
599                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
600                                     strcmp(aux, "external") == 0)
601                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
602                         }
603                 }
604         }
605
606         /*
607          * Add ourselves to the parent's list of children.
608          */
609         vdev_add_child(parent, vd);
610
611         *vdp = vd;
612
613         return (0);
614 }
615
616 void
617 vdev_free(vdev_t *vd)
618 {
619         spa_t *spa = vd->vdev_spa;
620
621         /*
622          * vdev_free() implies closing the vdev first.  This is simpler than
623          * trying to ensure complicated semantics for all callers.
624          */
625         vdev_close(vd);
626
627         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
628         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
629
630         /*
631          * Free all children.
632          */
633         for (int c = 0; c < vd->vdev_children; c++)
634                 vdev_free(vd->vdev_child[c]);
635
636         ASSERT(vd->vdev_child == NULL);
637         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
638
639         /*
640          * Discard allocation state.
641          */
642         if (vd->vdev_mg != NULL) {
643                 vdev_metaslab_fini(vd);
644                 metaslab_group_destroy(vd->vdev_mg);
645         }
646
647         ASSERT0(vd->vdev_stat.vs_space);
648         ASSERT0(vd->vdev_stat.vs_dspace);
649         ASSERT0(vd->vdev_stat.vs_alloc);
650
651         /*
652          * Remove this vdev from its parent's child list.
653          */
654         vdev_remove_child(vd->vdev_parent, vd);
655
656         ASSERT(vd->vdev_parent == NULL);
657
658         /*
659          * Clean up vdev structure.
660          */
661         vdev_queue_fini(vd);
662         vdev_cache_fini(vd);
663
664         if (vd->vdev_path)
665                 spa_strfree(vd->vdev_path);
666         if (vd->vdev_devid)
667                 spa_strfree(vd->vdev_devid);
668         if (vd->vdev_physpath)
669                 spa_strfree(vd->vdev_physpath);
670         if (vd->vdev_fru)
671                 spa_strfree(vd->vdev_fru);
672
673         if (vd->vdev_isspare)
674                 spa_spare_remove(vd);
675         if (vd->vdev_isl2cache)
676                 spa_l2cache_remove(vd);
677
678         txg_list_destroy(&vd->vdev_ms_list);
679         txg_list_destroy(&vd->vdev_dtl_list);
680
681         mutex_enter(&vd->vdev_dtl_lock);
682         for (int t = 0; t < DTL_TYPES; t++) {
683                 space_map_unload(&vd->vdev_dtl[t]);
684                 space_map_destroy(&vd->vdev_dtl[t]);
685         }
686         mutex_exit(&vd->vdev_dtl_lock);
687
688         mutex_destroy(&vd->vdev_dtl_lock);
689         mutex_destroy(&vd->vdev_stat_lock);
690         mutex_destroy(&vd->vdev_probe_lock);
691
692         if (vd == spa->spa_root_vdev)
693                 spa->spa_root_vdev = NULL;
694
695         kmem_free(vd, sizeof (vdev_t));
696 }
697
698 /*
699  * Transfer top-level vdev state from svd to tvd.
700  */
701 static void
702 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
703 {
704         spa_t *spa = svd->vdev_spa;
705         metaslab_t *msp;
706         vdev_t *vd;
707         int t;
708
709         ASSERT(tvd == tvd->vdev_top);
710
711         tvd->vdev_ms_array = svd->vdev_ms_array;
712         tvd->vdev_ms_shift = svd->vdev_ms_shift;
713         tvd->vdev_ms_count = svd->vdev_ms_count;
714
715         svd->vdev_ms_array = 0;
716         svd->vdev_ms_shift = 0;
717         svd->vdev_ms_count = 0;
718
719         if (tvd->vdev_mg)
720                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
721         tvd->vdev_mg = svd->vdev_mg;
722         tvd->vdev_ms = svd->vdev_ms;
723
724         svd->vdev_mg = NULL;
725         svd->vdev_ms = NULL;
726
727         if (tvd->vdev_mg != NULL)
728                 tvd->vdev_mg->mg_vd = tvd;
729
730         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
731         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
732         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
733
734         svd->vdev_stat.vs_alloc = 0;
735         svd->vdev_stat.vs_space = 0;
736         svd->vdev_stat.vs_dspace = 0;
737
738         for (t = 0; t < TXG_SIZE; t++) {
739                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
740                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
741                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
742                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
743                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
744                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
745         }
746
747         if (list_link_active(&svd->vdev_config_dirty_node)) {
748                 vdev_config_clean(svd);
749                 vdev_config_dirty(tvd);
750         }
751
752         if (list_link_active(&svd->vdev_state_dirty_node)) {
753                 vdev_state_clean(svd);
754                 vdev_state_dirty(tvd);
755         }
756
757         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
758         svd->vdev_deflate_ratio = 0;
759
760         tvd->vdev_islog = svd->vdev_islog;
761         svd->vdev_islog = 0;
762 }
763
764 static void
765 vdev_top_update(vdev_t *tvd, vdev_t *vd)
766 {
767         if (vd == NULL)
768                 return;
769
770         vd->vdev_top = tvd;
771
772         for (int c = 0; c < vd->vdev_children; c++)
773                 vdev_top_update(tvd, vd->vdev_child[c]);
774 }
775
776 /*
777  * Add a mirror/replacing vdev above an existing vdev.
778  */
779 vdev_t *
780 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
781 {
782         spa_t *spa = cvd->vdev_spa;
783         vdev_t *pvd = cvd->vdev_parent;
784         vdev_t *mvd;
785
786         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
787
788         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
789
790         mvd->vdev_asize = cvd->vdev_asize;
791         mvd->vdev_min_asize = cvd->vdev_min_asize;
792         mvd->vdev_max_asize = cvd->vdev_max_asize;
793         mvd->vdev_ashift = cvd->vdev_ashift;
794         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
795         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
796         mvd->vdev_state = cvd->vdev_state;
797         mvd->vdev_crtxg = cvd->vdev_crtxg;
798
799         vdev_remove_child(pvd, cvd);
800         vdev_add_child(pvd, mvd);
801         cvd->vdev_id = mvd->vdev_children;
802         vdev_add_child(mvd, cvd);
803         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
804
805         if (mvd == mvd->vdev_top)
806                 vdev_top_transfer(cvd, mvd);
807
808         return (mvd);
809 }
810
811 /*
812  * Remove a 1-way mirror/replacing vdev from the tree.
813  */
814 void
815 vdev_remove_parent(vdev_t *cvd)
816 {
817         vdev_t *mvd = cvd->vdev_parent;
818         vdev_t *pvd = mvd->vdev_parent;
819
820         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
821
822         ASSERT(mvd->vdev_children == 1);
823         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
824             mvd->vdev_ops == &vdev_replacing_ops ||
825             mvd->vdev_ops == &vdev_spare_ops);
826         cvd->vdev_ashift = mvd->vdev_ashift;
827         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
828         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
829
830         vdev_remove_child(mvd, cvd);
831         vdev_remove_child(pvd, mvd);
832
833         /*
834          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
835          * Otherwise, we could have detached an offline device, and when we
836          * go to import the pool we'll think we have two top-level vdevs,
837          * instead of a different version of the same top-level vdev.
838          */
839         if (mvd->vdev_top == mvd) {
840                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
841                 cvd->vdev_orig_guid = cvd->vdev_guid;
842                 cvd->vdev_guid += guid_delta;
843                 cvd->vdev_guid_sum += guid_delta;
844         }
845         cvd->vdev_id = mvd->vdev_id;
846         vdev_add_child(pvd, cvd);
847         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
848
849         if (cvd == cvd->vdev_top)
850                 vdev_top_transfer(mvd, cvd);
851
852         ASSERT(mvd->vdev_children == 0);
853         vdev_free(mvd);
854 }
855
856 int
857 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
858 {
859         spa_t *spa = vd->vdev_spa;
860         objset_t *mos = spa->spa_meta_objset;
861         uint64_t m;
862         uint64_t oldc = vd->vdev_ms_count;
863         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
864         metaslab_t **mspp;
865         int error;
866
867         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
868
869         /*
870          * This vdev is not being allocated from yet or is a hole.
871          */
872         if (vd->vdev_ms_shift == 0)
873                 return (0);
874
875         ASSERT(!vd->vdev_ishole);
876
877         /*
878          * Compute the raidz-deflation ratio.  Note, we hard-code
879          * in 128k (1 << 17) because it is the current "typical" blocksize.
880          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
881          * or we will inconsistently account for existing bp's.
882          */
883         vd->vdev_deflate_ratio = (1 << 17) /
884             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
885
886         ASSERT(oldc <= newc);
887
888         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
889
890         if (oldc != 0) {
891                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
892                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
893         }
894
895         vd->vdev_ms = mspp;
896         vd->vdev_ms_count = newc;
897
898         for (m = oldc; m < newc; m++) {
899                 space_map_obj_t smo = { 0, 0, 0 };
900                 if (txg == 0) {
901                         uint64_t object = 0;
902                         error = dmu_read(mos, vd->vdev_ms_array,
903                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
904                             DMU_READ_PREFETCH);
905                         if (error)
906                                 return (error);
907                         if (object != 0) {
908                                 dmu_buf_t *db;
909                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
910                                 if (error)
911                                         return (error);
912                                 ASSERT3U(db->db_size, >=, sizeof (smo));
913                                 bcopy(db->db_data, &smo, sizeof (smo));
914                                 ASSERT3U(smo.smo_object, ==, object);
915                                 dmu_buf_rele(db, FTAG);
916                         }
917                 }
918                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
919                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
920         }
921
922         if (txg == 0)
923                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
924
925         /*
926          * If the vdev is being removed we don't activate
927          * the metaslabs since we want to ensure that no new
928          * allocations are performed on this device.
929          */
930         if (oldc == 0 && !vd->vdev_removing)
931                 metaslab_group_activate(vd->vdev_mg);
932
933         if (txg == 0)
934                 spa_config_exit(spa, SCL_ALLOC, FTAG);
935
936         return (0);
937 }
938
939 void
940 vdev_metaslab_fini(vdev_t *vd)
941 {
942         uint64_t m;
943         uint64_t count = vd->vdev_ms_count;
944
945         if (vd->vdev_ms != NULL) {
946                 metaslab_group_passivate(vd->vdev_mg);
947                 for (m = 0; m < count; m++)
948                         if (vd->vdev_ms[m] != NULL)
949                                 metaslab_fini(vd->vdev_ms[m]);
950                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
951                 vd->vdev_ms = NULL;
952         }
953 }
954
955 typedef struct vdev_probe_stats {
956         boolean_t       vps_readable;
957         boolean_t       vps_writeable;
958         int             vps_flags;
959 } vdev_probe_stats_t;
960
961 static void
962 vdev_probe_done(zio_t *zio)
963 {
964         spa_t *spa = zio->io_spa;
965         vdev_t *vd = zio->io_vd;
966         vdev_probe_stats_t *vps = zio->io_private;
967
968         ASSERT(vd->vdev_probe_zio != NULL);
969
970         if (zio->io_type == ZIO_TYPE_READ) {
971                 if (zio->io_error == 0)
972                         vps->vps_readable = 1;
973                 if (zio->io_error == 0 && spa_writeable(spa)) {
974                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
975                             zio->io_offset, zio->io_size, zio->io_data,
976                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
977                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
978                 } else {
979                         zio_buf_free(zio->io_data, zio->io_size);
980                 }
981         } else if (zio->io_type == ZIO_TYPE_WRITE) {
982                 if (zio->io_error == 0)
983                         vps->vps_writeable = 1;
984                 zio_buf_free(zio->io_data, zio->io_size);
985         } else if (zio->io_type == ZIO_TYPE_NULL) {
986                 zio_t *pio;
987
988                 vd->vdev_cant_read |= !vps->vps_readable;
989                 vd->vdev_cant_write |= !vps->vps_writeable;
990
991                 if (vdev_readable(vd) &&
992                     (vdev_writeable(vd) || !spa_writeable(spa))) {
993                         zio->io_error = 0;
994                 } else {
995                         ASSERT(zio->io_error != 0);
996                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
997                             spa, vd, NULL, 0, 0);
998                         zio->io_error = SET_ERROR(ENXIO);
999                 }
1000
1001                 mutex_enter(&vd->vdev_probe_lock);
1002                 ASSERT(vd->vdev_probe_zio == zio);
1003                 vd->vdev_probe_zio = NULL;
1004                 mutex_exit(&vd->vdev_probe_lock);
1005
1006                 while ((pio = zio_walk_parents(zio)) != NULL)
1007                         if (!vdev_accessible(vd, pio))
1008                                 pio->io_error = SET_ERROR(ENXIO);
1009
1010                 kmem_free(vps, sizeof (*vps));
1011         }
1012 }
1013
1014 /*
1015  * Determine whether this device is accessible.
1016  *
1017  * Read and write to several known locations: the pad regions of each
1018  * vdev label but the first, which we leave alone in case it contains
1019  * a VTOC.
1020  */
1021 zio_t *
1022 vdev_probe(vdev_t *vd, zio_t *zio)
1023 {
1024         spa_t *spa = vd->vdev_spa;
1025         vdev_probe_stats_t *vps = NULL;
1026         zio_t *pio;
1027
1028         ASSERT(vd->vdev_ops->vdev_op_leaf);
1029
1030         /*
1031          * Don't probe the probe.
1032          */
1033         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1034                 return (NULL);
1035
1036         /*
1037          * To prevent 'probe storms' when a device fails, we create
1038          * just one probe i/o at a time.  All zios that want to probe
1039          * this vdev will become parents of the probe io.
1040          */
1041         mutex_enter(&vd->vdev_probe_lock);
1042
1043         if ((pio = vd->vdev_probe_zio) == NULL) {
1044                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1045
1046                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1047                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1048                     ZIO_FLAG_TRYHARD;
1049
1050                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1051                         /*
1052                          * vdev_cant_read and vdev_cant_write can only
1053                          * transition from TRUE to FALSE when we have the
1054                          * SCL_ZIO lock as writer; otherwise they can only
1055                          * transition from FALSE to TRUE.  This ensures that
1056                          * any zio looking at these values can assume that
1057                          * failures persist for the life of the I/O.  That's
1058                          * important because when a device has intermittent
1059                          * connectivity problems, we want to ensure that
1060                          * they're ascribed to the device (ENXIO) and not
1061                          * the zio (EIO).
1062                          *
1063                          * Since we hold SCL_ZIO as writer here, clear both
1064                          * values so the probe can reevaluate from first
1065                          * principles.
1066                          */
1067                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1068                         vd->vdev_cant_read = B_FALSE;
1069                         vd->vdev_cant_write = B_FALSE;
1070                 }
1071
1072                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1073                     vdev_probe_done, vps,
1074                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1075
1076                 /*
1077                  * We can't change the vdev state in this context, so we
1078                  * kick off an async task to do it on our behalf.
1079                  */
1080                 if (zio != NULL) {
1081                         vd->vdev_probe_wanted = B_TRUE;
1082                         spa_async_request(spa, SPA_ASYNC_PROBE);
1083                 }
1084         }
1085
1086         if (zio != NULL)
1087                 zio_add_child(zio, pio);
1088
1089         mutex_exit(&vd->vdev_probe_lock);
1090
1091         if (vps == NULL) {
1092                 ASSERT(zio != NULL);
1093                 return (NULL);
1094         }
1095
1096         for (int l = 1; l < VDEV_LABELS; l++) {
1097                 zio_nowait(zio_read_phys(pio, vd,
1098                     vdev_label_offset(vd->vdev_psize, l,
1099                     offsetof(vdev_label_t, vl_pad2)),
1100                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1101                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1102                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1103         }
1104
1105         if (zio == NULL)
1106                 return (pio);
1107
1108         zio_nowait(pio);
1109         return (NULL);
1110 }
1111
1112 static void
1113 vdev_open_child(void *arg)
1114 {
1115         vdev_t *vd = arg;
1116
1117         vd->vdev_open_thread = curthread;
1118         vd->vdev_open_error = vdev_open(vd);
1119         vd->vdev_open_thread = NULL;
1120 }
1121
1122 boolean_t
1123 vdev_uses_zvols(vdev_t *vd)
1124 {
1125         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1126             strlen(ZVOL_DIR)) == 0)
1127                 return (B_TRUE);
1128         for (int c = 0; c < vd->vdev_children; c++)
1129                 if (vdev_uses_zvols(vd->vdev_child[c]))
1130                         return (B_TRUE);
1131         return (B_FALSE);
1132 }
1133
1134 void
1135 vdev_open_children(vdev_t *vd)
1136 {
1137         taskq_t *tq;
1138         int children = vd->vdev_children;
1139
1140         /*
1141          * in order to handle pools on top of zvols, do the opens
1142          * in a single thread so that the same thread holds the
1143          * spa_namespace_lock
1144          */
1145         if (B_TRUE || vdev_uses_zvols(vd)) {
1146                 for (int c = 0; c < children; c++)
1147                         vd->vdev_child[c]->vdev_open_error =
1148                             vdev_open(vd->vdev_child[c]);
1149                 return;
1150         }
1151         tq = taskq_create("vdev_open", children, minclsyspri,
1152             children, children, TASKQ_PREPOPULATE);
1153
1154         for (int c = 0; c < children; c++)
1155                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1156                     TQ_SLEEP) != 0);
1157
1158         taskq_destroy(tq);
1159 }
1160
1161 /*
1162  * Prepare a virtual device for access.
1163  */
1164 int
1165 vdev_open(vdev_t *vd)
1166 {
1167         spa_t *spa = vd->vdev_spa;
1168         int error;
1169         uint64_t osize = 0;
1170         uint64_t max_osize = 0;
1171         uint64_t asize, max_asize, psize;
1172         uint64_t logical_ashift = 0;
1173         uint64_t physical_ashift = 0;
1174
1175         ASSERT(vd->vdev_open_thread == curthread ||
1176             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1177         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1178             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1179             vd->vdev_state == VDEV_STATE_OFFLINE);
1180
1181         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1182         vd->vdev_cant_read = B_FALSE;
1183         vd->vdev_cant_write = B_FALSE;
1184         vd->vdev_min_asize = vdev_get_min_asize(vd);
1185
1186         /*
1187          * If this vdev is not removed, check its fault status.  If it's
1188          * faulted, bail out of the open.
1189          */
1190         if (!vd->vdev_removed && vd->vdev_faulted) {
1191                 ASSERT(vd->vdev_children == 0);
1192                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1193                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1194                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1195                     vd->vdev_label_aux);
1196                 return (SET_ERROR(ENXIO));
1197         } else if (vd->vdev_offline) {
1198                 ASSERT(vd->vdev_children == 0);
1199                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1200                 return (SET_ERROR(ENXIO));
1201         }
1202
1203         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1204             &logical_ashift, &physical_ashift);
1205
1206         /*
1207          * Reset the vdev_reopening flag so that we actually close
1208          * the vdev on error.
1209          */
1210         vd->vdev_reopening = B_FALSE;
1211         if (zio_injection_enabled && error == 0)
1212                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1213
1214         if (error) {
1215                 if (vd->vdev_removed &&
1216                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1217                         vd->vdev_removed = B_FALSE;
1218
1219                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1220                     vd->vdev_stat.vs_aux);
1221                 return (error);
1222         }
1223
1224         vd->vdev_removed = B_FALSE;
1225
1226         /*
1227          * Recheck the faulted flag now that we have confirmed that
1228          * the vdev is accessible.  If we're faulted, bail.
1229          */
1230         if (vd->vdev_faulted) {
1231                 ASSERT(vd->vdev_children == 0);
1232                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1233                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1234                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1235                     vd->vdev_label_aux);
1236                 return (SET_ERROR(ENXIO));
1237         }
1238
1239         if (vd->vdev_degraded) {
1240                 ASSERT(vd->vdev_children == 0);
1241                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1242                     VDEV_AUX_ERR_EXCEEDED);
1243         } else {
1244                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1245         }
1246
1247         /*
1248          * For hole or missing vdevs we just return success.
1249          */
1250         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1251                 return (0);
1252
1253         if (vd->vdev_ops->vdev_op_leaf) {
1254                 vd->vdev_notrim = B_FALSE;
1255                 trim_map_create(vd);
1256         }
1257
1258         for (int c = 0; c < vd->vdev_children; c++) {
1259                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1260                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1261                             VDEV_AUX_NONE);
1262                         break;
1263                 }
1264         }
1265
1266         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1267         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1268
1269         if (vd->vdev_children == 0) {
1270                 if (osize < SPA_MINDEVSIZE) {
1271                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1272                             VDEV_AUX_TOO_SMALL);
1273                         return (SET_ERROR(EOVERFLOW));
1274                 }
1275                 psize = osize;
1276                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1277                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1278                     VDEV_LABEL_END_SIZE);
1279         } else {
1280                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1281                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1282                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1283                             VDEV_AUX_TOO_SMALL);
1284                         return (SET_ERROR(EOVERFLOW));
1285                 }
1286                 psize = 0;
1287                 asize = osize;
1288                 max_asize = max_osize;
1289         }
1290
1291         vd->vdev_psize = psize;
1292
1293         /*
1294          * Make sure the allocatable size hasn't shrunk.
1295          */
1296         if (asize < vd->vdev_min_asize) {
1297                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1298                     VDEV_AUX_BAD_LABEL);
1299                 return (SET_ERROR(EINVAL));
1300         }
1301
1302         vd->vdev_physical_ashift =
1303             MAX(physical_ashift, vd->vdev_physical_ashift);
1304         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1305         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1306
1307         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1308                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1309                     VDEV_AUX_ASHIFT_TOO_BIG);
1310                 return (EINVAL);
1311         }
1312
1313         if (vd->vdev_asize == 0) {
1314                 /*
1315                  * This is the first-ever open, so use the computed values.
1316                  * For testing purposes, a higher ashift can be requested.
1317                  */
1318                 vd->vdev_asize = asize;
1319                 vd->vdev_max_asize = max_asize;
1320         } else {
1321                 /*
1322                  * Make sure the alignment requirement hasn't increased.
1323                  */
1324                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1325                     vd->vdev_ops->vdev_op_leaf) {
1326                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1327                             VDEV_AUX_BAD_LABEL);
1328                         return (EINVAL);
1329                 }
1330                 vd->vdev_max_asize = max_asize;
1331         }
1332
1333         /*
1334          * If all children are healthy and the asize has increased,
1335          * then we've experienced dynamic LUN growth.  If automatic
1336          * expansion is enabled then use the additional space.
1337          */
1338         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1339             (vd->vdev_expanding || spa->spa_autoexpand))
1340                 vd->vdev_asize = asize;
1341
1342         vdev_set_min_asize(vd);
1343
1344         /*
1345          * Ensure we can issue some IO before declaring the
1346          * vdev open for business.
1347          */
1348         if (vd->vdev_ops->vdev_op_leaf &&
1349             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1350                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1351                     VDEV_AUX_ERR_EXCEEDED);
1352                 return (error);
1353         }
1354
1355         /*
1356          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1357          * resilver.  But don't do this if we are doing a reopen for a scrub,
1358          * since this would just restart the scrub we are already doing.
1359          */
1360         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1361             vdev_resilver_needed(vd, NULL, NULL))
1362                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1363
1364         return (0);
1365 }
1366
1367 /*
1368  * Called once the vdevs are all opened, this routine validates the label
1369  * contents.  This needs to be done before vdev_load() so that we don't
1370  * inadvertently do repair I/Os to the wrong device.
1371  *
1372  * If 'strict' is false ignore the spa guid check. This is necessary because
1373  * if the machine crashed during a re-guid the new guid might have been written
1374  * to all of the vdev labels, but not the cached config. The strict check
1375  * will be performed when the pool is opened again using the mos config.
1376  *
1377  * This function will only return failure if one of the vdevs indicates that it
1378  * has since been destroyed or exported.  This is only possible if
1379  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1380  * will be updated but the function will return 0.
1381  */
1382 int
1383 vdev_validate(vdev_t *vd, boolean_t strict)
1384 {
1385         spa_t *spa = vd->vdev_spa;
1386         nvlist_t *label;
1387         uint64_t guid = 0, top_guid;
1388         uint64_t state;
1389
1390         for (int c = 0; c < vd->vdev_children; c++)
1391                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1392                         return (SET_ERROR(EBADF));
1393
1394         /*
1395          * If the device has already failed, or was marked offline, don't do
1396          * any further validation.  Otherwise, label I/O will fail and we will
1397          * overwrite the previous state.
1398          */
1399         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1400                 uint64_t aux_guid = 0;
1401                 nvlist_t *nvl;
1402                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1403                     spa_last_synced_txg(spa) : -1ULL;
1404
1405                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1406                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1407                             VDEV_AUX_BAD_LABEL);
1408                         return (0);
1409                 }
1410
1411                 /*
1412                  * Determine if this vdev has been split off into another
1413                  * pool.  If so, then refuse to open it.
1414                  */
1415                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1416                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1417                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1418                             VDEV_AUX_SPLIT_POOL);
1419                         nvlist_free(label);
1420                         return (0);
1421                 }
1422
1423                 if (strict && (nvlist_lookup_uint64(label,
1424                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1425                     guid != spa_guid(spa))) {
1426                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1427                             VDEV_AUX_CORRUPT_DATA);
1428                         nvlist_free(label);
1429                         return (0);
1430                 }
1431
1432                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1433                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1434                     &aux_guid) != 0)
1435                         aux_guid = 0;
1436
1437                 /*
1438                  * If this vdev just became a top-level vdev because its
1439                  * sibling was detached, it will have adopted the parent's
1440                  * vdev guid -- but the label may or may not be on disk yet.
1441                  * Fortunately, either version of the label will have the
1442                  * same top guid, so if we're a top-level vdev, we can
1443                  * safely compare to that instead.
1444                  *
1445                  * If we split this vdev off instead, then we also check the
1446                  * original pool's guid.  We don't want to consider the vdev
1447                  * corrupt if it is partway through a split operation.
1448                  */
1449                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1450                     &guid) != 0 ||
1451                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1452                     &top_guid) != 0 ||
1453                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1454                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1455                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1456                             VDEV_AUX_CORRUPT_DATA);
1457                         nvlist_free(label);
1458                         return (0);
1459                 }
1460
1461                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1462                     &state) != 0) {
1463                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1464                             VDEV_AUX_CORRUPT_DATA);
1465                         nvlist_free(label);
1466                         return (0);
1467                 }
1468
1469                 nvlist_free(label);
1470
1471                 /*
1472                  * If this is a verbatim import, no need to check the
1473                  * state of the pool.
1474                  */
1475                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1476                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1477                     state != POOL_STATE_ACTIVE)
1478                         return (SET_ERROR(EBADF));
1479
1480                 /*
1481                  * If we were able to open and validate a vdev that was
1482                  * previously marked permanently unavailable, clear that state
1483                  * now.
1484                  */
1485                 if (vd->vdev_not_present)
1486                         vd->vdev_not_present = 0;
1487         }
1488
1489         return (0);
1490 }
1491
1492 /*
1493  * Close a virtual device.
1494  */
1495 void
1496 vdev_close(vdev_t *vd)
1497 {
1498         spa_t *spa = vd->vdev_spa;
1499         vdev_t *pvd = vd->vdev_parent;
1500
1501         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1502
1503         /*
1504          * If our parent is reopening, then we are as well, unless we are
1505          * going offline.
1506          */
1507         if (pvd != NULL && pvd->vdev_reopening)
1508                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1509
1510         vd->vdev_ops->vdev_op_close(vd);
1511
1512         vdev_cache_purge(vd);
1513
1514         if (vd->vdev_ops->vdev_op_leaf)
1515                 trim_map_destroy(vd);
1516
1517         /*
1518          * We record the previous state before we close it, so that if we are
1519          * doing a reopen(), we don't generate FMA ereports if we notice that
1520          * it's still faulted.
1521          */
1522         vd->vdev_prevstate = vd->vdev_state;
1523
1524         if (vd->vdev_offline)
1525                 vd->vdev_state = VDEV_STATE_OFFLINE;
1526         else
1527                 vd->vdev_state = VDEV_STATE_CLOSED;
1528         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1529 }
1530
1531 void
1532 vdev_hold(vdev_t *vd)
1533 {
1534         spa_t *spa = vd->vdev_spa;
1535
1536         ASSERT(spa_is_root(spa));
1537         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1538                 return;
1539
1540         for (int c = 0; c < vd->vdev_children; c++)
1541                 vdev_hold(vd->vdev_child[c]);
1542
1543         if (vd->vdev_ops->vdev_op_leaf)
1544                 vd->vdev_ops->vdev_op_hold(vd);
1545 }
1546
1547 void
1548 vdev_rele(vdev_t *vd)
1549 {
1550         spa_t *spa = vd->vdev_spa;
1551
1552         ASSERT(spa_is_root(spa));
1553         for (int c = 0; c < vd->vdev_children; c++)
1554                 vdev_rele(vd->vdev_child[c]);
1555
1556         if (vd->vdev_ops->vdev_op_leaf)
1557                 vd->vdev_ops->vdev_op_rele(vd);
1558 }
1559
1560 /*
1561  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1562  * reopen leaf vdevs which had previously been opened as they might deadlock
1563  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1564  * If the leaf has never been opened then open it, as usual.
1565  */
1566 void
1567 vdev_reopen(vdev_t *vd)
1568 {
1569         spa_t *spa = vd->vdev_spa;
1570
1571         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1572
1573         /* set the reopening flag unless we're taking the vdev offline */
1574         vd->vdev_reopening = !vd->vdev_offline;
1575         vdev_close(vd);
1576         (void) vdev_open(vd);
1577
1578         /*
1579          * Call vdev_validate() here to make sure we have the same device.
1580          * Otherwise, a device with an invalid label could be successfully
1581          * opened in response to vdev_reopen().
1582          */
1583         if (vd->vdev_aux) {
1584                 (void) vdev_validate_aux(vd);
1585                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1586                     vd->vdev_aux == &spa->spa_l2cache &&
1587                     !l2arc_vdev_present(vd))
1588                         l2arc_add_vdev(spa, vd);
1589         } else {
1590                 (void) vdev_validate(vd, B_TRUE);
1591         }
1592
1593         /*
1594          * Reassess parent vdev's health.
1595          */
1596         vdev_propagate_state(vd);
1597 }
1598
1599 int
1600 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1601 {
1602         int error;
1603
1604         /*
1605          * Normally, partial opens (e.g. of a mirror) are allowed.
1606          * For a create, however, we want to fail the request if
1607          * there are any components we can't open.
1608          */
1609         error = vdev_open(vd);
1610
1611         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1612                 vdev_close(vd);
1613                 return (error ? error : ENXIO);
1614         }
1615
1616         /*
1617          * Recursively initialize all labels.
1618          */
1619         if ((error = vdev_label_init(vd, txg, isreplacing ?
1620             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1621                 vdev_close(vd);
1622                 return (error);
1623         }
1624
1625         return (0);
1626 }
1627
1628 void
1629 vdev_metaslab_set_size(vdev_t *vd)
1630 {
1631         /*
1632          * Aim for roughly 200 metaslabs per vdev.
1633          */
1634         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1635         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1636 }
1637
1638 /*
1639  * Maximize performance by inflating the configured ashift for
1640  * top level vdevs to be as close to the physical ashift as
1641  * possible without exceeding the administrator specified
1642  * limit.
1643  */
1644 void
1645 vdev_ashift_optimize(vdev_t *vd)
1646 {
1647         if (vd == vd->vdev_top &&
1648             (vd->vdev_ashift < vd->vdev_physical_ashift) &&
1649             (vd->vdev_ashift < zfs_max_auto_ashift)) {
1650                 vd->vdev_ashift = MIN(zfs_max_auto_ashift,
1651                     vd->vdev_physical_ashift);
1652         }
1653 }
1654
1655 void
1656 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1657 {
1658         ASSERT(vd == vd->vdev_top);
1659         ASSERT(!vd->vdev_ishole);
1660         ASSERT(ISP2(flags));
1661         ASSERT(spa_writeable(vd->vdev_spa));
1662
1663         if (flags & VDD_METASLAB)
1664                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1665
1666         if (flags & VDD_DTL)
1667                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1668
1669         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1670 }
1671
1672 /*
1673  * DTLs.
1674  *
1675  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1676  * the vdev has less than perfect replication.  There are four kinds of DTL:
1677  *
1678  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1679  *
1680  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1681  *
1682  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1683  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1684  *      txgs that was scrubbed.
1685  *
1686  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1687  *      persistent errors or just some device being offline.
1688  *      Unlike the other three, the DTL_OUTAGE map is not generally
1689  *      maintained; it's only computed when needed, typically to
1690  *      determine whether a device can be detached.
1691  *
1692  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1693  * either has the data or it doesn't.
1694  *
1695  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1696  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1697  * if any child is less than fully replicated, then so is its parent.
1698  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1699  * comprising only those txgs which appear in 'maxfaults' or more children;
1700  * those are the txgs we don't have enough replication to read.  For example,
1701  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1702  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1703  * two child DTL_MISSING maps.
1704  *
1705  * It should be clear from the above that to compute the DTLs and outage maps
1706  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1707  * Therefore, that is all we keep on disk.  When loading the pool, or after
1708  * a configuration change, we generate all other DTLs from first principles.
1709  */
1710 void
1711 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1712 {
1713         space_map_t *sm = &vd->vdev_dtl[t];
1714
1715         ASSERT(t < DTL_TYPES);
1716         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1717         ASSERT(spa_writeable(vd->vdev_spa));
1718
1719         mutex_enter(sm->sm_lock);
1720         if (!space_map_contains(sm, txg, size))
1721                 space_map_add(sm, txg, size);
1722         mutex_exit(sm->sm_lock);
1723 }
1724
1725 boolean_t
1726 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1727 {
1728         space_map_t *sm = &vd->vdev_dtl[t];
1729         boolean_t dirty = B_FALSE;
1730
1731         ASSERT(t < DTL_TYPES);
1732         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1733
1734         mutex_enter(sm->sm_lock);
1735         if (sm->sm_space != 0)
1736                 dirty = space_map_contains(sm, txg, size);
1737         mutex_exit(sm->sm_lock);
1738
1739         return (dirty);
1740 }
1741
1742 boolean_t
1743 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1744 {
1745         space_map_t *sm = &vd->vdev_dtl[t];
1746         boolean_t empty;
1747
1748         mutex_enter(sm->sm_lock);
1749         empty = (sm->sm_space == 0);
1750         mutex_exit(sm->sm_lock);
1751
1752         return (empty);
1753 }
1754
1755 /*
1756  * Returns the lowest txg in the DTL range.
1757  */
1758 static uint64_t
1759 vdev_dtl_min(vdev_t *vd)
1760 {
1761         space_seg_t *ss;
1762
1763         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1764         ASSERT3U(vd->vdev_dtl[DTL_MISSING].sm_space, !=, 0);
1765         ASSERT0(vd->vdev_children);
1766
1767         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1768         return (ss->ss_start - 1);
1769 }
1770
1771 /*
1772  * Returns the highest txg in the DTL.
1773  */
1774 static uint64_t
1775 vdev_dtl_max(vdev_t *vd)
1776 {
1777         space_seg_t *ss;
1778
1779         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1780         ASSERT3U(vd->vdev_dtl[DTL_MISSING].sm_space, !=, 0);
1781         ASSERT0(vd->vdev_children);
1782
1783         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1784         return (ss->ss_end);
1785 }
1786
1787 /*
1788  * Determine if a resilvering vdev should remove any DTL entries from
1789  * its range. If the vdev was resilvering for the entire duration of the
1790  * scan then it should excise that range from its DTLs. Otherwise, this
1791  * vdev is considered partially resilvered and should leave its DTL
1792  * entries intact. The comment in vdev_dtl_reassess() describes how we
1793  * excise the DTLs.
1794  */
1795 static boolean_t
1796 vdev_dtl_should_excise(vdev_t *vd)
1797 {
1798         spa_t *spa = vd->vdev_spa;
1799         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1800
1801         ASSERT0(scn->scn_phys.scn_errors);
1802         ASSERT0(vd->vdev_children);
1803
1804         if (vd->vdev_resilver_txg == 0 ||
1805             vd->vdev_dtl[DTL_MISSING].sm_space == 0)
1806                 return (B_TRUE);
1807
1808         /*
1809          * When a resilver is initiated the scan will assign the scn_max_txg
1810          * value to the highest txg value that exists in all DTLs. If this
1811          * device's max DTL is not part of this scan (i.e. it is not in
1812          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1813          * for excision.
1814          */
1815         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1816                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1817                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1818                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1819                 return (B_TRUE);
1820         }
1821         return (B_FALSE);
1822 }
1823
1824 /*
1825  * Reassess DTLs after a config change or scrub completion.
1826  */
1827 void
1828 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1829 {
1830         spa_t *spa = vd->vdev_spa;
1831         avl_tree_t reftree;
1832         int minref;
1833
1834         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1835
1836         for (int c = 0; c < vd->vdev_children; c++)
1837                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1838                     scrub_txg, scrub_done);
1839
1840         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1841                 return;
1842
1843         if (vd->vdev_ops->vdev_op_leaf) {
1844                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1845
1846                 mutex_enter(&vd->vdev_dtl_lock);
1847
1848                 /*
1849                  * If we've completed a scan cleanly then determine
1850                  * if this vdev should remove any DTLs. We only want to
1851                  * excise regions on vdevs that were available during
1852                  * the entire duration of this scan.
1853                  */
1854                 if (scrub_txg != 0 &&
1855                     (spa->spa_scrub_started ||
1856                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1857                     vdev_dtl_should_excise(vd)) {
1858                         /*
1859                          * We completed a scrub up to scrub_txg.  If we
1860                          * did it without rebooting, then the scrub dtl
1861                          * will be valid, so excise the old region and
1862                          * fold in the scrub dtl.  Otherwise, leave the
1863                          * dtl as-is if there was an error.
1864                          *
1865                          * There's little trick here: to excise the beginning
1866                          * of the DTL_MISSING map, we put it into a reference
1867                          * tree and then add a segment with refcnt -1 that
1868                          * covers the range [0, scrub_txg).  This means
1869                          * that each txg in that range has refcnt -1 or 0.
1870                          * We then add DTL_SCRUB with a refcnt of 2, so that
1871                          * entries in the range [0, scrub_txg) will have a
1872                          * positive refcnt -- either 1 or 2.  We then convert
1873                          * the reference tree into the new DTL_MISSING map.
1874                          */
1875                         space_map_ref_create(&reftree);
1876                         space_map_ref_add_map(&reftree,
1877                             &vd->vdev_dtl[DTL_MISSING], 1);
1878                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1879                         space_map_ref_add_map(&reftree,
1880                             &vd->vdev_dtl[DTL_SCRUB], 2);
1881                         space_map_ref_generate_map(&reftree,
1882                             &vd->vdev_dtl[DTL_MISSING], 1);
1883                         space_map_ref_destroy(&reftree);
1884                 }
1885                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1886                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1887                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1888                 if (scrub_done)
1889                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1890                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1891                 if (!vdev_readable(vd))
1892                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1893                 else
1894                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1895                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1896
1897                 /*
1898                  * If the vdev was resilvering and no longer has any
1899                  * DTLs then reset its resilvering flag.
1900                  */
1901                 if (vd->vdev_resilver_txg != 0 &&
1902                     vd->vdev_dtl[DTL_MISSING].sm_space == 0 &&
1903                     vd->vdev_dtl[DTL_OUTAGE].sm_space == 0)
1904                         vd->vdev_resilver_txg = 0;
1905
1906                 mutex_exit(&vd->vdev_dtl_lock);
1907
1908                 if (txg != 0)
1909                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1910                 return;
1911         }
1912
1913         mutex_enter(&vd->vdev_dtl_lock);
1914         for (int t = 0; t < DTL_TYPES; t++) {
1915                 /* account for child's outage in parent's missing map */
1916                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1917                 if (t == DTL_SCRUB)
1918                         continue;                       /* leaf vdevs only */
1919                 if (t == DTL_PARTIAL)
1920                         minref = 1;                     /* i.e. non-zero */
1921                 else if (vd->vdev_nparity != 0)
1922                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1923                 else
1924                         minref = vd->vdev_children;     /* any kind of mirror */
1925                 space_map_ref_create(&reftree);
1926                 for (int c = 0; c < vd->vdev_children; c++) {
1927                         vdev_t *cvd = vd->vdev_child[c];
1928                         mutex_enter(&cvd->vdev_dtl_lock);
1929                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1930                         mutex_exit(&cvd->vdev_dtl_lock);
1931                 }
1932                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1933                 space_map_ref_destroy(&reftree);
1934         }
1935         mutex_exit(&vd->vdev_dtl_lock);
1936 }
1937
1938 static int
1939 vdev_dtl_load(vdev_t *vd)
1940 {
1941         spa_t *spa = vd->vdev_spa;
1942         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1943         objset_t *mos = spa->spa_meta_objset;
1944         dmu_buf_t *db;
1945         int error;
1946
1947         ASSERT(vd->vdev_children == 0);
1948
1949         if (smo->smo_object == 0)
1950                 return (0);
1951
1952         ASSERT(!vd->vdev_ishole);
1953
1954         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1955                 return (error);
1956
1957         ASSERT3U(db->db_size, >=, sizeof (*smo));
1958         bcopy(db->db_data, smo, sizeof (*smo));
1959         dmu_buf_rele(db, FTAG);
1960
1961         mutex_enter(&vd->vdev_dtl_lock);
1962         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1963             NULL, SM_ALLOC, smo, mos);
1964         mutex_exit(&vd->vdev_dtl_lock);
1965
1966         return (error);
1967 }
1968
1969 void
1970 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1971 {
1972         spa_t *spa = vd->vdev_spa;
1973         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1974         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1975         objset_t *mos = spa->spa_meta_objset;
1976         space_map_t smsync;
1977         kmutex_t smlock;
1978         dmu_buf_t *db;
1979         dmu_tx_t *tx;
1980
1981         ASSERT(!vd->vdev_ishole);
1982
1983         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1984
1985         if (vd->vdev_detached) {
1986                 if (smo->smo_object != 0) {
1987                         int err = dmu_object_free(mos, smo->smo_object, tx);
1988                         ASSERT0(err);
1989                         smo->smo_object = 0;
1990                 }
1991                 dmu_tx_commit(tx);
1992                 return;
1993         }
1994
1995         if (smo->smo_object == 0) {
1996                 ASSERT(smo->smo_objsize == 0);
1997                 ASSERT(smo->smo_alloc == 0);
1998                 smo->smo_object = dmu_object_alloc(mos,
1999                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
2000                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
2001                 ASSERT(smo->smo_object != 0);
2002                 vdev_config_dirty(vd->vdev_top);
2003         }
2004
2005         bzero(&smlock, sizeof (smlock));
2006         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
2007
2008         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
2009             &smlock);
2010
2011         mutex_enter(&smlock);
2012
2013         mutex_enter(&vd->vdev_dtl_lock);
2014         space_map_walk(sm, space_map_add, &smsync);
2015         mutex_exit(&vd->vdev_dtl_lock);
2016
2017         space_map_truncate(smo, mos, tx);
2018         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
2019         space_map_vacate(&smsync, NULL, NULL);
2020
2021         space_map_destroy(&smsync);
2022
2023         mutex_exit(&smlock);
2024         mutex_destroy(&smlock);
2025
2026         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
2027         dmu_buf_will_dirty(db, tx);
2028         ASSERT3U(db->db_size, >=, sizeof (*smo));
2029         bcopy(smo, db->db_data, sizeof (*smo));
2030         dmu_buf_rele(db, FTAG);
2031
2032         dmu_tx_commit(tx);
2033 }
2034
2035 /*
2036  * Determine whether the specified vdev can be offlined/detached/removed
2037  * without losing data.
2038  */
2039 boolean_t
2040 vdev_dtl_required(vdev_t *vd)
2041 {
2042         spa_t *spa = vd->vdev_spa;
2043         vdev_t *tvd = vd->vdev_top;
2044         uint8_t cant_read = vd->vdev_cant_read;
2045         boolean_t required;
2046
2047         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2048
2049         if (vd == spa->spa_root_vdev || vd == tvd)
2050                 return (B_TRUE);
2051
2052         /*
2053          * Temporarily mark the device as unreadable, and then determine
2054          * whether this results in any DTL outages in the top-level vdev.
2055          * If not, we can safely offline/detach/remove the device.
2056          */
2057         vd->vdev_cant_read = B_TRUE;
2058         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2059         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2060         vd->vdev_cant_read = cant_read;
2061         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2062
2063         if (!required && zio_injection_enabled)
2064                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2065
2066         return (required);
2067 }
2068
2069 /*
2070  * Determine if resilver is needed, and if so the txg range.
2071  */
2072 boolean_t
2073 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2074 {
2075         boolean_t needed = B_FALSE;
2076         uint64_t thismin = UINT64_MAX;
2077         uint64_t thismax = 0;
2078
2079         if (vd->vdev_children == 0) {
2080                 mutex_enter(&vd->vdev_dtl_lock);
2081                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
2082                     vdev_writeable(vd)) {
2083
2084                         thismin = vdev_dtl_min(vd);
2085                         thismax = vdev_dtl_max(vd);
2086                         needed = B_TRUE;
2087                 }
2088                 mutex_exit(&vd->vdev_dtl_lock);
2089         } else {
2090                 for (int c = 0; c < vd->vdev_children; c++) {
2091                         vdev_t *cvd = vd->vdev_child[c];
2092                         uint64_t cmin, cmax;
2093
2094                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2095                                 thismin = MIN(thismin, cmin);
2096                                 thismax = MAX(thismax, cmax);
2097                                 needed = B_TRUE;
2098                         }
2099                 }
2100         }
2101
2102         if (needed && minp) {
2103                 *minp = thismin;
2104                 *maxp = thismax;
2105         }
2106         return (needed);
2107 }
2108
2109 void
2110 vdev_load(vdev_t *vd)
2111 {
2112         /*
2113          * Recursively load all children.
2114          */
2115         for (int c = 0; c < vd->vdev_children; c++)
2116                 vdev_load(vd->vdev_child[c]);
2117
2118         /*
2119          * If this is a top-level vdev, initialize its metaslabs.
2120          */
2121         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2122             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2123             vdev_metaslab_init(vd, 0) != 0))
2124                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2125                     VDEV_AUX_CORRUPT_DATA);
2126
2127         /*
2128          * If this is a leaf vdev, load its DTL.
2129          */
2130         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2131                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2132                     VDEV_AUX_CORRUPT_DATA);
2133 }
2134
2135 /*
2136  * The special vdev case is used for hot spares and l2cache devices.  Its
2137  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2138  * we make sure that we can open the underlying device, then try to read the
2139  * label, and make sure that the label is sane and that it hasn't been
2140  * repurposed to another pool.
2141  */
2142 int
2143 vdev_validate_aux(vdev_t *vd)
2144 {
2145         nvlist_t *label;
2146         uint64_t guid, version;
2147         uint64_t state;
2148
2149         if (!vdev_readable(vd))
2150                 return (0);
2151
2152         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2153                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2154                     VDEV_AUX_CORRUPT_DATA);
2155                 return (-1);
2156         }
2157
2158         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2159             !SPA_VERSION_IS_SUPPORTED(version) ||
2160             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2161             guid != vd->vdev_guid ||
2162             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2163                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2164                     VDEV_AUX_CORRUPT_DATA);
2165                 nvlist_free(label);
2166                 return (-1);
2167         }
2168
2169         /*
2170          * We don't actually check the pool state here.  If it's in fact in
2171          * use by another pool, we update this fact on the fly when requested.
2172          */
2173         nvlist_free(label);
2174         return (0);
2175 }
2176
2177 void
2178 vdev_remove(vdev_t *vd, uint64_t txg)
2179 {
2180         spa_t *spa = vd->vdev_spa;
2181         objset_t *mos = spa->spa_meta_objset;
2182         dmu_tx_t *tx;
2183
2184         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2185
2186         if (vd->vdev_dtl_smo.smo_object) {
2187                 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2188                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2189                 vd->vdev_dtl_smo.smo_object = 0;
2190         }
2191
2192         if (vd->vdev_ms != NULL) {
2193                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2194                         metaslab_t *msp = vd->vdev_ms[m];
2195
2196                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2197                                 continue;
2198
2199                         ASSERT0(msp->ms_smo.smo_alloc);
2200                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2201                         msp->ms_smo.smo_object = 0;
2202                 }
2203         }
2204
2205         if (vd->vdev_ms_array) {
2206                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2207                 vd->vdev_ms_array = 0;
2208                 vd->vdev_ms_shift = 0;
2209         }
2210         dmu_tx_commit(tx);
2211 }
2212
2213 void
2214 vdev_sync_done(vdev_t *vd, uint64_t txg)
2215 {
2216         metaslab_t *msp;
2217         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2218
2219         ASSERT(!vd->vdev_ishole);
2220
2221         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2222                 metaslab_sync_done(msp, txg);
2223
2224         if (reassess)
2225                 metaslab_sync_reassess(vd->vdev_mg);
2226 }
2227
2228 void
2229 vdev_sync(vdev_t *vd, uint64_t txg)
2230 {
2231         spa_t *spa = vd->vdev_spa;
2232         vdev_t *lvd;
2233         metaslab_t *msp;
2234         dmu_tx_t *tx;
2235
2236         ASSERT(!vd->vdev_ishole);
2237
2238         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2239                 ASSERT(vd == vd->vdev_top);
2240                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2241                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2242                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2243                 ASSERT(vd->vdev_ms_array != 0);
2244                 vdev_config_dirty(vd);
2245                 dmu_tx_commit(tx);
2246         }
2247
2248         /*
2249          * Remove the metadata associated with this vdev once it's empty.
2250          */
2251         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2252                 vdev_remove(vd, txg);
2253
2254         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2255                 metaslab_sync(msp, txg);
2256                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2257         }
2258
2259         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2260                 vdev_dtl_sync(lvd, txg);
2261
2262         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2263 }
2264
2265 uint64_t
2266 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2267 {
2268         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2269 }
2270
2271 /*
2272  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2273  * not be opened, and no I/O is attempted.
2274  */
2275 int
2276 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2277 {
2278         vdev_t *vd, *tvd;
2279
2280         spa_vdev_state_enter(spa, SCL_NONE);
2281
2282         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2283                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2284
2285         if (!vd->vdev_ops->vdev_op_leaf)
2286                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2287
2288         tvd = vd->vdev_top;
2289
2290         /*
2291          * We don't directly use the aux state here, but if we do a
2292          * vdev_reopen(), we need this value to be present to remember why we
2293          * were faulted.
2294          */
2295         vd->vdev_label_aux = aux;
2296
2297         /*
2298          * Faulted state takes precedence over degraded.
2299          */
2300         vd->vdev_delayed_close = B_FALSE;
2301         vd->vdev_faulted = 1ULL;
2302         vd->vdev_degraded = 0ULL;
2303         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2304
2305         /*
2306          * If this device has the only valid copy of the data, then
2307          * back off and simply mark the vdev as degraded instead.
2308          */
2309         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2310                 vd->vdev_degraded = 1ULL;
2311                 vd->vdev_faulted = 0ULL;
2312
2313                 /*
2314                  * If we reopen the device and it's not dead, only then do we
2315                  * mark it degraded.
2316                  */
2317                 vdev_reopen(tvd);
2318
2319                 if (vdev_readable(vd))
2320                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2321         }
2322
2323         return (spa_vdev_state_exit(spa, vd, 0));
2324 }
2325
2326 /*
2327  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2328  * user that something is wrong.  The vdev continues to operate as normal as far
2329  * as I/O is concerned.
2330  */
2331 int
2332 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2333 {
2334         vdev_t *vd;
2335
2336         spa_vdev_state_enter(spa, SCL_NONE);
2337
2338         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2339                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2340
2341         if (!vd->vdev_ops->vdev_op_leaf)
2342                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2343
2344         /*
2345          * If the vdev is already faulted, then don't do anything.
2346          */
2347         if (vd->vdev_faulted || vd->vdev_degraded)
2348                 return (spa_vdev_state_exit(spa, NULL, 0));
2349
2350         vd->vdev_degraded = 1ULL;
2351         if (!vdev_is_dead(vd))
2352                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2353                     aux);
2354
2355         return (spa_vdev_state_exit(spa, vd, 0));
2356 }
2357
2358 /*
2359  * Online the given vdev.
2360  *
2361  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2362  * spare device should be detached when the device finishes resilvering.
2363  * Second, the online should be treated like a 'test' online case, so no FMA
2364  * events are generated if the device fails to open.
2365  */
2366 int
2367 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2368 {
2369         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2370
2371         spa_vdev_state_enter(spa, SCL_NONE);
2372
2373         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2374                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2375
2376         if (!vd->vdev_ops->vdev_op_leaf)
2377                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2378
2379         tvd = vd->vdev_top;
2380         vd->vdev_offline = B_FALSE;
2381         vd->vdev_tmpoffline = B_FALSE;
2382         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2383         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2384
2385         /* XXX - L2ARC 1.0 does not support expansion */
2386         if (!vd->vdev_aux) {
2387                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2388                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2389         }
2390
2391         vdev_reopen(tvd);
2392         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2393
2394         if (!vd->vdev_aux) {
2395                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2396                         pvd->vdev_expanding = B_FALSE;
2397         }
2398
2399         if (newstate)
2400                 *newstate = vd->vdev_state;
2401         if ((flags & ZFS_ONLINE_UNSPARE) &&
2402             !vdev_is_dead(vd) && vd->vdev_parent &&
2403             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2404             vd->vdev_parent->vdev_child[0] == vd)
2405                 vd->vdev_unspare = B_TRUE;
2406
2407         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2408
2409                 /* XXX - L2ARC 1.0 does not support expansion */
2410                 if (vd->vdev_aux)
2411                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2412                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2413         }
2414         return (spa_vdev_state_exit(spa, vd, 0));
2415 }
2416
2417 static int
2418 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2419 {
2420         vdev_t *vd, *tvd;
2421         int error = 0;
2422         uint64_t generation;
2423         metaslab_group_t *mg;
2424
2425 top:
2426         spa_vdev_state_enter(spa, SCL_ALLOC);
2427
2428         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2429                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2430
2431         if (!vd->vdev_ops->vdev_op_leaf)
2432                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2433
2434         tvd = vd->vdev_top;
2435         mg = tvd->vdev_mg;
2436         generation = spa->spa_config_generation + 1;
2437
2438         /*
2439          * If the device isn't already offline, try to offline it.
2440          */
2441         if (!vd->vdev_offline) {
2442                 /*
2443                  * If this device has the only valid copy of some data,
2444                  * don't allow it to be offlined. Log devices are always
2445                  * expendable.
2446                  */
2447                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2448                     vdev_dtl_required(vd))
2449                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2450
2451                 /*
2452                  * If the top-level is a slog and it has had allocations
2453                  * then proceed.  We check that the vdev's metaslab group
2454                  * is not NULL since it's possible that we may have just
2455                  * added this vdev but not yet initialized its metaslabs.
2456                  */
2457                 if (tvd->vdev_islog && mg != NULL) {
2458                         /*
2459                          * Prevent any future allocations.
2460                          */
2461                         metaslab_group_passivate(mg);
2462                         (void) spa_vdev_state_exit(spa, vd, 0);
2463
2464                         error = spa_offline_log(spa);
2465
2466                         spa_vdev_state_enter(spa, SCL_ALLOC);
2467
2468                         /*
2469                          * Check to see if the config has changed.
2470                          */
2471                         if (error || generation != spa->spa_config_generation) {
2472                                 metaslab_group_activate(mg);
2473                                 if (error)
2474                                         return (spa_vdev_state_exit(spa,
2475                                             vd, error));
2476                                 (void) spa_vdev_state_exit(spa, vd, 0);
2477                                 goto top;
2478                         }
2479                         ASSERT0(tvd->vdev_stat.vs_alloc);
2480                 }
2481
2482                 /*
2483                  * Offline this device and reopen its top-level vdev.
2484                  * If the top-level vdev is a log device then just offline
2485                  * it. Otherwise, if this action results in the top-level
2486                  * vdev becoming unusable, undo it and fail the request.
2487                  */
2488                 vd->vdev_offline = B_TRUE;
2489                 vdev_reopen(tvd);
2490
2491                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2492                     vdev_is_dead(tvd)) {
2493                         vd->vdev_offline = B_FALSE;
2494                         vdev_reopen(tvd);
2495                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2496                 }
2497
2498                 /*
2499                  * Add the device back into the metaslab rotor so that
2500                  * once we online the device it's open for business.
2501                  */
2502                 if (tvd->vdev_islog && mg != NULL)
2503                         metaslab_group_activate(mg);
2504         }
2505
2506         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2507
2508         return (spa_vdev_state_exit(spa, vd, 0));
2509 }
2510
2511 int
2512 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2513 {
2514         int error;
2515
2516         mutex_enter(&spa->spa_vdev_top_lock);
2517         error = vdev_offline_locked(spa, guid, flags);
2518         mutex_exit(&spa->spa_vdev_top_lock);
2519
2520         return (error);
2521 }
2522
2523 /*
2524  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2525  * vdev_offline(), we assume the spa config is locked.  We also clear all
2526  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2527  */
2528 void
2529 vdev_clear(spa_t *spa, vdev_t *vd)
2530 {
2531         vdev_t *rvd = spa->spa_root_vdev;
2532
2533         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2534
2535         if (vd == NULL)
2536                 vd = rvd;
2537
2538         vd->vdev_stat.vs_read_errors = 0;
2539         vd->vdev_stat.vs_write_errors = 0;
2540         vd->vdev_stat.vs_checksum_errors = 0;
2541
2542         for (int c = 0; c < vd->vdev_children; c++)
2543                 vdev_clear(spa, vd->vdev_child[c]);
2544
2545         if (vd == rvd) {
2546                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2547                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2548
2549                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2550                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2551         }
2552
2553         /*
2554          * If we're in the FAULTED state or have experienced failed I/O, then
2555          * clear the persistent state and attempt to reopen the device.  We
2556          * also mark the vdev config dirty, so that the new faulted state is
2557          * written out to disk.
2558          */
2559         if (vd->vdev_faulted || vd->vdev_degraded ||
2560             !vdev_readable(vd) || !vdev_writeable(vd)) {
2561
2562                 /*
2563                  * When reopening in reponse to a clear event, it may be due to
2564                  * a fmadm repair request.  In this case, if the device is
2565                  * still broken, we want to still post the ereport again.
2566                  */
2567                 vd->vdev_forcefault = B_TRUE;
2568
2569                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2570                 vd->vdev_cant_read = B_FALSE;
2571                 vd->vdev_cant_write = B_FALSE;
2572
2573                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2574
2575                 vd->vdev_forcefault = B_FALSE;
2576
2577                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2578                         vdev_state_dirty(vd->vdev_top);
2579
2580                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2581                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2582
2583                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2584         }
2585
2586         /*
2587          * When clearing a FMA-diagnosed fault, we always want to
2588          * unspare the device, as we assume that the original spare was
2589          * done in response to the FMA fault.
2590          */
2591         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2592             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2593             vd->vdev_parent->vdev_child[0] == vd)
2594                 vd->vdev_unspare = B_TRUE;
2595 }
2596
2597 boolean_t
2598 vdev_is_dead(vdev_t *vd)
2599 {
2600         /*
2601          * Holes and missing devices are always considered "dead".
2602          * This simplifies the code since we don't have to check for
2603          * these types of devices in the various code paths.
2604          * Instead we rely on the fact that we skip over dead devices
2605          * before issuing I/O to them.
2606          */
2607         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2608             vd->vdev_ops == &vdev_missing_ops);
2609 }
2610
2611 boolean_t
2612 vdev_readable(vdev_t *vd)
2613 {
2614         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2615 }
2616
2617 boolean_t
2618 vdev_writeable(vdev_t *vd)
2619 {
2620         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2621 }
2622
2623 boolean_t
2624 vdev_allocatable(vdev_t *vd)
2625 {
2626         uint64_t state = vd->vdev_state;
2627
2628         /*
2629          * We currently allow allocations from vdevs which may be in the
2630          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2631          * fails to reopen then we'll catch it later when we're holding
2632          * the proper locks.  Note that we have to get the vdev state
2633          * in a local variable because although it changes atomically,
2634          * we're asking two separate questions about it.
2635          */
2636         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2637             !vd->vdev_cant_write && !vd->vdev_ishole);
2638 }
2639
2640 boolean_t
2641 vdev_accessible(vdev_t *vd, zio_t *zio)
2642 {
2643         ASSERT(zio->io_vd == vd);
2644
2645         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2646                 return (B_FALSE);
2647
2648         if (zio->io_type == ZIO_TYPE_READ)
2649                 return (!vd->vdev_cant_read);
2650
2651         if (zio->io_type == ZIO_TYPE_WRITE)
2652                 return (!vd->vdev_cant_write);
2653
2654         return (B_TRUE);
2655 }
2656
2657 /*
2658  * Get statistics for the given vdev.
2659  */
2660 void
2661 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2662 {
2663         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2664
2665         mutex_enter(&vd->vdev_stat_lock);
2666         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2667         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2668         vs->vs_state = vd->vdev_state;
2669         vs->vs_rsize = vdev_get_min_asize(vd);
2670         if (vd->vdev_ops->vdev_op_leaf)
2671                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2672         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2673         vs->vs_configured_ashift = vd->vdev_top != NULL
2674             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2675         vs->vs_logical_ashift = vd->vdev_logical_ashift;
2676         vs->vs_physical_ashift = vd->vdev_physical_ashift;
2677         mutex_exit(&vd->vdev_stat_lock);
2678
2679         /*
2680          * If we're getting stats on the root vdev, aggregate the I/O counts
2681          * over all top-level vdevs (i.e. the direct children of the root).
2682          */
2683         if (vd == rvd) {
2684                 for (int c = 0; c < rvd->vdev_children; c++) {
2685                         vdev_t *cvd = rvd->vdev_child[c];
2686                         vdev_stat_t *cvs = &cvd->vdev_stat;
2687
2688                         mutex_enter(&vd->vdev_stat_lock);
2689                         for (int t = 0; t < ZIO_TYPES; t++) {
2690                                 vs->vs_ops[t] += cvs->vs_ops[t];
2691                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2692                         }
2693                         cvs->vs_scan_removing = cvd->vdev_removing;
2694                         mutex_exit(&vd->vdev_stat_lock);
2695                 }
2696         }
2697 }
2698
2699 void
2700 vdev_clear_stats(vdev_t *vd)
2701 {
2702         mutex_enter(&vd->vdev_stat_lock);
2703         vd->vdev_stat.vs_space = 0;
2704         vd->vdev_stat.vs_dspace = 0;
2705         vd->vdev_stat.vs_alloc = 0;
2706         mutex_exit(&vd->vdev_stat_lock);
2707 }
2708
2709 void
2710 vdev_scan_stat_init(vdev_t *vd)
2711 {
2712         vdev_stat_t *vs = &vd->vdev_stat;
2713
2714         for (int c = 0; c < vd->vdev_children; c++)
2715                 vdev_scan_stat_init(vd->vdev_child[c]);
2716
2717         mutex_enter(&vd->vdev_stat_lock);
2718         vs->vs_scan_processed = 0;
2719         mutex_exit(&vd->vdev_stat_lock);
2720 }
2721
2722 void
2723 vdev_stat_update(zio_t *zio, uint64_t psize)
2724 {
2725         spa_t *spa = zio->io_spa;
2726         vdev_t *rvd = spa->spa_root_vdev;
2727         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2728         vdev_t *pvd;
2729         uint64_t txg = zio->io_txg;
2730         vdev_stat_t *vs = &vd->vdev_stat;
2731         zio_type_t type = zio->io_type;
2732         int flags = zio->io_flags;
2733
2734         /*
2735          * If this i/o is a gang leader, it didn't do any actual work.
2736          */
2737         if (zio->io_gang_tree)
2738                 return;
2739
2740         if (zio->io_error == 0) {
2741                 /*
2742                  * If this is a root i/o, don't count it -- we've already
2743                  * counted the top-level vdevs, and vdev_get_stats() will
2744                  * aggregate them when asked.  This reduces contention on
2745                  * the root vdev_stat_lock and implicitly handles blocks
2746                  * that compress away to holes, for which there is no i/o.
2747                  * (Holes never create vdev children, so all the counters
2748                  * remain zero, which is what we want.)
2749                  *
2750                  * Note: this only applies to successful i/o (io_error == 0)
2751                  * because unlike i/o counts, errors are not additive.
2752                  * When reading a ditto block, for example, failure of
2753                  * one top-level vdev does not imply a root-level error.
2754                  */
2755                 if (vd == rvd)
2756                         return;
2757
2758                 ASSERT(vd == zio->io_vd);
2759
2760                 if (flags & ZIO_FLAG_IO_BYPASS)
2761                         return;
2762
2763                 mutex_enter(&vd->vdev_stat_lock);
2764
2765                 if (flags & ZIO_FLAG_IO_REPAIR) {
2766                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2767                                 dsl_scan_phys_t *scn_phys =
2768                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2769                                 uint64_t *processed = &scn_phys->scn_processed;
2770
2771                                 /* XXX cleanup? */
2772                                 if (vd->vdev_ops->vdev_op_leaf)
2773                                         atomic_add_64(processed, psize);
2774                                 vs->vs_scan_processed += psize;
2775                         }
2776
2777                         if (flags & ZIO_FLAG_SELF_HEAL)
2778                                 vs->vs_self_healed += psize;
2779                 }
2780
2781                 vs->vs_ops[type]++;
2782                 vs->vs_bytes[type] += psize;
2783
2784                 mutex_exit(&vd->vdev_stat_lock);
2785                 return;
2786         }
2787
2788         if (flags & ZIO_FLAG_SPECULATIVE)
2789                 return;
2790
2791         /*
2792          * If this is an I/O error that is going to be retried, then ignore the
2793          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2794          * hard errors, when in reality they can happen for any number of
2795          * innocuous reasons (bus resets, MPxIO link failure, etc).
2796          */
2797         if (zio->io_error == EIO &&
2798             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2799                 return;
2800
2801         /*
2802          * Intent logs writes won't propagate their error to the root
2803          * I/O so don't mark these types of failures as pool-level
2804          * errors.
2805          */
2806         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2807                 return;
2808
2809         mutex_enter(&vd->vdev_stat_lock);
2810         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2811                 if (zio->io_error == ECKSUM)
2812                         vs->vs_checksum_errors++;
2813                 else
2814                         vs->vs_read_errors++;
2815         }
2816         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2817                 vs->vs_write_errors++;
2818         mutex_exit(&vd->vdev_stat_lock);
2819
2820         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2821             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2822             (flags & ZIO_FLAG_SCAN_THREAD) ||
2823             spa->spa_claiming)) {
2824                 /*
2825                  * This is either a normal write (not a repair), or it's
2826                  * a repair induced by the scrub thread, or it's a repair
2827                  * made by zil_claim() during spa_load() in the first txg.
2828                  * In the normal case, we commit the DTL change in the same
2829                  * txg as the block was born.  In the scrub-induced repair
2830                  * case, we know that scrubs run in first-pass syncing context,
2831                  * so we commit the DTL change in spa_syncing_txg(spa).
2832                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2833                  *
2834                  * We currently do not make DTL entries for failed spontaneous
2835                  * self-healing writes triggered by normal (non-scrubbing)
2836                  * reads, because we have no transactional context in which to
2837                  * do so -- and it's not clear that it'd be desirable anyway.
2838                  */
2839                 if (vd->vdev_ops->vdev_op_leaf) {
2840                         uint64_t commit_txg = txg;
2841                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2842                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2843                                 ASSERT(spa_sync_pass(spa) == 1);
2844                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2845                                 commit_txg = spa_syncing_txg(spa);
2846                         } else if (spa->spa_claiming) {
2847                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2848                                 commit_txg = spa_first_txg(spa);
2849                         }
2850                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2851                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2852                                 return;
2853                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2854                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2855                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2856                 }
2857                 if (vd != rvd)
2858                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2859         }
2860 }
2861
2862 /*
2863  * Update the in-core space usage stats for this vdev, its metaslab class,
2864  * and the root vdev.
2865  */
2866 void
2867 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2868     int64_t space_delta)
2869 {
2870         int64_t dspace_delta = space_delta;
2871         spa_t *spa = vd->vdev_spa;
2872         vdev_t *rvd = spa->spa_root_vdev;
2873         metaslab_group_t *mg = vd->vdev_mg;
2874         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2875
2876         ASSERT(vd == vd->vdev_top);
2877
2878         /*
2879          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2880          * factor.  We must calculate this here and not at the root vdev
2881          * because the root vdev's psize-to-asize is simply the max of its
2882          * childrens', thus not accurate enough for us.
2883          */
2884         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2885         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2886         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2887             vd->vdev_deflate_ratio;
2888
2889         mutex_enter(&vd->vdev_stat_lock);
2890         vd->vdev_stat.vs_alloc += alloc_delta;
2891         vd->vdev_stat.vs_space += space_delta;
2892         vd->vdev_stat.vs_dspace += dspace_delta;
2893         mutex_exit(&vd->vdev_stat_lock);
2894
2895         if (mc == spa_normal_class(spa)) {
2896                 mutex_enter(&rvd->vdev_stat_lock);
2897                 rvd->vdev_stat.vs_alloc += alloc_delta;
2898                 rvd->vdev_stat.vs_space += space_delta;
2899                 rvd->vdev_stat.vs_dspace += dspace_delta;
2900                 mutex_exit(&rvd->vdev_stat_lock);
2901         }
2902
2903         if (mc != NULL) {
2904                 ASSERT(rvd == vd->vdev_parent);
2905                 ASSERT(vd->vdev_ms_count != 0);
2906
2907                 metaslab_class_space_update(mc,
2908                     alloc_delta, defer_delta, space_delta, dspace_delta);
2909         }
2910 }
2911
2912 /*
2913  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2914  * so that it will be written out next time the vdev configuration is synced.
2915  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2916  */
2917 void
2918 vdev_config_dirty(vdev_t *vd)
2919 {
2920         spa_t *spa = vd->vdev_spa;
2921         vdev_t *rvd = spa->spa_root_vdev;
2922         int c;
2923
2924         ASSERT(spa_writeable(spa));
2925
2926         /*
2927          * If this is an aux vdev (as with l2cache and spare devices), then we
2928          * update the vdev config manually and set the sync flag.
2929          */
2930         if (vd->vdev_aux != NULL) {
2931                 spa_aux_vdev_t *sav = vd->vdev_aux;
2932                 nvlist_t **aux;
2933                 uint_t naux;
2934
2935                 for (c = 0; c < sav->sav_count; c++) {
2936                         if (sav->sav_vdevs[c] == vd)
2937                                 break;
2938                 }
2939
2940                 if (c == sav->sav_count) {
2941                         /*
2942                          * We're being removed.  There's nothing more to do.
2943                          */
2944                         ASSERT(sav->sav_sync == B_TRUE);
2945                         return;
2946                 }
2947
2948                 sav->sav_sync = B_TRUE;
2949
2950                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2951                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2952                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2953                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2954                 }
2955
2956                 ASSERT(c < naux);
2957
2958                 /*
2959                  * Setting the nvlist in the middle if the array is a little
2960                  * sketchy, but it will work.
2961                  */
2962                 nvlist_free(aux[c]);
2963                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2964
2965                 return;
2966         }
2967
2968         /*
2969          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2970          * must either hold SCL_CONFIG as writer, or must be the sync thread
2971          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2972          * so this is sufficient to ensure mutual exclusion.
2973          */
2974         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2975             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2976             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2977
2978         if (vd == rvd) {
2979                 for (c = 0; c < rvd->vdev_children; c++)
2980                         vdev_config_dirty(rvd->vdev_child[c]);
2981         } else {
2982                 ASSERT(vd == vd->vdev_top);
2983
2984                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2985                     !vd->vdev_ishole)
2986                         list_insert_head(&spa->spa_config_dirty_list, vd);
2987         }
2988 }
2989
2990 void
2991 vdev_config_clean(vdev_t *vd)
2992 {
2993         spa_t *spa = vd->vdev_spa;
2994
2995         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2996             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2997             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2998
2999         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3000         list_remove(&spa->spa_config_dirty_list, vd);
3001 }
3002
3003 /*
3004  * Mark a top-level vdev's state as dirty, so that the next pass of
3005  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3006  * the state changes from larger config changes because they require
3007  * much less locking, and are often needed for administrative actions.
3008  */
3009 void
3010 vdev_state_dirty(vdev_t *vd)
3011 {
3012         spa_t *spa = vd->vdev_spa;
3013
3014         ASSERT(spa_writeable(spa));
3015         ASSERT(vd == vd->vdev_top);
3016
3017         /*
3018          * The state list is protected by the SCL_STATE lock.  The caller
3019          * must either hold SCL_STATE as writer, or must be the sync thread
3020          * (which holds SCL_STATE as reader).  There's only one sync thread,
3021          * so this is sufficient to ensure mutual exclusion.
3022          */
3023         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3024             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3025             spa_config_held(spa, SCL_STATE, RW_READER)));
3026
3027         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3028                 list_insert_head(&spa->spa_state_dirty_list, vd);
3029 }
3030
3031 void
3032 vdev_state_clean(vdev_t *vd)
3033 {
3034         spa_t *spa = vd->vdev_spa;
3035
3036         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3037             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3038             spa_config_held(spa, SCL_STATE, RW_READER)));
3039
3040         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3041         list_remove(&spa->spa_state_dirty_list, vd);
3042 }
3043
3044 /*
3045  * Propagate vdev state up from children to parent.
3046  */
3047 void
3048 vdev_propagate_state(vdev_t *vd)
3049 {
3050         spa_t *spa = vd->vdev_spa;
3051         vdev_t *rvd = spa->spa_root_vdev;
3052         int degraded = 0, faulted = 0;
3053         int corrupted = 0;
3054         vdev_t *child;
3055
3056         if (vd->vdev_children > 0) {
3057                 for (int c = 0; c < vd->vdev_children; c++) {
3058                         child = vd->vdev_child[c];
3059
3060                         /*
3061                          * Don't factor holes into the decision.
3062                          */
3063                         if (child->vdev_ishole)
3064                                 continue;
3065
3066                         if (!vdev_readable(child) ||
3067                             (!vdev_writeable(child) && spa_writeable(spa))) {
3068                                 /*
3069                                  * Root special: if there is a top-level log
3070                                  * device, treat the root vdev as if it were
3071                                  * degraded.
3072                                  */
3073                                 if (child->vdev_islog && vd == rvd)
3074                                         degraded++;
3075                                 else
3076                                         faulted++;
3077                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3078                                 degraded++;
3079                         }
3080
3081                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3082                                 corrupted++;
3083                 }
3084
3085                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3086
3087                 /*
3088                  * Root special: if there is a top-level vdev that cannot be
3089                  * opened due to corrupted metadata, then propagate the root
3090                  * vdev's aux state as 'corrupt' rather than 'insufficient
3091                  * replicas'.
3092                  */
3093                 if (corrupted && vd == rvd &&
3094                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3095                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3096                             VDEV_AUX_CORRUPT_DATA);
3097         }
3098
3099         if (vd->vdev_parent)
3100                 vdev_propagate_state(vd->vdev_parent);
3101 }
3102
3103 /*
3104  * Set a vdev's state.  If this is during an open, we don't update the parent
3105  * state, because we're in the process of opening children depth-first.
3106  * Otherwise, we propagate the change to the parent.
3107  *
3108  * If this routine places a device in a faulted state, an appropriate ereport is
3109  * generated.
3110  */
3111 void
3112 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3113 {
3114         uint64_t save_state;
3115         spa_t *spa = vd->vdev_spa;
3116
3117         if (state == vd->vdev_state) {
3118                 vd->vdev_stat.vs_aux = aux;
3119                 return;
3120         }
3121
3122         save_state = vd->vdev_state;
3123
3124         vd->vdev_state = state;
3125         vd->vdev_stat.vs_aux = aux;
3126
3127         /*
3128          * If we are setting the vdev state to anything but an open state, then
3129          * always close the underlying device unless the device has requested
3130          * a delayed close (i.e. we're about to remove or fault the device).
3131          * Otherwise, we keep accessible but invalid devices open forever.
3132          * We don't call vdev_close() itself, because that implies some extra
3133          * checks (offline, etc) that we don't want here.  This is limited to
3134          * leaf devices, because otherwise closing the device will affect other
3135          * children.
3136          */
3137         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3138             vd->vdev_ops->vdev_op_leaf)
3139                 vd->vdev_ops->vdev_op_close(vd);
3140
3141         /*
3142          * If we have brought this vdev back into service, we need
3143          * to notify fmd so that it can gracefully repair any outstanding
3144          * cases due to a missing device.  We do this in all cases, even those
3145          * that probably don't correlate to a repaired fault.  This is sure to
3146          * catch all cases, and we let the zfs-retire agent sort it out.  If
3147          * this is a transient state it's OK, as the retire agent will
3148          * double-check the state of the vdev before repairing it.
3149          */
3150         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3151             vd->vdev_prevstate != state)
3152                 zfs_post_state_change(spa, vd);
3153
3154         if (vd->vdev_removed &&
3155             state == VDEV_STATE_CANT_OPEN &&
3156             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3157                 /*
3158                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3159                  * device was previously marked removed and someone attempted to
3160                  * reopen it.  If this failed due to a nonexistent device, then
3161                  * keep the device in the REMOVED state.  We also let this be if
3162                  * it is one of our special test online cases, which is only
3163                  * attempting to online the device and shouldn't generate an FMA
3164                  * fault.
3165                  */
3166                 vd->vdev_state = VDEV_STATE_REMOVED;
3167                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3168         } else if (state == VDEV_STATE_REMOVED) {
3169                 vd->vdev_removed = B_TRUE;
3170         } else if (state == VDEV_STATE_CANT_OPEN) {
3171                 /*
3172                  * If we fail to open a vdev during an import or recovery, we
3173                  * mark it as "not available", which signifies that it was
3174                  * never there to begin with.  Failure to open such a device
3175                  * is not considered an error.
3176                  */
3177                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3178                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3179                     vd->vdev_ops->vdev_op_leaf)
3180                         vd->vdev_not_present = 1;
3181
3182                 /*
3183                  * Post the appropriate ereport.  If the 'prevstate' field is
3184                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3185                  * that this is part of a vdev_reopen().  In this case, we don't
3186                  * want to post the ereport if the device was already in the
3187                  * CANT_OPEN state beforehand.
3188                  *
3189                  * If the 'checkremove' flag is set, then this is an attempt to
3190                  * online the device in response to an insertion event.  If we
3191                  * hit this case, then we have detected an insertion event for a
3192                  * faulted or offline device that wasn't in the removed state.
3193                  * In this scenario, we don't post an ereport because we are
3194                  * about to replace the device, or attempt an online with
3195                  * vdev_forcefault, which will generate the fault for us.
3196                  */
3197                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3198                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3199                     vd != spa->spa_root_vdev) {
3200                         const char *class;
3201
3202                         switch (aux) {
3203                         case VDEV_AUX_OPEN_FAILED:
3204                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3205                                 break;
3206                         case VDEV_AUX_CORRUPT_DATA:
3207                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3208                                 break;
3209                         case VDEV_AUX_NO_REPLICAS:
3210                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3211                                 break;
3212                         case VDEV_AUX_BAD_GUID_SUM:
3213                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3214                                 break;
3215                         case VDEV_AUX_TOO_SMALL:
3216                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3217                                 break;
3218                         case VDEV_AUX_BAD_LABEL:
3219                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3220                                 break;
3221                         default:
3222                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3223                         }
3224
3225                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3226                 }
3227
3228                 /* Erase any notion of persistent removed state */
3229                 vd->vdev_removed = B_FALSE;
3230         } else {
3231                 vd->vdev_removed = B_FALSE;
3232         }
3233
3234         if (!isopen && vd->vdev_parent)
3235                 vdev_propagate_state(vd->vdev_parent);
3236 }
3237
3238 /*
3239  * Check the vdev configuration to ensure that it's capable of supporting
3240  * a root pool.
3241  *
3242  * On Solaris, we do not support RAID-Z or partial configuration.  In
3243  * addition, only a single top-level vdev is allowed and none of the
3244  * leaves can be wholedisks.
3245  *
3246  * For FreeBSD, we can boot from any configuration. There is a
3247  * limitation that the boot filesystem must be either uncompressed or
3248  * compresses with lzjb compression but I'm not sure how to enforce
3249  * that here.
3250  */
3251 boolean_t
3252 vdev_is_bootable(vdev_t *vd)
3253 {
3254 #ifdef sun
3255         if (!vd->vdev_ops->vdev_op_leaf) {
3256                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3257
3258                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3259                     vd->vdev_children > 1) {
3260                         return (B_FALSE);
3261                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3262                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3263                         return (B_FALSE);
3264                 }
3265         } else if (vd->vdev_wholedisk == 1) {
3266                 return (B_FALSE);
3267         }
3268
3269         for (int c = 0; c < vd->vdev_children; c++) {
3270                 if (!vdev_is_bootable(vd->vdev_child[c]))
3271                         return (B_FALSE);
3272         }
3273 #endif  /* sun */
3274         return (B_TRUE);
3275 }
3276
3277 /*
3278  * Load the state from the original vdev tree (ovd) which
3279  * we've retrieved from the MOS config object. If the original
3280  * vdev was offline or faulted then we transfer that state to the
3281  * device in the current vdev tree (nvd).
3282  */
3283 void
3284 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3285 {
3286         spa_t *spa = nvd->vdev_spa;
3287
3288         ASSERT(nvd->vdev_top->vdev_islog);
3289         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3290         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3291
3292         for (int c = 0; c < nvd->vdev_children; c++)
3293                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3294
3295         if (nvd->vdev_ops->vdev_op_leaf) {
3296                 /*
3297                  * Restore the persistent vdev state
3298                  */
3299                 nvd->vdev_offline = ovd->vdev_offline;
3300                 nvd->vdev_faulted = ovd->vdev_faulted;
3301                 nvd->vdev_degraded = ovd->vdev_degraded;
3302                 nvd->vdev_removed = ovd->vdev_removed;
3303         }
3304 }
3305
3306 /*
3307  * Determine if a log device has valid content.  If the vdev was
3308  * removed or faulted in the MOS config then we know that
3309  * the content on the log device has already been written to the pool.
3310  */
3311 boolean_t
3312 vdev_log_state_valid(vdev_t *vd)
3313 {
3314         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3315             !vd->vdev_removed)
3316                 return (B_TRUE);
3317
3318         for (int c = 0; c < vd->vdev_children; c++)
3319                 if (vdev_log_state_valid(vd->vdev_child[c]))
3320                         return (B_TRUE);
3321
3322         return (B_FALSE);
3323 }
3324
3325 /*
3326  * Expand a vdev if possible.
3327  */
3328 void
3329 vdev_expand(vdev_t *vd, uint64_t txg)
3330 {
3331         ASSERT(vd->vdev_top == vd);
3332         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3333
3334         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3335                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3336                 vdev_config_dirty(vd);
3337         }
3338 }
3339
3340 /*
3341  * Split a vdev.
3342  */
3343 void
3344 vdev_split(vdev_t *vd)
3345 {
3346         vdev_t *cvd, *pvd = vd->vdev_parent;
3347
3348         vdev_remove_child(pvd, vd);
3349         vdev_compact_children(pvd);
3350
3351         cvd = pvd->vdev_child[0];
3352         if (pvd->vdev_children == 1) {
3353                 vdev_remove_parent(cvd);
3354                 cvd->vdev_splitting = B_TRUE;
3355         }
3356         vdev_propagate_state(cvd);
3357 }
3358
3359 void
3360 vdev_deadman(vdev_t *vd)
3361 {
3362         for (int c = 0; c < vd->vdev_children; c++) {
3363                 vdev_t *cvd = vd->vdev_child[c];
3364
3365                 vdev_deadman(cvd);
3366         }
3367
3368         if (vd->vdev_ops->vdev_op_leaf) {
3369                 vdev_queue_t *vq = &vd->vdev_queue;
3370
3371                 mutex_enter(&vq->vq_lock);
3372                 if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3373                         spa_t *spa = vd->vdev_spa;
3374                         zio_t *fio;
3375                         uint64_t delta;
3376
3377                         /*
3378                          * Look at the head of all the pending queues,
3379                          * if any I/O has been outstanding for longer than
3380                          * the spa_deadman_synctime we panic the system.
3381                          */
3382                         fio = avl_first(&vq->vq_pending_tree);
3383                         delta = gethrtime() - fio->io_timestamp;
3384                         if (delta > spa_deadman_synctime(spa)) {
3385                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3386                                     "delta %lluns, last io %lluns",
3387                                     fio->io_timestamp, delta,
3388                                     vq->vq_io_complete_ts);
3389                                 fm_panic("I/O to pool '%s' appears to be "
3390                                     "hung on vdev guid %llu at '%s'.",
3391                                     spa_name(spa),
3392                                     (long long unsigned int) vd->vdev_guid,
3393                                     vd->vdev_path);
3394                         }
3395                 }
3396                 mutex_exit(&vq->vq_lock);
3397         }
3398 }