]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/cddl/contrib/opensolaris/uts/common/zmod/inftrees.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / cddl / contrib / opensolaris / uts / common / zmod / inftrees.c
1 /* inftrees.c -- generate Huffman trees for efficient decoding
2  * Copyright (C) 1995-2005 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5
6 #pragma ident   "%Z%%M% %I%     %E% SMI"
7
8 #include "zutil.h"
9 #include "inftrees.h"
10
11 #define MAXBITS 15
12
13 static const char inflate_copyright[] =
14    " inflate 1.2.3 Copyright 1995-2005 Mark Adler ";
15 /*
16   If you use the zlib library in a product, an acknowledgment is welcome
17   in the documentation of your product. If for some reason you cannot
18   include such an acknowledgment, I would appreciate that you keep this
19   copyright string in the executable of your product.
20  */
21
22 /*
23    Build a set of tables to decode the provided canonical Huffman code.
24    The code lengths are lens[0..codes-1].  The result starts at *table,
25    whose indices are 0..2^bits-1.  work is a writable array of at least
26    lens shorts, which is used as a work area.  type is the type of code
27    to be generated, CODES, LENS, or DISTS.  On return, zero is success,
28    -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
29    on return points to the next available entry's address.  bits is the
30    requested root table index bits, and on return it is the actual root
31    table index bits.  It will differ if the request is greater than the
32    longest code or if it is less than the shortest code.
33  */
34 int inflate_table(type, lens, codes, table, bits, work)
35 codetype type;
36 unsigned short FAR *lens;
37 unsigned codes;
38 code FAR * FAR *table;
39 unsigned FAR *bits;
40 unsigned short FAR *work;
41 {
42     unsigned len;               /* a code's length in bits */
43     unsigned sym;               /* index of code symbols */
44     unsigned min, max;          /* minimum and maximum code lengths */
45     unsigned root;              /* number of index bits for root table */
46     unsigned curr;              /* number of index bits for current table */
47     unsigned drop;              /* code bits to drop for sub-table */
48     int left;                   /* number of prefix codes available */
49     unsigned used;              /* code entries in table used */
50     unsigned huff;              /* Huffman code */
51     unsigned incr;              /* for incrementing code, index */
52     unsigned fill;              /* index for replicating entries */
53     unsigned low;               /* low bits for current root entry */
54     unsigned mask;              /* mask for low root bits */
55     code this;                  /* table entry for duplication */
56     code FAR *next;             /* next available space in table */
57     const unsigned short FAR *base;     /* base value table to use */
58     const unsigned short FAR *extra;    /* extra bits table to use */
59     int end;                    /* use base and extra for symbol > end */
60     unsigned short count[MAXBITS+1];    /* number of codes of each length */
61     unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
62     static const unsigned short lbase[31] = { /* Length codes 257..285 base */
63         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
64         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
65     static const unsigned short lext[31] = { /* Length codes 257..285 extra */
66         16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
67         19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 201, 196};
68     static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
69         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
70         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
71         8193, 12289, 16385, 24577, 0, 0};
72     static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
73         16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
74         23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
75         28, 28, 29, 29, 64, 64};
76
77     /*
78        Process a set of code lengths to create a canonical Huffman code.  The
79        code lengths are lens[0..codes-1].  Each length corresponds to the
80        symbols 0..codes-1.  The Huffman code is generated by first sorting the
81        symbols by length from short to long, and retaining the symbol order
82        for codes with equal lengths.  Then the code starts with all zero bits
83        for the first code of the shortest length, and the codes are integer
84        increments for the same length, and zeros are appended as the length
85        increases.  For the deflate format, these bits are stored backwards
86        from their more natural integer increment ordering, and so when the
87        decoding tables are built in the large loop below, the integer codes
88        are incremented backwards.
89
90        This routine assumes, but does not check, that all of the entries in
91        lens[] are in the range 0..MAXBITS.  The caller must assure this.
92        1..MAXBITS is interpreted as that code length.  zero means that that
93        symbol does not occur in this code.
94
95        The codes are sorted by computing a count of codes for each length,
96        creating from that a table of starting indices for each length in the
97        sorted table, and then entering the symbols in order in the sorted
98        table.  The sorted table is work[], with that space being provided by
99        the caller.
100
101        The length counts are used for other purposes as well, i.e. finding
102        the minimum and maximum length codes, determining if there are any
103        codes at all, checking for a valid set of lengths, and looking ahead
104        at length counts to determine sub-table sizes when building the
105        decoding tables.
106      */
107
108     /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
109     for (len = 0; len <= MAXBITS; len++)
110         count[len] = 0;
111     for (sym = 0; sym < codes; sym++)
112         count[lens[sym]]++;
113
114     /* bound code lengths, force root to be within code lengths */
115     root = *bits;
116     for (max = MAXBITS; max >= 1; max--)
117         if (count[max] != 0) break;
118     if (root > max) root = max;
119     if (max == 0) {                     /* no symbols to code at all */
120         this.op = (unsigned char)64;    /* invalid code marker */
121         this.bits = (unsigned char)1;
122         this.val = (unsigned short)0;
123         *(*table)++ = this;             /* make a table to force an error */
124         *(*table)++ = this;
125         *bits = 1;
126         return 0;     /* no symbols, but wait for decoding to report error */
127     }
128     for (min = 1; min <= MAXBITS; min++)
129         if (count[min] != 0) break;
130     if (root < min) root = min;
131
132     /* check for an over-subscribed or incomplete set of lengths */
133     left = 1;
134     for (len = 1; len <= MAXBITS; len++) {
135         left <<= 1;
136         left -= count[len];
137         if (left < 0) return -1;        /* over-subscribed */
138     }
139     if (left > 0 && (type == CODES || max != 1))
140         return -1;                      /* incomplete set */
141
142     /* generate offsets into symbol table for each length for sorting */
143     offs[1] = 0;
144     for (len = 1; len < MAXBITS; len++)
145         offs[len + 1] = offs[len] + count[len];
146
147     /* sort symbols by length, by symbol order within each length */
148     for (sym = 0; sym < codes; sym++)
149         if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
150
151     /*
152        Create and fill in decoding tables.  In this loop, the table being
153        filled is at next and has curr index bits.  The code being used is huff
154        with length len.  That code is converted to an index by dropping drop
155        bits off of the bottom.  For codes where len is less than drop + curr,
156        those top drop + curr - len bits are incremented through all values to
157        fill the table with replicated entries.
158
159        root is the number of index bits for the root table.  When len exceeds
160        root, sub-tables are created pointed to by the root entry with an index
161        of the low root bits of huff.  This is saved in low to check for when a
162        new sub-table should be started.  drop is zero when the root table is
163        being filled, and drop is root when sub-tables are being filled.
164
165        When a new sub-table is needed, it is necessary to look ahead in the
166        code lengths to determine what size sub-table is needed.  The length
167        counts are used for this, and so count[] is decremented as codes are
168        entered in the tables.
169
170        used keeps track of how many table entries have been allocated from the
171        provided *table space.  It is checked when a LENS table is being made
172        against the space in *table, ENOUGH, minus the maximum space needed by
173        the worst case distance code, MAXD.  This should never happen, but the
174        sufficiency of ENOUGH has not been proven exhaustively, hence the check.
175        This assumes that when type == LENS, bits == 9.
176
177        sym increments through all symbols, and the loop terminates when
178        all codes of length max, i.e. all codes, have been processed.  This
179        routine permits incomplete codes, so another loop after this one fills
180        in the rest of the decoding tables with invalid code markers.
181      */
182
183     /* set up for code type */
184     switch (type) {
185     case CODES:
186         base = extra = work;    /* dummy value--not used */
187         end = 19;
188         break;
189     case LENS:
190         base = lbase;
191         base -= 257;
192         extra = lext;
193         extra -= 257;
194         end = 256;
195         break;
196     default:            /* DISTS */
197         base = dbase;
198         extra = dext;
199         end = -1;
200     }
201
202     /* initialize state for loop */
203     huff = 0;                   /* starting code */
204     sym = 0;                    /* starting code symbol */
205     len = min;                  /* starting code length */
206     next = *table;              /* current table to fill in */
207     curr = root;                /* current table index bits */
208     drop = 0;                   /* current bits to drop from code for index */
209     low = (unsigned)(-1);       /* trigger new sub-table when len > root */
210     used = 1U << root;          /* use root table entries */
211     mask = used - 1;            /* mask for comparing low */
212
213     /* check available table space */
214     if (type == LENS && used >= ENOUGH - MAXD)
215         return 1;
216
217     /* process all codes and make table entries */
218     for (;;) {
219         /* create table entry */
220         this.bits = (unsigned char)(len - drop);
221         if ((int)(work[sym]) < end) {
222             this.op = (unsigned char)0;
223             this.val = work[sym];
224         }
225         else if ((int)(work[sym]) > end) {
226             this.op = (unsigned char)(extra[work[sym]]);
227             this.val = base[work[sym]];
228         }
229         else {
230             this.op = (unsigned char)(32 + 64);         /* end of block */
231             this.val = 0;
232         }
233
234         /* replicate for those indices with low len bits equal to huff */
235         incr = 1U << (len - drop);
236         fill = 1U << curr;
237         min = fill;                 /* save offset to next table */
238         do {
239             fill -= incr;
240             next[(huff >> drop) + fill] = this;
241         } while (fill != 0);
242
243         /* backwards increment the len-bit code huff */
244         incr = 1U << (len - 1);
245         while (huff & incr)
246             incr >>= 1;
247         if (incr != 0) {
248             huff &= incr - 1;
249             huff += incr;
250         }
251         else
252             huff = 0;
253
254         /* go to next symbol, update count, len */
255         sym++;
256         if (--(count[len]) == 0) {
257             if (len == max) break;
258             len = lens[work[sym]];
259         }
260
261         /* create new sub-table if needed */
262         if (len > root && (huff & mask) != low) {
263             /* if first time, transition to sub-tables */
264             if (drop == 0)
265                 drop = root;
266
267             /* increment past last table */
268             next += min;            /* here min is 1 << curr */
269
270             /* determine length of next table */
271             curr = len - drop;
272             left = (int)(1 << curr);
273             while (curr + drop < max) {
274                 left -= count[curr + drop];
275                 if (left <= 0) break;
276                 curr++;
277                 left <<= 1;
278             }
279
280             /* check for enough space */
281             used += 1U << curr;
282             if (type == LENS && used >= ENOUGH - MAXD)
283                 return 1;
284
285             /* point entry in root table to sub-table */
286             low = huff & mask;
287             (*table)[low].op = (unsigned char)curr;
288             (*table)[low].bits = (unsigned char)root;
289             (*table)[low].val = (unsigned short)(next - *table);
290         }
291     }
292
293     /*
294        Fill in rest of table for incomplete codes.  This loop is similar to the
295        loop above in incrementing huff for table indices.  It is assumed that
296        len is equal to curr + drop, so there is no loop needed to increment
297        through high index bits.  When the current sub-table is filled, the loop
298        drops back to the root table to fill in any remaining entries there.
299      */
300     this.op = (unsigned char)64;                /* invalid code marker */
301     this.bits = (unsigned char)(len - drop);
302     this.val = (unsigned short)0;
303     while (huff != 0) {
304         /* when done with sub-table, drop back to root table */
305         if (drop != 0 && (huff & mask) != low) {
306             drop = 0;
307             len = root;
308             next = *table;
309             this.bits = (unsigned char)len;
310         }
311
312         /* put invalid code marker in table */
313         next[huff >> drop] = this;
314
315         /* backwards increment the len-bit code huff */
316         incr = 1U << (len - 1);
317         while (huff & incr)
318             incr >>= 1;
319         if (incr != 0) {
320             huff &= incr - 1;
321             huff += incr;
322         }
323         else
324             huff = 0;
325     }
326
327     /* set return parameters */
328     *table += used;
329     *bits = root;
330     return 0;
331 }