]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/compat/ndis/subr_ntoskrnl.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / compat / ndis / subr_ntoskrnl.c
1 /*-
2  * Copyright (c) 2003
3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include <sys/ctype.h>
37 #include <sys/unistd.h>
38 #include <sys/param.h>
39 #include <sys/types.h>
40 #include <sys/errno.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45
46 #include <sys/callout.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/condvar.h>
51 #include <sys/kthread.h>
52 #include <sys/module.h>
53 #include <sys/smp.h>
54 #include <sys/sched.h>
55 #include <sys/sysctl.h>
56
57 #include <machine/atomic.h>
58 #include <machine/bus.h>
59 #include <machine/stdarg.h>
60 #include <machine/resource.h>
61
62 #include <sys/bus.h>
63 #include <sys/rman.h>
64
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <vm/pmap.h>
68 #include <vm/uma.h>
69 #include <vm/vm_kern.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_extern.h>
72
73 #include <compat/ndis/pe_var.h>
74 #include <compat/ndis/cfg_var.h>
75 #include <compat/ndis/resource_var.h>
76 #include <compat/ndis/ntoskrnl_var.h>
77 #include <compat/ndis/hal_var.h>
78 #include <compat/ndis/ndis_var.h>
79
80 #ifdef NTOSKRNL_DEBUG_TIMERS
81 static int sysctl_show_timers(SYSCTL_HANDLER_ARGS);
82
83 SYSCTL_PROC(_debug, OID_AUTO, ntoskrnl_timers, CTLTYPE_INT | CTLFLAG_RW,
84     NULL, 0, sysctl_show_timers, "I",
85     "Show ntoskrnl timer stats");
86 #endif
87
88 struct kdpc_queue {
89         list_entry              kq_disp;
90         struct thread           *kq_td;
91         int                     kq_cpu;
92         int                     kq_exit;
93         int                     kq_running;
94         kspin_lock              kq_lock;
95         nt_kevent               kq_proc;
96         nt_kevent               kq_done;
97 };
98
99 typedef struct kdpc_queue kdpc_queue;
100
101 struct wb_ext {
102         struct cv               we_cv;
103         struct thread           *we_td;
104 };
105
106 typedef struct wb_ext wb_ext;
107
108 #define NTOSKRNL_TIMEOUTS       256
109 #ifdef NTOSKRNL_DEBUG_TIMERS
110 static uint64_t ntoskrnl_timer_fires;
111 static uint64_t ntoskrnl_timer_sets;
112 static uint64_t ntoskrnl_timer_reloads;
113 static uint64_t ntoskrnl_timer_cancels;
114 #endif
115
116 struct callout_entry {
117         struct callout          ce_callout;
118         list_entry              ce_list;
119 };
120
121 typedef struct callout_entry callout_entry;
122
123 static struct list_entry ntoskrnl_calllist;
124 static struct mtx ntoskrnl_calllock;
125 struct kuser_shared_data kuser_shared_data;
126
127 static struct list_entry ntoskrnl_intlist;
128 static kspin_lock ntoskrnl_intlock;
129
130 static uint8_t RtlEqualUnicodeString(unicode_string *,
131         unicode_string *, uint8_t);
132 static void RtlCopyString(ansi_string *, const ansi_string *);
133 static void RtlCopyUnicodeString(unicode_string *,
134         unicode_string *);
135 static irp *IoBuildSynchronousFsdRequest(uint32_t, device_object *,
136          void *, uint32_t, uint64_t *, nt_kevent *, io_status_block *);
137 static irp *IoBuildAsynchronousFsdRequest(uint32_t,
138         device_object *, void *, uint32_t, uint64_t *, io_status_block *);
139 static irp *IoBuildDeviceIoControlRequest(uint32_t,
140         device_object *, void *, uint32_t, void *, uint32_t,
141         uint8_t, nt_kevent *, io_status_block *);
142 static irp *IoAllocateIrp(uint8_t, uint8_t);
143 static void IoReuseIrp(irp *, uint32_t);
144 static void IoFreeIrp(irp *);
145 static void IoInitializeIrp(irp *, uint16_t, uint8_t);
146 static irp *IoMakeAssociatedIrp(irp *, uint8_t);
147 static uint32_t KeWaitForMultipleObjects(uint32_t,
148         nt_dispatch_header **, uint32_t, uint32_t, uint32_t, uint8_t,
149         int64_t *, wait_block *);
150 static void ntoskrnl_waittest(nt_dispatch_header *, uint32_t);
151 static void ntoskrnl_satisfy_wait(nt_dispatch_header *, struct thread *);
152 static void ntoskrnl_satisfy_multiple_waits(wait_block *);
153 static int ntoskrnl_is_signalled(nt_dispatch_header *, struct thread *);
154 static void ntoskrnl_insert_timer(ktimer *, int);
155 static void ntoskrnl_remove_timer(ktimer *);
156 #ifdef NTOSKRNL_DEBUG_TIMERS
157 static void ntoskrnl_show_timers(void);
158 #endif
159 static void ntoskrnl_timercall(void *);
160 static void ntoskrnl_dpc_thread(void *);
161 static void ntoskrnl_destroy_dpc_threads(void);
162 static void ntoskrnl_destroy_workitem_threads(void);
163 static void ntoskrnl_workitem_thread(void *);
164 static void ntoskrnl_workitem(device_object *, void *);
165 static void ntoskrnl_unicode_to_ascii(uint16_t *, char *, int);
166 static void ntoskrnl_ascii_to_unicode(char *, uint16_t *, int);
167 static uint8_t ntoskrnl_insert_dpc(list_entry *, kdpc *);
168 static void WRITE_REGISTER_USHORT(uint16_t *, uint16_t);
169 static uint16_t READ_REGISTER_USHORT(uint16_t *);
170 static void WRITE_REGISTER_ULONG(uint32_t *, uint32_t);
171 static uint32_t READ_REGISTER_ULONG(uint32_t *);
172 static void WRITE_REGISTER_UCHAR(uint8_t *, uint8_t);
173 static uint8_t READ_REGISTER_UCHAR(uint8_t *);
174 static int64_t _allmul(int64_t, int64_t);
175 static int64_t _alldiv(int64_t, int64_t);
176 static int64_t _allrem(int64_t, int64_t);
177 static int64_t _allshr(int64_t, uint8_t);
178 static int64_t _allshl(int64_t, uint8_t);
179 static uint64_t _aullmul(uint64_t, uint64_t);
180 static uint64_t _aulldiv(uint64_t, uint64_t);
181 static uint64_t _aullrem(uint64_t, uint64_t);
182 static uint64_t _aullshr(uint64_t, uint8_t);
183 static uint64_t _aullshl(uint64_t, uint8_t);
184 static slist_entry *ntoskrnl_pushsl(slist_header *, slist_entry *);
185 static void InitializeSListHead(slist_header *);
186 static slist_entry *ntoskrnl_popsl(slist_header *);
187 static void ExFreePoolWithTag(void *, uint32_t);
188 static void ExInitializePagedLookasideList(paged_lookaside_list *,
189         lookaside_alloc_func *, lookaside_free_func *,
190         uint32_t, size_t, uint32_t, uint16_t);
191 static void ExDeletePagedLookasideList(paged_lookaside_list *);
192 static void ExInitializeNPagedLookasideList(npaged_lookaside_list *,
193         lookaside_alloc_func *, lookaside_free_func *,
194         uint32_t, size_t, uint32_t, uint16_t);
195 static void ExDeleteNPagedLookasideList(npaged_lookaside_list *);
196 static slist_entry
197         *ExInterlockedPushEntrySList(slist_header *,
198         slist_entry *, kspin_lock *);
199 static slist_entry
200         *ExInterlockedPopEntrySList(slist_header *, kspin_lock *);
201 static uint32_t InterlockedIncrement(volatile uint32_t *);
202 static uint32_t InterlockedDecrement(volatile uint32_t *);
203 static void ExInterlockedAddLargeStatistic(uint64_t *, uint32_t);
204 static void *MmAllocateContiguousMemory(uint32_t, uint64_t);
205 static void *MmAllocateContiguousMemorySpecifyCache(uint32_t,
206         uint64_t, uint64_t, uint64_t, enum nt_caching_type);
207 static void MmFreeContiguousMemory(void *);
208 static void MmFreeContiguousMemorySpecifyCache(void *, uint32_t,
209         enum nt_caching_type);
210 static uint32_t MmSizeOfMdl(void *, size_t);
211 static void *MmMapLockedPages(mdl *, uint8_t);
212 static void *MmMapLockedPagesSpecifyCache(mdl *,
213         uint8_t, uint32_t, void *, uint32_t, uint32_t);
214 static void MmUnmapLockedPages(void *, mdl *);
215 static device_t ntoskrnl_finddev(device_t, uint64_t, struct resource **);
216 static void RtlZeroMemory(void *, size_t);
217 static void RtlSecureZeroMemory(void *, size_t);
218 static void RtlFillMemory(void *, size_t, uint8_t);
219 static void RtlMoveMemory(void *, const void *, size_t);
220 static ndis_status RtlCharToInteger(const char *, uint32_t, uint32_t *);
221 static void RtlCopyMemory(void *, const void *, size_t);
222 static size_t RtlCompareMemory(const void *, const void *, size_t);
223 static ndis_status RtlUnicodeStringToInteger(unicode_string *,
224         uint32_t, uint32_t *);
225 static int atoi (const char *);
226 static long atol (const char *);
227 static int rand(void);
228 static void srand(unsigned int);
229 static void KeQuerySystemTime(uint64_t *);
230 static uint32_t KeTickCount(void);
231 static uint8_t IoIsWdmVersionAvailable(uint8_t, uint8_t);
232 static int32_t IoOpenDeviceRegistryKey(struct device_object *, uint32_t,
233     uint32_t, void **);
234 static void ntoskrnl_thrfunc(void *);
235 static ndis_status PsCreateSystemThread(ndis_handle *,
236         uint32_t, void *, ndis_handle, void *, void *, void *);
237 static ndis_status PsTerminateSystemThread(ndis_status);
238 static ndis_status IoGetDeviceObjectPointer(unicode_string *,
239         uint32_t, void *, device_object *);
240 static ndis_status IoGetDeviceProperty(device_object *, uint32_t,
241         uint32_t, void *, uint32_t *);
242 static void KeInitializeMutex(kmutant *, uint32_t);
243 static uint32_t KeReleaseMutex(kmutant *, uint8_t);
244 static uint32_t KeReadStateMutex(kmutant *);
245 static ndis_status ObReferenceObjectByHandle(ndis_handle,
246         uint32_t, void *, uint8_t, void **, void **);
247 static void ObfDereferenceObject(void *);
248 static uint32_t ZwClose(ndis_handle);
249 static uint32_t WmiQueryTraceInformation(uint32_t, void *, uint32_t,
250         uint32_t, void *);
251 static uint32_t WmiTraceMessage(uint64_t, uint32_t, void *, uint16_t, ...);
252 static uint32_t IoWMIRegistrationControl(device_object *, uint32_t);
253 static void *ntoskrnl_memset(void *, int, size_t);
254 static void *ntoskrnl_memmove(void *, void *, size_t);
255 static void *ntoskrnl_memchr(void *, unsigned char, size_t);
256 static char *ntoskrnl_strstr(char *, char *);
257 static char *ntoskrnl_strncat(char *, char *, size_t);
258 static int ntoskrnl_toupper(int);
259 static int ntoskrnl_tolower(int);
260 static funcptr ntoskrnl_findwrap(funcptr);
261 static uint32_t DbgPrint(char *, ...);
262 static void DbgBreakPoint(void);
263 static void KeBugCheckEx(uint32_t, u_long, u_long, u_long, u_long);
264 static int32_t KeDelayExecutionThread(uint8_t, uint8_t, int64_t *);
265 static int32_t KeSetPriorityThread(struct thread *, int32_t);
266 static void dummy(void);
267
268 static struct mtx ntoskrnl_dispatchlock;
269 static struct mtx ntoskrnl_interlock;
270 static kspin_lock ntoskrnl_cancellock;
271 static int ntoskrnl_kth = 0;
272 static struct nt_objref_head ntoskrnl_reflist;
273 static uma_zone_t mdl_zone;
274 static uma_zone_t iw_zone;
275 static struct kdpc_queue *kq_queues;
276 static struct kdpc_queue *wq_queues;
277 static int wq_idx = 0;
278
279 int
280 ntoskrnl_libinit()
281 {
282         image_patch_table       *patch;
283         int                     error;
284         struct proc             *p;
285         kdpc_queue              *kq;
286         callout_entry           *e;
287         int                     i;
288
289         mtx_init(&ntoskrnl_dispatchlock,
290             "ntoskrnl dispatch lock", MTX_NDIS_LOCK, MTX_DEF|MTX_RECURSE);
291         mtx_init(&ntoskrnl_interlock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN);
292         KeInitializeSpinLock(&ntoskrnl_cancellock);
293         KeInitializeSpinLock(&ntoskrnl_intlock);
294         TAILQ_INIT(&ntoskrnl_reflist);
295
296         InitializeListHead(&ntoskrnl_calllist);
297         InitializeListHead(&ntoskrnl_intlist);
298         mtx_init(&ntoskrnl_calllock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN);
299
300         kq_queues = ExAllocatePoolWithTag(NonPagedPool,
301 #ifdef NTOSKRNL_MULTIPLE_DPCS
302             sizeof(kdpc_queue) * mp_ncpus, 0);
303 #else
304             sizeof(kdpc_queue), 0);
305 #endif
306
307         if (kq_queues == NULL)
308                 return (ENOMEM);
309
310         wq_queues = ExAllocatePoolWithTag(NonPagedPool,
311             sizeof(kdpc_queue) * WORKITEM_THREADS, 0);
312
313         if (wq_queues == NULL)
314                 return (ENOMEM);
315
316 #ifdef NTOSKRNL_MULTIPLE_DPCS
317         bzero((char *)kq_queues, sizeof(kdpc_queue) * mp_ncpus);
318 #else
319         bzero((char *)kq_queues, sizeof(kdpc_queue));
320 #endif
321         bzero((char *)wq_queues, sizeof(kdpc_queue) * WORKITEM_THREADS);
322
323         /*
324          * Launch the DPC threads.
325          */
326
327 #ifdef NTOSKRNL_MULTIPLE_DPCS
328         for (i = 0; i < mp_ncpus; i++) {
329 #else
330         for (i = 0; i < 1; i++) {
331 #endif
332                 kq = kq_queues + i;
333                 kq->kq_cpu = i;
334                 error = kproc_create(ntoskrnl_dpc_thread, kq, &p,
335                     RFHIGHPID, NDIS_KSTACK_PAGES, "Windows DPC %d", i);
336                 if (error)
337                         panic("failed to launch DPC thread");
338         }
339
340         /*
341          * Launch the workitem threads.
342          */
343
344         for (i = 0; i < WORKITEM_THREADS; i++) {
345                 kq = wq_queues + i;
346                 error = kproc_create(ntoskrnl_workitem_thread, kq, &p,
347                     RFHIGHPID, NDIS_KSTACK_PAGES, "Windows Workitem %d", i);
348                 if (error)
349                         panic("failed to launch workitem thread");
350         }
351
352         patch = ntoskrnl_functbl;
353         while (patch->ipt_func != NULL) {
354                 windrv_wrap((funcptr)patch->ipt_func,
355                     (funcptr *)&patch->ipt_wrap,
356                     patch->ipt_argcnt, patch->ipt_ftype);
357                 patch++;
358         }
359
360         for (i = 0; i < NTOSKRNL_TIMEOUTS; i++) {
361                 e = ExAllocatePoolWithTag(NonPagedPool,
362                     sizeof(callout_entry), 0);
363                 if (e == NULL)
364                         panic("failed to allocate timeouts");
365                 mtx_lock_spin(&ntoskrnl_calllock);
366                 InsertHeadList((&ntoskrnl_calllist), (&e->ce_list));
367                 mtx_unlock_spin(&ntoskrnl_calllock);
368         }
369
370         /*
371          * MDLs are supposed to be variable size (they describe
372          * buffers containing some number of pages, but we don't
373          * know ahead of time how many pages that will be). But
374          * always allocating them off the heap is very slow. As
375          * a compromise, we create an MDL UMA zone big enough to
376          * handle any buffer requiring up to 16 pages, and we
377          * use those for any MDLs for buffers of 16 pages or less
378          * in size. For buffers larger than that (which we assume
379          * will be few and far between, we allocate the MDLs off
380          * the heap.
381          */
382
383         mdl_zone = uma_zcreate("Windows MDL", MDL_ZONE_SIZE,
384             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
385
386         iw_zone = uma_zcreate("Windows WorkItem", sizeof(io_workitem),
387             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
388
389         return (0);
390 }
391
392 int
393 ntoskrnl_libfini()
394 {
395         image_patch_table       *patch;
396         callout_entry           *e;
397         list_entry              *l;
398
399         patch = ntoskrnl_functbl;
400         while (patch->ipt_func != NULL) {
401                 windrv_unwrap(patch->ipt_wrap);
402                 patch++;
403         }
404
405         /* Stop the workitem queues. */
406         ntoskrnl_destroy_workitem_threads();
407         /* Stop the DPC queues. */
408         ntoskrnl_destroy_dpc_threads();
409
410         ExFreePool(kq_queues);
411         ExFreePool(wq_queues);
412
413         uma_zdestroy(mdl_zone);
414         uma_zdestroy(iw_zone);
415
416         mtx_lock_spin(&ntoskrnl_calllock);
417         while(!IsListEmpty(&ntoskrnl_calllist)) {
418                 l = RemoveHeadList(&ntoskrnl_calllist);
419                 e = CONTAINING_RECORD(l, callout_entry, ce_list);
420                 mtx_unlock_spin(&ntoskrnl_calllock);
421                 ExFreePool(e);
422                 mtx_lock_spin(&ntoskrnl_calllock);
423         }
424         mtx_unlock_spin(&ntoskrnl_calllock);
425
426         mtx_destroy(&ntoskrnl_dispatchlock);
427         mtx_destroy(&ntoskrnl_interlock);
428         mtx_destroy(&ntoskrnl_calllock);
429
430         return (0);
431 }
432
433 /*
434  * We need to be able to reference this externally from the wrapper;
435  * GCC only generates a local implementation of memset.
436  */
437 static void *
438 ntoskrnl_memset(buf, ch, size)
439         void                    *buf;
440         int                     ch;
441         size_t                  size;
442 {
443         return (memset(buf, ch, size));
444 }
445
446 static void *
447 ntoskrnl_memmove(dst, src, size)
448         void                    *src;
449         void                    *dst;
450         size_t                  size;
451 {
452         bcopy(src, dst, size);
453         return (dst);
454 }
455
456 static void *
457 ntoskrnl_memchr(void *buf, unsigned char ch, size_t len)
458 {
459         if (len != 0) {
460                 unsigned char *p = buf;
461
462                 do {
463                         if (*p++ == ch)
464                                 return (p - 1);
465                 } while (--len != 0);
466         }
467         return (NULL);
468 }
469
470 static char *
471 ntoskrnl_strstr(s, find)
472         char *s, *find;
473 {
474         char c, sc;
475         size_t len;
476
477         if ((c = *find++) != 0) {
478                 len = strlen(find);
479                 do {
480                         do {
481                                 if ((sc = *s++) == 0)
482                                         return (NULL);
483                         } while (sc != c);
484                 } while (strncmp(s, find, len) != 0);
485                 s--;
486         }
487         return ((char *)s);
488 }
489
490 /* Taken from libc */
491 static char *
492 ntoskrnl_strncat(dst, src, n)
493         char            *dst;
494         char            *src;
495         size_t          n;
496 {
497         if (n != 0) {
498                 char *d = dst;
499                 const char *s = src;
500
501                 while (*d != 0)
502                         d++;
503                 do {
504                         if ((*d = *s++) == 0)
505                                 break;
506                         d++;
507                 } while (--n != 0);
508                 *d = 0;
509         }
510         return (dst);
511 }
512
513 static int
514 ntoskrnl_toupper(c)
515         int                     c;
516 {
517         return (toupper(c));
518 }
519
520 static int
521 ntoskrnl_tolower(c)
522         int                     c;
523 {
524         return (tolower(c));
525 }
526
527 static uint8_t
528 RtlEqualUnicodeString(unicode_string *str1, unicode_string *str2,
529         uint8_t caseinsensitive)
530 {
531         int                     i;
532
533         if (str1->us_len != str2->us_len)
534                 return (FALSE);
535
536         for (i = 0; i < str1->us_len; i++) {
537                 if (caseinsensitive == TRUE) {
538                         if (toupper((char)(str1->us_buf[i] & 0xFF)) !=
539                             toupper((char)(str2->us_buf[i] & 0xFF)))
540                                 return (FALSE);
541                 } else {
542                         if (str1->us_buf[i] != str2->us_buf[i])
543                                 return (FALSE);
544                 }
545         }
546
547         return (TRUE);
548 }
549
550 static void
551 RtlCopyString(dst, src)
552         ansi_string             *dst;
553         const ansi_string       *src;
554 {
555         if (src != NULL && src->as_buf != NULL && dst->as_buf != NULL) {
556                 dst->as_len = min(src->as_len, dst->as_maxlen);
557                 memcpy(dst->as_buf, src->as_buf, dst->as_len);
558                 if (dst->as_len < dst->as_maxlen)
559                         dst->as_buf[dst->as_len] = 0;
560         } else
561                 dst->as_len = 0;
562 }
563
564 static void
565 RtlCopyUnicodeString(dest, src)
566         unicode_string          *dest;
567         unicode_string          *src;
568 {
569
570         if (dest->us_maxlen >= src->us_len)
571                 dest->us_len = src->us_len;
572         else
573                 dest->us_len = dest->us_maxlen;
574         memcpy(dest->us_buf, src->us_buf, dest->us_len);
575 }
576
577 static void
578 ntoskrnl_ascii_to_unicode(ascii, unicode, len)
579         char                    *ascii;
580         uint16_t                *unicode;
581         int                     len;
582 {
583         int                     i;
584         uint16_t                *ustr;
585
586         ustr = unicode;
587         for (i = 0; i < len; i++) {
588                 *ustr = (uint16_t)ascii[i];
589                 ustr++;
590         }
591 }
592
593 static void
594 ntoskrnl_unicode_to_ascii(unicode, ascii, len)
595         uint16_t                *unicode;
596         char                    *ascii;
597         int                     len;
598 {
599         int                     i;
600         uint8_t                 *astr;
601
602         astr = ascii;
603         for (i = 0; i < len / 2; i++) {
604                 *astr = (uint8_t)unicode[i];
605                 astr++;
606         }
607 }
608
609 uint32_t
610 RtlUnicodeStringToAnsiString(ansi_string *dest, unicode_string *src, uint8_t allocate)
611 {
612         if (dest == NULL || src == NULL)
613                 return (STATUS_INVALID_PARAMETER);
614
615         dest->as_len = src->us_len / 2;
616         if (dest->as_maxlen < dest->as_len)
617                 dest->as_len = dest->as_maxlen;
618
619         if (allocate == TRUE) {
620                 dest->as_buf = ExAllocatePoolWithTag(NonPagedPool,
621                     (src->us_len / 2) + 1, 0);
622                 if (dest->as_buf == NULL)
623                         return (STATUS_INSUFFICIENT_RESOURCES);
624                 dest->as_len = dest->as_maxlen = src->us_len / 2;
625         } else {
626                 dest->as_len = src->us_len / 2; /* XXX */
627                 if (dest->as_maxlen < dest->as_len)
628                         dest->as_len = dest->as_maxlen;
629         }
630
631         ntoskrnl_unicode_to_ascii(src->us_buf, dest->as_buf,
632             dest->as_len * 2);
633
634         return (STATUS_SUCCESS);
635 }
636
637 uint32_t
638 RtlAnsiStringToUnicodeString(unicode_string *dest, ansi_string *src,
639         uint8_t allocate)
640 {
641         if (dest == NULL || src == NULL)
642                 return (STATUS_INVALID_PARAMETER);
643
644         if (allocate == TRUE) {
645                 dest->us_buf = ExAllocatePoolWithTag(NonPagedPool,
646                     src->as_len * 2, 0);
647                 if (dest->us_buf == NULL)
648                         return (STATUS_INSUFFICIENT_RESOURCES);
649                 dest->us_len = dest->us_maxlen = strlen(src->as_buf) * 2;
650         } else {
651                 dest->us_len = src->as_len * 2; /* XXX */
652                 if (dest->us_maxlen < dest->us_len)
653                         dest->us_len = dest->us_maxlen;
654         }
655
656         ntoskrnl_ascii_to_unicode(src->as_buf, dest->us_buf,
657             dest->us_len / 2);
658
659         return (STATUS_SUCCESS);
660 }
661
662 void *
663 ExAllocatePoolWithTag(pooltype, len, tag)
664         uint32_t                pooltype;
665         size_t                  len;
666         uint32_t                tag;
667 {
668         void                    *buf;
669
670         buf = malloc(len, M_DEVBUF, M_NOWAIT|M_ZERO);
671         if (buf == NULL)
672                 return (NULL);
673
674         return (buf);
675 }
676
677 static void
678 ExFreePoolWithTag(buf, tag)
679         void            *buf;
680         uint32_t        tag;
681 {
682         ExFreePool(buf);
683 }
684
685 void
686 ExFreePool(buf)
687         void                    *buf;
688 {
689         free(buf, M_DEVBUF);
690 }
691
692 uint32_t
693 IoAllocateDriverObjectExtension(drv, clid, extlen, ext)
694         driver_object           *drv;
695         void                    *clid;
696         uint32_t                extlen;
697         void                    **ext;
698 {
699         custom_extension        *ce;
700
701         ce = ExAllocatePoolWithTag(NonPagedPool, sizeof(custom_extension)
702             + extlen, 0);
703
704         if (ce == NULL)
705                 return (STATUS_INSUFFICIENT_RESOURCES);
706
707         ce->ce_clid = clid;
708         InsertTailList((&drv->dro_driverext->dre_usrext), (&ce->ce_list));
709
710         *ext = (void *)(ce + 1);
711
712         return (STATUS_SUCCESS);
713 }
714
715 void *
716 IoGetDriverObjectExtension(drv, clid)
717         driver_object           *drv;
718         void                    *clid;
719 {
720         list_entry              *e;
721         custom_extension        *ce;
722
723         /*
724          * Sanity check. Our dummy bus drivers don't have
725          * any driver extentions.
726          */
727
728         if (drv->dro_driverext == NULL)
729                 return (NULL);
730
731         e = drv->dro_driverext->dre_usrext.nle_flink;
732         while (e != &drv->dro_driverext->dre_usrext) {
733                 ce = (custom_extension *)e;
734                 if (ce->ce_clid == clid)
735                         return ((void *)(ce + 1));
736                 e = e->nle_flink;
737         }
738
739         return (NULL);
740 }
741
742
743 uint32_t
744 IoCreateDevice(driver_object *drv, uint32_t devextlen, unicode_string *devname,
745         uint32_t devtype, uint32_t devchars, uint8_t exclusive,
746         device_object **newdev)
747 {
748         device_object           *dev;
749
750         dev = ExAllocatePoolWithTag(NonPagedPool, sizeof(device_object), 0);
751         if (dev == NULL)
752                 return (STATUS_INSUFFICIENT_RESOURCES);
753
754         dev->do_type = devtype;
755         dev->do_drvobj = drv;
756         dev->do_currirp = NULL;
757         dev->do_flags = 0;
758
759         if (devextlen) {
760                 dev->do_devext = ExAllocatePoolWithTag(NonPagedPool,
761                     devextlen, 0);
762
763                 if (dev->do_devext == NULL) {
764                         ExFreePool(dev);
765                         return (STATUS_INSUFFICIENT_RESOURCES);
766                 }
767
768                 bzero(dev->do_devext, devextlen);
769         } else
770                 dev->do_devext = NULL;
771
772         dev->do_size = sizeof(device_object) + devextlen;
773         dev->do_refcnt = 1;
774         dev->do_attacheddev = NULL;
775         dev->do_nextdev = NULL;
776         dev->do_devtype = devtype;
777         dev->do_stacksize = 1;
778         dev->do_alignreq = 1;
779         dev->do_characteristics = devchars;
780         dev->do_iotimer = NULL;
781         KeInitializeEvent(&dev->do_devlock, EVENT_TYPE_SYNC, TRUE);
782
783         /*
784          * Vpd is used for disk/tape devices,
785          * but we don't support those. (Yet.)
786          */
787         dev->do_vpb = NULL;
788
789         dev->do_devobj_ext = ExAllocatePoolWithTag(NonPagedPool,
790             sizeof(devobj_extension), 0);
791
792         if (dev->do_devobj_ext == NULL) {
793                 if (dev->do_devext != NULL)
794                         ExFreePool(dev->do_devext);
795                 ExFreePool(dev);
796                 return (STATUS_INSUFFICIENT_RESOURCES);
797         }
798
799         dev->do_devobj_ext->dve_type = 0;
800         dev->do_devobj_ext->dve_size = sizeof(devobj_extension);
801         dev->do_devobj_ext->dve_devobj = dev;
802
803         /*
804          * Attach this device to the driver object's list
805          * of devices. Note: this is not the same as attaching
806          * the device to the device stack. The driver's AddDevice
807          * routine must explicitly call IoAddDeviceToDeviceStack()
808          * to do that.
809          */
810
811         if (drv->dro_devobj == NULL) {
812                 drv->dro_devobj = dev;
813                 dev->do_nextdev = NULL;
814         } else {
815                 dev->do_nextdev = drv->dro_devobj;
816                 drv->dro_devobj = dev;
817         }
818
819         *newdev = dev;
820
821         return (STATUS_SUCCESS);
822 }
823
824 void
825 IoDeleteDevice(dev)
826         device_object           *dev;
827 {
828         device_object           *prev;
829
830         if (dev == NULL)
831                 return;
832
833         if (dev->do_devobj_ext != NULL)
834                 ExFreePool(dev->do_devobj_ext);
835
836         if (dev->do_devext != NULL)
837                 ExFreePool(dev->do_devext);
838
839         /* Unlink the device from the driver's device list. */
840
841         prev = dev->do_drvobj->dro_devobj;
842         if (prev == dev)
843                 dev->do_drvobj->dro_devobj = dev->do_nextdev;
844         else {
845                 while (prev->do_nextdev != dev)
846                         prev = prev->do_nextdev;
847                 prev->do_nextdev = dev->do_nextdev;
848         }
849
850         ExFreePool(dev);
851 }
852
853 device_object *
854 IoGetAttachedDevice(dev)
855         device_object           *dev;
856 {
857         device_object           *d;
858
859         if (dev == NULL)
860                 return (NULL);
861
862         d = dev;
863
864         while (d->do_attacheddev != NULL)
865                 d = d->do_attacheddev;
866
867         return (d);
868 }
869
870 static irp *
871 IoBuildSynchronousFsdRequest(func, dobj, buf, len, off, event, status)
872         uint32_t                func;
873         device_object           *dobj;
874         void                    *buf;
875         uint32_t                len;
876         uint64_t                *off;
877         nt_kevent               *event;
878         io_status_block         *status;
879 {
880         irp                     *ip;
881
882         ip = IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status);
883         if (ip == NULL)
884                 return (NULL);
885         ip->irp_usrevent = event;
886
887         return (ip);
888 }
889
890 static irp *
891 IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status)
892         uint32_t                func;
893         device_object           *dobj;
894         void                    *buf;
895         uint32_t                len;
896         uint64_t                *off;
897         io_status_block         *status;
898 {
899         irp                     *ip;
900         io_stack_location       *sl;
901
902         ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
903         if (ip == NULL)
904                 return (NULL);
905
906         ip->irp_usriostat = status;
907         ip->irp_tail.irp_overlay.irp_thread = NULL;
908
909         sl = IoGetNextIrpStackLocation(ip);
910         sl->isl_major = func;
911         sl->isl_minor = 0;
912         sl->isl_flags = 0;
913         sl->isl_ctl = 0;
914         sl->isl_devobj = dobj;
915         sl->isl_fileobj = NULL;
916         sl->isl_completionfunc = NULL;
917
918         ip->irp_userbuf = buf;
919
920         if (dobj->do_flags & DO_BUFFERED_IO) {
921                 ip->irp_assoc.irp_sysbuf =
922                     ExAllocatePoolWithTag(NonPagedPool, len, 0);
923                 if (ip->irp_assoc.irp_sysbuf == NULL) {
924                         IoFreeIrp(ip);
925                         return (NULL);
926                 }
927                 bcopy(buf, ip->irp_assoc.irp_sysbuf, len);
928         }
929
930         if (dobj->do_flags & DO_DIRECT_IO) {
931                 ip->irp_mdl = IoAllocateMdl(buf, len, FALSE, FALSE, ip);
932                 if (ip->irp_mdl == NULL) {
933                         if (ip->irp_assoc.irp_sysbuf != NULL)
934                                 ExFreePool(ip->irp_assoc.irp_sysbuf);
935                         IoFreeIrp(ip);
936                         return (NULL);
937                 }
938                 ip->irp_userbuf = NULL;
939                 ip->irp_assoc.irp_sysbuf = NULL;
940         }
941
942         if (func == IRP_MJ_READ) {
943                 sl->isl_parameters.isl_read.isl_len = len;
944                 if (off != NULL)
945                         sl->isl_parameters.isl_read.isl_byteoff = *off;
946                 else
947                         sl->isl_parameters.isl_read.isl_byteoff = 0;
948         }
949
950         if (func == IRP_MJ_WRITE) {
951                 sl->isl_parameters.isl_write.isl_len = len;
952                 if (off != NULL)
953                         sl->isl_parameters.isl_write.isl_byteoff = *off;
954                 else
955                         sl->isl_parameters.isl_write.isl_byteoff = 0;
956         }
957
958         return (ip);
959 }
960
961 static irp *
962 IoBuildDeviceIoControlRequest(uint32_t iocode, device_object *dobj, void *ibuf,
963         uint32_t ilen, void *obuf, uint32_t olen, uint8_t isinternal,
964         nt_kevent *event, io_status_block *status)
965 {
966         irp                     *ip;
967         io_stack_location       *sl;
968         uint32_t                buflen;
969
970         ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
971         if (ip == NULL)
972                 return (NULL);
973         ip->irp_usrevent = event;
974         ip->irp_usriostat = status;
975         ip->irp_tail.irp_overlay.irp_thread = NULL;
976
977         sl = IoGetNextIrpStackLocation(ip);
978         sl->isl_major = isinternal == TRUE ?
979             IRP_MJ_INTERNAL_DEVICE_CONTROL : IRP_MJ_DEVICE_CONTROL;
980         sl->isl_minor = 0;
981         sl->isl_flags = 0;
982         sl->isl_ctl = 0;
983         sl->isl_devobj = dobj;
984         sl->isl_fileobj = NULL;
985         sl->isl_completionfunc = NULL;
986         sl->isl_parameters.isl_ioctl.isl_iocode = iocode;
987         sl->isl_parameters.isl_ioctl.isl_ibuflen = ilen;
988         sl->isl_parameters.isl_ioctl.isl_obuflen = olen;
989
990         switch(IO_METHOD(iocode)) {
991         case METHOD_BUFFERED:
992                 if (ilen > olen)
993                         buflen = ilen;
994                 else
995                         buflen = olen;
996                 if (buflen) {
997                         ip->irp_assoc.irp_sysbuf =
998                             ExAllocatePoolWithTag(NonPagedPool, buflen, 0);
999                         if (ip->irp_assoc.irp_sysbuf == NULL) {
1000                                 IoFreeIrp(ip);
1001                                 return (NULL);
1002                         }
1003                 }
1004                 if (ilen && ibuf != NULL) {
1005                         bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen);
1006                         bzero((char *)ip->irp_assoc.irp_sysbuf + ilen,
1007                             buflen - ilen);
1008                 } else
1009                         bzero(ip->irp_assoc.irp_sysbuf, ilen);
1010                 ip->irp_userbuf = obuf;
1011                 break;
1012         case METHOD_IN_DIRECT:
1013         case METHOD_OUT_DIRECT:
1014                 if (ilen && ibuf != NULL) {
1015                         ip->irp_assoc.irp_sysbuf =
1016                             ExAllocatePoolWithTag(NonPagedPool, ilen, 0);
1017                         if (ip->irp_assoc.irp_sysbuf == NULL) {
1018                                 IoFreeIrp(ip);
1019                                 return (NULL);
1020                         }
1021                         bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen);
1022                 }
1023                 if (olen && obuf != NULL) {
1024                         ip->irp_mdl = IoAllocateMdl(obuf, olen,
1025                             FALSE, FALSE, ip);
1026                         /*
1027                          * Normally we would MmProbeAndLockPages()
1028                          * here, but we don't have to in our
1029                          * imlementation.
1030                          */
1031                 }
1032                 break;
1033         case METHOD_NEITHER:
1034                 ip->irp_userbuf = obuf;
1035                 sl->isl_parameters.isl_ioctl.isl_type3ibuf = ibuf;
1036                 break;
1037         default:
1038                 break;
1039         }
1040
1041         /*
1042          * Ideally, we should associate this IRP with the calling
1043          * thread here.
1044          */
1045
1046         return (ip);
1047 }
1048
1049 static irp *
1050 IoAllocateIrp(uint8_t stsize, uint8_t chargequota)
1051 {
1052         irp                     *i;
1053
1054         i = ExAllocatePoolWithTag(NonPagedPool, IoSizeOfIrp(stsize), 0);
1055         if (i == NULL)
1056                 return (NULL);
1057
1058         IoInitializeIrp(i, IoSizeOfIrp(stsize), stsize);
1059
1060         return (i);
1061 }
1062
1063 static irp *
1064 IoMakeAssociatedIrp(irp *ip, uint8_t stsize)
1065 {
1066         irp                     *associrp;
1067
1068         associrp = IoAllocateIrp(stsize, FALSE);
1069         if (associrp == NULL)
1070                 return (NULL);
1071
1072         mtx_lock(&ntoskrnl_dispatchlock);
1073         associrp->irp_flags |= IRP_ASSOCIATED_IRP;
1074         associrp->irp_tail.irp_overlay.irp_thread =
1075             ip->irp_tail.irp_overlay.irp_thread;
1076         associrp->irp_assoc.irp_master = ip;
1077         mtx_unlock(&ntoskrnl_dispatchlock);
1078
1079         return (associrp);
1080 }
1081
1082 static void
1083 IoFreeIrp(ip)
1084         irp                     *ip;
1085 {
1086         ExFreePool(ip);
1087 }
1088
1089 static void
1090 IoInitializeIrp(irp *io, uint16_t psize, uint8_t ssize)
1091 {
1092         bzero((char *)io, IoSizeOfIrp(ssize));
1093         io->irp_size = psize;
1094         io->irp_stackcnt = ssize;
1095         io->irp_currentstackloc = ssize;
1096         InitializeListHead(&io->irp_thlist);
1097         io->irp_tail.irp_overlay.irp_csl =
1098             (io_stack_location *)(io + 1) + ssize;
1099 }
1100
1101 static void
1102 IoReuseIrp(ip, status)
1103         irp                     *ip;
1104         uint32_t                status;
1105 {
1106         uint8_t                 allocflags;
1107
1108         allocflags = ip->irp_allocflags;
1109         IoInitializeIrp(ip, ip->irp_size, ip->irp_stackcnt);
1110         ip->irp_iostat.isb_status = status;
1111         ip->irp_allocflags = allocflags;
1112 }
1113
1114 void
1115 IoAcquireCancelSpinLock(uint8_t *irql)
1116 {
1117         KeAcquireSpinLock(&ntoskrnl_cancellock, irql);
1118 }
1119
1120 void
1121 IoReleaseCancelSpinLock(uint8_t irql)
1122 {
1123         KeReleaseSpinLock(&ntoskrnl_cancellock, irql);
1124 }
1125
1126 uint8_t
1127 IoCancelIrp(irp *ip)
1128 {
1129         cancel_func             cfunc;
1130         uint8_t                 cancelirql;
1131
1132         IoAcquireCancelSpinLock(&cancelirql);
1133         cfunc = IoSetCancelRoutine(ip, NULL);
1134         ip->irp_cancel = TRUE;
1135         if (cfunc == NULL) {
1136                 IoReleaseCancelSpinLock(cancelirql);
1137                 return (FALSE);
1138         }
1139         ip->irp_cancelirql = cancelirql;
1140         MSCALL2(cfunc, IoGetCurrentIrpStackLocation(ip)->isl_devobj, ip);
1141         return (uint8_t)IoSetCancelValue(ip, TRUE);
1142 }
1143
1144 uint32_t
1145 IofCallDriver(dobj, ip)
1146         device_object           *dobj;
1147         irp                     *ip;
1148 {
1149         driver_object           *drvobj;
1150         io_stack_location       *sl;
1151         uint32_t                status;
1152         driver_dispatch         disp;
1153
1154         drvobj = dobj->do_drvobj;
1155
1156         if (ip->irp_currentstackloc <= 0)
1157                 panic("IoCallDriver(): out of stack locations");
1158
1159         IoSetNextIrpStackLocation(ip);
1160         sl = IoGetCurrentIrpStackLocation(ip);
1161
1162         sl->isl_devobj = dobj;
1163
1164         disp = drvobj->dro_dispatch[sl->isl_major];
1165         status = MSCALL2(disp, dobj, ip);
1166
1167         return (status);
1168 }
1169
1170 void
1171 IofCompleteRequest(irp *ip, uint8_t prioboost)
1172 {
1173         uint32_t                status;
1174         device_object           *dobj;
1175         io_stack_location       *sl;
1176         completion_func         cf;
1177
1178         KASSERT(ip->irp_iostat.isb_status != STATUS_PENDING,
1179             ("incorrect IRP(%p) status (STATUS_PENDING)", ip));
1180
1181         sl = IoGetCurrentIrpStackLocation(ip);
1182         IoSkipCurrentIrpStackLocation(ip);
1183
1184         do {
1185                 if (sl->isl_ctl & SL_PENDING_RETURNED)
1186                         ip->irp_pendingreturned = TRUE;
1187
1188                 if (ip->irp_currentstackloc != (ip->irp_stackcnt + 1))
1189                         dobj = IoGetCurrentIrpStackLocation(ip)->isl_devobj;
1190                 else
1191                         dobj = NULL;
1192
1193                 if (sl->isl_completionfunc != NULL &&
1194                     ((ip->irp_iostat.isb_status == STATUS_SUCCESS &&
1195                     sl->isl_ctl & SL_INVOKE_ON_SUCCESS) ||
1196                     (ip->irp_iostat.isb_status != STATUS_SUCCESS &&
1197                     sl->isl_ctl & SL_INVOKE_ON_ERROR) ||
1198                     (ip->irp_cancel == TRUE &&
1199                     sl->isl_ctl & SL_INVOKE_ON_CANCEL))) {
1200                         cf = sl->isl_completionfunc;
1201                         status = MSCALL3(cf, dobj, ip, sl->isl_completionctx);
1202                         if (status == STATUS_MORE_PROCESSING_REQUIRED)
1203                                 return;
1204                 } else {
1205                         if ((ip->irp_currentstackloc <= ip->irp_stackcnt) &&
1206                             (ip->irp_pendingreturned == TRUE))
1207                                 IoMarkIrpPending(ip);
1208                 }
1209
1210                 /* move to the next.  */
1211                 IoSkipCurrentIrpStackLocation(ip);
1212                 sl++;
1213         } while (ip->irp_currentstackloc <= (ip->irp_stackcnt + 1));
1214
1215         if (ip->irp_usriostat != NULL)
1216                 *ip->irp_usriostat = ip->irp_iostat;
1217         if (ip->irp_usrevent != NULL)
1218                 KeSetEvent(ip->irp_usrevent, prioboost, FALSE);
1219
1220         /* Handle any associated IRPs. */
1221
1222         if (ip->irp_flags & IRP_ASSOCIATED_IRP) {
1223                 uint32_t                masterirpcnt;
1224                 irp                     *masterirp;
1225                 mdl                     *m;
1226
1227                 masterirp = ip->irp_assoc.irp_master;
1228                 masterirpcnt =
1229                     InterlockedDecrement(&masterirp->irp_assoc.irp_irpcnt);
1230
1231                 while ((m = ip->irp_mdl) != NULL) {
1232                         ip->irp_mdl = m->mdl_next;
1233                         IoFreeMdl(m);
1234                 }
1235                 IoFreeIrp(ip);
1236                 if (masterirpcnt == 0)
1237                         IoCompleteRequest(masterirp, IO_NO_INCREMENT);
1238                 return;
1239         }
1240
1241         /* With any luck, these conditions will never arise. */
1242
1243         if (ip->irp_flags & IRP_PAGING_IO) {
1244                 if (ip->irp_mdl != NULL)
1245                         IoFreeMdl(ip->irp_mdl);
1246                 IoFreeIrp(ip);
1247         }
1248 }
1249
1250 void
1251 ntoskrnl_intr(arg)
1252         void                    *arg;
1253 {
1254         kinterrupt              *iobj;
1255         uint8_t                 irql;
1256         uint8_t                 claimed;
1257         list_entry              *l;
1258
1259         KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
1260         l = ntoskrnl_intlist.nle_flink;
1261         while (l != &ntoskrnl_intlist) {
1262                 iobj = CONTAINING_RECORD(l, kinterrupt, ki_list);
1263                 claimed = MSCALL2(iobj->ki_svcfunc, iobj, iobj->ki_svcctx);
1264                 if (claimed == TRUE)
1265                         break;
1266                 l = l->nle_flink;
1267         }
1268         KeReleaseSpinLock(&ntoskrnl_intlock, irql);
1269 }
1270
1271 uint8_t
1272 KeAcquireInterruptSpinLock(iobj)
1273         kinterrupt              *iobj;
1274 {
1275         uint8_t                 irql;
1276         KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
1277         return (irql);
1278 }
1279
1280 void
1281 KeReleaseInterruptSpinLock(kinterrupt *iobj, uint8_t irql)
1282 {
1283         KeReleaseSpinLock(&ntoskrnl_intlock, irql);
1284 }
1285
1286 uint8_t
1287 KeSynchronizeExecution(iobj, syncfunc, syncctx)
1288         kinterrupt              *iobj;
1289         void                    *syncfunc;
1290         void                    *syncctx;
1291 {
1292         uint8_t                 irql;
1293
1294         KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
1295         MSCALL1(syncfunc, syncctx);
1296         KeReleaseSpinLock(&ntoskrnl_intlock, irql);
1297
1298         return (TRUE);
1299 }
1300
1301 /*
1302  * IoConnectInterrupt() is passed only the interrupt vector and
1303  * irql that a device wants to use, but no device-specific tag
1304  * of any kind. This conflicts rather badly with FreeBSD's
1305  * bus_setup_intr(), which needs the device_t for the device
1306  * requesting interrupt delivery. In order to bypass this
1307  * inconsistency, we implement a second level of interrupt
1308  * dispatching on top of bus_setup_intr(). All devices use
1309  * ntoskrnl_intr() as their ISR, and any device requesting
1310  * interrupts will be registered with ntoskrnl_intr()'s interrupt
1311  * dispatch list. When an interrupt arrives, we walk the list
1312  * and invoke all the registered ISRs. This effectively makes all
1313  * interrupts shared, but it's the only way to duplicate the
1314  * semantics of IoConnectInterrupt() and IoDisconnectInterrupt() properly.
1315  */
1316
1317 uint32_t
1318 IoConnectInterrupt(kinterrupt **iobj, void *svcfunc, void *svcctx,
1319         kspin_lock *lock, uint32_t vector, uint8_t irql, uint8_t syncirql,
1320         uint8_t imode, uint8_t shared, uint32_t affinity, uint8_t savefloat)
1321 {
1322         uint8_t                 curirql;
1323
1324         *iobj = ExAllocatePoolWithTag(NonPagedPool, sizeof(kinterrupt), 0);
1325         if (*iobj == NULL)
1326                 return (STATUS_INSUFFICIENT_RESOURCES);
1327
1328         (*iobj)->ki_svcfunc = svcfunc;
1329         (*iobj)->ki_svcctx = svcctx;
1330
1331         if (lock == NULL) {
1332                 KeInitializeSpinLock(&(*iobj)->ki_lock_priv);
1333                 (*iobj)->ki_lock = &(*iobj)->ki_lock_priv;
1334         } else
1335                 (*iobj)->ki_lock = lock;
1336
1337         KeAcquireSpinLock(&ntoskrnl_intlock, &curirql);
1338         InsertHeadList((&ntoskrnl_intlist), (&(*iobj)->ki_list));
1339         KeReleaseSpinLock(&ntoskrnl_intlock, curirql);
1340
1341         return (STATUS_SUCCESS);
1342 }
1343
1344 void
1345 IoDisconnectInterrupt(iobj)
1346         kinterrupt              *iobj;
1347 {
1348         uint8_t                 irql;
1349
1350         if (iobj == NULL)
1351                 return;
1352
1353         KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
1354         RemoveEntryList((&iobj->ki_list));
1355         KeReleaseSpinLock(&ntoskrnl_intlock, irql);
1356
1357         ExFreePool(iobj);
1358 }
1359
1360 device_object *
1361 IoAttachDeviceToDeviceStack(src, dst)
1362         device_object           *src;
1363         device_object           *dst;
1364 {
1365         device_object           *attached;
1366
1367         mtx_lock(&ntoskrnl_dispatchlock);
1368         attached = IoGetAttachedDevice(dst);
1369         attached->do_attacheddev = src;
1370         src->do_attacheddev = NULL;
1371         src->do_stacksize = attached->do_stacksize + 1;
1372         mtx_unlock(&ntoskrnl_dispatchlock);
1373
1374         return (attached);
1375 }
1376
1377 void
1378 IoDetachDevice(topdev)
1379         device_object           *topdev;
1380 {
1381         device_object           *tail;
1382
1383         mtx_lock(&ntoskrnl_dispatchlock);
1384
1385         /* First, break the chain. */
1386         tail = topdev->do_attacheddev;
1387         if (tail == NULL) {
1388                 mtx_unlock(&ntoskrnl_dispatchlock);
1389                 return;
1390         }
1391         topdev->do_attacheddev = tail->do_attacheddev;
1392         topdev->do_refcnt--;
1393
1394         /* Now reduce the stacksize count for the takm_il objects. */
1395
1396         tail = topdev->do_attacheddev;
1397         while (tail != NULL) {
1398                 tail->do_stacksize--;
1399                 tail = tail->do_attacheddev;
1400         }
1401
1402         mtx_unlock(&ntoskrnl_dispatchlock);
1403 }
1404
1405 /*
1406  * For the most part, an object is considered signalled if
1407  * dh_sigstate == TRUE. The exception is for mutant objects
1408  * (mutexes), where the logic works like this:
1409  *
1410  * - If the thread already owns the object and sigstate is
1411  *   less than or equal to 0, then the object is considered
1412  *   signalled (recursive acquisition).
1413  * - If dh_sigstate == 1, the object is also considered
1414  *   signalled.
1415  */
1416
1417 static int
1418 ntoskrnl_is_signalled(obj, td)
1419         nt_dispatch_header      *obj;
1420         struct thread           *td;
1421 {
1422         kmutant                 *km;
1423
1424         if (obj->dh_type == DISP_TYPE_MUTANT) {
1425                 km = (kmutant *)obj;
1426                 if ((obj->dh_sigstate <= 0 && km->km_ownerthread == td) ||
1427                     obj->dh_sigstate == 1)
1428                         return (TRUE);
1429                 return (FALSE);
1430         }
1431
1432         if (obj->dh_sigstate > 0)
1433                 return (TRUE);
1434         return (FALSE);
1435 }
1436
1437 static void
1438 ntoskrnl_satisfy_wait(obj, td)
1439         nt_dispatch_header      *obj;
1440         struct thread           *td;
1441 {
1442         kmutant                 *km;
1443
1444         switch (obj->dh_type) {
1445         case DISP_TYPE_MUTANT:
1446                 km = (struct kmutant *)obj;
1447                 obj->dh_sigstate--;
1448                 /*
1449                  * If sigstate reaches 0, the mutex is now
1450                  * non-signalled (the new thread owns it).
1451                  */
1452                 if (obj->dh_sigstate == 0) {
1453                         km->km_ownerthread = td;
1454                         if (km->km_abandoned == TRUE)
1455                                 km->km_abandoned = FALSE;
1456                 }
1457                 break;
1458         /* Synchronization objects get reset to unsignalled. */
1459         case DISP_TYPE_SYNCHRONIZATION_EVENT:
1460         case DISP_TYPE_SYNCHRONIZATION_TIMER:
1461                 obj->dh_sigstate = 0;
1462                 break;
1463         case DISP_TYPE_SEMAPHORE:
1464                 obj->dh_sigstate--;
1465                 break;
1466         default:
1467                 break;
1468         }
1469 }
1470
1471 static void
1472 ntoskrnl_satisfy_multiple_waits(wb)
1473         wait_block              *wb;
1474 {
1475         wait_block              *cur;
1476         struct thread           *td;
1477
1478         cur = wb;
1479         td = wb->wb_kthread;
1480
1481         do {
1482                 ntoskrnl_satisfy_wait(wb->wb_object, td);
1483                 cur->wb_awakened = TRUE;
1484                 cur = cur->wb_next;
1485         } while (cur != wb);
1486 }
1487
1488 /* Always called with dispatcher lock held. */
1489 static void
1490 ntoskrnl_waittest(obj, increment)
1491         nt_dispatch_header      *obj;
1492         uint32_t                increment;
1493 {
1494         wait_block              *w, *next;
1495         list_entry              *e;
1496         struct thread           *td;
1497         wb_ext                  *we;
1498         int                     satisfied;
1499
1500         /*
1501          * Once an object has been signalled, we walk its list of
1502          * wait blocks. If a wait block can be awakened, then satisfy
1503          * waits as necessary and wake the thread.
1504          *
1505          * The rules work like this:
1506          *
1507          * If a wait block is marked as WAITTYPE_ANY, then
1508          * we can satisfy the wait conditions on the current
1509          * object and wake the thread right away. Satisfying
1510          * the wait also has the effect of breaking us out
1511          * of the search loop.
1512          *
1513          * If the object is marked as WAITTYLE_ALL, then the
1514          * wait block will be part of a circularly linked
1515          * list of wait blocks belonging to a waiting thread
1516          * that's sleeping in KeWaitForMultipleObjects(). In
1517          * order to wake the thread, all the objects in the
1518          * wait list must be in the signalled state. If they
1519          * are, we then satisfy all of them and wake the
1520          * thread.
1521          *
1522          */
1523
1524         e = obj->dh_waitlisthead.nle_flink;
1525
1526         while (e != &obj->dh_waitlisthead && obj->dh_sigstate > 0) {
1527                 w = CONTAINING_RECORD(e, wait_block, wb_waitlist);
1528                 we = w->wb_ext;
1529                 td = we->we_td;
1530                 satisfied = FALSE;
1531                 if (w->wb_waittype == WAITTYPE_ANY) {
1532                         /*
1533                          * Thread can be awakened if
1534                          * any wait is satisfied.
1535                          */
1536                         ntoskrnl_satisfy_wait(obj, td);
1537                         satisfied = TRUE;
1538                         w->wb_awakened = TRUE;
1539                 } else {
1540                         /*
1541                          * Thread can only be woken up
1542                          * if all waits are satisfied.
1543                          * If the thread is waiting on multiple
1544                          * objects, they should all be linked
1545                          * through the wb_next pointers in the
1546                          * wait blocks.
1547                          */
1548                         satisfied = TRUE;
1549                         next = w->wb_next;
1550                         while (next != w) {
1551                                 if (ntoskrnl_is_signalled(obj, td) == FALSE) {
1552                                         satisfied = FALSE;
1553                                         break;
1554                                 }
1555                                 next = next->wb_next;
1556                         }
1557                         ntoskrnl_satisfy_multiple_waits(w);
1558                 }
1559
1560                 if (satisfied == TRUE)
1561                         cv_broadcastpri(&we->we_cv,
1562                             (w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ?
1563                             w->wb_oldpri - (increment * 4) : PRI_MIN_KERN);
1564
1565                 e = e->nle_flink;
1566         }
1567 }
1568
1569 /*
1570  * Return the number of 100 nanosecond intervals since
1571  * January 1, 1601. (?!?!)
1572  */
1573 void
1574 ntoskrnl_time(tval)
1575         uint64_t                *tval;
1576 {
1577         struct timespec         ts;
1578
1579         nanotime(&ts);
1580         *tval = (uint64_t)ts.tv_nsec / 100 + (uint64_t)ts.tv_sec * 10000000 +
1581             11644473600 * 10000000; /* 100ns ticks from 1601 to 1970 */
1582 }
1583
1584 static void
1585 KeQuerySystemTime(current_time)
1586         uint64_t                *current_time;
1587 {
1588         ntoskrnl_time(current_time);
1589 }
1590
1591 static uint32_t
1592 KeTickCount(void)
1593 {
1594         struct timeval tv;
1595         getmicrouptime(&tv);
1596         return tvtohz(&tv);
1597 }
1598
1599
1600 /*
1601  * KeWaitForSingleObject() is a tricky beast, because it can be used
1602  * with several different object types: semaphores, timers, events,
1603  * mutexes and threads. Semaphores don't appear very often, but the
1604  * other object types are quite common. KeWaitForSingleObject() is
1605  * what's normally used to acquire a mutex, and it can be used to
1606  * wait for a thread termination.
1607  *
1608  * The Windows NDIS API is implemented in terms of Windows kernel
1609  * primitives, and some of the object manipulation is duplicated in
1610  * NDIS. For example, NDIS has timers and events, which are actually
1611  * Windows kevents and ktimers. Now, you're supposed to only use the
1612  * NDIS variants of these objects within the confines of the NDIS API,
1613  * but there are some naughty developers out there who will use
1614  * KeWaitForSingleObject() on NDIS timer and event objects, so we
1615  * have to support that as well. Conseqently, our NDIS timer and event
1616  * code has to be closely tied into our ntoskrnl timer and event code,
1617  * just as it is in Windows.
1618  *
1619  * KeWaitForSingleObject() may do different things for different kinds
1620  * of objects:
1621  *
1622  * - For events, we check if the event has been signalled. If the
1623  *   event is already in the signalled state, we just return immediately,
1624  *   otherwise we wait for it to be set to the signalled state by someone
1625  *   else calling KeSetEvent(). Events can be either synchronization or
1626  *   notification events.
1627  *
1628  * - For timers, if the timer has already fired and the timer is in
1629  *   the signalled state, we just return, otherwise we wait on the
1630  *   timer. Unlike an event, timers get signalled automatically when
1631  *   they expire rather than someone having to trip them manually.
1632  *   Timers initialized with KeInitializeTimer() are always notification
1633  *   events: KeInitializeTimerEx() lets you initialize a timer as
1634  *   either a notification or synchronization event.
1635  *
1636  * - For mutexes, we try to acquire the mutex and if we can't, we wait
1637  *   on the mutex until it's available and then grab it. When a mutex is
1638  *   released, it enters the signalled state, which wakes up one of the
1639  *   threads waiting to acquire it. Mutexes are always synchronization
1640  *   events.
1641  *
1642  * - For threads, the only thing we do is wait until the thread object
1643  *   enters a signalled state, which occurs when the thread terminates.
1644  *   Threads are always notification events.
1645  *
1646  * A notification event wakes up all threads waiting on an object. A
1647  * synchronization event wakes up just one. Also, a synchronization event
1648  * is auto-clearing, which means we automatically set the event back to
1649  * the non-signalled state once the wakeup is done.
1650  */
1651
1652 uint32_t
1653 KeWaitForSingleObject(void *arg, uint32_t reason, uint32_t mode,
1654     uint8_t alertable, int64_t *duetime)
1655 {
1656         wait_block              w;
1657         struct thread           *td = curthread;
1658         struct timeval          tv;
1659         int                     error = 0;
1660         uint64_t                curtime;
1661         wb_ext                  we;
1662         nt_dispatch_header      *obj;
1663
1664         obj = arg;
1665
1666         if (obj == NULL)
1667                 return (STATUS_INVALID_PARAMETER);
1668
1669         mtx_lock(&ntoskrnl_dispatchlock);
1670
1671         cv_init(&we.we_cv, "KeWFS");
1672         we.we_td = td;
1673
1674         /*
1675          * Check to see if this object is already signalled,
1676          * and just return without waiting if it is.
1677          */
1678         if (ntoskrnl_is_signalled(obj, td) == TRUE) {
1679                 /* Sanity check the signal state value. */
1680                 if (obj->dh_sigstate != INT32_MIN) {
1681                         ntoskrnl_satisfy_wait(obj, curthread);
1682                         mtx_unlock(&ntoskrnl_dispatchlock);
1683                         return (STATUS_SUCCESS);
1684                 } else {
1685                         /*
1686                          * There's a limit to how many times we can
1687                          * recursively acquire a mutant. If we hit
1688                          * the limit, something is very wrong.
1689                          */
1690                         if (obj->dh_type == DISP_TYPE_MUTANT) {
1691                                 mtx_unlock(&ntoskrnl_dispatchlock);
1692                                 panic("mutant limit exceeded");
1693                         }
1694                 }
1695         }
1696
1697         bzero((char *)&w, sizeof(wait_block));
1698         w.wb_object = obj;
1699         w.wb_ext = &we;
1700         w.wb_waittype = WAITTYPE_ANY;
1701         w.wb_next = &w;
1702         w.wb_waitkey = 0;
1703         w.wb_awakened = FALSE;
1704         w.wb_oldpri = td->td_priority;
1705
1706         InsertTailList((&obj->dh_waitlisthead), (&w.wb_waitlist));
1707
1708         /*
1709          * The timeout value is specified in 100 nanosecond units
1710          * and can be a positive or negative number. If it's positive,
1711          * then the duetime is absolute, and we need to convert it
1712          * to an absolute offset relative to now in order to use it.
1713          * If it's negative, then the duetime is relative and we
1714          * just have to convert the units.
1715          */
1716
1717         if (duetime != NULL) {
1718                 if (*duetime < 0) {
1719                         tv.tv_sec = - (*duetime) / 10000000;
1720                         tv.tv_usec = (- (*duetime) / 10) -
1721                             (tv.tv_sec * 1000000);
1722                 } else {
1723                         ntoskrnl_time(&curtime);
1724                         if (*duetime < curtime)
1725                                 tv.tv_sec = tv.tv_usec = 0;
1726                         else {
1727                                 tv.tv_sec = ((*duetime) - curtime) / 10000000;
1728                                 tv.tv_usec = ((*duetime) - curtime) / 10 -
1729                                     (tv.tv_sec * 1000000);
1730                         }
1731                 }
1732         }
1733
1734         if (duetime == NULL)
1735                 cv_wait(&we.we_cv, &ntoskrnl_dispatchlock);
1736         else
1737                 error = cv_timedwait(&we.we_cv,
1738                     &ntoskrnl_dispatchlock, tvtohz(&tv));
1739
1740         RemoveEntryList(&w.wb_waitlist);
1741
1742         cv_destroy(&we.we_cv);
1743
1744         /* We timed out. Leave the object alone and return status. */
1745
1746         if (error == EWOULDBLOCK) {
1747                 mtx_unlock(&ntoskrnl_dispatchlock);
1748                 return (STATUS_TIMEOUT);
1749         }
1750
1751         mtx_unlock(&ntoskrnl_dispatchlock);
1752
1753         return (STATUS_SUCCESS);
1754 /*
1755         return (KeWaitForMultipleObjects(1, &obj, WAITTYPE_ALL, reason,
1756             mode, alertable, duetime, &w));
1757 */
1758 }
1759
1760 static uint32_t
1761 KeWaitForMultipleObjects(uint32_t cnt, nt_dispatch_header *obj[], uint32_t wtype,
1762         uint32_t reason, uint32_t mode, uint8_t alertable, int64_t *duetime,
1763         wait_block *wb_array)
1764 {
1765         struct thread           *td = curthread;
1766         wait_block              *whead, *w;
1767         wait_block              _wb_array[MAX_WAIT_OBJECTS];
1768         nt_dispatch_header      *cur;
1769         struct timeval          tv;
1770         int                     i, wcnt = 0, error = 0;
1771         uint64_t                curtime;
1772         struct timespec         t1, t2;
1773         uint32_t                status = STATUS_SUCCESS;
1774         wb_ext                  we;
1775
1776         if (cnt > MAX_WAIT_OBJECTS)
1777                 return (STATUS_INVALID_PARAMETER);
1778         if (cnt > THREAD_WAIT_OBJECTS && wb_array == NULL)
1779                 return (STATUS_INVALID_PARAMETER);
1780
1781         mtx_lock(&ntoskrnl_dispatchlock);
1782
1783         cv_init(&we.we_cv, "KeWFM");
1784         we.we_td = td;
1785
1786         if (wb_array == NULL)
1787                 whead = _wb_array;
1788         else
1789                 whead = wb_array;
1790
1791         bzero((char *)whead, sizeof(wait_block) * cnt);
1792
1793         /* First pass: see if we can satisfy any waits immediately. */
1794
1795         wcnt = 0;
1796         w = whead;
1797
1798         for (i = 0; i < cnt; i++) {
1799                 InsertTailList((&obj[i]->dh_waitlisthead),
1800                     (&w->wb_waitlist));
1801                 w->wb_ext = &we;
1802                 w->wb_object = obj[i];
1803                 w->wb_waittype = wtype;
1804                 w->wb_waitkey = i;
1805                 w->wb_awakened = FALSE;
1806                 w->wb_oldpri = td->td_priority;
1807                 w->wb_next = w + 1;
1808                 w++;
1809                 wcnt++;
1810                 if (ntoskrnl_is_signalled(obj[i], td)) {
1811                         /*
1812                          * There's a limit to how many times
1813                          * we can recursively acquire a mutant.
1814                          * If we hit the limit, something
1815                          * is very wrong.
1816                          */
1817                         if (obj[i]->dh_sigstate == INT32_MIN &&
1818                             obj[i]->dh_type == DISP_TYPE_MUTANT) {
1819                                 mtx_unlock(&ntoskrnl_dispatchlock);
1820                                 panic("mutant limit exceeded");
1821                         }
1822
1823                         /*
1824                          * If this is a WAITTYPE_ANY wait, then
1825                          * satisfy the waited object and exit
1826                          * right now.
1827                          */
1828
1829                         if (wtype == WAITTYPE_ANY) {
1830                                 ntoskrnl_satisfy_wait(obj[i], td);
1831                                 status = STATUS_WAIT_0 + i;
1832                                 goto wait_done;
1833                         } else {
1834                                 w--;
1835                                 wcnt--;
1836                                 w->wb_object = NULL;
1837                                 RemoveEntryList(&w->wb_waitlist);
1838                         }
1839                 }
1840         }
1841
1842         /*
1843          * If this is a WAITTYPE_ALL wait and all objects are
1844          * already signalled, satisfy the waits and exit now.
1845          */
1846
1847         if (wtype == WAITTYPE_ALL && wcnt == 0) {
1848                 for (i = 0; i < cnt; i++)
1849                         ntoskrnl_satisfy_wait(obj[i], td);
1850                 status = STATUS_SUCCESS;
1851                 goto wait_done;
1852         }
1853
1854         /*
1855          * Create a circular waitblock list. The waitcount
1856          * must always be non-zero when we get here.
1857          */
1858
1859         (w - 1)->wb_next = whead;
1860
1861         /* Wait on any objects that aren't yet signalled. */
1862
1863         /* Calculate timeout, if any. */
1864
1865         if (duetime != NULL) {
1866                 if (*duetime < 0) {
1867                         tv.tv_sec = - (*duetime) / 10000000;
1868                         tv.tv_usec = (- (*duetime) / 10) -
1869                             (tv.tv_sec * 1000000);
1870                 } else {
1871                         ntoskrnl_time(&curtime);
1872                         if (*duetime < curtime)
1873                                 tv.tv_sec = tv.tv_usec = 0;
1874                         else {
1875                                 tv.tv_sec = ((*duetime) - curtime) / 10000000;
1876                                 tv.tv_usec = ((*duetime) - curtime) / 10 -
1877                                     (tv.tv_sec * 1000000);
1878                         }
1879                 }
1880         }
1881
1882         while (wcnt) {
1883                 nanotime(&t1);
1884
1885                 if (duetime == NULL)
1886                         cv_wait(&we.we_cv, &ntoskrnl_dispatchlock);
1887                 else
1888                         error = cv_timedwait(&we.we_cv,
1889                             &ntoskrnl_dispatchlock, tvtohz(&tv));
1890
1891                 /* Wait with timeout expired. */
1892
1893                 if (error) {
1894                         status = STATUS_TIMEOUT;
1895                         goto wait_done;
1896                 }
1897
1898                 nanotime(&t2);
1899
1900                 /* See what's been signalled. */
1901
1902                 w = whead;
1903                 do {
1904                         cur = w->wb_object;
1905                         if (ntoskrnl_is_signalled(cur, td) == TRUE ||
1906                             w->wb_awakened == TRUE) {
1907                                 /* Sanity check the signal state value. */
1908                                 if (cur->dh_sigstate == INT32_MIN &&
1909                                     cur->dh_type == DISP_TYPE_MUTANT) {
1910                                         mtx_unlock(&ntoskrnl_dispatchlock);
1911                                         panic("mutant limit exceeded");
1912                                 }
1913                                 wcnt--;
1914                                 if (wtype == WAITTYPE_ANY) {
1915                                         status = w->wb_waitkey &
1916                                             STATUS_WAIT_0;
1917                                         goto wait_done;
1918                                 }
1919                         }
1920                         w = w->wb_next;
1921                 } while (w != whead);
1922
1923                 /*
1924                  * If all objects have been signalled, or if this
1925                  * is a WAITTYPE_ANY wait and we were woke up by
1926                  * someone, we can bail.
1927                  */
1928
1929                 if (wcnt == 0) {
1930                         status = STATUS_SUCCESS;
1931                         goto wait_done;
1932                 }
1933
1934                 /*
1935                  * If this is WAITTYPE_ALL wait, and there's still
1936                  * objects that haven't been signalled, deduct the
1937                  * time that's elapsed so far from the timeout and
1938                  * wait again (or continue waiting indefinitely if
1939                  * there's no timeout).
1940                  */
1941
1942                 if (duetime != NULL) {
1943                         tv.tv_sec -= (t2.tv_sec - t1.tv_sec);
1944                         tv.tv_usec -= (t2.tv_nsec - t1.tv_nsec) / 1000;
1945                 }
1946         }
1947
1948
1949 wait_done:
1950
1951         cv_destroy(&we.we_cv);
1952
1953         for (i = 0; i < cnt; i++) {
1954                 if (whead[i].wb_object != NULL)
1955                         RemoveEntryList(&whead[i].wb_waitlist);
1956
1957         }
1958         mtx_unlock(&ntoskrnl_dispatchlock);
1959
1960         return (status);
1961 }
1962
1963 static void
1964 WRITE_REGISTER_USHORT(uint16_t *reg, uint16_t val)
1965 {
1966         bus_space_write_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
1967 }
1968
1969 static uint16_t
1970 READ_REGISTER_USHORT(reg)
1971         uint16_t                *reg;
1972 {
1973         return (bus_space_read_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
1974 }
1975
1976 static void
1977 WRITE_REGISTER_ULONG(reg, val)
1978         uint32_t                *reg;
1979         uint32_t                val;
1980 {
1981         bus_space_write_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
1982 }
1983
1984 static uint32_t
1985 READ_REGISTER_ULONG(reg)
1986         uint32_t                *reg;
1987 {
1988         return (bus_space_read_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
1989 }
1990
1991 static uint8_t
1992 READ_REGISTER_UCHAR(uint8_t *reg)
1993 {
1994         return (bus_space_read_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
1995 }
1996
1997 static void
1998 WRITE_REGISTER_UCHAR(uint8_t *reg, uint8_t val)
1999 {
2000         bus_space_write_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
2001 }
2002
2003 static int64_t
2004 _allmul(a, b)
2005         int64_t                 a;
2006         int64_t                 b;
2007 {
2008         return (a * b);
2009 }
2010
2011 static int64_t
2012 _alldiv(a, b)
2013         int64_t                 a;
2014         int64_t                 b;
2015 {
2016         return (a / b);
2017 }
2018
2019 static int64_t
2020 _allrem(a, b)
2021         int64_t                 a;
2022         int64_t                 b;
2023 {
2024         return (a % b);
2025 }
2026
2027 static uint64_t
2028 _aullmul(a, b)
2029         uint64_t                a;
2030         uint64_t                b;
2031 {
2032         return (a * b);
2033 }
2034
2035 static uint64_t
2036 _aulldiv(a, b)
2037         uint64_t                a;
2038         uint64_t                b;
2039 {
2040         return (a / b);
2041 }
2042
2043 static uint64_t
2044 _aullrem(a, b)
2045         uint64_t                a;
2046         uint64_t                b;
2047 {
2048         return (a % b);
2049 }
2050
2051 static int64_t
2052 _allshl(int64_t a, uint8_t b)
2053 {
2054         return (a << b);
2055 }
2056
2057 static uint64_t
2058 _aullshl(uint64_t a, uint8_t b)
2059 {
2060         return (a << b);
2061 }
2062
2063 static int64_t
2064 _allshr(int64_t a, uint8_t b)
2065 {
2066         return (a >> b);
2067 }
2068
2069 static uint64_t
2070 _aullshr(uint64_t a, uint8_t b)
2071 {
2072         return (a >> b);
2073 }
2074
2075 static slist_entry *
2076 ntoskrnl_pushsl(head, entry)
2077         slist_header            *head;
2078         slist_entry             *entry;
2079 {
2080         slist_entry             *oldhead;
2081
2082         oldhead = head->slh_list.slh_next;
2083         entry->sl_next = head->slh_list.slh_next;
2084         head->slh_list.slh_next = entry;
2085         head->slh_list.slh_depth++;
2086         head->slh_list.slh_seq++;
2087
2088         return (oldhead);
2089 }
2090
2091 static void
2092 InitializeSListHead(head)
2093         slist_header            *head;
2094 {
2095         memset(head, 0, sizeof(*head));
2096 }
2097
2098 static slist_entry *
2099 ntoskrnl_popsl(head)
2100         slist_header            *head;
2101 {
2102         slist_entry             *first;
2103
2104         first = head->slh_list.slh_next;
2105         if (first != NULL) {
2106                 head->slh_list.slh_next = first->sl_next;
2107                 head->slh_list.slh_depth--;
2108                 head->slh_list.slh_seq++;
2109         }
2110
2111         return (first);
2112 }
2113
2114 /*
2115  * We need this to make lookaside lists work for amd64.
2116  * We pass a pointer to ExAllocatePoolWithTag() the lookaside
2117  * list structure. For amd64 to work right, this has to be a
2118  * pointer to the wrapped version of the routine, not the
2119  * original. Letting the Windows driver invoke the original
2120  * function directly will result in a convention calling
2121  * mismatch and a pretty crash. On x86, this effectively
2122  * becomes a no-op since ipt_func and ipt_wrap are the same.
2123  */
2124
2125 static funcptr
2126 ntoskrnl_findwrap(func)
2127         funcptr                 func;
2128 {
2129         image_patch_table       *patch;
2130
2131         patch = ntoskrnl_functbl;
2132         while (patch->ipt_func != NULL) {
2133                 if ((funcptr)patch->ipt_func == func)
2134                         return ((funcptr)patch->ipt_wrap);
2135                 patch++;
2136         }
2137
2138         return (NULL);
2139 }
2140
2141 static void
2142 ExInitializePagedLookasideList(paged_lookaside_list *lookaside,
2143         lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc,
2144         uint32_t flags, size_t size, uint32_t tag, uint16_t depth)
2145 {
2146         bzero((char *)lookaside, sizeof(paged_lookaside_list));
2147
2148         if (size < sizeof(slist_entry))
2149                 lookaside->nll_l.gl_size = sizeof(slist_entry);
2150         else
2151                 lookaside->nll_l.gl_size = size;
2152         lookaside->nll_l.gl_tag = tag;
2153         if (allocfunc == NULL)
2154                 lookaside->nll_l.gl_allocfunc =
2155                     ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
2156         else
2157                 lookaside->nll_l.gl_allocfunc = allocfunc;
2158
2159         if (freefunc == NULL)
2160                 lookaside->nll_l.gl_freefunc =
2161                     ntoskrnl_findwrap((funcptr)ExFreePool);
2162         else
2163                 lookaside->nll_l.gl_freefunc = freefunc;
2164
2165 #ifdef __i386__
2166         KeInitializeSpinLock(&lookaside->nll_obsoletelock);
2167 #endif
2168
2169         lookaside->nll_l.gl_type = NonPagedPool;
2170         lookaside->nll_l.gl_depth = depth;
2171         lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
2172 }
2173
2174 static void
2175 ExDeletePagedLookasideList(lookaside)
2176         paged_lookaside_list   *lookaside;
2177 {
2178         void                    *buf;
2179         void            (*freefunc)(void *);
2180
2181         freefunc = lookaside->nll_l.gl_freefunc;
2182         while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
2183                 MSCALL1(freefunc, buf);
2184 }
2185
2186 static void
2187 ExInitializeNPagedLookasideList(npaged_lookaside_list *lookaside,
2188         lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc,
2189         uint32_t flags, size_t size, uint32_t tag, uint16_t depth)
2190 {
2191         bzero((char *)lookaside, sizeof(npaged_lookaside_list));
2192
2193         if (size < sizeof(slist_entry))
2194                 lookaside->nll_l.gl_size = sizeof(slist_entry);
2195         else
2196                 lookaside->nll_l.gl_size = size;
2197         lookaside->nll_l.gl_tag = tag;
2198         if (allocfunc == NULL)
2199                 lookaside->nll_l.gl_allocfunc =
2200                     ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
2201         else
2202                 lookaside->nll_l.gl_allocfunc = allocfunc;
2203
2204         if (freefunc == NULL)
2205                 lookaside->nll_l.gl_freefunc =
2206                     ntoskrnl_findwrap((funcptr)ExFreePool);
2207         else
2208                 lookaside->nll_l.gl_freefunc = freefunc;
2209
2210 #ifdef __i386__
2211         KeInitializeSpinLock(&lookaside->nll_obsoletelock);
2212 #endif
2213
2214         lookaside->nll_l.gl_type = NonPagedPool;
2215         lookaside->nll_l.gl_depth = depth;
2216         lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
2217 }
2218
2219 static void
2220 ExDeleteNPagedLookasideList(lookaside)
2221         npaged_lookaside_list   *lookaside;
2222 {
2223         void                    *buf;
2224         void            (*freefunc)(void *);
2225
2226         freefunc = lookaside->nll_l.gl_freefunc;
2227         while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
2228                 MSCALL1(freefunc, buf);
2229 }
2230
2231 slist_entry *
2232 InterlockedPushEntrySList(head, entry)
2233         slist_header            *head;
2234         slist_entry             *entry;
2235 {
2236         slist_entry             *oldhead;
2237
2238         mtx_lock_spin(&ntoskrnl_interlock);
2239         oldhead = ntoskrnl_pushsl(head, entry);
2240         mtx_unlock_spin(&ntoskrnl_interlock);
2241
2242         return (oldhead);
2243 }
2244
2245 slist_entry *
2246 InterlockedPopEntrySList(head)
2247         slist_header            *head;
2248 {
2249         slist_entry             *first;
2250
2251         mtx_lock_spin(&ntoskrnl_interlock);
2252         first = ntoskrnl_popsl(head);
2253         mtx_unlock_spin(&ntoskrnl_interlock);
2254
2255         return (first);
2256 }
2257
2258 static slist_entry *
2259 ExInterlockedPushEntrySList(head, entry, lock)
2260         slist_header            *head;
2261         slist_entry             *entry;
2262         kspin_lock              *lock;
2263 {
2264         return (InterlockedPushEntrySList(head, entry));
2265 }
2266
2267 static slist_entry *
2268 ExInterlockedPopEntrySList(head, lock)
2269         slist_header            *head;
2270         kspin_lock              *lock;
2271 {
2272         return (InterlockedPopEntrySList(head));
2273 }
2274
2275 uint16_t
2276 ExQueryDepthSList(head)
2277         slist_header            *head;
2278 {
2279         uint16_t                depth;
2280
2281         mtx_lock_spin(&ntoskrnl_interlock);
2282         depth = head->slh_list.slh_depth;
2283         mtx_unlock_spin(&ntoskrnl_interlock);
2284
2285         return (depth);
2286 }
2287
2288 void
2289 KeInitializeSpinLock(lock)
2290         kspin_lock              *lock;
2291 {
2292         *lock = 0;
2293 }
2294
2295 #ifdef __i386__
2296 void
2297 KefAcquireSpinLockAtDpcLevel(lock)
2298         kspin_lock              *lock;
2299 {
2300 #ifdef NTOSKRNL_DEBUG_SPINLOCKS
2301         int                     i = 0;
2302 #endif
2303
2304         while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0) {
2305                 /* sit and spin */;
2306 #ifdef NTOSKRNL_DEBUG_SPINLOCKS
2307                 i++;
2308                 if (i > 200000000)
2309                         panic("DEADLOCK!");
2310 #endif
2311         }
2312 }
2313
2314 void
2315 KefReleaseSpinLockFromDpcLevel(lock)
2316         kspin_lock              *lock;
2317 {
2318         atomic_store_rel_int((volatile u_int *)lock, 0);
2319 }
2320
2321 uint8_t
2322 KeAcquireSpinLockRaiseToDpc(kspin_lock *lock)
2323 {
2324         uint8_t                 oldirql;
2325
2326         if (KeGetCurrentIrql() > DISPATCH_LEVEL)
2327                 panic("IRQL_NOT_LESS_THAN_OR_EQUAL");
2328
2329         KeRaiseIrql(DISPATCH_LEVEL, &oldirql);
2330         KeAcquireSpinLockAtDpcLevel(lock);
2331
2332         return (oldirql);
2333 }
2334 #else
2335 void
2336 KeAcquireSpinLockAtDpcLevel(kspin_lock *lock)
2337 {
2338         while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0)
2339                 /* sit and spin */;
2340 }
2341
2342 void
2343 KeReleaseSpinLockFromDpcLevel(kspin_lock *lock)
2344 {
2345         atomic_store_rel_int((volatile u_int *)lock, 0);
2346 }
2347 #endif /* __i386__ */
2348
2349 uintptr_t
2350 InterlockedExchange(dst, val)
2351         volatile uint32_t       *dst;
2352         uintptr_t               val;
2353 {
2354         uintptr_t               r;
2355
2356         mtx_lock_spin(&ntoskrnl_interlock);
2357         r = *dst;
2358         *dst = val;
2359         mtx_unlock_spin(&ntoskrnl_interlock);
2360
2361         return (r);
2362 }
2363
2364 static uint32_t
2365 InterlockedIncrement(addend)
2366         volatile uint32_t       *addend;
2367 {
2368         atomic_add_long((volatile u_long *)addend, 1);
2369         return (*addend);
2370 }
2371
2372 static uint32_t
2373 InterlockedDecrement(addend)
2374         volatile uint32_t       *addend;
2375 {
2376         atomic_subtract_long((volatile u_long *)addend, 1);
2377         return (*addend);
2378 }
2379
2380 static void
2381 ExInterlockedAddLargeStatistic(addend, inc)
2382         uint64_t                *addend;
2383         uint32_t                inc;
2384 {
2385         mtx_lock_spin(&ntoskrnl_interlock);
2386         *addend += inc;
2387         mtx_unlock_spin(&ntoskrnl_interlock);
2388 };
2389
2390 mdl *
2391 IoAllocateMdl(void *vaddr, uint32_t len, uint8_t secondarybuf,
2392         uint8_t chargequota, irp *iopkt)
2393 {
2394         mdl                     *m;
2395         int                     zone = 0;
2396
2397         if (MmSizeOfMdl(vaddr, len) > MDL_ZONE_SIZE)
2398                 m = ExAllocatePoolWithTag(NonPagedPool,
2399                     MmSizeOfMdl(vaddr, len), 0);
2400         else {
2401                 m = uma_zalloc(mdl_zone, M_NOWAIT | M_ZERO);
2402                 zone++;
2403         }
2404
2405         if (m == NULL)
2406                 return (NULL);
2407
2408         MmInitializeMdl(m, vaddr, len);
2409
2410         /*
2411          * MmInitializMdl() clears the flags field, so we
2412          * have to set this here. If the MDL came from the
2413          * MDL UMA zone, tag it so we can release it to
2414          * the right place later.
2415          */
2416         if (zone)
2417                 m->mdl_flags = MDL_ZONE_ALLOCED;
2418
2419         if (iopkt != NULL) {
2420                 if (secondarybuf == TRUE) {
2421                         mdl                     *last;
2422                         last = iopkt->irp_mdl;
2423                         while (last->mdl_next != NULL)
2424                                 last = last->mdl_next;
2425                         last->mdl_next = m;
2426                 } else {
2427                         if (iopkt->irp_mdl != NULL)
2428                                 panic("leaking an MDL in IoAllocateMdl()");
2429                         iopkt->irp_mdl = m;
2430                 }
2431         }
2432
2433         return (m);
2434 }
2435
2436 void
2437 IoFreeMdl(m)
2438         mdl                     *m;
2439 {
2440         if (m == NULL)
2441                 return;
2442
2443         if (m->mdl_flags & MDL_ZONE_ALLOCED)
2444                 uma_zfree(mdl_zone, m);
2445         else
2446                 ExFreePool(m);
2447 }
2448
2449 static void *
2450 MmAllocateContiguousMemory(size, highest)
2451         uint32_t                size;
2452         uint64_t                highest;
2453 {
2454         void *addr;
2455         size_t pagelength = roundup(size, PAGE_SIZE);
2456
2457         addr = ExAllocatePoolWithTag(NonPagedPool, pagelength, 0);
2458
2459         return (addr);
2460 }
2461
2462 static void *
2463 MmAllocateContiguousMemorySpecifyCache(size, lowest, highest,
2464     boundary, cachetype)
2465         uint32_t                size;
2466         uint64_t                lowest;
2467         uint64_t                highest;
2468         uint64_t                boundary;
2469         enum nt_caching_type    cachetype;
2470 {
2471         vm_memattr_t            memattr;
2472         void                    *ret;
2473
2474         switch (cachetype) {
2475         case MmNonCached:
2476                 memattr = VM_MEMATTR_UNCACHEABLE;
2477                 break;
2478         case MmWriteCombined:
2479                 memattr = VM_MEMATTR_WRITE_COMBINING;
2480                 break;
2481         case MmNonCachedUnordered:
2482                 memattr = VM_MEMATTR_UNCACHEABLE;
2483                 break;
2484         case MmCached:
2485         case MmHardwareCoherentCached:
2486         case MmUSWCCached:
2487         default:
2488                 memattr = VM_MEMATTR_DEFAULT;
2489                 break;
2490         }
2491
2492         ret = (void *)kmem_alloc_contig(kernel_arena, size, M_ZERO | M_NOWAIT,
2493             lowest, highest, PAGE_SIZE, boundary, memattr);
2494         if (ret != NULL)
2495                 malloc_type_allocated(M_DEVBUF, round_page(size));
2496         return (ret);
2497 }
2498
2499 static void
2500 MmFreeContiguousMemory(base)
2501         void                    *base;
2502 {
2503         ExFreePool(base);
2504 }
2505
2506 static void
2507 MmFreeContiguousMemorySpecifyCache(base, size, cachetype)
2508         void                    *base;
2509         uint32_t                size;
2510         enum nt_caching_type    cachetype;
2511 {
2512         contigfree(base, size, M_DEVBUF);
2513 }
2514
2515 static uint32_t
2516 MmSizeOfMdl(vaddr, len)
2517         void                    *vaddr;
2518         size_t                  len;
2519 {
2520         uint32_t                l;
2521
2522         l = sizeof(struct mdl) +
2523             (sizeof(vm_offset_t *) * SPAN_PAGES(vaddr, len));
2524
2525         return (l);
2526 }
2527
2528 /*
2529  * The Microsoft documentation says this routine fills in the
2530  * page array of an MDL with the _physical_ page addresses that
2531  * comprise the buffer, but we don't really want to do that here.
2532  * Instead, we just fill in the page array with the kernel virtual
2533  * addresses of the buffers.
2534  */
2535 void
2536 MmBuildMdlForNonPagedPool(m)
2537         mdl                     *m;
2538 {
2539         vm_offset_t             *mdl_pages;
2540         int                     pagecnt, i;
2541
2542         pagecnt = SPAN_PAGES(m->mdl_byteoffset, m->mdl_bytecount);
2543
2544         if (pagecnt > (m->mdl_size - sizeof(mdl)) / sizeof(vm_offset_t *))
2545                 panic("not enough pages in MDL to describe buffer");
2546
2547         mdl_pages = MmGetMdlPfnArray(m);
2548
2549         for (i = 0; i < pagecnt; i++)
2550                 *mdl_pages = (vm_offset_t)m->mdl_startva + (i * PAGE_SIZE);
2551
2552         m->mdl_flags |= MDL_SOURCE_IS_NONPAGED_POOL;
2553         m->mdl_mappedsystemva = MmGetMdlVirtualAddress(m);
2554 }
2555
2556 static void *
2557 MmMapLockedPages(mdl *buf, uint8_t accessmode)
2558 {
2559         buf->mdl_flags |= MDL_MAPPED_TO_SYSTEM_VA;
2560         return (MmGetMdlVirtualAddress(buf));
2561 }
2562
2563 static void *
2564 MmMapLockedPagesSpecifyCache(mdl *buf, uint8_t accessmode, uint32_t cachetype,
2565         void *vaddr, uint32_t bugcheck, uint32_t prio)
2566 {
2567         return (MmMapLockedPages(buf, accessmode));
2568 }
2569
2570 static void
2571 MmUnmapLockedPages(vaddr, buf)
2572         void                    *vaddr;
2573         mdl                     *buf;
2574 {
2575         buf->mdl_flags &= ~MDL_MAPPED_TO_SYSTEM_VA;
2576 }
2577
2578 /*
2579  * This function has a problem in that it will break if you
2580  * compile this module without PAE and try to use it on a PAE
2581  * kernel. Unfortunately, there's no way around this at the
2582  * moment. It's slightly less broken that using pmap_kextract().
2583  * You'd think the virtual memory subsystem would help us out
2584  * here, but it doesn't.
2585  */
2586
2587 static uint64_t
2588 MmGetPhysicalAddress(void *base)
2589 {
2590         return (pmap_extract(kernel_map->pmap, (vm_offset_t)base));
2591 }
2592
2593 void *
2594 MmGetSystemRoutineAddress(ustr)
2595         unicode_string          *ustr;
2596 {
2597         ansi_string             astr;
2598
2599         if (RtlUnicodeStringToAnsiString(&astr, ustr, TRUE))
2600                 return (NULL);
2601         return (ndis_get_routine_address(ntoskrnl_functbl, astr.as_buf));
2602 }
2603
2604 uint8_t
2605 MmIsAddressValid(vaddr)
2606         void                    *vaddr;
2607 {
2608         if (pmap_extract(kernel_map->pmap, (vm_offset_t)vaddr))
2609                 return (TRUE);
2610
2611         return (FALSE);
2612 }
2613
2614 void *
2615 MmMapIoSpace(paddr, len, cachetype)
2616         uint64_t                paddr;
2617         uint32_t                len;
2618         uint32_t                cachetype;
2619 {
2620         devclass_t              nexus_class;
2621         device_t                *nexus_devs, devp;
2622         int                     nexus_count = 0;
2623         device_t                matching_dev = NULL;
2624         struct resource         *res;
2625         int                     i;
2626         vm_offset_t             v;
2627
2628         /* There will always be at least one nexus. */
2629
2630         nexus_class = devclass_find("nexus");
2631         devclass_get_devices(nexus_class, &nexus_devs, &nexus_count);
2632
2633         for (i = 0; i < nexus_count; i++) {
2634                 devp = nexus_devs[i];
2635                 matching_dev = ntoskrnl_finddev(devp, paddr, &res);
2636                 if (matching_dev)
2637                         break;
2638         }
2639
2640         free(nexus_devs, M_TEMP);
2641
2642         if (matching_dev == NULL)
2643                 return (NULL);
2644
2645         v = (vm_offset_t)rman_get_virtual(res);
2646         if (paddr > rman_get_start(res))
2647                 v += paddr - rman_get_start(res);
2648
2649         return ((void *)v);
2650 }
2651
2652 void
2653 MmUnmapIoSpace(vaddr, len)
2654         void                    *vaddr;
2655         size_t                  len;
2656 {
2657 }
2658
2659
2660 static device_t
2661 ntoskrnl_finddev(dev, paddr, res)
2662         device_t                dev;
2663         uint64_t                paddr;
2664         struct resource         **res;
2665 {
2666         device_t                *children = NULL;
2667         device_t                matching_dev;
2668         int                     childcnt;
2669         struct resource         *r;
2670         struct resource_list    *rl;
2671         struct resource_list_entry      *rle;
2672         uint32_t                flags;
2673         int                     i;
2674
2675         /* We only want devices that have been successfully probed. */
2676
2677         if (device_is_alive(dev) == FALSE)
2678                 return (NULL);
2679
2680         rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev);
2681         if (rl != NULL) {
2682                 STAILQ_FOREACH(rle, rl, link) {
2683                         r = rle->res;
2684
2685                         if (r == NULL)
2686                                 continue;
2687
2688                         flags = rman_get_flags(r);
2689
2690                         if (rle->type == SYS_RES_MEMORY &&
2691                             paddr >= rman_get_start(r) &&
2692                             paddr <= rman_get_end(r)) {
2693                                 if (!(flags & RF_ACTIVE))
2694                                         bus_activate_resource(dev,
2695                                             SYS_RES_MEMORY, 0, r);
2696                                 *res = r;
2697                                 return (dev);
2698                         }
2699                 }
2700         }
2701
2702         /*
2703          * If this device has children, do another
2704          * level of recursion to inspect them.
2705          */
2706
2707         device_get_children(dev, &children, &childcnt);
2708
2709         for (i = 0; i < childcnt; i++) {
2710                 matching_dev = ntoskrnl_finddev(children[i], paddr, res);
2711                 if (matching_dev != NULL) {
2712                         free(children, M_TEMP);
2713                         return (matching_dev);
2714                 }
2715         }
2716
2717
2718         /* Won't somebody please think of the children! */
2719
2720         if (children != NULL)
2721                 free(children, M_TEMP);
2722
2723         return (NULL);
2724 }
2725
2726 /*
2727  * Workitems are unlike DPCs, in that they run in a user-mode thread
2728  * context rather than at DISPATCH_LEVEL in kernel context. In our
2729  * case we run them in kernel context anyway.
2730  */
2731 static void
2732 ntoskrnl_workitem_thread(arg)
2733         void                    *arg;
2734 {
2735         kdpc_queue              *kq;
2736         list_entry              *l;
2737         io_workitem             *iw;
2738         uint8_t                 irql;
2739
2740         kq = arg;
2741
2742         InitializeListHead(&kq->kq_disp);
2743         kq->kq_td = curthread;
2744         kq->kq_exit = 0;
2745         KeInitializeSpinLock(&kq->kq_lock);
2746         KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE);
2747
2748         while (1) {
2749                 KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL);
2750
2751                 KeAcquireSpinLock(&kq->kq_lock, &irql);
2752
2753                 if (kq->kq_exit) {
2754                         kq->kq_exit = 0;
2755                         KeReleaseSpinLock(&kq->kq_lock, irql);
2756                         break;
2757                 }
2758
2759                 while (!IsListEmpty(&kq->kq_disp)) {
2760                         l = RemoveHeadList(&kq->kq_disp);
2761                         iw = CONTAINING_RECORD(l,
2762                             io_workitem, iw_listentry);
2763                         InitializeListHead((&iw->iw_listentry));
2764                         if (iw->iw_func == NULL)
2765                                 continue;
2766                         KeReleaseSpinLock(&kq->kq_lock, irql);
2767                         MSCALL2(iw->iw_func, iw->iw_dobj, iw->iw_ctx);
2768                         KeAcquireSpinLock(&kq->kq_lock, &irql);
2769                 }
2770
2771                 KeReleaseSpinLock(&kq->kq_lock, irql);
2772         }
2773
2774         kproc_exit(0);
2775         return; /* notreached */
2776 }
2777
2778 static ndis_status
2779 RtlCharToInteger(src, base, val)
2780         const char              *src;
2781         uint32_t                base;
2782         uint32_t                *val;
2783 {
2784         int negative = 0;
2785         uint32_t res;
2786
2787         if (!src || !val)
2788                 return (STATUS_ACCESS_VIOLATION);
2789         while (*src != '\0' && *src <= ' ')
2790                 src++;
2791         if (*src == '+')
2792                 src++;
2793         else if (*src == '-') {
2794                 src++;
2795                 negative = 1;
2796         }
2797         if (base == 0) {
2798                 base = 10;
2799                 if (*src == '0') {
2800                         src++;
2801                         if (*src == 'b') {
2802                                 base = 2;
2803                                 src++;
2804                         } else if (*src == 'o') {
2805                                 base = 8;
2806                                 src++;
2807                         } else if (*src == 'x') {
2808                                 base = 16;
2809                                 src++;
2810                         }
2811                 }
2812         } else if (!(base == 2 || base == 8 || base == 10 || base == 16))
2813                 return (STATUS_INVALID_PARAMETER);
2814
2815         for (res = 0; *src; src++) {
2816                 int v;
2817                 if (isdigit(*src))
2818                         v = *src - '0';
2819                 else if (isxdigit(*src))
2820                         v = tolower(*src) - 'a' + 10;
2821                 else
2822                         v = base;
2823                 if (v >= base)
2824                         return (STATUS_INVALID_PARAMETER);
2825                 res = res * base + v;
2826         }
2827         *val = negative ? -res : res;
2828         return (STATUS_SUCCESS);
2829 }
2830
2831 static void
2832 ntoskrnl_destroy_workitem_threads(void)
2833 {
2834         kdpc_queue              *kq;
2835         int                     i;
2836
2837         for (i = 0; i < WORKITEM_THREADS; i++) {
2838                 kq = wq_queues + i;
2839                 kq->kq_exit = 1;
2840                 KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
2841                 while (kq->kq_exit)
2842                         tsleep(kq->kq_td->td_proc, PWAIT, "waitiw", hz/10);
2843         }
2844 }
2845
2846 io_workitem *
2847 IoAllocateWorkItem(dobj)
2848         device_object           *dobj;
2849 {
2850         io_workitem             *iw;
2851
2852         iw = uma_zalloc(iw_zone, M_NOWAIT);
2853         if (iw == NULL)
2854                 return (NULL);
2855
2856         InitializeListHead(&iw->iw_listentry);
2857         iw->iw_dobj = dobj;
2858
2859         mtx_lock(&ntoskrnl_dispatchlock);
2860         iw->iw_idx = wq_idx;
2861         WORKIDX_INC(wq_idx);
2862         mtx_unlock(&ntoskrnl_dispatchlock);
2863
2864         return (iw);
2865 }
2866
2867 void
2868 IoFreeWorkItem(iw)
2869         io_workitem             *iw;
2870 {
2871         uma_zfree(iw_zone, iw);
2872 }
2873
2874 void
2875 IoQueueWorkItem(iw, iw_func, qtype, ctx)
2876         io_workitem             *iw;
2877         io_workitem_func        iw_func;
2878         uint32_t                qtype;
2879         void                    *ctx;
2880 {
2881         kdpc_queue              *kq;
2882         list_entry              *l;
2883         io_workitem             *cur;
2884         uint8_t                 irql;
2885
2886         kq = wq_queues + iw->iw_idx;
2887
2888         KeAcquireSpinLock(&kq->kq_lock, &irql);
2889
2890         /*
2891          * Traverse the list and make sure this workitem hasn't
2892          * already been inserted. Queuing the same workitem
2893          * twice will hose the list but good.
2894          */
2895
2896         l = kq->kq_disp.nle_flink;
2897         while (l != &kq->kq_disp) {
2898                 cur = CONTAINING_RECORD(l, io_workitem, iw_listentry);
2899                 if (cur == iw) {
2900                         /* Already queued -- do nothing. */
2901                         KeReleaseSpinLock(&kq->kq_lock, irql);
2902                         return;
2903                 }
2904                 l = l->nle_flink;
2905         }
2906
2907         iw->iw_func = iw_func;
2908         iw->iw_ctx = ctx;
2909
2910         InsertTailList((&kq->kq_disp), (&iw->iw_listentry));
2911         KeReleaseSpinLock(&kq->kq_lock, irql);
2912
2913         KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
2914 }
2915
2916 static void
2917 ntoskrnl_workitem(dobj, arg)
2918         device_object           *dobj;
2919         void                    *arg;
2920 {
2921         io_workitem             *iw;
2922         work_queue_item         *w;
2923         work_item_func          f;
2924
2925         iw = arg;
2926         w = (work_queue_item *)dobj;
2927         f = (work_item_func)w->wqi_func;
2928         uma_zfree(iw_zone, iw);
2929         MSCALL2(f, w, w->wqi_ctx);
2930 }
2931
2932 /*
2933  * The ExQueueWorkItem() API is deprecated in Windows XP. Microsoft
2934  * warns that it's unsafe and to use IoQueueWorkItem() instead. The
2935  * problem with ExQueueWorkItem() is that it can't guard against
2936  * the condition where a driver submits a job to the work queue and
2937  * is then unloaded before the job is able to run. IoQueueWorkItem()
2938  * acquires a reference to the device's device_object via the
2939  * object manager and retains it until after the job has completed,
2940  * which prevents the driver from being unloaded before the job
2941  * runs. (We don't currently support this behavior, though hopefully
2942  * that will change once the object manager API is fleshed out a bit.)
2943  *
2944  * Having said all that, the ExQueueWorkItem() API remains, because
2945  * there are still other parts of Windows that use it, including
2946  * NDIS itself: NdisScheduleWorkItem() calls ExQueueWorkItem().
2947  * We fake up the ExQueueWorkItem() API on top of our implementation
2948  * of IoQueueWorkItem(). Workitem thread #3 is reserved exclusively
2949  * for ExQueueWorkItem() jobs, and we pass a pointer to the work
2950  * queue item (provided by the caller) in to IoAllocateWorkItem()
2951  * instead of the device_object. We need to save this pointer so
2952  * we can apply a sanity check: as with the DPC queue and other
2953  * workitem queues, we can't allow the same work queue item to
2954  * be queued twice. If it's already pending, we silently return
2955  */
2956
2957 void
2958 ExQueueWorkItem(w, qtype)
2959         work_queue_item         *w;
2960         uint32_t                qtype;
2961 {
2962         io_workitem             *iw;
2963         io_workitem_func        iwf;
2964         kdpc_queue              *kq;
2965         list_entry              *l;
2966         io_workitem             *cur;
2967         uint8_t                 irql;
2968
2969
2970         /*
2971          * We need to do a special sanity test to make sure
2972          * the ExQueueWorkItem() API isn't used to queue
2973          * the same workitem twice. Rather than checking the
2974          * io_workitem pointer itself, we test the attached
2975          * device object, which is really a pointer to the
2976          * legacy work queue item structure.
2977          */
2978
2979         kq = wq_queues + WORKITEM_LEGACY_THREAD;
2980         KeAcquireSpinLock(&kq->kq_lock, &irql);
2981         l = kq->kq_disp.nle_flink;
2982         while (l != &kq->kq_disp) {
2983                 cur = CONTAINING_RECORD(l, io_workitem, iw_listentry);
2984                 if (cur->iw_dobj == (device_object *)w) {
2985                         /* Already queued -- do nothing. */
2986                         KeReleaseSpinLock(&kq->kq_lock, irql);
2987                         return;
2988                 }
2989                 l = l->nle_flink;
2990         }
2991         KeReleaseSpinLock(&kq->kq_lock, irql);
2992
2993         iw = IoAllocateWorkItem((device_object *)w);
2994         if (iw == NULL)
2995                 return;
2996
2997         iw->iw_idx = WORKITEM_LEGACY_THREAD;
2998         iwf = (io_workitem_func)ntoskrnl_findwrap((funcptr)ntoskrnl_workitem);
2999         IoQueueWorkItem(iw, iwf, qtype, iw);
3000 }
3001
3002 static void
3003 RtlZeroMemory(dst, len)
3004         void                    *dst;
3005         size_t                  len;
3006 {
3007         bzero(dst, len);
3008 }
3009
3010 static void
3011 RtlSecureZeroMemory(dst, len)
3012         void                    *dst;
3013         size_t                  len;
3014 {
3015         memset(dst, 0, len);
3016 }
3017
3018 static void
3019 RtlFillMemory(void *dst, size_t len, uint8_t c)
3020 {
3021         memset(dst, c, len);
3022 }
3023
3024 static void
3025 RtlMoveMemory(dst, src, len)
3026         void                    *dst;
3027         const void              *src;
3028         size_t                  len;
3029 {
3030         memmove(dst, src, len);
3031 }
3032
3033 static void
3034 RtlCopyMemory(dst, src, len)
3035         void                    *dst;
3036         const void              *src;
3037         size_t                  len;
3038 {
3039         bcopy(src, dst, len);
3040 }
3041
3042 static size_t
3043 RtlCompareMemory(s1, s2, len)
3044         const void              *s1;
3045         const void              *s2;
3046         size_t                  len;
3047 {
3048         size_t                  i;
3049         uint8_t                 *m1, *m2;
3050
3051         m1 = __DECONST(char *, s1);
3052         m2 = __DECONST(char *, s2);
3053
3054         for (i = 0; i < len && m1[i] == m2[i]; i++);
3055         return (i);
3056 }
3057
3058 void
3059 RtlInitAnsiString(dst, src)
3060         ansi_string             *dst;
3061         char                    *src;
3062 {
3063         ansi_string             *a;
3064
3065         a = dst;
3066         if (a == NULL)
3067                 return;
3068         if (src == NULL) {
3069                 a->as_len = a->as_maxlen = 0;
3070                 a->as_buf = NULL;
3071         } else {
3072                 a->as_buf = src;
3073                 a->as_len = a->as_maxlen = strlen(src);
3074         }
3075 }
3076
3077 void
3078 RtlInitUnicodeString(dst, src)
3079         unicode_string          *dst;
3080         uint16_t                *src;
3081 {
3082         unicode_string          *u;
3083         int                     i;
3084
3085         u = dst;
3086         if (u == NULL)
3087                 return;
3088         if (src == NULL) {
3089                 u->us_len = u->us_maxlen = 0;
3090                 u->us_buf = NULL;
3091         } else {
3092                 i = 0;
3093                 while(src[i] != 0)
3094                         i++;
3095                 u->us_buf = src;
3096                 u->us_len = u->us_maxlen = i * 2;
3097         }
3098 }
3099
3100 ndis_status
3101 RtlUnicodeStringToInteger(ustr, base, val)
3102         unicode_string          *ustr;
3103         uint32_t                base;
3104         uint32_t                *val;
3105 {
3106         uint16_t                *uchr;
3107         int                     len, neg = 0;
3108         char                    abuf[64];
3109         char                    *astr;
3110
3111         uchr = ustr->us_buf;
3112         len = ustr->us_len;
3113         bzero(abuf, sizeof(abuf));
3114
3115         if ((char)((*uchr) & 0xFF) == '-') {
3116                 neg = 1;
3117                 uchr++;
3118                 len -= 2;
3119         } else if ((char)((*uchr) & 0xFF) == '+') {
3120                 neg = 0;
3121                 uchr++;
3122                 len -= 2;
3123         }
3124
3125         if (base == 0) {
3126                 if ((char)((*uchr) & 0xFF) == 'b') {
3127                         base = 2;
3128                         uchr++;
3129                         len -= 2;
3130                 } else if ((char)((*uchr) & 0xFF) == 'o') {
3131                         base = 8;
3132                         uchr++;
3133                         len -= 2;
3134                 } else if ((char)((*uchr) & 0xFF) == 'x') {
3135                         base = 16;
3136                         uchr++;
3137                         len -= 2;
3138                 } else
3139                         base = 10;
3140         }
3141
3142         astr = abuf;
3143         if (neg) {
3144                 strcpy(astr, "-");
3145                 astr++;
3146         }
3147
3148         ntoskrnl_unicode_to_ascii(uchr, astr, len);
3149         *val = strtoul(abuf, NULL, base);
3150
3151         return (STATUS_SUCCESS);
3152 }
3153
3154 void
3155 RtlFreeUnicodeString(ustr)
3156         unicode_string          *ustr;
3157 {
3158         if (ustr->us_buf == NULL)
3159                 return;
3160         ExFreePool(ustr->us_buf);
3161         ustr->us_buf = NULL;
3162 }
3163
3164 void
3165 RtlFreeAnsiString(astr)
3166         ansi_string             *astr;
3167 {
3168         if (astr->as_buf == NULL)
3169                 return;
3170         ExFreePool(astr->as_buf);
3171         astr->as_buf = NULL;
3172 }
3173
3174 static int
3175 atoi(str)
3176         const char              *str;
3177 {
3178         return (int)strtol(str, (char **)NULL, 10);
3179 }
3180
3181 static long
3182 atol(str)
3183         const char              *str;
3184 {
3185         return strtol(str, (char **)NULL, 10);
3186 }
3187
3188 static int
3189 rand(void)
3190 {
3191         struct timeval          tv;
3192
3193         microtime(&tv);
3194         srandom(tv.tv_usec);
3195         return ((int)random());
3196 }
3197
3198 static void
3199 srand(seed)
3200         unsigned int            seed;
3201 {
3202         srandom(seed);
3203 }
3204
3205 static uint8_t
3206 IoIsWdmVersionAvailable(uint8_t major, uint8_t minor)
3207 {
3208         if (major == WDM_MAJOR && minor == WDM_MINOR_WINXP)
3209                 return (TRUE);
3210         return (FALSE);
3211 }
3212
3213 static int32_t
3214 IoOpenDeviceRegistryKey(struct device_object *devobj, uint32_t type,
3215     uint32_t mask, void **key)
3216 {
3217         return (NDIS_STATUS_INVALID_DEVICE_REQUEST);
3218 }
3219
3220 static ndis_status
3221 IoGetDeviceObjectPointer(name, reqaccess, fileobj, devobj)
3222         unicode_string          *name;
3223         uint32_t                reqaccess;
3224         void                    *fileobj;
3225         device_object           *devobj;
3226 {
3227         return (STATUS_SUCCESS);
3228 }
3229
3230 static ndis_status
3231 IoGetDeviceProperty(devobj, regprop, buflen, prop, reslen)
3232         device_object           *devobj;
3233         uint32_t                regprop;
3234         uint32_t                buflen;
3235         void                    *prop;
3236         uint32_t                *reslen;
3237 {
3238         driver_object           *drv;
3239         uint16_t                **name;
3240
3241         drv = devobj->do_drvobj;
3242
3243         switch (regprop) {
3244         case DEVPROP_DRIVER_KEYNAME:
3245                 name = prop;
3246                 *name = drv->dro_drivername.us_buf;
3247                 *reslen = drv->dro_drivername.us_len;
3248                 break;
3249         default:
3250                 return (STATUS_INVALID_PARAMETER_2);
3251                 break;
3252         }
3253
3254         return (STATUS_SUCCESS);
3255 }
3256
3257 static void
3258 KeInitializeMutex(kmutex, level)
3259         kmutant                 *kmutex;
3260         uint32_t                level;
3261 {
3262         InitializeListHead((&kmutex->km_header.dh_waitlisthead));
3263         kmutex->km_abandoned = FALSE;
3264         kmutex->km_apcdisable = 1;
3265         kmutex->km_header.dh_sigstate = 1;
3266         kmutex->km_header.dh_type = DISP_TYPE_MUTANT;
3267         kmutex->km_header.dh_size = sizeof(kmutant) / sizeof(uint32_t);
3268         kmutex->km_ownerthread = NULL;
3269 }
3270
3271 static uint32_t
3272 KeReleaseMutex(kmutant *kmutex, uint8_t kwait)
3273 {
3274         uint32_t                prevstate;
3275
3276         mtx_lock(&ntoskrnl_dispatchlock);
3277         prevstate = kmutex->km_header.dh_sigstate;
3278         if (kmutex->km_ownerthread != curthread) {
3279                 mtx_unlock(&ntoskrnl_dispatchlock);
3280                 return (STATUS_MUTANT_NOT_OWNED);
3281         }
3282
3283         kmutex->km_header.dh_sigstate++;
3284         kmutex->km_abandoned = FALSE;
3285
3286         if (kmutex->km_header.dh_sigstate == 1) {
3287                 kmutex->km_ownerthread = NULL;
3288                 ntoskrnl_waittest(&kmutex->km_header, IO_NO_INCREMENT);
3289         }
3290
3291         mtx_unlock(&ntoskrnl_dispatchlock);
3292
3293         return (prevstate);
3294 }
3295
3296 static uint32_t
3297 KeReadStateMutex(kmutex)
3298         kmutant                 *kmutex;
3299 {
3300         return (kmutex->km_header.dh_sigstate);
3301 }
3302
3303 void
3304 KeInitializeEvent(nt_kevent *kevent, uint32_t type, uint8_t state)
3305 {
3306         InitializeListHead((&kevent->k_header.dh_waitlisthead));
3307         kevent->k_header.dh_sigstate = state;
3308         if (type == EVENT_TYPE_NOTIFY)
3309                 kevent->k_header.dh_type = DISP_TYPE_NOTIFICATION_EVENT;
3310         else
3311                 kevent->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_EVENT;
3312         kevent->k_header.dh_size = sizeof(nt_kevent) / sizeof(uint32_t);
3313 }
3314
3315 uint32_t
3316 KeResetEvent(kevent)
3317         nt_kevent               *kevent;
3318 {
3319         uint32_t                prevstate;
3320
3321         mtx_lock(&ntoskrnl_dispatchlock);
3322         prevstate = kevent->k_header.dh_sigstate;
3323         kevent->k_header.dh_sigstate = FALSE;
3324         mtx_unlock(&ntoskrnl_dispatchlock);
3325
3326         return (prevstate);
3327 }
3328
3329 uint32_t
3330 KeSetEvent(nt_kevent *kevent, uint32_t increment, uint8_t kwait)
3331 {
3332         uint32_t                prevstate;
3333         wait_block              *w;
3334         nt_dispatch_header      *dh;
3335         struct thread           *td;
3336         wb_ext                  *we;
3337
3338         mtx_lock(&ntoskrnl_dispatchlock);
3339         prevstate = kevent->k_header.dh_sigstate;
3340         dh = &kevent->k_header;
3341
3342         if (IsListEmpty(&dh->dh_waitlisthead))
3343                 /*
3344                  * If there's nobody in the waitlist, just set
3345                  * the state to signalled.
3346                  */
3347                 dh->dh_sigstate = 1;
3348         else {
3349                 /*
3350                  * Get the first waiter. If this is a synchronization
3351                  * event, just wake up that one thread (don't bother
3352                  * setting the state to signalled since we're supposed
3353                  * to automatically clear synchronization events anyway).
3354                  *
3355                  * If it's a notification event, or the first
3356                  * waiter is doing a WAITTYPE_ALL wait, go through
3357                  * the full wait satisfaction process.
3358                  */
3359                 w = CONTAINING_RECORD(dh->dh_waitlisthead.nle_flink,
3360                     wait_block, wb_waitlist);
3361                 we = w->wb_ext;
3362                 td = we->we_td;
3363                 if (kevent->k_header.dh_type == DISP_TYPE_NOTIFICATION_EVENT ||
3364                     w->wb_waittype == WAITTYPE_ALL) {
3365                         if (prevstate == 0) {
3366                                 dh->dh_sigstate = 1;
3367                                 ntoskrnl_waittest(dh, increment);
3368                         }
3369                 } else {
3370                         w->wb_awakened |= TRUE;
3371                         cv_broadcastpri(&we->we_cv,
3372                             (w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ?
3373                             w->wb_oldpri - (increment * 4) : PRI_MIN_KERN);
3374                 }
3375         }
3376
3377         mtx_unlock(&ntoskrnl_dispatchlock);
3378
3379         return (prevstate);
3380 }
3381
3382 void
3383 KeClearEvent(kevent)
3384         nt_kevent               *kevent;
3385 {
3386         kevent->k_header.dh_sigstate = FALSE;
3387 }
3388
3389 uint32_t
3390 KeReadStateEvent(kevent)
3391         nt_kevent               *kevent;
3392 {
3393         return (kevent->k_header.dh_sigstate);
3394 }
3395
3396 /*
3397  * The object manager in Windows is responsible for managing
3398  * references and access to various types of objects, including
3399  * device_objects, events, threads, timers and so on. However,
3400  * there's a difference in the way objects are handled in user
3401  * mode versus kernel mode.
3402  *
3403  * In user mode (i.e. Win32 applications), all objects are
3404  * managed by the object manager. For example, when you create
3405  * a timer or event object, you actually end up with an 
3406  * object_header (for the object manager's bookkeeping
3407  * purposes) and an object body (which contains the actual object
3408  * structure, e.g. ktimer, kevent, etc...). This allows Windows
3409  * to manage resource quotas and to enforce access restrictions
3410  * on basically every kind of system object handled by the kernel.
3411  *
3412  * However, in kernel mode, you only end up using the object
3413  * manager some of the time. For example, in a driver, you create
3414  * a timer object by simply allocating the memory for a ktimer
3415  * structure and initializing it with KeInitializeTimer(). Hence,
3416  * the timer has no object_header and no reference counting or
3417  * security/resource checks are done on it. The assumption in
3418  * this case is that if you're running in kernel mode, you know
3419  * what you're doing, and you're already at an elevated privilege
3420  * anyway.
3421  *
3422  * There are some exceptions to this. The two most important ones
3423  * for our purposes are device_objects and threads. We need to use
3424  * the object manager to do reference counting on device_objects,
3425  * and for threads, you can only get a pointer to a thread's
3426  * dispatch header by using ObReferenceObjectByHandle() on the
3427  * handle returned by PsCreateSystemThread().
3428  */
3429
3430 static ndis_status
3431 ObReferenceObjectByHandle(ndis_handle handle, uint32_t reqaccess, void *otype,
3432         uint8_t accessmode, void **object, void **handleinfo)
3433 {
3434         nt_objref               *nr;
3435
3436         nr = malloc(sizeof(nt_objref), M_DEVBUF, M_NOWAIT|M_ZERO);
3437         if (nr == NULL)
3438                 return (STATUS_INSUFFICIENT_RESOURCES);
3439
3440         InitializeListHead((&nr->no_dh.dh_waitlisthead));
3441         nr->no_obj = handle;
3442         nr->no_dh.dh_type = DISP_TYPE_THREAD;
3443         nr->no_dh.dh_sigstate = 0;
3444         nr->no_dh.dh_size = (uint8_t)(sizeof(struct thread) /
3445             sizeof(uint32_t));
3446         TAILQ_INSERT_TAIL(&ntoskrnl_reflist, nr, link);
3447         *object = nr;
3448
3449         return (STATUS_SUCCESS);
3450 }
3451
3452 static void
3453 ObfDereferenceObject(object)
3454         void                    *object;
3455 {
3456         nt_objref               *nr;
3457
3458         nr = object;
3459         TAILQ_REMOVE(&ntoskrnl_reflist, nr, link);
3460         free(nr, M_DEVBUF);
3461 }
3462
3463 static uint32_t
3464 ZwClose(handle)
3465         ndis_handle             handle;
3466 {
3467         return (STATUS_SUCCESS);
3468 }
3469
3470 static uint32_t
3471 WmiQueryTraceInformation(traceclass, traceinfo, infolen, reqlen, buf)
3472         uint32_t                traceclass;
3473         void                    *traceinfo;
3474         uint32_t                infolen;
3475         uint32_t                reqlen;
3476         void                    *buf;
3477 {
3478         return (STATUS_NOT_FOUND);
3479 }
3480
3481 static uint32_t
3482 WmiTraceMessage(uint64_t loghandle, uint32_t messageflags,
3483         void *guid, uint16_t messagenum, ...)
3484 {
3485         return (STATUS_SUCCESS);
3486 }
3487
3488 static uint32_t
3489 IoWMIRegistrationControl(dobj, action)
3490         device_object           *dobj;
3491         uint32_t                action;
3492 {
3493         return (STATUS_SUCCESS);
3494 }
3495
3496 /*
3497  * This is here just in case the thread returns without calling
3498  * PsTerminateSystemThread().
3499  */
3500 static void
3501 ntoskrnl_thrfunc(arg)
3502         void                    *arg;
3503 {
3504         thread_context          *thrctx;
3505         uint32_t (*tfunc)(void *);
3506         void                    *tctx;
3507         uint32_t                rval;
3508
3509         thrctx = arg;
3510         tfunc = thrctx->tc_thrfunc;
3511         tctx = thrctx->tc_thrctx;
3512         free(thrctx, M_TEMP);
3513
3514         rval = MSCALL1(tfunc, tctx);
3515
3516         PsTerminateSystemThread(rval);
3517         return; /* notreached */
3518 }
3519
3520 static ndis_status
3521 PsCreateSystemThread(handle, reqaccess, objattrs, phandle,
3522         clientid, thrfunc, thrctx)
3523         ndis_handle             *handle;
3524         uint32_t                reqaccess;
3525         void                    *objattrs;
3526         ndis_handle             phandle;
3527         void                    *clientid;
3528         void                    *thrfunc;
3529         void                    *thrctx;
3530 {
3531         int                     error;
3532         thread_context          *tc;
3533         struct proc             *p;
3534
3535         tc = malloc(sizeof(thread_context), M_TEMP, M_NOWAIT);
3536         if (tc == NULL)
3537                 return (STATUS_INSUFFICIENT_RESOURCES);
3538
3539         tc->tc_thrctx = thrctx;
3540         tc->tc_thrfunc = thrfunc;
3541
3542         error = kproc_create(ntoskrnl_thrfunc, tc, &p,
3543             RFHIGHPID, NDIS_KSTACK_PAGES, "Windows Kthread %d", ntoskrnl_kth);
3544
3545         if (error) {
3546                 free(tc, M_TEMP);
3547                 return (STATUS_INSUFFICIENT_RESOURCES);
3548         }
3549
3550         *handle = p;
3551         ntoskrnl_kth++;
3552
3553         return (STATUS_SUCCESS);
3554 }
3555
3556 /*
3557  * In Windows, the exit of a thread is an event that you're allowed
3558  * to wait on, assuming you've obtained a reference to the thread using
3559  * ObReferenceObjectByHandle(). Unfortunately, the only way we can
3560  * simulate this behavior is to register each thread we create in a
3561  * reference list, and if someone holds a reference to us, we poke
3562  * them.
3563  */
3564 static ndis_status
3565 PsTerminateSystemThread(status)
3566         ndis_status             status;
3567 {
3568         struct nt_objref        *nr;
3569
3570         mtx_lock(&ntoskrnl_dispatchlock);
3571         TAILQ_FOREACH(nr, &ntoskrnl_reflist, link) {
3572                 if (nr->no_obj != curthread->td_proc)
3573                         continue;
3574                 nr->no_dh.dh_sigstate = 1;
3575                 ntoskrnl_waittest(&nr->no_dh, IO_NO_INCREMENT);
3576                 break;
3577         }
3578         mtx_unlock(&ntoskrnl_dispatchlock);
3579
3580         ntoskrnl_kth--;
3581
3582         kproc_exit(0);
3583         return (0);     /* notreached */
3584 }
3585
3586 static uint32_t
3587 DbgPrint(char *fmt, ...)
3588 {
3589         va_list                 ap;
3590
3591         if (bootverbose) {
3592                 va_start(ap, fmt);
3593                 vprintf(fmt, ap);
3594                 va_end(ap);
3595         }
3596
3597         return (STATUS_SUCCESS);
3598 }
3599
3600 static void
3601 DbgBreakPoint(void)
3602 {
3603
3604         kdb_enter(KDB_WHY_NDIS, "DbgBreakPoint(): breakpoint");
3605 }
3606
3607 static void
3608 KeBugCheckEx(code, param1, param2, param3, param4)
3609     uint32_t                    code;
3610     u_long                      param1;
3611     u_long                      param2;
3612     u_long                      param3;
3613     u_long                      param4;
3614 {
3615         panic("KeBugCheckEx: STOP 0x%X", code);
3616 }
3617
3618 static void
3619 ntoskrnl_timercall(arg)
3620         void                    *arg;
3621 {
3622         ktimer                  *timer;
3623         struct timeval          tv;
3624         kdpc                    *dpc;
3625
3626         mtx_lock(&ntoskrnl_dispatchlock);
3627
3628         timer = arg;
3629
3630 #ifdef NTOSKRNL_DEBUG_TIMERS
3631         ntoskrnl_timer_fires++;
3632 #endif
3633         ntoskrnl_remove_timer(timer);
3634
3635         /*
3636          * This should never happen, but complain
3637          * if it does.
3638          */
3639
3640         if (timer->k_header.dh_inserted == FALSE) {
3641                 mtx_unlock(&ntoskrnl_dispatchlock);
3642                 printf("NTOS: timer %p fired even though "
3643                     "it was canceled\n", timer);
3644                 return;
3645         }
3646
3647         /* Mark the timer as no longer being on the timer queue. */
3648
3649         timer->k_header.dh_inserted = FALSE;
3650
3651         /* Now signal the object and satisfy any waits on it. */
3652
3653         timer->k_header.dh_sigstate = 1;
3654         ntoskrnl_waittest(&timer->k_header, IO_NO_INCREMENT);
3655
3656         /*
3657          * If this is a periodic timer, re-arm it
3658          * so it will fire again. We do this before
3659          * calling any deferred procedure calls because
3660          * it's possible the DPC might cancel the timer,
3661          * in which case it would be wrong for us to
3662          * re-arm it again afterwards.
3663          */
3664
3665         if (timer->k_period) {
3666                 tv.tv_sec = 0;
3667                 tv.tv_usec = timer->k_period * 1000;
3668                 timer->k_header.dh_inserted = TRUE;
3669                 ntoskrnl_insert_timer(timer, tvtohz(&tv));
3670 #ifdef NTOSKRNL_DEBUG_TIMERS
3671                 ntoskrnl_timer_reloads++;
3672 #endif
3673         }
3674
3675         dpc = timer->k_dpc;
3676
3677         mtx_unlock(&ntoskrnl_dispatchlock);
3678
3679         /* If there's a DPC associated with the timer, queue it up. */
3680
3681         if (dpc != NULL)
3682                 KeInsertQueueDpc(dpc, NULL, NULL);
3683 }
3684
3685 #ifdef NTOSKRNL_DEBUG_TIMERS
3686 static int
3687 sysctl_show_timers(SYSCTL_HANDLER_ARGS)
3688 {
3689         int                     ret;
3690
3691         ret = 0;
3692         ntoskrnl_show_timers();
3693         return (sysctl_handle_int(oidp, &ret, 0, req));
3694 }
3695
3696 static void
3697 ntoskrnl_show_timers()
3698 {
3699         int                     i = 0;
3700         list_entry              *l;
3701
3702         mtx_lock_spin(&ntoskrnl_calllock);
3703         l = ntoskrnl_calllist.nle_flink;
3704         while(l != &ntoskrnl_calllist) {
3705                 i++;
3706                 l = l->nle_flink;
3707         }
3708         mtx_unlock_spin(&ntoskrnl_calllock);
3709
3710         printf("\n");
3711         printf("%d timers available (out of %d)\n", i, NTOSKRNL_TIMEOUTS);
3712         printf("timer sets: %qu\n", ntoskrnl_timer_sets);
3713         printf("timer reloads: %qu\n", ntoskrnl_timer_reloads);
3714         printf("timer cancels: %qu\n", ntoskrnl_timer_cancels);
3715         printf("timer fires: %qu\n", ntoskrnl_timer_fires);
3716         printf("\n");
3717 }
3718 #endif
3719
3720 /*
3721  * Must be called with dispatcher lock held.
3722  */
3723
3724 static void
3725 ntoskrnl_insert_timer(timer, ticks)
3726         ktimer                  *timer;
3727         int                     ticks;
3728 {
3729         callout_entry           *e;
3730         list_entry              *l;
3731         struct callout          *c;
3732
3733         /*
3734          * Try and allocate a timer.
3735          */
3736         mtx_lock_spin(&ntoskrnl_calllock);
3737         if (IsListEmpty(&ntoskrnl_calllist)) {
3738                 mtx_unlock_spin(&ntoskrnl_calllock);
3739 #ifdef NTOSKRNL_DEBUG_TIMERS
3740                 ntoskrnl_show_timers();
3741 #endif
3742                 panic("out of timers!");
3743         }
3744         l = RemoveHeadList(&ntoskrnl_calllist);
3745         mtx_unlock_spin(&ntoskrnl_calllock);
3746
3747         e = CONTAINING_RECORD(l, callout_entry, ce_list);
3748         c = &e->ce_callout;
3749
3750         timer->k_callout = c;
3751
3752         callout_init(c, CALLOUT_MPSAFE);
3753         callout_reset(c, ticks, ntoskrnl_timercall, timer);
3754 }
3755
3756 static void
3757 ntoskrnl_remove_timer(timer)
3758         ktimer                  *timer;
3759 {
3760         callout_entry           *e;
3761
3762         e = (callout_entry *)timer->k_callout;
3763         callout_stop(timer->k_callout);
3764
3765         mtx_lock_spin(&ntoskrnl_calllock);
3766         InsertHeadList((&ntoskrnl_calllist), (&e->ce_list));
3767         mtx_unlock_spin(&ntoskrnl_calllock);
3768 }
3769
3770 void
3771 KeInitializeTimer(timer)
3772         ktimer                  *timer;
3773 {
3774         if (timer == NULL)
3775                 return;
3776
3777         KeInitializeTimerEx(timer,  EVENT_TYPE_NOTIFY);
3778 }
3779
3780 void
3781 KeInitializeTimerEx(timer, type)
3782         ktimer                  *timer;
3783         uint32_t                type;
3784 {
3785         if (timer == NULL)
3786                 return;
3787
3788         bzero((char *)timer, sizeof(ktimer));
3789         InitializeListHead((&timer->k_header.dh_waitlisthead));
3790         timer->k_header.dh_sigstate = FALSE;
3791         timer->k_header.dh_inserted = FALSE;
3792         if (type == EVENT_TYPE_NOTIFY)
3793                 timer->k_header.dh_type = DISP_TYPE_NOTIFICATION_TIMER;
3794         else
3795                 timer->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_TIMER;
3796         timer->k_header.dh_size = sizeof(ktimer) / sizeof(uint32_t);
3797 }
3798
3799 /*
3800  * DPC subsystem. A Windows Defered Procedure Call has the following
3801  * properties:
3802  * - It runs at DISPATCH_LEVEL.
3803  * - It can have one of 3 importance values that control when it
3804  *   runs relative to other DPCs in the queue.
3805  * - On SMP systems, it can be set to run on a specific processor.
3806  * In order to satisfy the last property, we create a DPC thread for
3807  * each CPU in the system and bind it to that CPU. Each thread
3808  * maintains three queues with different importance levels, which
3809  * will be processed in order from lowest to highest.
3810  *
3811  * In Windows, interrupt handlers run as DPCs. (Not to be confused
3812  * with ISRs, which run in interrupt context and can preempt DPCs.)
3813  * ISRs are given the highest importance so that they'll take
3814  * precedence over timers and other things.
3815  */
3816
3817 static void
3818 ntoskrnl_dpc_thread(arg)
3819         void                    *arg;
3820 {
3821         kdpc_queue              *kq;
3822         kdpc                    *d;
3823         list_entry              *l;
3824         uint8_t                 irql;
3825
3826         kq = arg;
3827
3828         InitializeListHead(&kq->kq_disp);
3829         kq->kq_td = curthread;
3830         kq->kq_exit = 0;
3831         kq->kq_running = FALSE;
3832         KeInitializeSpinLock(&kq->kq_lock);
3833         KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE);
3834         KeInitializeEvent(&kq->kq_done, EVENT_TYPE_SYNC, FALSE);
3835
3836         /*
3837          * Elevate our priority. DPCs are used to run interrupt
3838          * handlers, and they should trigger as soon as possible
3839          * once scheduled by an ISR.
3840          */
3841
3842         thread_lock(curthread);
3843 #ifdef NTOSKRNL_MULTIPLE_DPCS
3844         sched_bind(curthread, kq->kq_cpu);
3845 #endif
3846         sched_prio(curthread, PRI_MIN_KERN);
3847         thread_unlock(curthread);
3848
3849         while (1) {
3850                 KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL);
3851
3852                 KeAcquireSpinLock(&kq->kq_lock, &irql);
3853
3854                 if (kq->kq_exit) {
3855                         kq->kq_exit = 0;
3856                         KeReleaseSpinLock(&kq->kq_lock, irql);
3857                         break;
3858                 }
3859
3860                 kq->kq_running = TRUE;
3861
3862                 while (!IsListEmpty(&kq->kq_disp)) {
3863                         l = RemoveHeadList((&kq->kq_disp));
3864                         d = CONTAINING_RECORD(l, kdpc, k_dpclistentry);
3865                         InitializeListHead((&d->k_dpclistentry));
3866                         KeReleaseSpinLockFromDpcLevel(&kq->kq_lock);
3867                         MSCALL4(d->k_deferedfunc, d, d->k_deferredctx,
3868                             d->k_sysarg1, d->k_sysarg2);
3869                         KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
3870                 }
3871
3872                 kq->kq_running = FALSE;
3873
3874                 KeReleaseSpinLock(&kq->kq_lock, irql);
3875
3876                 KeSetEvent(&kq->kq_done, IO_NO_INCREMENT, FALSE);
3877         }
3878
3879         kproc_exit(0);
3880         return; /* notreached */
3881 }
3882
3883 static void
3884 ntoskrnl_destroy_dpc_threads(void)
3885 {
3886         kdpc_queue              *kq;
3887         kdpc                    dpc;
3888         int                     i;
3889
3890         kq = kq_queues;
3891 #ifdef NTOSKRNL_MULTIPLE_DPCS
3892         for (i = 0; i < mp_ncpus; i++) {
3893 #else
3894         for (i = 0; i < 1; i++) {
3895 #endif
3896                 kq += i;
3897
3898                 kq->kq_exit = 1;
3899                 KeInitializeDpc(&dpc, NULL, NULL);
3900                 KeSetTargetProcessorDpc(&dpc, i);
3901                 KeInsertQueueDpc(&dpc, NULL, NULL);
3902                 while (kq->kq_exit)
3903                         tsleep(kq->kq_td->td_proc, PWAIT, "dpcw", hz/10);
3904         }
3905 }
3906
3907 static uint8_t
3908 ntoskrnl_insert_dpc(head, dpc)
3909         list_entry              *head;
3910         kdpc                    *dpc;
3911 {
3912         list_entry              *l;
3913         kdpc                    *d;
3914
3915         l = head->nle_flink;
3916         while (l != head) {
3917                 d = CONTAINING_RECORD(l, kdpc, k_dpclistentry);
3918                 if (d == dpc)
3919                         return (FALSE);
3920                 l = l->nle_flink;
3921         }
3922
3923         if (dpc->k_importance == KDPC_IMPORTANCE_LOW)
3924                 InsertTailList((head), (&dpc->k_dpclistentry));
3925         else
3926                 InsertHeadList((head), (&dpc->k_dpclistentry));
3927
3928         return (TRUE);
3929 }
3930
3931 void
3932 KeInitializeDpc(dpc, dpcfunc, dpcctx)
3933         kdpc                    *dpc;
3934         void                    *dpcfunc;
3935         void                    *dpcctx;
3936 {
3937
3938         if (dpc == NULL)
3939                 return;
3940
3941         dpc->k_deferedfunc = dpcfunc;
3942         dpc->k_deferredctx = dpcctx;
3943         dpc->k_num = KDPC_CPU_DEFAULT;
3944         dpc->k_importance = KDPC_IMPORTANCE_MEDIUM;
3945         InitializeListHead((&dpc->k_dpclistentry));
3946 }
3947
3948 uint8_t
3949 KeInsertQueueDpc(dpc, sysarg1, sysarg2)
3950         kdpc                    *dpc;
3951         void                    *sysarg1;
3952         void                    *sysarg2;
3953 {
3954         kdpc_queue              *kq;
3955         uint8_t                 r;
3956         uint8_t                 irql;
3957
3958         if (dpc == NULL)
3959                 return (FALSE);
3960
3961         kq = kq_queues;
3962
3963 #ifdef NTOSKRNL_MULTIPLE_DPCS
3964         KeRaiseIrql(DISPATCH_LEVEL, &irql);
3965
3966         /*
3967          * By default, the DPC is queued to run on the same CPU
3968          * that scheduled it.
3969          */
3970
3971         if (dpc->k_num == KDPC_CPU_DEFAULT)
3972                 kq += curthread->td_oncpu;
3973         else
3974                 kq += dpc->k_num;
3975         KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
3976 #else
3977         KeAcquireSpinLock(&kq->kq_lock, &irql);
3978 #endif
3979
3980         r = ntoskrnl_insert_dpc(&kq->kq_disp, dpc);
3981         if (r == TRUE) {
3982                 dpc->k_sysarg1 = sysarg1;
3983                 dpc->k_sysarg2 = sysarg2;
3984         }
3985         KeReleaseSpinLock(&kq->kq_lock, irql);
3986
3987         if (r == FALSE)
3988                 return (r);
3989
3990         KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
3991
3992         return (r);
3993 }
3994
3995 uint8_t
3996 KeRemoveQueueDpc(dpc)
3997         kdpc                    *dpc;
3998 {
3999         kdpc_queue              *kq;
4000         uint8_t                 irql;
4001
4002         if (dpc == NULL)
4003                 return (FALSE);
4004
4005 #ifdef NTOSKRNL_MULTIPLE_DPCS
4006         KeRaiseIrql(DISPATCH_LEVEL, &irql);
4007
4008         kq = kq_queues + dpc->k_num;
4009
4010         KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
4011 #else
4012         kq = kq_queues;
4013         KeAcquireSpinLock(&kq->kq_lock, &irql);
4014 #endif
4015
4016         if (dpc->k_dpclistentry.nle_flink == &dpc->k_dpclistentry) {
4017                 KeReleaseSpinLockFromDpcLevel(&kq->kq_lock);
4018                 KeLowerIrql(irql);
4019                 return (FALSE);
4020         }
4021
4022         RemoveEntryList((&dpc->k_dpclistentry));
4023         InitializeListHead((&dpc->k_dpclistentry));
4024
4025         KeReleaseSpinLock(&kq->kq_lock, irql);
4026
4027         return (TRUE);
4028 }
4029
4030 void
4031 KeSetImportanceDpc(dpc, imp)
4032         kdpc                    *dpc;
4033         uint32_t                imp;
4034 {
4035         if (imp != KDPC_IMPORTANCE_LOW &&
4036             imp != KDPC_IMPORTANCE_MEDIUM &&
4037             imp != KDPC_IMPORTANCE_HIGH)
4038                 return;
4039
4040         dpc->k_importance = (uint8_t)imp;
4041 }
4042
4043 void
4044 KeSetTargetProcessorDpc(kdpc *dpc, uint8_t cpu)
4045 {
4046         if (cpu > mp_ncpus)
4047                 return;
4048
4049         dpc->k_num = cpu;
4050 }
4051
4052 void
4053 KeFlushQueuedDpcs(void)
4054 {
4055         kdpc_queue              *kq;
4056         int                     i;
4057
4058         /*
4059          * Poke each DPC queue and wait
4060          * for them to drain.
4061          */
4062
4063 #ifdef NTOSKRNL_MULTIPLE_DPCS
4064         for (i = 0; i < mp_ncpus; i++) {
4065 #else
4066         for (i = 0; i < 1; i++) {
4067 #endif
4068                 kq = kq_queues + i;
4069                 KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
4070                 KeWaitForSingleObject(&kq->kq_done, 0, 0, TRUE, NULL);
4071         }
4072 }
4073
4074 uint32_t
4075 KeGetCurrentProcessorNumber(void)
4076 {
4077         return ((uint32_t)curthread->td_oncpu);
4078 }
4079
4080 uint8_t
4081 KeSetTimerEx(timer, duetime, period, dpc)
4082         ktimer                  *timer;
4083         int64_t                 duetime;
4084         uint32_t                period;
4085         kdpc                    *dpc;
4086 {
4087         struct timeval          tv;
4088         uint64_t                curtime;
4089         uint8_t                 pending;
4090
4091         if (timer == NULL)
4092                 return (FALSE);
4093
4094         mtx_lock(&ntoskrnl_dispatchlock);
4095
4096         if (timer->k_header.dh_inserted == TRUE) {
4097                 ntoskrnl_remove_timer(timer);
4098 #ifdef NTOSKRNL_DEBUG_TIMERS
4099                 ntoskrnl_timer_cancels++;
4100 #endif
4101                 timer->k_header.dh_inserted = FALSE;
4102                 pending = TRUE;
4103         } else
4104                 pending = FALSE;
4105
4106         timer->k_duetime = duetime;
4107         timer->k_period = period;
4108         timer->k_header.dh_sigstate = FALSE;
4109         timer->k_dpc = dpc;
4110
4111         if (duetime < 0) {
4112                 tv.tv_sec = - (duetime) / 10000000;
4113                 tv.tv_usec = (- (duetime) / 10) -
4114                     (tv.tv_sec * 1000000);
4115         } else {
4116                 ntoskrnl_time(&curtime);
4117                 if (duetime < curtime)
4118                         tv.tv_sec = tv.tv_usec = 0;
4119                 else {
4120                         tv.tv_sec = ((duetime) - curtime) / 10000000;
4121                         tv.tv_usec = ((duetime) - curtime) / 10 -
4122                             (tv.tv_sec * 1000000);
4123                 }
4124         }
4125
4126         timer->k_header.dh_inserted = TRUE;
4127         ntoskrnl_insert_timer(timer, tvtohz(&tv));
4128 #ifdef NTOSKRNL_DEBUG_TIMERS
4129         ntoskrnl_timer_sets++;
4130 #endif
4131
4132         mtx_unlock(&ntoskrnl_dispatchlock);
4133
4134         return (pending);
4135 }
4136
4137 uint8_t
4138 KeSetTimer(timer, duetime, dpc)
4139         ktimer                  *timer;
4140         int64_t                 duetime;
4141         kdpc                    *dpc;
4142 {
4143         return (KeSetTimerEx(timer, duetime, 0, dpc));
4144 }
4145
4146 /*
4147  * The Windows DDK documentation seems to say that cancelling
4148  * a timer that has a DPC will result in the DPC also being
4149  * cancelled, but this isn't really the case.
4150  */
4151
4152 uint8_t
4153 KeCancelTimer(timer)
4154         ktimer                  *timer;
4155 {
4156         uint8_t                 pending;
4157
4158         if (timer == NULL)
4159                 return (FALSE);
4160
4161         mtx_lock(&ntoskrnl_dispatchlock);
4162
4163         pending = timer->k_header.dh_inserted;
4164
4165         if (timer->k_header.dh_inserted == TRUE) {
4166                 timer->k_header.dh_inserted = FALSE;
4167                 ntoskrnl_remove_timer(timer);
4168 #ifdef NTOSKRNL_DEBUG_TIMERS
4169                 ntoskrnl_timer_cancels++;
4170 #endif
4171         }
4172
4173         mtx_unlock(&ntoskrnl_dispatchlock);
4174
4175         return (pending);
4176 }
4177
4178 uint8_t
4179 KeReadStateTimer(timer)
4180         ktimer                  *timer;
4181 {
4182         return (timer->k_header.dh_sigstate);
4183 }
4184
4185 static int32_t
4186 KeDelayExecutionThread(uint8_t wait_mode, uint8_t alertable, int64_t *interval)
4187 {
4188         ktimer                  timer;
4189
4190         if (wait_mode != 0)
4191                 panic("invalid wait_mode %d", wait_mode);
4192
4193         KeInitializeTimer(&timer);
4194         KeSetTimer(&timer, *interval, NULL);
4195         KeWaitForSingleObject(&timer, 0, 0, alertable, NULL);
4196
4197         return STATUS_SUCCESS;
4198 }
4199
4200 static uint64_t
4201 KeQueryInterruptTime(void)
4202 {
4203         int ticks;
4204         struct timeval tv;
4205
4206         getmicrouptime(&tv);
4207
4208         ticks = tvtohz(&tv);
4209
4210         return ticks * ((10000000 + hz - 1) / hz);
4211 }
4212
4213 static struct thread *
4214 KeGetCurrentThread(void)
4215 {
4216
4217         return curthread;
4218 }
4219
4220 static int32_t
4221 KeSetPriorityThread(td, pri)
4222         struct thread   *td;
4223         int32_t         pri;
4224 {
4225         int32_t old;
4226
4227         if (td == NULL)
4228                 return LOW_REALTIME_PRIORITY;
4229
4230         if (td->td_priority <= PRI_MIN_KERN)
4231                 old = HIGH_PRIORITY;
4232         else if (td->td_priority >= PRI_MAX_KERN)
4233                 old = LOW_PRIORITY;
4234         else
4235                 old = LOW_REALTIME_PRIORITY;
4236
4237         thread_lock(td);
4238         if (pri == HIGH_PRIORITY)
4239                 sched_prio(td, PRI_MIN_KERN);
4240         if (pri == LOW_REALTIME_PRIORITY)
4241                 sched_prio(td, PRI_MIN_KERN + (PRI_MAX_KERN - PRI_MIN_KERN) / 2);
4242         if (pri == LOW_PRIORITY)
4243                 sched_prio(td, PRI_MAX_KERN);
4244         thread_unlock(td);
4245
4246         return old;
4247 }
4248
4249 static void
4250 dummy()
4251 {
4252         printf("ntoskrnl dummy called...\n");
4253 }
4254
4255
4256 image_patch_table ntoskrnl_functbl[] = {
4257         IMPORT_SFUNC(RtlZeroMemory, 2),
4258         IMPORT_SFUNC(RtlSecureZeroMemory, 2),
4259         IMPORT_SFUNC(RtlFillMemory, 3),
4260         IMPORT_SFUNC(RtlMoveMemory, 3),
4261         IMPORT_SFUNC(RtlCharToInteger, 3),
4262         IMPORT_SFUNC(RtlCopyMemory, 3),
4263         IMPORT_SFUNC(RtlCopyString, 2),
4264         IMPORT_SFUNC(RtlCompareMemory, 3),
4265         IMPORT_SFUNC(RtlEqualUnicodeString, 3),
4266         IMPORT_SFUNC(RtlCopyUnicodeString, 2),
4267         IMPORT_SFUNC(RtlUnicodeStringToAnsiString, 3),
4268         IMPORT_SFUNC(RtlAnsiStringToUnicodeString, 3),
4269         IMPORT_SFUNC(RtlInitAnsiString, 2),
4270         IMPORT_SFUNC_MAP(RtlInitString, RtlInitAnsiString, 2),
4271         IMPORT_SFUNC(RtlInitUnicodeString, 2),
4272         IMPORT_SFUNC(RtlFreeAnsiString, 1),
4273         IMPORT_SFUNC(RtlFreeUnicodeString, 1),
4274         IMPORT_SFUNC(RtlUnicodeStringToInteger, 3),
4275         IMPORT_CFUNC(sprintf, 0),
4276         IMPORT_CFUNC(vsprintf, 0),
4277         IMPORT_CFUNC_MAP(_snprintf, snprintf, 0),
4278         IMPORT_CFUNC_MAP(_vsnprintf, vsnprintf, 0),
4279         IMPORT_CFUNC(DbgPrint, 0),
4280         IMPORT_SFUNC(DbgBreakPoint, 0),
4281         IMPORT_SFUNC(KeBugCheckEx, 5),
4282         IMPORT_CFUNC(strncmp, 0),
4283         IMPORT_CFUNC(strcmp, 0),
4284         IMPORT_CFUNC_MAP(stricmp, strcasecmp, 0),
4285         IMPORT_CFUNC(strncpy, 0),
4286         IMPORT_CFUNC(strcpy, 0),
4287         IMPORT_CFUNC(strlen, 0),
4288         IMPORT_CFUNC_MAP(toupper, ntoskrnl_toupper, 0),
4289         IMPORT_CFUNC_MAP(tolower, ntoskrnl_tolower, 0),
4290         IMPORT_CFUNC_MAP(strstr, ntoskrnl_strstr, 0),
4291         IMPORT_CFUNC_MAP(strncat, ntoskrnl_strncat, 0),
4292         IMPORT_CFUNC_MAP(strchr, index, 0),
4293         IMPORT_CFUNC_MAP(strrchr, rindex, 0),
4294         IMPORT_CFUNC(memcpy, 0),
4295         IMPORT_CFUNC_MAP(memmove, ntoskrnl_memmove, 0),
4296         IMPORT_CFUNC_MAP(memset, ntoskrnl_memset, 0),
4297         IMPORT_CFUNC_MAP(memchr, ntoskrnl_memchr, 0),
4298         IMPORT_SFUNC(IoAllocateDriverObjectExtension, 4),
4299         IMPORT_SFUNC(IoGetDriverObjectExtension, 2),
4300         IMPORT_FFUNC(IofCallDriver, 2),
4301         IMPORT_FFUNC(IofCompleteRequest, 2),
4302         IMPORT_SFUNC(IoAcquireCancelSpinLock, 1),
4303         IMPORT_SFUNC(IoReleaseCancelSpinLock, 1),
4304         IMPORT_SFUNC(IoCancelIrp, 1),
4305         IMPORT_SFUNC(IoConnectInterrupt, 11),
4306         IMPORT_SFUNC(IoDisconnectInterrupt, 1),
4307         IMPORT_SFUNC(IoCreateDevice, 7),
4308         IMPORT_SFUNC(IoDeleteDevice, 1),
4309         IMPORT_SFUNC(IoGetAttachedDevice, 1),
4310         IMPORT_SFUNC(IoAttachDeviceToDeviceStack, 2),
4311         IMPORT_SFUNC(IoDetachDevice, 1),
4312         IMPORT_SFUNC(IoBuildSynchronousFsdRequest, 7),
4313         IMPORT_SFUNC(IoBuildAsynchronousFsdRequest, 6),
4314         IMPORT_SFUNC(IoBuildDeviceIoControlRequest, 9),
4315         IMPORT_SFUNC(IoAllocateIrp, 2),
4316         IMPORT_SFUNC(IoReuseIrp, 2),
4317         IMPORT_SFUNC(IoMakeAssociatedIrp, 2),
4318         IMPORT_SFUNC(IoFreeIrp, 1),
4319         IMPORT_SFUNC(IoInitializeIrp, 3),
4320         IMPORT_SFUNC(KeAcquireInterruptSpinLock, 1),
4321         IMPORT_SFUNC(KeReleaseInterruptSpinLock, 2),
4322         IMPORT_SFUNC(KeSynchronizeExecution, 3),
4323         IMPORT_SFUNC(KeWaitForSingleObject, 5),
4324         IMPORT_SFUNC(KeWaitForMultipleObjects, 8),
4325         IMPORT_SFUNC(_allmul, 4),
4326         IMPORT_SFUNC(_alldiv, 4),
4327         IMPORT_SFUNC(_allrem, 4),
4328         IMPORT_RFUNC(_allshr, 0),
4329         IMPORT_RFUNC(_allshl, 0),
4330         IMPORT_SFUNC(_aullmul, 4),
4331         IMPORT_SFUNC(_aulldiv, 4),
4332         IMPORT_SFUNC(_aullrem, 4),
4333         IMPORT_RFUNC(_aullshr, 0),
4334         IMPORT_RFUNC(_aullshl, 0),
4335         IMPORT_CFUNC(atoi, 0),
4336         IMPORT_CFUNC(atol, 0),
4337         IMPORT_CFUNC(rand, 0),
4338         IMPORT_CFUNC(srand, 0),
4339         IMPORT_SFUNC(WRITE_REGISTER_USHORT, 2),
4340         IMPORT_SFUNC(READ_REGISTER_USHORT, 1),
4341         IMPORT_SFUNC(WRITE_REGISTER_ULONG, 2),
4342         IMPORT_SFUNC(READ_REGISTER_ULONG, 1),
4343         IMPORT_SFUNC(READ_REGISTER_UCHAR, 1),
4344         IMPORT_SFUNC(WRITE_REGISTER_UCHAR, 2),
4345         IMPORT_SFUNC(ExInitializePagedLookasideList, 7),
4346         IMPORT_SFUNC(ExDeletePagedLookasideList, 1),
4347         IMPORT_SFUNC(ExInitializeNPagedLookasideList, 7),
4348         IMPORT_SFUNC(ExDeleteNPagedLookasideList, 1),
4349         IMPORT_FFUNC(InterlockedPopEntrySList, 1),
4350         IMPORT_FFUNC(InitializeSListHead, 1),
4351         IMPORT_FFUNC(InterlockedPushEntrySList, 2),
4352         IMPORT_SFUNC(ExQueryDepthSList, 1),
4353         IMPORT_FFUNC_MAP(ExpInterlockedPopEntrySList,
4354                 InterlockedPopEntrySList, 1),
4355         IMPORT_FFUNC_MAP(ExpInterlockedPushEntrySList,
4356                 InterlockedPushEntrySList, 2),
4357         IMPORT_FFUNC(ExInterlockedPopEntrySList, 2),
4358         IMPORT_FFUNC(ExInterlockedPushEntrySList, 3),
4359         IMPORT_SFUNC(ExAllocatePoolWithTag, 3),
4360         IMPORT_SFUNC(ExFreePoolWithTag, 2),
4361         IMPORT_SFUNC(ExFreePool, 1),
4362 #ifdef __i386__
4363         IMPORT_FFUNC(KefAcquireSpinLockAtDpcLevel, 1),
4364         IMPORT_FFUNC(KefReleaseSpinLockFromDpcLevel,1),
4365         IMPORT_FFUNC(KeAcquireSpinLockRaiseToDpc, 1),
4366 #else
4367         /*
4368          * For AMD64, we can get away with just mapping
4369          * KeAcquireSpinLockRaiseToDpc() directly to KfAcquireSpinLock()
4370          * because the calling conventions end up being the same.
4371          * On i386, we have to be careful because KfAcquireSpinLock()
4372          * is _fastcall but KeAcquireSpinLockRaiseToDpc() isn't.
4373          */
4374         IMPORT_SFUNC(KeAcquireSpinLockAtDpcLevel, 1),
4375         IMPORT_SFUNC(KeReleaseSpinLockFromDpcLevel, 1),
4376         IMPORT_SFUNC_MAP(KeAcquireSpinLockRaiseToDpc, KfAcquireSpinLock, 1),
4377 #endif
4378         IMPORT_SFUNC_MAP(KeReleaseSpinLock, KfReleaseSpinLock, 1),
4379         IMPORT_FFUNC(InterlockedIncrement, 1),
4380         IMPORT_FFUNC(InterlockedDecrement, 1),
4381         IMPORT_FFUNC(InterlockedExchange, 2),
4382         IMPORT_FFUNC(ExInterlockedAddLargeStatistic, 2),
4383         IMPORT_SFUNC(IoAllocateMdl, 5),
4384         IMPORT_SFUNC(IoFreeMdl, 1),
4385         IMPORT_SFUNC(MmAllocateContiguousMemory, 2 + 1),
4386         IMPORT_SFUNC(MmAllocateContiguousMemorySpecifyCache, 5 + 3),
4387         IMPORT_SFUNC(MmFreeContiguousMemory, 1),
4388         IMPORT_SFUNC(MmFreeContiguousMemorySpecifyCache, 3),
4389         IMPORT_SFUNC(MmSizeOfMdl, 1),
4390         IMPORT_SFUNC(MmMapLockedPages, 2),
4391         IMPORT_SFUNC(MmMapLockedPagesSpecifyCache, 6),
4392         IMPORT_SFUNC(MmUnmapLockedPages, 2),
4393         IMPORT_SFUNC(MmBuildMdlForNonPagedPool, 1),
4394         IMPORT_SFUNC(MmGetPhysicalAddress, 1),
4395         IMPORT_SFUNC(MmGetSystemRoutineAddress, 1),
4396         IMPORT_SFUNC(MmIsAddressValid, 1),
4397         IMPORT_SFUNC(MmMapIoSpace, 3 + 1),
4398         IMPORT_SFUNC(MmUnmapIoSpace, 2),
4399         IMPORT_SFUNC(KeInitializeSpinLock, 1),
4400         IMPORT_SFUNC(IoIsWdmVersionAvailable, 2),
4401         IMPORT_SFUNC(IoOpenDeviceRegistryKey, 4),
4402         IMPORT_SFUNC(IoGetDeviceObjectPointer, 4),
4403         IMPORT_SFUNC(IoGetDeviceProperty, 5),
4404         IMPORT_SFUNC(IoAllocateWorkItem, 1),
4405         IMPORT_SFUNC(IoFreeWorkItem, 1),
4406         IMPORT_SFUNC(IoQueueWorkItem, 4),
4407         IMPORT_SFUNC(ExQueueWorkItem, 2),
4408         IMPORT_SFUNC(ntoskrnl_workitem, 2),
4409         IMPORT_SFUNC(KeInitializeMutex, 2),
4410         IMPORT_SFUNC(KeReleaseMutex, 2),
4411         IMPORT_SFUNC(KeReadStateMutex, 1),
4412         IMPORT_SFUNC(KeInitializeEvent, 3),
4413         IMPORT_SFUNC(KeSetEvent, 3),
4414         IMPORT_SFUNC(KeResetEvent, 1),
4415         IMPORT_SFUNC(KeClearEvent, 1),
4416         IMPORT_SFUNC(KeReadStateEvent, 1),
4417         IMPORT_SFUNC(KeInitializeTimer, 1),
4418         IMPORT_SFUNC(KeInitializeTimerEx, 2),
4419         IMPORT_SFUNC(KeSetTimer, 3),
4420         IMPORT_SFUNC(KeSetTimerEx, 4),
4421         IMPORT_SFUNC(KeCancelTimer, 1),
4422         IMPORT_SFUNC(KeReadStateTimer, 1),
4423         IMPORT_SFUNC(KeInitializeDpc, 3),
4424         IMPORT_SFUNC(KeInsertQueueDpc, 3),
4425         IMPORT_SFUNC(KeRemoveQueueDpc, 1),
4426         IMPORT_SFUNC(KeSetImportanceDpc, 2),
4427         IMPORT_SFUNC(KeSetTargetProcessorDpc, 2),
4428         IMPORT_SFUNC(KeFlushQueuedDpcs, 0),
4429         IMPORT_SFUNC(KeGetCurrentProcessorNumber, 1),
4430         IMPORT_SFUNC(ObReferenceObjectByHandle, 6),
4431         IMPORT_FFUNC(ObfDereferenceObject, 1),
4432         IMPORT_SFUNC(ZwClose, 1),
4433         IMPORT_SFUNC(PsCreateSystemThread, 7),
4434         IMPORT_SFUNC(PsTerminateSystemThread, 1),
4435         IMPORT_SFUNC(IoWMIRegistrationControl, 2),
4436         IMPORT_SFUNC(WmiQueryTraceInformation, 5),
4437         IMPORT_CFUNC(WmiTraceMessage, 0),
4438         IMPORT_SFUNC(KeQuerySystemTime, 1),
4439         IMPORT_CFUNC(KeTickCount, 0),
4440         IMPORT_SFUNC(KeDelayExecutionThread, 3),
4441         IMPORT_SFUNC(KeQueryInterruptTime, 0),
4442         IMPORT_SFUNC(KeGetCurrentThread, 0),
4443         IMPORT_SFUNC(KeSetPriorityThread, 2),
4444
4445         /*
4446          * This last entry is a catch-all for any function we haven't
4447          * implemented yet. The PE import list patching routine will
4448          * use it for any function that doesn't have an explicit match
4449          * in this table.
4450          */
4451
4452         { NULL, (FUNC)dummy, NULL, 0, WINDRV_WRAP_STDCALL },
4453
4454         /* End of list. */
4455
4456         { NULL, NULL, NULL }
4457 };