]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/dev/ath/ath_hal/ar5212/ar2316.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / dev / ath / ath_hal / ar5212 / ar2316.c
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27
28 #include "ah_eeprom_v3.h"
29
30 #define AH_5212_2316
31 #include "ar5212/ar5212.ini"
32
33 #define N(a)    (sizeof(a)/sizeof(a[0]))
34
35 typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2316;
36 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2316;
37 #define PWR_TABLE_SIZE_2316 PWR_TABLE_SIZE_2413
38
39 struct ar2316State {
40         RF_HAL_FUNCS    base;           /* public state, must be first */
41         uint16_t        pcdacTable[PWR_TABLE_SIZE_2316];
42
43         uint32_t        Bank1Data[N(ar5212Bank1_2316)];
44         uint32_t        Bank2Data[N(ar5212Bank2_2316)];
45         uint32_t        Bank3Data[N(ar5212Bank3_2316)];
46         uint32_t        Bank6Data[N(ar5212Bank6_2316)];
47         uint32_t        Bank7Data[N(ar5212Bank7_2316)];
48
49         /*
50          * Private state for reduced stack usage.
51          */
52         /* filled out Vpd table for all pdGains (chanL) */
53         uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
54                             [MAX_PWR_RANGE_IN_HALF_DB];
55         /* filled out Vpd table for all pdGains (chanR) */
56         uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
57                             [MAX_PWR_RANGE_IN_HALF_DB];
58         /* filled out Vpd table for all pdGains (interpolated) */
59         uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
60                             [MAX_PWR_RANGE_IN_HALF_DB];
61 };
62 #define AR2316(ah)      ((struct ar2316State *) AH5212(ah)->ah_rfHal)
63
64 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
65                 uint32_t numBits, uint32_t firstBit, uint32_t column);
66
67 static void
68 ar2316WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
69         int regWrites)
70 {
71         struct ath_hal_5212 *ahp = AH5212(ah);
72
73         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2316, modesIndex, regWrites);
74         HAL_INI_WRITE_ARRAY(ah, ar5212Common_2316, 1, regWrites);
75         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2316, freqIndex, regWrites);
76
77         /* For AP51 */
78         if (!ahp->ah_cwCalRequire) {
79                 OS_REG_WRITE(ah, 0xa358, (OS_REG_READ(ah, 0xa358) & ~0x2));
80         } else {
81                 ahp->ah_cwCalRequire = AH_FALSE;
82         }
83 }
84
85 /*
86  * Take the MHz channel value and set the Channel value
87  *
88  * ASSUMES: Writes enabled to analog bus
89  */
90 static HAL_BOOL
91 ar2316SetChannel(struct ath_hal *ah,  struct ieee80211_channel *chan)
92 {
93         uint16_t freq = ath_hal_gethwchannel(ah, chan);
94         uint32_t channelSel  = 0;
95         uint32_t bModeSynth  = 0;
96         uint32_t aModeRefSel = 0;
97         uint32_t reg32       = 0;
98
99         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
100
101         if (freq < 4800) {
102                 uint32_t txctl;
103
104                 if (((freq - 2192) % 5) == 0) {
105                         channelSel = ((freq - 672) * 2 - 3040)/10;
106                         bModeSynth = 0;
107                 } else if (((freq - 2224) % 5) == 0) {
108                         channelSel = ((freq - 704) * 2 - 3040) / 10;
109                         bModeSynth = 1;
110                 } else {
111                         HALDEBUG(ah, HAL_DEBUG_ANY,
112                             "%s: invalid channel %u MHz\n",
113                             __func__, freq);
114                         return AH_FALSE;
115                 }
116
117                 channelSel = (channelSel << 2) & 0xff;
118                 channelSel = ath_hal_reverseBits(channelSel, 8);
119
120                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
121                 if (freq == 2484) {
122                         /* Enable channel spreading for channel 14 */
123                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
124                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
125                 } else {
126                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
127                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
128                 }
129         } else if ((freq % 20) == 0 && freq >= 5120) {
130                 channelSel = ath_hal_reverseBits(
131                         ((freq - 4800) / 20 << 2), 8);
132                 aModeRefSel = ath_hal_reverseBits(3, 2);
133         } else if ((freq % 10) == 0) {
134                 channelSel = ath_hal_reverseBits(
135                         ((freq - 4800) / 10 << 1), 8);
136                 aModeRefSel = ath_hal_reverseBits(2, 2);
137         } else if ((freq % 5) == 0) {
138                 channelSel = ath_hal_reverseBits(
139                         (freq - 4800) / 5, 8);
140                 aModeRefSel = ath_hal_reverseBits(1, 2);
141         } else {
142                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
143                     __func__, freq);
144                 return AH_FALSE;
145         }
146
147         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
148                         (1 << 12) | 0x1;
149         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
150
151         reg32 >>= 8;
152         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
153
154         AH_PRIVATE(ah)->ah_curchan = chan;
155         return AH_TRUE;
156 }
157
158 /*
159  * Reads EEPROM header info from device structure and programs
160  * all rf registers
161  *
162  * REQUIRES: Access to the analog rf device
163  */
164 static HAL_BOOL
165 ar2316SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
166         uint16_t modesIndex, uint16_t *rfXpdGain)
167 {
168 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
169         int i;                                                              \
170         for (i = 0; i < N(ar5212Bank##_ix##_2316); i++)                     \
171                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\
172 } while (0)
173         struct ath_hal_5212 *ahp = AH5212(ah);
174         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
175         uint16_t ob2GHz = 0, db2GHz = 0;
176         struct ar2316State *priv = AR2316(ah);
177         int regWrites = 0;
178
179         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
180             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
181
182         HALASSERT(priv != AH_NULL);
183
184         /* Setup rf parameters */
185         if (IEEE80211_IS_CHAN_B(chan)) {
186                 ob2GHz = ee->ee_obFor24;
187                 db2GHz = ee->ee_dbFor24;
188         } else {
189                 ob2GHz = ee->ee_obFor24g;
190                 db2GHz = ee->ee_dbFor24g;
191         }
192
193         /* Bank 1 Write */
194         RF_BANK_SETUP(priv, 1, 1);
195
196         /* Bank 2 Write */
197         RF_BANK_SETUP(priv, 2, modesIndex);
198
199         /* Bank 3 Write */
200         RF_BANK_SETUP(priv, 3, modesIndex);
201
202         /* Bank 6 Write */
203         RF_BANK_SETUP(priv, 6, modesIndex);
204
205         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 178, 0);
206         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 175, 0);
207
208         /* Bank 7 Setup */
209         RF_BANK_SETUP(priv, 7, modesIndex);
210
211         /* Write Analog registers */
212         HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites);
213         HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites);
214         HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites);
215         HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites);
216         HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites);
217
218         /* Now that we have reprogrammed rfgain value, clear the flag. */
219         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
220
221         return AH_TRUE;
222 #undef  RF_BANK_SETUP
223 }
224
225 /*
226  * Return a reference to the requested RF Bank.
227  */
228 static uint32_t *
229 ar2316GetRfBank(struct ath_hal *ah, int bank)
230 {
231         struct ar2316State *priv = AR2316(ah);
232
233         HALASSERT(priv != AH_NULL);
234         switch (bank) {
235         case 1: return priv->Bank1Data;
236         case 2: return priv->Bank2Data;
237         case 3: return priv->Bank3Data;
238         case 6: return priv->Bank6Data;
239         case 7: return priv->Bank7Data;
240         }
241         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
242             __func__, bank);
243         return AH_NULL;
244 }
245
246 /*
247  * Return indices surrounding the value in sorted integer lists.
248  *
249  * NB: the input list is assumed to be sorted in ascending order
250  */
251 static void
252 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
253                           uint32_t *vlo, uint32_t *vhi)
254 {
255         int16_t target = v;
256         const int16_t *ep = lp+listSize;
257         const int16_t *tp;
258
259         /*
260          * Check first and last elements for out-of-bounds conditions.
261          */
262         if (target < lp[0]) {
263                 *vlo = *vhi = 0;
264                 return;
265         }
266         if (target >= ep[-1]) {
267                 *vlo = *vhi = listSize - 1;
268                 return;
269         }
270
271         /* look for value being near or between 2 values in list */
272         for (tp = lp; tp < ep; tp++) {
273                 /*
274                  * If value is close to the current value of the list
275                  * then target is not between values, it is one of the values
276                  */
277                 if (*tp == target) {
278                         *vlo = *vhi = tp - (const int16_t *) lp;
279                         return;
280                 }
281                 /*
282                  * Look for value being between current value and next value
283                  * if so return these 2 values
284                  */
285                 if (target < tp[1]) {
286                         *vlo = tp - (const int16_t *) lp;
287                         *vhi = *vlo + 1;
288                         return;
289                 }
290         }
291 }
292
293 /*
294  * Fill the Vpdlist for indices Pmax-Pmin
295  */
296 static HAL_BOOL
297 ar2316FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
298                    const int16_t *pwrList, const int16_t *VpdList,
299                    uint16_t numIntercepts, uint16_t retVpdList[][64])
300 {
301         uint16_t ii, jj, kk;
302         int16_t currPwr = (int16_t)(2*Pmin);
303         /* since Pmin is pwr*2 and pwrList is 4*pwr */
304         uint32_t  idxL, idxR;
305
306         ii = 0;
307         jj = 0;
308
309         if (numIntercepts < 2)
310                 return AH_FALSE;
311
312         while (ii <= (uint16_t)(Pmax - Pmin)) {
313                 GetLowerUpperIndex(currPwr, pwrList, numIntercepts, 
314                                          &(idxL), &(idxR));
315                 if (idxR < 1)
316                         idxR = 1;                       /* extrapolate below */
317                 if (idxL == (uint32_t)(numIntercepts - 1))
318                         idxL = numIntercepts - 2;       /* extrapolate above */
319                 if (pwrList[idxL] == pwrList[idxR])
320                         kk = VpdList[idxL];
321                 else
322                         kk = (uint16_t)
323                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
324                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
325                                  (pwrList[idxR] - pwrList[idxL]));
326                 retVpdList[pdGainIdx][ii] = kk;
327                 ii++;
328                 currPwr += 2;                           /* half dB steps */
329         }
330
331         return AH_TRUE;
332 }
333
334 /*
335  * Returns interpolated or the scaled up interpolated value
336  */
337 static int16_t
338 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
339         int16_t targetLeft, int16_t targetRight)
340 {
341         int16_t rv;
342
343         if (srcRight != srcLeft) {
344                 rv = ((target - srcLeft)*targetRight +
345                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
346         } else {
347                 rv = targetLeft;
348         }
349         return rv;
350 }
351
352 /*
353  * Uses the data points read from EEPROM to reconstruct the pdadc power table
354  * Called by ar2316SetPowerTable()
355  */
356 static int 
357 ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
358                 const RAW_DATA_STRUCT_2316 *pRawDataset,
359                 uint16_t pdGainOverlap_t2, 
360                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
361                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
362 {
363         struct ar2316State *priv = AR2316(ah);
364 #define VpdTable_L      priv->vpdTable_L
365 #define VpdTable_R      priv->vpdTable_R
366 #define VpdTable_I      priv->vpdTable_I
367         uint32_t ii, jj, kk;
368         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
369         uint32_t idxL, idxR;
370         uint32_t numPdGainsUsed = 0;
371         /* 
372          * If desired to support -ve power levels in future, just
373          * change pwr_I_0 to signed 5-bits.
374          */
375         int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
376         /* to accomodate -ve power levels later on. */
377         int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
378         /* to accomodate -ve power levels later on */
379         uint16_t numVpd = 0;
380         uint16_t Vpd_step;
381         int16_t tmpVal ; 
382         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
383
384         /* Get upper lower index */
385         GetLowerUpperIndex(channel, pRawDataset->pChannels,
386                                  pRawDataset->numChannels, &(idxL), &(idxR));
387
388         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
389                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
390                 /* work backwards 'cause highest pdGain for lowest power */
391                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
392                 if (numVpd > 0) {
393                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
394                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
395                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
396                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
397                         }
398                         Pmin_t2[numPdGainsUsed] = (int16_t)
399                                 (Pmin_t2[numPdGainsUsed] / 2);
400                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
401                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
402                                 Pmax_t2[numPdGainsUsed] = 
403                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
404                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
405                         ar2316FillVpdTable(
406                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
407                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
408                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
409                                            );
410                         ar2316FillVpdTable(
411                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
412                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
413                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
414                                            );
415                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
416                                 VpdTable_I[numPdGainsUsed][kk] = 
417                                         interpolate_signed(
418                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
419                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
420                         }
421                         /* fill VpdTable_I for this pdGain */
422                         numPdGainsUsed++;
423                 }
424                 /* if this pdGain is used */
425         }
426
427         *pMinCalPower = Pmin_t2[0];
428         kk = 0; /* index for the final table */
429         for (ii = 0; ii < numPdGainsUsed; ii++) {
430                 if (ii == (numPdGainsUsed - 1))
431                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
432                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
433                 else 
434                         pPdGainBoundaries[ii] = (uint16_t)
435                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
436                 if (pPdGainBoundaries[ii] > 63) {
437                         HALDEBUG(ah, HAL_DEBUG_ANY,
438                             "%s: clamp pPdGainBoundaries[%d] %d\n",
439                             __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
440                         pPdGainBoundaries[ii] = 63;
441                 }
442
443                 /* Find starting index for this pdGain */
444                 if (ii == 0) 
445                         ss = 0; /* for the first pdGain, start from index 0 */
446                 else 
447                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
448                                 pdGainOverlap_t2;
449                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
450                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
451                 /*
452                  *-ve ss indicates need to extrapolate data below for this pdGain
453                  */
454                 while (ss < 0) {
455                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
456                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
457                         ss++;
458                 }
459
460                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
461                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
462                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
463
464                 while (ss < (int16_t)maxIndex)
465                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
466
467                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
468                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
469                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
470                 /*
471                  * for last gain, pdGainBoundary == Pmax_t2, so will 
472                  * have to extrapolate
473                  */
474                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
475                         while(ss < (int16_t)tgtIndex) {
476                                 tmpVal = (uint16_t)
477                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
478                                          (ss-maxIndex)*Vpd_step);
479                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
480                                         127 : tmpVal;
481                                 ss++;
482                         }
483                 }                               /* extrapolated above */
484         }                                       /* for all pdGainUsed */
485
486         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
487                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
488                 ii++;
489         }
490         while (kk < 128) {
491                 pPDADCValues[kk] = pPDADCValues[kk-1];
492                 kk++;
493         }
494
495         return numPdGainsUsed;
496 #undef VpdTable_L
497 #undef VpdTable_R
498 #undef VpdTable_I
499 }
500
501 static HAL_BOOL
502 ar2316SetPowerTable(struct ath_hal *ah,
503         int16_t *minPower, int16_t *maxPower,
504         const struct ieee80211_channel *chan, 
505         uint16_t *rfXpdGain)
506 {
507         struct ath_hal_5212 *ahp = AH5212(ah);
508         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
509         const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
510         uint16_t pdGainOverlap_t2;
511         int16_t minCalPower2316_t2;
512         uint16_t *pdadcValues = ahp->ah_pcdacTable;
513         uint16_t gainBoundaries[4];
514         uint32_t reg32, regoffset;
515         int i, numPdGainsUsed;
516 #ifndef AH_USE_INIPDGAIN
517         uint32_t tpcrg1;
518 #endif
519
520         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
521             __func__, chan->ic_freq, chan->ic_flags);
522
523         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
524                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
525         else if (IEEE80211_IS_CHAN_B(chan))
526                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
527         else {
528                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
529                 return AH_FALSE;
530         }
531
532         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
533                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
534     
535         numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah,
536                 chan->channel, pRawDataset, pdGainOverlap_t2,
537                 &minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues);
538         HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
539
540 #ifdef AH_USE_INIPDGAIN
541         /*
542          * Use pd_gains curve from eeprom; Atheros always uses
543          * the default curve from the ini file but some vendors
544          * (e.g. Zcomax) want to override this curve and not
545          * honoring their settings results in tx power 5dBm low.
546          */
547         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
548                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
549 #else
550         tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
551         tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
552                   | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
553         switch (numPdGainsUsed) {
554         case 3:
555                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
556                 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
557                 /* fall thru... */
558         case 2:
559                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
560                 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
561                 /* fall thru... */
562         case 1:
563                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
564                 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
565                 break;
566         }
567 #ifdef AH_DEBUG
568         if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
569                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
570                     "pd_gains (default 0x%x, calculated 0x%x)\n",
571                     __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
572 #endif
573         OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
574 #endif
575
576         /*
577          * Note the pdadc table may not start at 0 dBm power, could be
578          * negative or greater than 0.  Need to offset the power
579          * values by the amount of minPower for griffin
580          */
581         if (minCalPower2316_t2 != 0)
582                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2);
583         else
584                 ahp->ah_txPowerIndexOffset = 0;
585
586         /* Finally, write the power values into the baseband power table */
587         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
588         for (i = 0; i < 32; i++) {
589                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
590                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
591                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
592                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
593                 OS_REG_WRITE(ah, regoffset, reg32);
594                 regoffset += 4;
595         }
596
597         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
598                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
599                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
600                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
601                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
602                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
603
604         return AH_TRUE;
605 }
606
607 static int16_t
608 ar2316GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
609 {
610         uint32_t ii,jj;
611         uint16_t Pmin=0,numVpd;
612
613         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
614                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
615                 /* work backwards 'cause highest pdGain for lowest power */
616                 numVpd = data->pDataPerPDGain[jj].numVpd;
617                 if (numVpd > 0) {
618                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
619                         return(Pmin);
620                 }
621         }
622         return(Pmin);
623 }
624
625 static int16_t
626 ar2316GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
627 {
628         uint32_t ii;
629         uint16_t Pmax=0,numVpd;
630         
631         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
632                 /* work forwards cuase lowest pdGain for highest power */
633                 numVpd = data->pDataPerPDGain[ii].numVpd;
634                 if (numVpd > 0) {
635                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
636                         return(Pmax);
637                 }
638         }
639         return(Pmax);
640 }
641
642 static HAL_BOOL
643 ar2316GetChannelMaxMinPower(struct ath_hal *ah,
644         const struct ieee80211_channel *chan,
645         int16_t *maxPow, int16_t *minPow)
646 {
647         uint16_t freq = chan->ic_freq;          /* NB: never mapped */
648         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
649         const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
650         const RAW_DATA_PER_CHANNEL_2316 *data=AH_NULL;
651         uint16_t numChannels;
652         int totalD,totalF, totalMin,last, i;
653
654         *maxPow = 0;
655
656         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
657                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
658         else if (IEEE80211_IS_CHAN_B(chan))
659                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
660         else
661                 return(AH_FALSE);
662
663         numChannels = pRawDataset->numChannels;
664         data = pRawDataset->pDataPerChannel;
665         
666         /* Make sure the channel is in the range of the TP values 
667          *  (freq piers)
668          */
669         if (numChannels < 1)
670                 return(AH_FALSE);
671
672         if ((freq < data[0].channelValue) ||
673             (freq > data[numChannels-1].channelValue)) {
674                 if (freq < data[0].channelValue) {
675                         *maxPow = ar2316GetMaxPower(ah, &data[0]);
676                         *minPow = ar2316GetMinPower(ah, &data[0]);
677                         return(AH_TRUE);
678                 } else {
679                         *maxPow = ar2316GetMaxPower(ah, &data[numChannels - 1]);
680                         *minPow = ar2316GetMinPower(ah, &data[numChannels - 1]);
681                         return(AH_TRUE);
682                 }
683         }
684
685         /* Linearly interpolate the power value now */
686         for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
687              last = i++);
688         totalD = data[i].channelValue - data[last].channelValue;
689         if (totalD > 0) {
690                 totalF = ar2316GetMaxPower(ah, &data[i]) - ar2316GetMaxPower(ah, &data[last]);
691                 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 
692                                      ar2316GetMaxPower(ah, &data[last])*totalD)/totalD);
693                 totalMin = ar2316GetMinPower(ah, &data[i]) - ar2316GetMinPower(ah, &data[last]);
694                 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
695                                      ar2316GetMinPower(ah, &data[last])*totalD)/totalD);
696                 return(AH_TRUE);
697         } else {
698                 if (freq == data[i].channelValue) {
699                         *maxPow = ar2316GetMaxPower(ah, &data[i]);
700                         *minPow = ar2316GetMinPower(ah, &data[i]);
701                         return(AH_TRUE);
702                 } else
703                         return(AH_FALSE);
704         }
705 }
706
707 /*
708  * Free memory for analog bank scratch buffers
709  */
710 static void
711 ar2316RfDetach(struct ath_hal *ah)
712 {
713         struct ath_hal_5212 *ahp = AH5212(ah);
714
715         HALASSERT(ahp->ah_rfHal != AH_NULL);
716         ath_hal_free(ahp->ah_rfHal);
717         ahp->ah_rfHal = AH_NULL;
718 }
719
720 /*
721  * Allocate memory for private state.
722  * Scratch Buffer will be reinitialized every reset so no need to zero now
723  */
724 static HAL_BOOL
725 ar2316RfAttach(struct ath_hal *ah, HAL_STATUS *status)
726 {
727         struct ath_hal_5212 *ahp = AH5212(ah);
728         struct ar2316State *priv;
729
730         HALASSERT(ah->ah_magic == AR5212_MAGIC);
731
732         HALASSERT(ahp->ah_rfHal == AH_NULL);
733         priv = ath_hal_malloc(sizeof(struct ar2316State));
734         if (priv == AH_NULL) {
735                 HALDEBUG(ah, HAL_DEBUG_ANY,
736                     "%s: cannot allocate private state\n", __func__);
737                 *status = HAL_ENOMEM;           /* XXX */
738                 return AH_FALSE;
739         }
740         priv->base.rfDetach             = ar2316RfDetach;
741         priv->base.writeRegs            = ar2316WriteRegs;
742         priv->base.getRfBank            = ar2316GetRfBank;
743         priv->base.setChannel           = ar2316SetChannel;
744         priv->base.setRfRegs            = ar2316SetRfRegs;
745         priv->base.setPowerTable        = ar2316SetPowerTable;
746         priv->base.getChannelMaxMinPower = ar2316GetChannelMaxMinPower;
747         priv->base.getNfAdjust          = ar5212GetNfAdjust;
748
749         ahp->ah_pcdacTable = priv->pcdacTable;
750         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
751         ahp->ah_rfHal = &priv->base;
752
753         ahp->ah_cwCalRequire = AH_TRUE;         /* force initial cal */
754
755         return AH_TRUE;
756 }
757
758 static HAL_BOOL
759 ar2316Probe(struct ath_hal *ah)
760 {
761         return IS_2316(ah);
762 }
763 AH_RF(RF2316, ar2316Probe, ar2316RfAttach);