]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/dev/ath/ath_hal/ar5212/ar2425.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / dev / ath / ath_hal / ar5212 / ar2425.c
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27
28 #include "ah_eeprom_v3.h"
29
30 #define AH_5212_2425
31 #define AH_5212_2417
32 #include "ar5212/ar5212.ini"
33
34 #define N(a)    (sizeof(a)/sizeof(a[0]))
35
36 struct ar2425State {
37         RF_HAL_FUNCS    base;           /* public state, must be first */
38         uint16_t        pcdacTable[PWR_TABLE_SIZE_2413];
39
40         uint32_t        Bank1Data[N(ar5212Bank1_2425)];
41         uint32_t        Bank2Data[N(ar5212Bank2_2425)];
42         uint32_t        Bank3Data[N(ar5212Bank3_2425)];
43         uint32_t        Bank6Data[N(ar5212Bank6_2425)]; /* 2417 is same size */
44         uint32_t        Bank7Data[N(ar5212Bank7_2425)];
45 };
46 #define AR2425(ah)      ((struct ar2425State *) AH5212(ah)->ah_rfHal)
47
48 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
49                 uint32_t numBits, uint32_t firstBit, uint32_t column);
50
51 static void
52 ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
53         int writes)
54 {
55         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
56         HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
57         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
58 #if 0
59         /*
60          * for SWAN similar to Condor
61          * Bit 0 enables link to go to L1 when MAC goes to sleep.
62          * Bit 3 enables the loop back the link down to reset.
63          */
64         if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) {
65                 OS_REG_WRITE(ah, AR_PCIE_PMC,
66                     AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
67         }
68         /*
69          * for Standby issue in Swan/Condor.
70          * Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
71          *      before last Training Sequence 2 (TS2)
72          * Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
73          *      Power Reset along with PCI Reset
74          */
75         OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
76 #endif
77 }
78
79 /*
80  * Take the MHz channel value and set the Channel value
81  *
82  * ASSUMES: Writes enabled to analog bus
83  */
84 static HAL_BOOL
85 ar2425SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
86 {
87         uint16_t freq = ath_hal_gethwchannel(ah, chan);
88         uint32_t channelSel  = 0;
89         uint32_t bModeSynth  = 0;
90         uint32_t aModeRefSel = 0;
91         uint32_t reg32       = 0;
92
93         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
94
95         if (freq < 4800) {
96                 uint32_t txctl;
97
98         channelSel = freq - 2272;
99         channelSel = ath_hal_reverseBits(channelSel, 8);
100
101                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
102         if (freq == 2484) {
103                         // Enable channel spreading for channel 14
104                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
106                 } else {
107                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
108                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
109                 }
110
111         } else if (((freq % 5) == 2) && (freq <= 5435)) {
112                 freq = freq - 2; /* Align to even 5MHz raster */
113                 channelSel = ath_hal_reverseBits(
114                         (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
115                 aModeRefSel = ath_hal_reverseBits(0, 2);
116         } else if ((freq % 20) == 0 && freq >= 5120) {
117                 channelSel = ath_hal_reverseBits(
118                         ((freq - 4800) / 20 << 2), 8);
119                 aModeRefSel = ath_hal_reverseBits(1, 2);
120         } else if ((freq % 10) == 0) {
121                 channelSel = ath_hal_reverseBits(
122                         ((freq - 4800) / 10 << 1), 8);
123                 aModeRefSel = ath_hal_reverseBits(1, 2);
124         } else if ((freq % 5) == 0) {
125                 channelSel = ath_hal_reverseBits(
126                         (freq - 4800) / 5, 8);
127                 aModeRefSel = ath_hal_reverseBits(1, 2);
128         } else {
129                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
130                     __func__, freq);
131                 return AH_FALSE;
132         }
133
134         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
135                         (1 << 12) | 0x1;
136         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
137
138         reg32 >>= 8;
139         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
140
141         AH_PRIVATE(ah)->ah_curchan = chan;
142         return AH_TRUE;
143 }
144
145 /*
146  * Reads EEPROM header info from device structure and programs
147  * all rf registers
148  *
149  * REQUIRES: Access to the analog rf device
150  */
151 static HAL_BOOL
152 ar2425SetRfRegs(struct ath_hal *ah,
153         const struct ieee80211_channel *chan,
154         uint16_t modesIndex, uint16_t *rfXpdGain)
155 {
156 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
157         int i;                                                              \
158         for (i = 0; i < N(ar5212Bank##_ix##_2425); i++)                     \
159                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
160 } while (0)
161         struct ath_hal_5212 *ahp = AH5212(ah);
162         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
163         struct ar2425State *priv = AR2425(ah);
164         uint16_t ob2GHz = 0, db2GHz = 0;
165         int regWrites = 0;
166
167         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
168             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
169
170         HALASSERT(priv);
171
172         /* Setup rf parameters */
173         if (IEEE80211_IS_CHAN_B(chan)) {
174                 ob2GHz = ee->ee_obFor24;
175                 db2GHz = ee->ee_dbFor24;
176         } else {
177                 ob2GHz = ee->ee_obFor24g;
178                 db2GHz = ee->ee_dbFor24g;
179         }
180
181         /* Bank 1 Write */
182         RF_BANK_SETUP(priv, 1, 1);
183
184         /* Bank 2 Write */
185         RF_BANK_SETUP(priv, 2, modesIndex);
186
187         /* Bank 3 Write */
188         RF_BANK_SETUP(priv, 3, modesIndex);
189
190         /* Bank 6 Write */
191         RF_BANK_SETUP(priv, 6, modesIndex);
192
193         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
194         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
195
196         /* Bank 7 Setup */
197         RF_BANK_SETUP(priv, 7, modesIndex);
198
199         /* Write Analog registers */
200         HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
201         HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
202         HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
203         if (IS_2417(ah)) {
204                 HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
205                 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
206                     regWrites);
207         } else
208                 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
209                     regWrites);
210         HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
211
212         /* Now that we have reprogrammed rfgain value, clear the flag. */
213         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
214
215         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
216         return AH_TRUE;
217 #undef  RF_BANK_SETUP
218 }
219
220 /*
221  * Return a reference to the requested RF Bank.
222  */
223 static uint32_t *
224 ar2425GetRfBank(struct ath_hal *ah, int bank)
225 {
226         struct ar2425State *priv = AR2425(ah);
227
228         HALASSERT(priv != AH_NULL);
229         switch (bank) {
230         case 1: return priv->Bank1Data;
231         case 2: return priv->Bank2Data;
232         case 3: return priv->Bank3Data;
233         case 6: return priv->Bank6Data;
234         case 7: return priv->Bank7Data;
235         }
236         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
237             __func__, bank);
238         return AH_NULL;
239 }
240
241 /*
242  * Return indices surrounding the value in sorted integer lists.
243  *
244  * NB: the input list is assumed to be sorted in ascending order
245  */
246 static void
247 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
248                           uint32_t *vlo, uint32_t *vhi)
249 {
250         int16_t target = v;
251         const uint16_t *ep = lp+listSize;
252         const uint16_t *tp;
253
254         /*
255          * Check first and last elements for out-of-bounds conditions.
256          */
257         if (target < lp[0]) {
258                 *vlo = *vhi = 0;
259                 return;
260         }
261         if (target >= ep[-1]) {
262                 *vlo = *vhi = listSize - 1;
263                 return;
264         }
265
266         /* look for value being near or between 2 values in list */
267         for (tp = lp; tp < ep; tp++) {
268                 /*
269                  * If value is close to the current value of the list
270                  * then target is not between values, it is one of the values
271                  */
272                 if (*tp == target) {
273                         *vlo = *vhi = tp - (const uint16_t *) lp;
274                         return;
275                 }
276                 /*
277                  * Look for value being between current value and next value
278                  * if so return these 2 values
279                  */
280                 if (target < tp[1]) {
281                         *vlo = tp - (const uint16_t *) lp;
282                         *vhi = *vlo + 1;
283                         return;
284                 }
285         }
286 }
287
288 /*
289  * Fill the Vpdlist for indices Pmax-Pmin
290  */
291 static HAL_BOOL
292 ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
293                    const int16_t *pwrList, const uint16_t *VpdList,
294                    uint16_t numIntercepts,
295                    uint16_t retVpdList[][64])
296 {
297         uint16_t ii, jj, kk;
298         int16_t currPwr = (int16_t)(2*Pmin);
299         /* since Pmin is pwr*2 and pwrList is 4*pwr */
300         uint32_t  idxL, idxR;
301
302         ii = 0;
303         jj = 0;
304
305         if (numIntercepts < 2)
306                 return AH_FALSE;
307
308         while (ii <= (uint16_t)(Pmax - Pmin)) {
309                 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
310                                    numIntercepts, &(idxL), &(idxR));
311                 if (idxR < 1)
312                         idxR = 1;                       /* extrapolate below */
313                 if (idxL == (uint32_t)(numIntercepts - 1))
314                         idxL = numIntercepts - 2;       /* extrapolate above */
315                 if (pwrList[idxL] == pwrList[idxR])
316                         kk = VpdList[idxL];
317                 else
318                         kk = (uint16_t)
319                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
320                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
321                                  (pwrList[idxR] - pwrList[idxL]));
322                 retVpdList[pdGainIdx][ii] = kk;
323                 ii++;
324                 currPwr += 2;                           /* half dB steps */
325         }
326
327         return AH_TRUE;
328 }
329
330 /*
331  * Returns interpolated or the scaled up interpolated value
332  */
333 static int16_t
334 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
335         int16_t targetLeft, int16_t targetRight)
336 {
337         int16_t rv;
338
339         if (srcRight != srcLeft) {
340                 rv = ((target - srcLeft)*targetRight +
341                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
342         } else {
343                 rv = targetLeft;
344         }
345         return rv;
346 }
347
348 /*
349  * Uses the data points read from EEPROM to reconstruct the pdadc power table
350  * Called by ar2425SetPowerTable()
351  */
352 static void 
353 ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
354                 const RAW_DATA_STRUCT_2413 *pRawDataset,
355                 uint16_t pdGainOverlap_t2, 
356                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
357                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
358 {
359     /* Note the items statically allocated below are to reduce stack usage */
360         uint32_t ii, jj, kk;
361         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
362         uint32_t idxL, idxR;
363         uint32_t numPdGainsUsed = 0;
364         static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
365         /* filled out Vpd table for all pdGains (chanL) */
366         static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
367         /* filled out Vpd table for all pdGains (chanR) */
368         static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
369         /* filled out Vpd table for all pdGains (interpolated) */
370         /* 
371          * If desired to support -ve power levels in future, just
372          * change pwr_I_0 to signed 5-bits.
373          */
374         static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
375         /* to accomodate -ve power levels later on. */
376         static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
377         /* to accomodate -ve power levels later on */
378         uint16_t numVpd = 0;
379         uint16_t Vpd_step;
380         int16_t tmpVal ; 
381         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
382
383         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
384     
385         /* Get upper lower index */
386         GetLowerUpperIndex(channel, pRawDataset->pChannels,
387                                  pRawDataset->numChannels, &(idxL), &(idxR));
388
389         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
390                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
391                 /* work backwards 'cause highest pdGain for lowest power */
392                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
393                 if (numVpd > 0) {
394                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
395                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
396                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
397                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
398                         }
399                         Pmin_t2[numPdGainsUsed] = (int16_t)
400                                 (Pmin_t2[numPdGainsUsed] / 2);
401                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
402                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
403                                 Pmax_t2[numPdGainsUsed] = 
404                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
405                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
406                         ar2425FillVpdTable(
407                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
408                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
409                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
410                                            );
411                         ar2425FillVpdTable(
412                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
413                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
414                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
415                                            );
416                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
417                                 VpdTable_I[numPdGainsUsed][kk] = 
418                                         interpolate_signed(
419                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
420                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
421                         }
422                         /* fill VpdTable_I for this pdGain */
423                         numPdGainsUsed++;
424                 }
425                 /* if this pdGain is used */
426         }
427
428         *pMinCalPower = Pmin_t2[0];
429         kk = 0; /* index for the final table */
430         for (ii = 0; ii < numPdGainsUsed; ii++) {
431                 if (ii == (numPdGainsUsed - 1))
432                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
433                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
434                 else 
435                         pPdGainBoundaries[ii] = (uint16_t)
436                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
437
438                 /* Find starting index for this pdGain */
439                 if (ii == 0) 
440                         ss = 0; /* for the first pdGain, start from index 0 */
441                 else 
442                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
443                                 pdGainOverlap_t2;
444                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
445                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
446                 /*
447                  *-ve ss indicates need to extrapolate data below for this pdGain
448                  */
449                 while (ss < 0) {
450                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
451                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
452                         ss++;
453                 }
454
455                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
456                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
457                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
458
459                 while (ss < (int16_t)maxIndex)
460                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
461
462                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
463                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
464                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
465                 /*
466                  * for last gain, pdGainBoundary == Pmax_t2, so will 
467                  * have to extrapolate
468                  */
469                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
470                         while(ss < (int16_t)tgtIndex) {
471                                 tmpVal = (uint16_t)
472                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
473                                          (ss-maxIndex)*Vpd_step);
474                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
475                                         127 : tmpVal;
476                                 ss++;
477                         }
478                 }                               /* extrapolated above */
479         }                                       /* for all pdGainUsed */
480
481         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
482                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
483                 ii++;
484         }
485         while (kk < 128) {
486                 pPDADCValues[kk] = pPDADCValues[kk-1];
487                 kk++;
488         }
489
490         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
491 }
492
493
494 /* Same as 2413 set power table */
495 static HAL_BOOL
496 ar2425SetPowerTable(struct ath_hal *ah,
497         int16_t *minPower, int16_t *maxPower,
498         const struct ieee80211_channel *chan, 
499         uint16_t *rfXpdGain)
500 {
501         uint16_t freq = ath_hal_gethwchannel(ah, chan);
502         struct ath_hal_5212 *ahp = AH5212(ah);
503         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
504         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
505         uint16_t pdGainOverlap_t2;
506         int16_t minCalPower2413_t2;
507         uint16_t *pdadcValues = ahp->ah_pcdacTable;
508         uint16_t gainBoundaries[4];
509         uint32_t i, reg32, regoffset;
510
511         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
512             __func__, freq, chan->ic_flags);
513
514         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
515                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
516         else if (IEEE80211_IS_CHAN_B(chan))
517                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
518         else {
519                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
520                 return AH_FALSE;
521         }
522
523         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
524                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
525     
526         ar2425getGainBoundariesAndPdadcsForPowers(ah, freq,
527                 pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
528                 rfXpdGain, pdadcValues);
529
530         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
531                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
532
533         /*
534          * Note the pdadc table may not start at 0 dBm power, could be
535          * negative or greater than 0.  Need to offset the power
536          * values by the amount of minPower for griffin
537          */
538         if (minCalPower2413_t2 != 0)
539                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
540         else
541                 ahp->ah_txPowerIndexOffset = 0;
542
543         /* Finally, write the power values into the baseband power table */
544         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
545         for (i = 0; i < 32; i++) {
546                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
547                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
548                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
549                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
550                 OS_REG_WRITE(ah, regoffset, reg32);
551                 regoffset += 4;
552         }
553
554         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
555                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
556                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
557                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
558                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
559                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
560
561         return AH_TRUE;
562 }
563
564 static int16_t
565 ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
566 {
567         uint32_t ii,jj;
568         uint16_t Pmin=0,numVpd;
569
570         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
571                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
572                 /* work backwards 'cause highest pdGain for lowest power */
573                 numVpd = data->pDataPerPDGain[jj].numVpd;
574                 if (numVpd > 0) {
575                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
576                         return(Pmin);
577                 }
578         }
579         return(Pmin);
580 }
581
582 static int16_t
583 ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
584 {
585         uint32_t ii;
586         uint16_t Pmax=0,numVpd;
587         
588         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
589                 /* work forwards cuase lowest pdGain for highest power */
590                 numVpd = data->pDataPerPDGain[ii].numVpd;
591                 if (numVpd > 0) {
592                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
593                         return(Pmax);
594                 }
595         }
596         return(Pmax);
597 }
598
599 static
600 HAL_BOOL
601 ar2425GetChannelMaxMinPower(struct ath_hal *ah,
602         const struct ieee80211_channel *chan,
603         int16_t *maxPow, int16_t *minPow)
604 {
605         uint16_t freq = chan->ic_freq;          /* NB: never mapped */
606         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
607         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
608         const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
609         uint16_t numChannels;
610         int totalD,totalF, totalMin,last, i;
611
612         *maxPow = 0;
613
614         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
615                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
616         else if (IEEE80211_IS_CHAN_B(chan))
617                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
618         else
619                 return(AH_FALSE);
620
621         numChannels = pRawDataset->numChannels;
622         data = pRawDataset->pDataPerChannel;
623         
624         /* Make sure the channel is in the range of the TP values 
625          *  (freq piers)
626          */
627         if (numChannels < 1)
628                 return(AH_FALSE);
629
630         if ((freq < data[0].channelValue) ||
631             (freq > data[numChannels-1].channelValue)) {
632                 if (freq < data[0].channelValue) {
633                         *maxPow = ar2425GetMaxPower(ah, &data[0]);
634                         *minPow = ar2425GetMinPower(ah, &data[0]);
635                         return(AH_TRUE);
636                 } else {
637                         *maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
638                         *minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
639                         return(AH_TRUE);
640                 }
641         }
642
643         /* Linearly interpolate the power value now */
644         for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
645              last = i++);
646         totalD = data[i].channelValue - data[last].channelValue;
647         if (totalD > 0) {
648                 totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
649                 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 
650                                      ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
651                 totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
652                 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
653                                      ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
654                 return(AH_TRUE);
655         } else {
656                 if (freq == data[i].channelValue) {
657                         *maxPow = ar2425GetMaxPower(ah, &data[i]);
658                         *minPow = ar2425GetMinPower(ah, &data[i]);
659                         return(AH_TRUE);
660                 } else
661                         return(AH_FALSE);
662         }
663 }
664
665 /*
666  * Free memory for analog bank scratch buffers
667  */
668 static void
669 ar2425RfDetach(struct ath_hal *ah)
670 {
671         struct ath_hal_5212 *ahp = AH5212(ah);
672
673         HALASSERT(ahp->ah_rfHal != AH_NULL);
674         ath_hal_free(ahp->ah_rfHal);
675         ahp->ah_rfHal = AH_NULL;
676 }
677
678 /*
679  * Allocate memory for analog bank scratch buffers
680  * Scratch Buffer will be reinitialized every reset so no need to zero now
681  */
682 static HAL_BOOL
683 ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
684 {
685         struct ath_hal_5212 *ahp = AH5212(ah);
686         struct ar2425State *priv;
687
688         HALASSERT(ah->ah_magic == AR5212_MAGIC);
689
690         HALASSERT(ahp->ah_rfHal == AH_NULL);
691         priv = ath_hal_malloc(sizeof(struct ar2425State));
692         if (priv == AH_NULL) {
693                 HALDEBUG(ah, HAL_DEBUG_ANY,
694                     "%s: cannot allocate private state\n", __func__);
695                 *status = HAL_ENOMEM;           /* XXX */
696                 return AH_FALSE;
697         }
698         priv->base.rfDetach             = ar2425RfDetach;
699         priv->base.writeRegs            = ar2425WriteRegs;
700         priv->base.getRfBank            = ar2425GetRfBank;
701         priv->base.setChannel           = ar2425SetChannel;
702         priv->base.setRfRegs            = ar2425SetRfRegs;
703         priv->base.setPowerTable        = ar2425SetPowerTable;
704         priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
705         priv->base.getNfAdjust          = ar5212GetNfAdjust;
706
707         ahp->ah_pcdacTable = priv->pcdacTable;
708         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
709         ahp->ah_rfHal = &priv->base;
710
711         return AH_TRUE;
712 }
713
714 static HAL_BOOL
715 ar2425Probe(struct ath_hal *ah)
716 {
717         return IS_2425(ah) || IS_2417(ah);
718 }
719 AH_RF(RF2425, ar2425Probe, ar2425RfAttach);