]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/dev/ath/ath_hal/ar9002/ar9287_reset.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / dev / ath / ath_hal / ar9002 / ar9287_reset.c
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19
20 #include "opt_ah.h"
21
22 #include "ah.h"
23 #include "ah_internal.h"
24 #include "ah_devid.h"
25
26 #include "ah_eeprom_v14.h"
27 #include "ah_eeprom_9287.h"
28
29 #include "ar5416/ar5416.h"
30 #include "ar5416/ar5416reg.h"
31 #include "ar5416/ar5416phy.h"
32
33 #include "ar9002/ar9287phy.h"
34 #include "ar9002/ar9287an.h"
35
36 #include "ar9002/ar9287_olc.h"
37 #include "ar9002/ar9287_reset.h"
38
39 /*
40  * Set the TX power calibration table per-chain.
41  *
42  * This only supports open-loop TX power control for the AR9287.
43  */
44 static void
45 ar9287SetPowerCalTable(struct ath_hal *ah,
46     const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
47 {
48         struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
49         uint8_t *pCalBChans = NULL;
50         uint16_t pdGainOverlap_t2;
51         uint16_t numPiers = 0, i;
52         uint16_t numXpdGain, xpdMask;
53         uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
54         uint32_t regChainOffset;
55         HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
56         struct ar9287_eeprom *pEepData = &ee->ee_base;
57
58         xpdMask = pEepData->modalHeader.xpdGain;
59
60         if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
61             AR9287_EEP_MINOR_VER_2)
62                 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
63         else
64                 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
65                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
66
67         /* Note: Kiwi should only be 2ghz.. */
68         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
69                 pCalBChans = pEepData->calFreqPier2G;
70                 numPiers = AR9287_NUM_2G_CAL_PIERS;
71                 pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
72                 AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
73         }
74         numXpdGain = 0;
75
76         /* Calculate the value of xpdgains from the xpdGain Mask */
77         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
78                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
79                         if (numXpdGain >= AR5416_NUM_PD_GAINS)
80                                 break;
81                         xpdGainValues[numXpdGain] =
82                                 (uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
83                         numXpdGain++;
84                 }
85         }
86
87         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
88                       (numXpdGain - 1) & 0x3);
89         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
90                       xpdGainValues[0]);
91         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
92                       xpdGainValues[1]);
93         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
94                       xpdGainValues[2]);
95
96         for (i = 0; i < AR9287_MAX_CHAINS; i++) {
97                 regChainOffset = i * 0x1000;
98
99                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
100                         int8_t txPower;
101                         pRawDatasetOpenLoop =
102                         (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
103                                 ar9287olcGetTxGainIndex(ah, chan,
104                                     pRawDatasetOpenLoop,
105                                     pCalBChans, numPiers,
106                                     &txPower);
107                                 ar9287olcSetPDADCs(ah, txPower, i);
108                 }
109         }
110
111         *pTxPowerIndexOffset = 0;
112 }
113
114
115 /* XXX hard-coded values? */
116 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
117
118 /*
119  * ar9287SetPowerPerRateTable
120  *
121  * Sets the transmit power in the baseband for the given
122  * operating channel and mode.
123  *
124  * This is like the v14 EEPROM table except the 5GHz code.
125  */
126 static HAL_BOOL
127 ar9287SetPowerPerRateTable(struct ath_hal *ah,
128     struct ar9287_eeprom *pEepData,
129     const struct ieee80211_channel *chan,
130     int16_t *ratesArray, uint16_t cfgCtl,
131     uint16_t AntennaReduction, 
132     uint16_t twiceMaxRegulatoryPower,
133     uint16_t powerLimit)
134 {
135 #define N(a)    (sizeof(a)/sizeof(a[0]))
136 /* Local defines to distinguish between extension and control CTL's */
137 #define EXT_ADDITIVE (0x8000)
138 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
139 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
140 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
141
142         uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
143         int i;
144         int16_t  twiceLargestAntenna;
145         struct cal_ctl_data_ar9287 *rep;
146         CAL_TARGET_POWER_LEG targetPowerOfdm;
147         CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
148         CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
149         CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
150         CAL_TARGET_POWER_HT  targetPowerHt20;
151         CAL_TARGET_POWER_HT  targetPowerHt40 = {0, {0, 0, 0, 0}};
152         int16_t scaledPower, minCtlPower;
153
154 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
155         static const uint16_t ctlModesFor11g[] = {
156            CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
157         };
158         const uint16_t *pCtlMode;
159         uint16_t numCtlModes, ctlMode, freq;
160         CHAN_CENTERS centers;
161
162         ar5416GetChannelCenters(ah,  chan, &centers);
163
164         /* Compute TxPower reduction due to Antenna Gain */
165
166         twiceLargestAntenna = AH_MAX(
167             pEepData->modalHeader.antennaGainCh[0],
168             pEepData->modalHeader.antennaGainCh[1]);
169
170         twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
171
172         /* XXX setup for 5212 use (really used?) */
173         ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
174
175         /* 
176          * scaledPower is the minimum of the user input power level and
177          * the regulatory allowed power level
178          */
179         scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
180
181         /* Reduce scaled Power by number of chains active to get to per chain tx power level */
182         /* TODO: better value than these? */
183         switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
184         case 1:
185                 break;
186         case 2:
187                 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
188                 break;
189         default:
190                 return AH_FALSE; /* Unsupported number of chains */
191         }
192
193         scaledPower = AH_MAX(0, scaledPower);
194
195         /* Get target powers from EEPROM - our baseline for TX Power */
196         /* XXX assume channel is 2ghz */
197         if (1) {
198                 /* Setup for CTL modes */
199                 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
200                 pCtlMode = ctlModesFor11g;
201
202                 ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
203                                 AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
204                 ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
205                                 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
206                 ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
207                                 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
208
209                 if (IEEE80211_IS_CHAN_HT40(chan)) {
210                         numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
211
212                         ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
213                                 AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
214                         /* Get target powers for extension channels */
215                         ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
216                                 AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
217                         ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
218                                 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
219                 }
220         }
221
222         /*
223          * For MIMO, need to apply regulatory caps individually across dynamically
224          * running modes: CCK, OFDM, HT20, HT40
225          *
226          * The outer loop walks through each possible applicable runtime mode.
227          * The inner loop walks through each ctlIndex entry in EEPROM.
228          * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
229          *
230          */
231         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
232                 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
233                     (pCtlMode[ctlMode] == CTL_2GHT40);
234                 if (isHt40CtlMode) {
235                         freq = centers.ctl_center;
236                 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
237                         freq = centers.ext_center;
238                 } else {
239                         freq = centers.ctl_center;
240                 }
241
242                 /* walk through each CTL index stored in EEPROM */
243                 for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
244                         uint16_t twiceMinEdgePower;
245
246                         /* compare test group from regulatory channel list with test mode from pCtlMode list */
247                         if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
248                                 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == 
249                                  ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
250                                 rep = &(pEepData->ctlData[i]);
251                                 twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
252                                                         rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
253                                                         IEEE80211_IS_CHAN_2GHZ(chan));
254                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
255                                         /* Find the minimum of all CTL edge powers that apply to this channel */
256                                         twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
257                                 } else {
258                                         /* specific */
259                                         twiceMaxEdgePower = twiceMinEdgePower;
260                                         break;
261                                 }
262                         }
263                 }
264                 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
265                 /* Apply ctl mode to correct target power set */
266                 switch(pCtlMode[ctlMode]) {
267                 case CTL_11B:
268                         for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
269                                 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
270                         }
271                         break;
272                 case CTL_11A:
273                 case CTL_11G:
274                         for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
275                                 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
276                         }
277                         break;
278                 case CTL_5GHT20:
279                 case CTL_2GHT20:
280                         for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
281                                 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
282                         }
283                         break;
284                 case CTL_11B_EXT:
285                         targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
286                         break;
287                 case CTL_11A_EXT:
288                 case CTL_11G_EXT:
289                         targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
290                         break;
291                 case CTL_5GHT40:
292                 case CTL_2GHT40:
293                         for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
294                                 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
295                         }
296                         break;
297                 default:
298                         return AH_FALSE;
299                         break;
300                 }
301         } /* end ctl mode checking */
302
303         /* Set rates Array from collected data */
304         ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
305             &targetPowerCck,
306             &targetPowerCckExt,
307             &targetPowerOfdm,
308             &targetPowerOfdmExt,
309             &targetPowerHt20,
310             &targetPowerHt40);
311         return AH_TRUE;
312 #undef EXT_ADDITIVE
313 #undef CTL_11A_EXT
314 #undef CTL_11G_EXT
315 #undef CTL_11B_EXT
316 #undef SUB_NUM_CTL_MODES_AT_5G_40
317 #undef SUB_NUM_CTL_MODES_AT_2G_40
318 #undef N
319 }
320
321 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
322
323 /*
324  * This is based off of the AR5416/AR9285 code and likely could
325  * be unified in the future.
326  */
327 HAL_BOOL
328 ar9287SetTransmitPower(struct ath_hal *ah,
329         const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
330 {
331 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
332 #define N(a)        (sizeof (a) / sizeof (a[0]))
333
334         const struct modal_eep_ar9287_header *pModal;
335         struct ath_hal_5212 *ahp = AH5212(ah);
336         int16_t      txPowerIndexOffset = 0;
337         int              i;
338
339         uint16_t            cfgCtl;
340         uint16_t            powerLimit;
341         uint16_t            twiceAntennaReduction;
342         uint16_t            twiceMaxRegulatoryPower;
343         int16_t      maxPower;
344         HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
345         struct ar9287_eeprom *pEepData = &ee->ee_base;
346
347         AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
348
349         /* Setup info for the actual eeprom */
350         OS_MEMZERO(AH5416(ah)->ah_ratesArray,
351           sizeof(AH5416(ah)->ah_ratesArray));
352         cfgCtl = ath_hal_getctl(ah, chan);
353         powerLimit = chan->ic_maxregpower * 2;
354         twiceAntennaReduction = chan->ic_maxantgain;
355         twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER,
356             AH_PRIVATE(ah)->ah_powerLimit);
357         pModal = &pEepData->modalHeader;
358         HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
359             __func__,chan->ic_freq, cfgCtl );
360
361         /* XXX Assume Minor is v2 or later */
362         AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
363
364         /* Fetch per-rate power table for the given channel */
365         if (! ar9287SetPowerPerRateTable(ah, pEepData,  chan,
366             &AH5416(ah)->ah_ratesArray[0],
367             cfgCtl,
368             twiceAntennaReduction,
369             twiceMaxRegulatoryPower, powerLimit)) {
370                 HALDEBUG(ah, HAL_DEBUG_ANY,
371                     "%s: unable to set tx power per rate table\n", __func__);
372                 return AH_FALSE;
373         }
374
375         /* Set TX power control calibration curves for each TX chain */
376         ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);
377
378         /* Calculate maximum power level */
379         maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
380             AH5416(ah)->ah_ratesArray[rateHt20_0]);
381         maxPower = AH_MAX(maxPower,
382             AH5416(ah)->ah_ratesArray[rate1l]);
383
384         if (IEEE80211_IS_CHAN_HT40(chan))
385                 maxPower = AH_MAX(maxPower,
386                     AH5416(ah)->ah_ratesArray[rateHt40_0]);
387
388         ahp->ah_tx6PowerInHalfDbm = maxPower;
389         AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
390         ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
391
392         /*
393          * txPowerIndexOffset is set by the SetPowerTable() call -
394          *  adjust the rate table (0 offset if rates EEPROM not loaded)
395          */
396         /* XXX what about the pwrTableOffset? */
397         for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
398                 AH5416(ah)->ah_ratesArray[i] =
399                     (int16_t)(txPowerIndexOffset +
400                       AH5416(ah)->ah_ratesArray[i]);
401                 /* -5 dBm offset for Merlin and later; this includes Kiwi */
402                 AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
403                 if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
404                         AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
405                 if (AH5416(ah)->ah_ratesArray[i] < 0)
406                         AH5416(ah)->ah_ratesArray[i] = 0;
407         }
408
409 #ifdef AH_EEPROM_DUMP
410         ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
411 #endif
412
413         /*
414          * Adjust the HT40 power to meet the correct target TX power
415          * for 40MHz mode, based on TX power curves that are established
416          * for 20MHz mode.
417          *
418          * XXX handle overflow/too high power level?
419          */
420         if (IEEE80211_IS_CHAN_HT40(chan)) {
421                 AH5416(ah)->ah_ratesArray[rateHt40_0] +=
422                   AH5416(ah)->ah_ht40PowerIncForPdadc;
423                 AH5416(ah)->ah_ratesArray[rateHt40_1] +=
424                   AH5416(ah)->ah_ht40PowerIncForPdadc;
425                 AH5416(ah)->ah_ratesArray[rateHt40_2] +=
426                   AH5416(ah)->ah_ht40PowerIncForPdadc;
427                 AH5416(ah)->ah_ratesArray[rateHt40_3] +=
428                   AH5416(ah)->ah_ht40PowerIncForPdadc;
429                 AH5416(ah)->ah_ratesArray[rateHt40_4] +=
430                   AH5416(ah)->ah_ht40PowerIncForPdadc;
431                 AH5416(ah)->ah_ratesArray[rateHt40_5] +=
432                   AH5416(ah)->ah_ht40PowerIncForPdadc;
433                 AH5416(ah)->ah_ratesArray[rateHt40_6] +=
434                   AH5416(ah)->ah_ht40PowerIncForPdadc;
435                 AH5416(ah)->ah_ratesArray[rateHt40_7] +=
436                   AH5416(ah)->ah_ht40PowerIncForPdadc;
437         }
438
439         /* Write the TX power rate registers */
440         ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
441
442         return AH_TRUE;
443 #undef POW_SM
444 #undef N
445 }
446
447 /*
448  * Read EEPROM header info and program the device for correct operation
449  * given the channel value.
450  */
451 HAL_BOOL
452 ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
453 {
454         const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
455         const struct ar9287_eeprom *eep = &ee->ee_base;
456         const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
457         uint16_t antWrites[AR9287_ANT_16S];
458         uint32_t regChainOffset, regval;
459         uint8_t txRxAttenLocal;
460         int i, j, offset_num;
461
462         pModal = &eep->modalHeader;
463
464         antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
465         antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
466         antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
467         antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
468         antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
469         antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
470         antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4)  & 0xF);
471         antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);
472
473         offset_num = 8;
474
475         for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
476                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
477                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
478                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
479                 antWrites[j++] = 0;
480                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
481                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
482                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
483                 antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
484         }
485
486         OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
487
488         for (i = 0; i < AR9287_MAX_CHAINS; i++) {
489                 regChainOffset = i * 0x1000;
490
491                 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
492                           pModal->antCtrlChain[i]);
493
494                 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
495                           (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)
496                               + regChainOffset)
497                            & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
498                                AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
499                           SM(pModal->iqCalICh[i],
500                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
501                           SM(pModal->iqCalQCh[i],
502                              AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
503
504                 txRxAttenLocal = pModal->txRxAttenCh[i];
505
506                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
507                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
508                               pModal->bswMargin[i]);
509                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
510                               AR_PHY_GAIN_2GHZ_XATTEN1_DB,
511                               pModal->bswAtten[i]);
512                 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
513                               AR9280_PHY_RXGAIN_TXRX_ATTEN,
514                               txRxAttenLocal);
515                 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
516                               AR9280_PHY_RXGAIN_TXRX_MARGIN,
517                               pModal->rxTxMarginCh[i]);
518         }
519
520         if (IEEE80211_IS_CHAN_HT40(chan))
521                 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
522                               AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
523         else
524                 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
525                               AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
526
527         OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
528                       AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
529
530         OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
531                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
532                   | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
533                   | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
534                   | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
535
536         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
537                       AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
538
539         OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
540                       AR9280_PHY_CCA_THRESH62, pModal->thresh62);
541         OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
542                       AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
543
544         regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
545         regval &= ~(AR9287_AN_RF2G3_DB1 |
546                     AR9287_AN_RF2G3_DB2 |
547                     AR9287_AN_RF2G3_OB_CCK |
548                     AR9287_AN_RF2G3_OB_PSK |
549                     AR9287_AN_RF2G3_OB_QAM |
550                     AR9287_AN_RF2G3_OB_PAL_OFF);
551         regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
552                    SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
553                    SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
554                    SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
555                    SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
556                    SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
557
558         /* Analog write - requires a 100usec delay */
559         OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
560
561         regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
562         regval &= ~(AR9287_AN_RF2G3_DB1 |
563                     AR9287_AN_RF2G3_DB2 |
564                     AR9287_AN_RF2G3_OB_CCK |
565                     AR9287_AN_RF2G3_OB_PSK |
566                     AR9287_AN_RF2G3_OB_QAM |
567                     AR9287_AN_RF2G3_OB_PAL_OFF);
568         regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
569                    SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
570                    SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
571                    SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
572                    SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
573                    SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
574
575         OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
576
577         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
578             AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
579         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
580             AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
581
582         OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
583             AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
584
585         return AH_TRUE;
586 }