]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/dev/drm2/i915/intel_dp.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / dev / drm2 / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <dev/drm2/drmP.h>
32 #include <dev/drm2/drm.h>
33 #include <dev/drm2/drm_crtc.h>
34 #include <dev/drm2/drm_crtc_helper.h>
35 #include <dev/drm2/i915/i915_drm.h>
36 #include <dev/drm2/i915/i915_drv.h>
37 #include <dev/drm2/i915/intel_drv.h>
38 #include <dev/drm2/drm_dp_helper.h>
39
40 #define DP_RECEIVER_CAP_SIZE    0xf
41 #define DP_LINK_STATUS_SIZE     6
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 #define DP_LINK_CONFIGURATION_SIZE      9
45
46 struct intel_dp {
47         struct intel_encoder base;
48         uint32_t output_reg;
49         uint32_t DP;
50         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
51         bool has_audio;
52         enum hdmi_force_audio force_audio;
53         uint32_t color_range;
54         int dpms_mode;
55         uint8_t link_bw;
56         uint8_t lane_count;
57         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58         device_t dp_iic_bus;
59         device_t adapter;
60         bool is_pch_edp;
61         uint8_t train_set[4];
62         int panel_power_up_delay;
63         int panel_power_down_delay;
64         int panel_power_cycle_delay;
65         int backlight_on_delay;
66         int backlight_off_delay;
67         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
68         struct timeout_task panel_vdd_task;
69         bool want_panel_vdd;
70 };
71
72 /**
73  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
74  * @intel_dp: DP struct
75  *
76  * If a CPU or PCH DP output is attached to an eDP panel, this function
77  * will return true, and false otherwise.
78  */
79 static bool is_edp(struct intel_dp *intel_dp)
80 {
81         return intel_dp->base.type == INTEL_OUTPUT_EDP;
82 }
83
84 /**
85  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
86  * @intel_dp: DP struct
87  *
88  * Returns true if the given DP struct corresponds to a PCH DP port attached
89  * to an eDP panel, false otherwise.  Helpful for determining whether we
90  * may need FDI resources for a given DP output or not.
91  */
92 static bool is_pch_edp(struct intel_dp *intel_dp)
93 {
94         return intel_dp->is_pch_edp;
95 }
96
97 /**
98  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
99  * @intel_dp: DP struct
100  *
101  * Returns true if the given DP struct corresponds to a CPU eDP port.
102  */
103 static bool is_cpu_edp(struct intel_dp *intel_dp)
104 {
105         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
106 }
107
108 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
109 {
110         return container_of(encoder, struct intel_dp, base.base);
111 }
112
113 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114 {
115         return container_of(intel_attached_encoder(connector),
116                             struct intel_dp, base);
117 }
118
119 /**
120  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
121  * @encoder: DRM encoder
122  *
123  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
124  * by intel_display.c.
125  */
126 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
127 {
128         struct intel_dp *intel_dp;
129
130         if (!encoder)
131                 return false;
132
133         intel_dp = enc_to_intel_dp(encoder);
134
135         return is_pch_edp(intel_dp);
136 }
137
138 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
140 static void intel_dp_link_down(struct intel_dp *intel_dp);
141
142 void
143 intel_edp_link_config(struct intel_encoder *intel_encoder,
144                        int *lane_num, int *link_bw)
145 {
146         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
147
148         *lane_num = intel_dp->lane_count;
149         if (intel_dp->link_bw == DP_LINK_BW_1_62)
150                 *link_bw = 162000;
151         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
152                 *link_bw = 270000;
153 }
154
155 static int
156 intel_dp_max_lane_count(struct intel_dp *intel_dp)
157 {
158         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
159         switch (max_lane_count) {
160         case 1: case 2: case 4:
161                 break;
162         default:
163                 max_lane_count = 4;
164         }
165         return max_lane_count;
166 }
167
168 static int
169 intel_dp_max_link_bw(struct intel_dp *intel_dp)
170 {
171         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
172
173         switch (max_link_bw) {
174         case DP_LINK_BW_1_62:
175         case DP_LINK_BW_2_7:
176                 break;
177         default:
178                 max_link_bw = DP_LINK_BW_1_62;
179                 break;
180         }
181         return max_link_bw;
182 }
183
184 static int
185 intel_dp_link_clock(uint8_t link_bw)
186 {
187         if (link_bw == DP_LINK_BW_2_7)
188                 return 270000;
189         else
190                 return 162000;
191 }
192
193 /*
194  * The units on the numbers in the next two are... bizarre.  Examples will
195  * make it clearer; this one parallels an example in the eDP spec.
196  *
197  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
198  *
199  *     270000 * 1 * 8 / 10 == 216000
200  *
201  * The actual data capacity of that configuration is 2.16Gbit/s, so the
202  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
203  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
204  * 119000.  At 18bpp that's 2142000 kilobits per second.
205  *
206  * Thus the strange-looking division by 10 in intel_dp_link_required, to
207  * get the result in decakilobits instead of kilobits.
208  */
209
210 static int
211 intel_dp_link_required(int pixel_clock, int bpp)
212 {
213         return (pixel_clock * bpp + 9) / 10;
214 }
215
216 static int
217 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
218 {
219         return (max_link_clock * max_lanes * 8) / 10;
220 }
221
222 static bool
223 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
224                           const struct drm_display_mode *mode,
225                           struct drm_display_mode *adjusted_mode)
226 {
227         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
228         int max_lanes = intel_dp_max_lane_count(intel_dp);
229         int max_rate, mode_rate;
230
231         mode_rate = intel_dp_link_required(mode->clock, 24);
232         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
233
234         if (mode_rate > max_rate) {
235                 mode_rate = intel_dp_link_required(mode->clock, 18);
236                 if (mode_rate > max_rate)
237                         return false;
238
239                 if (adjusted_mode)
240                         adjusted_mode->private_flags
241                                 |= INTEL_MODE_DP_FORCE_6BPC;
242
243                 return true;
244         }
245
246         return true;
247 }
248
249 static int
250 intel_dp_mode_valid(struct drm_connector *connector,
251                     struct drm_display_mode *mode)
252 {
253         struct intel_dp *intel_dp = intel_attached_dp(connector);
254
255         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
256                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
257                         return MODE_PANEL;
258
259                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
260                         return MODE_PANEL;
261         }
262
263         if (!intel_dp_adjust_dithering(intel_dp, mode, NULL))
264                 return MODE_CLOCK_HIGH;
265
266         if (mode->clock < 10000)
267                 return MODE_CLOCK_LOW;
268
269         return MODE_OK;
270 }
271
272 static uint32_t
273 pack_aux(uint8_t *src, int src_bytes)
274 {
275         int     i;
276         uint32_t v = 0;
277
278         if (src_bytes > 4)
279                 src_bytes = 4;
280         for (i = 0; i < src_bytes; i++)
281                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
282         return v;
283 }
284
285 static void
286 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
287 {
288         int i;
289         if (dst_bytes > 4)
290                 dst_bytes = 4;
291         for (i = 0; i < dst_bytes; i++)
292                 dst[i] = src >> ((3-i) * 8);
293 }
294
295 /* hrawclock is 1/4 the FSB frequency */
296 static int
297 intel_hrawclk(struct drm_device *dev)
298 {
299         struct drm_i915_private *dev_priv = dev->dev_private;
300         uint32_t clkcfg;
301
302         clkcfg = I915_READ(CLKCFG);
303         switch (clkcfg & CLKCFG_FSB_MASK) {
304         case CLKCFG_FSB_400:
305                 return 100;
306         case CLKCFG_FSB_533:
307                 return 133;
308         case CLKCFG_FSB_667:
309                 return 166;
310         case CLKCFG_FSB_800:
311                 return 200;
312         case CLKCFG_FSB_1067:
313                 return 266;
314         case CLKCFG_FSB_1333:
315                 return 333;
316         /* these two are just a guess; one of them might be right */
317         case CLKCFG_FSB_1600:
318         case CLKCFG_FSB_1600_ALT:
319                 return 400;
320         default:
321                 return 133;
322         }
323 }
324
325 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
326 {
327         struct drm_device *dev = intel_dp->base.base.dev;
328         struct drm_i915_private *dev_priv = dev->dev_private;
329
330         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
331 }
332
333 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
334 {
335         struct drm_device *dev = intel_dp->base.base.dev;
336         struct drm_i915_private *dev_priv = dev->dev_private;
337
338         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
339 }
340
341 static void
342 intel_dp_check_edp(struct intel_dp *intel_dp)
343 {
344         struct drm_device *dev = intel_dp->base.base.dev;
345         struct drm_i915_private *dev_priv = dev->dev_private;
346
347         if (!is_edp(intel_dp))
348                 return;
349         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
350                 printf("eDP powered off while attempting aux channel communication.\n");
351                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
352                               I915_READ(PCH_PP_STATUS),
353                               I915_READ(PCH_PP_CONTROL));
354         }
355 }
356
357 static int
358 intel_dp_aux_ch(struct intel_dp *intel_dp,
359                 uint8_t *send, int send_bytes,
360                 uint8_t *recv, int recv_size)
361 {
362         uint32_t output_reg = intel_dp->output_reg;
363         struct drm_device *dev = intel_dp->base.base.dev;
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         uint32_t ch_ctl = output_reg + 0x10;
366         uint32_t ch_data = ch_ctl + 4;
367         int i;
368         int recv_bytes;
369         uint32_t status;
370         uint32_t aux_clock_divider;
371         int try, precharge = 5;
372
373         intel_dp_check_edp(intel_dp);
374         /* The clock divider is based off the hrawclk,
375          * and would like to run at 2MHz. So, take the
376          * hrawclk value and divide by 2 and use that
377          *
378          * Note that PCH attached eDP panels should use a 125MHz input
379          * clock divider.
380          */
381         if (is_cpu_edp(intel_dp)) {
382                 if (IS_GEN6(dev) || IS_GEN7(dev))
383                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
384                 else
385                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
386         } else if (HAS_PCH_SPLIT(dev))
387                 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
388         else
389                 aux_clock_divider = intel_hrawclk(dev) / 2;
390
391         /* Try to wait for any previous AUX channel activity */
392         for (try = 0; try < 3; try++) {
393                 status = I915_READ(ch_ctl);
394                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
395                         break;
396                 drm_msleep(1, "915ach");
397         }
398
399         if (try == 3) {
400                 printf("dp_aux_ch not started status 0x%08x\n",
401                      I915_READ(ch_ctl));
402                 return -EBUSY;
403         }
404
405         /* Must try at least 3 times according to DP spec */
406         for (try = 0; try < 5; try++) {
407                 /* Load the send data into the aux channel data registers */
408                 for (i = 0; i < send_bytes; i += 4)
409                         I915_WRITE(ch_data + i,
410                                    pack_aux(send + i, send_bytes - i));
411
412                 /* Send the command and wait for it to complete */
413                 I915_WRITE(ch_ctl,
414                            DP_AUX_CH_CTL_SEND_BUSY |
415                            DP_AUX_CH_CTL_TIME_OUT_400us |
416                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
417                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
418                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
419                            DP_AUX_CH_CTL_DONE |
420                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
421                            DP_AUX_CH_CTL_RECEIVE_ERROR);
422                 for (;;) {
423                         status = I915_READ(ch_ctl);
424                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
425                                 break;
426                         DELAY(100);
427                 }
428
429                 /* Clear done status and any errors */
430                 I915_WRITE(ch_ctl,
431                            status |
432                            DP_AUX_CH_CTL_DONE |
433                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
434                            DP_AUX_CH_CTL_RECEIVE_ERROR);
435
436                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
437                               DP_AUX_CH_CTL_RECEIVE_ERROR))
438                         continue;
439                 if (status & DP_AUX_CH_CTL_DONE)
440                         break;
441         }
442
443         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
444                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
445                 return -EBUSY;
446         }
447
448         /* Check for timeout or receive error.
449          * Timeouts occur when the sink is not connected
450          */
451         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
452                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
453                 return -EIO;
454         }
455
456         /* Timeouts occur when the device isn't connected, so they're
457          * "normal" -- don't fill the kernel log with these */
458         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
459                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
460                 return -ETIMEDOUT;
461         }
462
463         /* Unload any bytes sent back from the other side */
464         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
465                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
466         if (recv_bytes > recv_size)
467                 recv_bytes = recv_size;
468
469         for (i = 0; i < recv_bytes; i += 4)
470                 unpack_aux(I915_READ(ch_data + i),
471                            recv + i, recv_bytes - i);
472
473         return recv_bytes;
474 }
475
476 /* Write data to the aux channel in native mode */
477 static int
478 intel_dp_aux_native_write(struct intel_dp *intel_dp,
479                           uint16_t address, uint8_t *send, int send_bytes)
480 {
481         int ret;
482         uint8_t msg[20];
483         int msg_bytes;
484         uint8_t ack;
485
486         intel_dp_check_edp(intel_dp);
487         if (send_bytes > 16)
488                 return -1;
489         msg[0] = AUX_NATIVE_WRITE << 4;
490         msg[1] = address >> 8;
491         msg[2] = address & 0xff;
492         msg[3] = send_bytes - 1;
493         memcpy(&msg[4], send, send_bytes);
494         msg_bytes = send_bytes + 4;
495         for (;;) {
496                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
497                 if (ret < 0)
498                         return ret;
499                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
500                         break;
501                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
502                         DELAY(100);
503                 else
504                         return -EIO;
505         }
506         return send_bytes;
507 }
508
509 /* Write a single byte to the aux channel in native mode */
510 static int
511 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
512                             uint16_t address, uint8_t byte)
513 {
514         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
515 }
516
517 /* read bytes from a native aux channel */
518 static int
519 intel_dp_aux_native_read(struct intel_dp *intel_dp,
520                          uint16_t address, uint8_t *recv, int recv_bytes)
521 {
522         uint8_t msg[4];
523         int msg_bytes;
524         uint8_t reply[20];
525         int reply_bytes;
526         uint8_t ack;
527         int ret;
528
529         intel_dp_check_edp(intel_dp);
530         msg[0] = AUX_NATIVE_READ << 4;
531         msg[1] = address >> 8;
532         msg[2] = address & 0xff;
533         msg[3] = recv_bytes - 1;
534
535         msg_bytes = 4;
536         reply_bytes = recv_bytes + 1;
537
538         for (;;) {
539                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
540                                       reply, reply_bytes);
541                 if (ret == 0)
542                         return -EPROTO;
543                 if (ret < 0)
544                         return ret;
545                 ack = reply[0];
546                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
547                         memcpy(recv, reply + 1, ret - 1);
548                         return ret - 1;
549                 }
550                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
551                         DELAY(100);
552                 else
553                         return -EIO;
554         }
555 }
556
557 static int
558 intel_dp_i2c_aux_ch(device_t idev, int mode, uint8_t write_byte,
559     uint8_t *read_byte)
560 {
561         struct iic_dp_aux_data *data;
562         struct intel_dp *intel_dp;
563         uint16_t address;
564         uint8_t msg[5];
565         uint8_t reply[2];
566         unsigned retry;
567         int msg_bytes;
568         int reply_bytes;
569         int ret;
570
571         data = device_get_softc(idev);
572         intel_dp = data->priv;
573         address = data->address;
574
575         intel_dp_check_edp(intel_dp);
576         /* Set up the command byte */
577         if (mode & MODE_I2C_READ)
578                 msg[0] = AUX_I2C_READ << 4;
579         else
580                 msg[0] = AUX_I2C_WRITE << 4;
581
582         if (!(mode & MODE_I2C_STOP))
583                 msg[0] |= AUX_I2C_MOT << 4;
584
585         msg[1] = address >> 8;
586         msg[2] = address;
587
588         switch (mode) {
589         case MODE_I2C_WRITE:
590                 msg[3] = 0;
591                 msg[4] = write_byte;
592                 msg_bytes = 5;
593                 reply_bytes = 1;
594                 break;
595         case MODE_I2C_READ:
596                 msg[3] = 0;
597                 msg_bytes = 4;
598                 reply_bytes = 2;
599                 break;
600         default:
601                 msg_bytes = 3;
602                 reply_bytes = 1;
603                 break;
604         }
605
606         for (retry = 0; retry < 5; retry++) {
607                 ret = intel_dp_aux_ch(intel_dp,
608                                       msg, msg_bytes,
609                                       reply, reply_bytes);
610                 if (ret < 0) {
611                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
612                         return (-ret);
613                 }
614
615                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
616                 case AUX_NATIVE_REPLY_ACK:
617                         /* I2C-over-AUX Reply field is only valid
618                          * when paired with AUX ACK.
619                          */
620                         break;
621                 case AUX_NATIVE_REPLY_NACK:
622                         DRM_DEBUG_KMS("aux_ch native nack\n");
623                         return (EREMOTEIO);
624                 case AUX_NATIVE_REPLY_DEFER:
625                         DELAY(100);
626                         continue;
627                 default:
628                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
629                                   reply[0]);
630                         return (EREMOTEIO);
631                 }
632
633                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
634                 case AUX_I2C_REPLY_ACK:
635                         if (mode == MODE_I2C_READ) {
636                                 *read_byte = reply[1];
637                         }
638                         return (0/*reply_bytes - 1*/);
639                 case AUX_I2C_REPLY_NACK:
640                         DRM_DEBUG_KMS("aux_i2c nack\n");
641                         return (EREMOTEIO);
642                 case AUX_I2C_REPLY_DEFER:
643                         DRM_DEBUG_KMS("aux_i2c defer\n");
644                         DELAY(100);
645                         break;
646                 default:
647                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
648                         return (EREMOTEIO);
649                 }
650         }
651
652         DRM_ERROR("too many retries, giving up\n");
653         return (EREMOTEIO);
654 }
655
656 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
657 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
658
659 static int
660 intel_dp_i2c_init(struct intel_dp *intel_dp,
661                   struct intel_connector *intel_connector, const char *name)
662 {
663         int ret;
664
665         DRM_DEBUG_KMS("i2c_init %s\n", name);
666
667         ironlake_edp_panel_vdd_on(intel_dp);
668         ret = iic_dp_aux_add_bus(intel_connector->base.dev->device, name,
669             intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
670             &intel_dp->adapter);
671         ironlake_edp_panel_vdd_off(intel_dp, false);
672         return (ret);
673 }
674
675 static bool
676 intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
677                     struct drm_display_mode *adjusted_mode)
678 {
679         struct drm_device *dev = encoder->dev;
680         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
681         int lane_count, clock;
682         int max_lane_count = intel_dp_max_lane_count(intel_dp);
683         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
684         int bpp;
685         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
686
687         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
688                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
689                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
690                                         mode, adjusted_mode);
691         }
692
693         if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, adjusted_mode))
694                 return false;
695
696         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
697
698         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
699                 for (clock = 0; clock <= max_clock; clock++) {
700                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
701
702                         if (intel_dp_link_required(adjusted_mode->clock, bpp)
703                                         <= link_avail) {
704                                 intel_dp->link_bw = bws[clock];
705                                 intel_dp->lane_count = lane_count;
706                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
707                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
708                                                 "count %d clock %d\n",
709                                        intel_dp->link_bw, intel_dp->lane_count,
710                                        adjusted_mode->clock);
711                                 return true;
712                         }
713                 }
714         }
715
716         return false;
717 }
718
719 struct intel_dp_m_n {
720         uint32_t        tu;
721         uint32_t        gmch_m;
722         uint32_t        gmch_n;
723         uint32_t        link_m;
724         uint32_t        link_n;
725 };
726
727 static void
728 intel_reduce_ratio(uint32_t *num, uint32_t *den)
729 {
730         while (*num > 0xffffff || *den > 0xffffff) {
731                 *num >>= 1;
732                 *den >>= 1;
733         }
734 }
735
736 static void
737 intel_dp_compute_m_n(int bpp,
738                      int nlanes,
739                      int pixel_clock,
740                      int link_clock,
741                      struct intel_dp_m_n *m_n)
742 {
743         m_n->tu = 64;
744         m_n->gmch_m = (pixel_clock * bpp) >> 3;
745         m_n->gmch_n = link_clock * nlanes;
746         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
747         m_n->link_m = pixel_clock;
748         m_n->link_n = link_clock;
749         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
750 }
751
752 void
753 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
754                  struct drm_display_mode *adjusted_mode)
755 {
756         struct drm_device *dev = crtc->dev;
757         struct drm_mode_config *mode_config = &dev->mode_config;
758         struct drm_encoder *encoder;
759         struct drm_i915_private *dev_priv = dev->dev_private;
760         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
761         int lane_count = 4;
762         struct intel_dp_m_n m_n;
763         int pipe = intel_crtc->pipe;
764
765         /*
766          * Find the lane count in the intel_encoder private
767          */
768         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
769                 struct intel_dp *intel_dp;
770
771                 if (encoder->crtc != crtc)
772                         continue;
773
774                 intel_dp = enc_to_intel_dp(encoder);
775                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
776                     intel_dp->base.type == INTEL_OUTPUT_EDP)
777                 {
778                         lane_count = intel_dp->lane_count;
779                         break;
780                 }
781         }
782
783         /*
784          * Compute the GMCH and Link ratios. The '3' here is
785          * the number of bytes_per_pixel post-LUT, which we always
786          * set up for 8-bits of R/G/B, or 3 bytes total.
787          */
788         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
789                              mode->clock, adjusted_mode->clock, &m_n);
790
791         if (HAS_PCH_SPLIT(dev)) {
792                 I915_WRITE(TRANSDATA_M1(pipe),
793                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
794                            m_n.gmch_m);
795                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
796                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
797                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
798         } else {
799                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
800                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
801                            m_n.gmch_m);
802                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
803                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
804                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
805         }
806 }
807
808 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
809 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
810
811 static void
812 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
813                   struct drm_display_mode *adjusted_mode)
814 {
815         struct drm_device *dev = encoder->dev;
816         struct drm_i915_private *dev_priv = dev->dev_private;
817         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
818         struct drm_crtc *crtc = intel_dp->base.base.crtc;
819         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
820
821         /* Turn on the eDP PLL if needed */
822         if (is_edp(intel_dp)) {
823                 if (!is_pch_edp(intel_dp))
824                         ironlake_edp_pll_on(encoder);
825                 else
826                         ironlake_edp_pll_off(encoder);
827         }
828
829         /*
830          * There are four kinds of DP registers:
831          *
832          *      IBX PCH
833          *      SNB CPU
834          *      IVB CPU
835          *      CPT PCH
836          *
837          * IBX PCH and CPU are the same for almost everything,
838          * except that the CPU DP PLL is configured in this
839          * register
840          *
841          * CPT PCH is quite different, having many bits moved
842          * to the TRANS_DP_CTL register instead. That
843          * configuration happens (oddly) in ironlake_pch_enable
844          */
845
846         /* Preserve the BIOS-computed detected bit. This is
847          * supposed to be read-only.
848          */
849         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
850         intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
851
852         /* Handle DP bits in common between all three register formats */
853
854         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
855
856         switch (intel_dp->lane_count) {
857         case 1:
858                 intel_dp->DP |= DP_PORT_WIDTH_1;
859                 break;
860         case 2:
861                 intel_dp->DP |= DP_PORT_WIDTH_2;
862                 break;
863         case 4:
864                 intel_dp->DP |= DP_PORT_WIDTH_4;
865                 break;
866         }
867         if (intel_dp->has_audio) {
868                 DRM_DEBUG_KMS("Enabling DP audio on pipe %c\n",
869                                  pipe_name(intel_crtc->pipe));
870                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
871                 intel_write_eld(encoder, adjusted_mode);
872         }
873         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
874         intel_dp->link_configuration[0] = intel_dp->link_bw;
875         intel_dp->link_configuration[1] = intel_dp->lane_count;
876         /*
877          * Check for DPCD version > 1.1 and enhanced framing support
878          */
879         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
880             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
881                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
882         }
883
884         /* Split out the IBX/CPU vs CPT settings */
885
886         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
887                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
888                         intel_dp->DP |= DP_SYNC_HS_HIGH;
889                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
890                         intel_dp->DP |= DP_SYNC_VS_HIGH;
891                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
892
893                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
894                         intel_dp->DP |= DP_ENHANCED_FRAMING;
895
896                 intel_dp->DP |= intel_crtc->pipe << 29;
897
898                 /* don't miss out required setting for eDP */
899                 intel_dp->DP |= DP_PLL_ENABLE;
900                 if (adjusted_mode->clock < 200000)
901                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
902                 else
903                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
904         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
905                 intel_dp->DP |= intel_dp->color_range;
906
907                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
908                         intel_dp->DP |= DP_SYNC_HS_HIGH;
909                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
910                         intel_dp->DP |= DP_SYNC_VS_HIGH;
911                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
912
913                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
914                         intel_dp->DP |= DP_ENHANCED_FRAMING;
915
916                 if (intel_crtc->pipe == 1)
917                         intel_dp->DP |= DP_PIPEB_SELECT;
918
919                 if (is_cpu_edp(intel_dp)) {
920                         /* don't miss out required setting for eDP */
921                         intel_dp->DP |= DP_PLL_ENABLE;
922                         if (adjusted_mode->clock < 200000)
923                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
924                         else
925                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
926                 }
927         } else {
928                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
929         }
930 }
931
932 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
933 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
934
935 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
936 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
937
938 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
939 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
940
941 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
942                                        u32 mask,
943                                        u32 value)
944 {
945         struct drm_device *dev = intel_dp->base.base.dev;
946         struct drm_i915_private *dev_priv = dev->dev_private;
947
948         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
949                       mask, value,
950                       I915_READ(PCH_PP_STATUS),
951                       I915_READ(PCH_PP_CONTROL));
952
953         if (_intel_wait_for(dev,
954             (I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10, "915iwp")) {
955                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
956                           I915_READ(PCH_PP_STATUS),
957                           I915_READ(PCH_PP_CONTROL));
958         }
959 }
960
961 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
962 {
963         DRM_DEBUG_KMS("Wait for panel power on\n");
964         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
965 }
966
967 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
968 {
969         DRM_DEBUG_KMS("Wait for panel power off time\n");
970         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
971 }
972
973 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
974 {
975         DRM_DEBUG_KMS("Wait for panel power cycle\n");
976         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
977 }
978
979
980 /* Read the current pp_control value, unlocking the register if it
981  * is locked
982  */
983
984 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
985 {
986         u32     control = I915_READ(PCH_PP_CONTROL);
987
988         control &= ~PANEL_UNLOCK_MASK;
989         control |= PANEL_UNLOCK_REGS;
990         return control;
991 }
992
993 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
994 {
995         struct drm_device *dev = intel_dp->base.base.dev;
996         struct drm_i915_private *dev_priv = dev->dev_private;
997         u32 pp;
998
999         if (!is_edp(intel_dp))
1000                 return;
1001         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1002
1003         if (intel_dp->want_panel_vdd)
1004                 printf("eDP VDD already requested on\n");
1005
1006         intel_dp->want_panel_vdd = true;
1007
1008         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1009                 DRM_DEBUG_KMS("eDP VDD already on\n");
1010                 return;
1011         }
1012
1013         if (!ironlake_edp_have_panel_power(intel_dp))
1014                 ironlake_wait_panel_power_cycle(intel_dp);
1015
1016         pp = ironlake_get_pp_control(dev_priv);
1017         pp |= EDP_FORCE_VDD;
1018         I915_WRITE(PCH_PP_CONTROL, pp);
1019         POSTING_READ(PCH_PP_CONTROL);
1020         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1021                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1022
1023         /*
1024          * If the panel wasn't on, delay before accessing aux channel
1025          */
1026         if (!ironlake_edp_have_panel_power(intel_dp)) {
1027                 DRM_DEBUG_KMS("eDP was not running\n");
1028                 drm_msleep(intel_dp->panel_power_up_delay, "915edpon");
1029         }
1030 }
1031
1032 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1033 {
1034         struct drm_device *dev = intel_dp->base.base.dev;
1035         struct drm_i915_private *dev_priv = dev->dev_private;
1036         u32 pp;
1037
1038         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1039                 pp = ironlake_get_pp_control(dev_priv);
1040                 pp &= ~EDP_FORCE_VDD;
1041                 I915_WRITE(PCH_PP_CONTROL, pp);
1042                 POSTING_READ(PCH_PP_CONTROL);
1043
1044                 /* Make sure sequencer is idle before allowing subsequent activity */
1045                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1046                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1047
1048                 drm_msleep(intel_dp->panel_power_down_delay, "915vddo");
1049         }
1050 }
1051
1052 static void ironlake_panel_vdd_work(void *arg, int pending __unused)
1053 {
1054         struct intel_dp *intel_dp = arg;
1055         struct drm_device *dev = intel_dp->base.base.dev;
1056
1057         sx_xlock(&dev->mode_config.mutex);
1058         ironlake_panel_vdd_off_sync(intel_dp);
1059         sx_xunlock(&dev->mode_config.mutex);
1060 }
1061
1062 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1063 {
1064         if (!is_edp(intel_dp))
1065                 return;
1066
1067         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1068         if (!intel_dp->want_panel_vdd)
1069                 printf("eDP VDD not forced on\n");
1070
1071         intel_dp->want_panel_vdd = false;
1072
1073         if (sync) {
1074                 ironlake_panel_vdd_off_sync(intel_dp);
1075         } else {
1076                 /*
1077                  * Queue the timer to fire a long
1078                  * time from now (relative to the power down delay)
1079                  * to keep the panel power up across a sequence of operations
1080                  */
1081                 struct drm_i915_private *dev_priv = intel_dp->base.base.dev->dev_private;
1082                 taskqueue_enqueue_timeout(dev_priv->tq,
1083                     &intel_dp->panel_vdd_task,
1084                     msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1085         }
1086 }
1087
1088 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1089 {
1090         struct drm_device *dev = intel_dp->base.base.dev;
1091         struct drm_i915_private *dev_priv = dev->dev_private;
1092         u32 pp;
1093
1094         if (!is_edp(intel_dp))
1095                 return;
1096
1097         DRM_DEBUG_KMS("Turn eDP power on\n");
1098
1099         if (ironlake_edp_have_panel_power(intel_dp)) {
1100                 DRM_DEBUG_KMS("eDP power already on\n");
1101                 return;
1102         }
1103
1104         ironlake_wait_panel_power_cycle(intel_dp);
1105
1106         pp = ironlake_get_pp_control(dev_priv);
1107         if (IS_GEN5(dev)) {
1108                 /* ILK workaround: disable reset around power sequence */
1109                 pp &= ~PANEL_POWER_RESET;
1110                 I915_WRITE(PCH_PP_CONTROL, pp);
1111                 POSTING_READ(PCH_PP_CONTROL);
1112         }
1113
1114         pp |= POWER_TARGET_ON;
1115         if (!IS_GEN5(dev))
1116                 pp |= PANEL_POWER_RESET;
1117
1118         I915_WRITE(PCH_PP_CONTROL, pp);
1119         POSTING_READ(PCH_PP_CONTROL);
1120
1121         ironlake_wait_panel_on(intel_dp);
1122
1123         if (IS_GEN5(dev)) {
1124                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1125                 I915_WRITE(PCH_PP_CONTROL, pp);
1126                 POSTING_READ(PCH_PP_CONTROL);
1127         }
1128 }
1129
1130 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1131 {
1132         struct drm_device *dev = intel_dp->base.base.dev;
1133         struct drm_i915_private *dev_priv = dev->dev_private;
1134         u32 pp;
1135
1136         if (!is_edp(intel_dp))
1137                 return;
1138
1139         DRM_DEBUG_KMS("Turn eDP power off\n");
1140
1141         if (intel_dp->want_panel_vdd)
1142                 printf("Cannot turn power off while VDD is on\n");
1143
1144         pp = ironlake_get_pp_control(dev_priv);
1145         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1146         I915_WRITE(PCH_PP_CONTROL, pp);
1147         POSTING_READ(PCH_PP_CONTROL);
1148
1149         ironlake_wait_panel_off(intel_dp);
1150 }
1151
1152 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1153 {
1154         struct drm_device *dev = intel_dp->base.base.dev;
1155         struct drm_i915_private *dev_priv = dev->dev_private;
1156         u32 pp;
1157
1158         if (!is_edp(intel_dp))
1159                 return;
1160
1161         DRM_DEBUG_KMS("\n");
1162         /*
1163          * If we enable the backlight right away following a panel power
1164          * on, we may see slight flicker as the panel syncs with the eDP
1165          * link.  So delay a bit to make sure the image is solid before
1166          * allowing it to appear.
1167          */
1168         drm_msleep(intel_dp->backlight_on_delay, "915ebo");
1169         pp = ironlake_get_pp_control(dev_priv);
1170         pp |= EDP_BLC_ENABLE;
1171         I915_WRITE(PCH_PP_CONTROL, pp);
1172         POSTING_READ(PCH_PP_CONTROL);
1173 }
1174
1175 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1176 {
1177         struct drm_device *dev = intel_dp->base.base.dev;
1178         struct drm_i915_private *dev_priv = dev->dev_private;
1179         u32 pp;
1180
1181         if (!is_edp(intel_dp))
1182                 return;
1183
1184         DRM_DEBUG_KMS("\n");
1185         pp = ironlake_get_pp_control(dev_priv);
1186         pp &= ~EDP_BLC_ENABLE;
1187         I915_WRITE(PCH_PP_CONTROL, pp);
1188         POSTING_READ(PCH_PP_CONTROL);
1189         drm_msleep(intel_dp->backlight_off_delay, "915bo1");
1190 }
1191
1192 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1193 {
1194         struct drm_device *dev = encoder->dev;
1195         struct drm_i915_private *dev_priv = dev->dev_private;
1196         u32 dpa_ctl;
1197
1198         DRM_DEBUG_KMS("\n");
1199         dpa_ctl = I915_READ(DP_A);
1200         dpa_ctl |= DP_PLL_ENABLE;
1201         I915_WRITE(DP_A, dpa_ctl);
1202         POSTING_READ(DP_A);
1203         DELAY(200);
1204 }
1205
1206 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1207 {
1208         struct drm_device *dev = encoder->dev;
1209         struct drm_i915_private *dev_priv = dev->dev_private;
1210         u32 dpa_ctl;
1211
1212         dpa_ctl = I915_READ(DP_A);
1213         dpa_ctl &= ~DP_PLL_ENABLE;
1214         I915_WRITE(DP_A, dpa_ctl);
1215         POSTING_READ(DP_A);
1216         DELAY(200);
1217 }
1218
1219 /* If the sink supports it, try to set the power state appropriately */
1220 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1221 {
1222         int ret, i;
1223
1224         /* Should have a valid DPCD by this point */
1225         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1226                 return;
1227
1228         if (mode != DRM_MODE_DPMS_ON) {
1229                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1230                                                   DP_SET_POWER_D3);
1231                 if (ret != 1)
1232                         DRM_DEBUG("failed to write sink power state\n");
1233         } else {
1234                 /*
1235                  * When turning on, we need to retry for 1ms to give the sink
1236                  * time to wake up.
1237                  */
1238                 for (i = 0; i < 3; i++) {
1239                         ret = intel_dp_aux_native_write_1(intel_dp,
1240                                                           DP_SET_POWER,
1241                                                           DP_SET_POWER_D0);
1242                         if (ret == 1)
1243                                 break;
1244                         drm_msleep(1, "915dps");
1245                 }
1246         }
1247 }
1248
1249 static void intel_dp_prepare(struct drm_encoder *encoder)
1250 {
1251         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1252
1253         ironlake_edp_backlight_off(intel_dp);
1254         ironlake_edp_panel_off(intel_dp);
1255
1256         /* Wake up the sink first */
1257         ironlake_edp_panel_vdd_on(intel_dp);
1258         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1259         intel_dp_link_down(intel_dp);
1260         ironlake_edp_panel_vdd_off(intel_dp, false);
1261
1262         /* Make sure the panel is off before trying to
1263          * change the mode
1264          */
1265 }
1266
1267 static void intel_dp_commit(struct drm_encoder *encoder)
1268 {
1269         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1270         struct drm_device *dev = encoder->dev;
1271         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1272
1273         ironlake_edp_panel_vdd_on(intel_dp);
1274         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1275         intel_dp_start_link_train(intel_dp);
1276         ironlake_edp_panel_on(intel_dp);
1277         ironlake_edp_panel_vdd_off(intel_dp, true);
1278         intel_dp_complete_link_train(intel_dp);
1279         ironlake_edp_backlight_on(intel_dp);
1280
1281         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1282
1283         if (HAS_PCH_CPT(dev))
1284                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1285 }
1286
1287 static void
1288 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1289 {
1290         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1291         struct drm_device *dev = encoder->dev;
1292         struct drm_i915_private *dev_priv = dev->dev_private;
1293         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1294
1295         if (mode != DRM_MODE_DPMS_ON) {
1296                 ironlake_edp_backlight_off(intel_dp);
1297                 ironlake_edp_panel_off(intel_dp);
1298
1299                 ironlake_edp_panel_vdd_on(intel_dp);
1300                 intel_dp_sink_dpms(intel_dp, mode);
1301                 intel_dp_link_down(intel_dp);
1302                 ironlake_edp_panel_vdd_off(intel_dp, false);
1303
1304                 if (is_cpu_edp(intel_dp))
1305                         ironlake_edp_pll_off(encoder);
1306         } else {
1307                 if (is_cpu_edp(intel_dp))
1308                         ironlake_edp_pll_on(encoder);
1309
1310                 ironlake_edp_panel_vdd_on(intel_dp);
1311                 intel_dp_sink_dpms(intel_dp, mode);
1312                 if (!(dp_reg & DP_PORT_EN)) {
1313                         intel_dp_start_link_train(intel_dp);
1314                         ironlake_edp_panel_on(intel_dp);
1315                         ironlake_edp_panel_vdd_off(intel_dp, true);
1316                         intel_dp_complete_link_train(intel_dp);
1317                 } else
1318                         ironlake_edp_panel_vdd_off(intel_dp, false);
1319                 ironlake_edp_backlight_on(intel_dp);
1320         }
1321         intel_dp->dpms_mode = mode;
1322 }
1323 /*
1324  * Native read with retry for link status and receiver capability reads for
1325  * cases where the sink may still be asleep.
1326  */
1327 static bool
1328 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1329                                uint8_t *recv, int recv_bytes)
1330 {
1331         int ret, i;
1332
1333         /*
1334          * Sinks are *supposed* to come up within 1ms from an off state,
1335          * but we're also supposed to retry 3 times per the spec.
1336          */
1337         for (i = 0; i < 3; i++) {
1338                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1339                                                recv_bytes);
1340                 if (ret == recv_bytes)
1341                         return true;
1342                 drm_msleep(1, "915dpl");
1343         }
1344
1345         return false;
1346 }
1347
1348 /*
1349  * Fetch AUX CH registers 0x202 - 0x207 which contain
1350  * link status information
1351  */
1352 static bool
1353 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1354 {
1355         return intel_dp_aux_native_read_retry(intel_dp,
1356                                               DP_LANE0_1_STATUS,
1357                                               link_status,
1358                                               DP_LINK_STATUS_SIZE);
1359 }
1360
1361 static uint8_t
1362 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1363                      int r)
1364 {
1365         return link_status[r - DP_LANE0_1_STATUS];
1366 }
1367
1368 static uint8_t
1369 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1370                                  int lane)
1371 {
1372         int         s = ((lane & 1) ?
1373                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1374                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1375         uint8_t l = adjust_request[lane>>1];
1376
1377         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1378 }
1379
1380 static uint8_t
1381 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1382                                       int lane)
1383 {
1384         int         s = ((lane & 1) ?
1385                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1386                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1387         uint8_t l = adjust_request[lane>>1];
1388
1389         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1390 }
1391
1392
1393 #if 0
1394 static char     *voltage_names[] = {
1395         "0.4V", "0.6V", "0.8V", "1.2V"
1396 };
1397 static char     *pre_emph_names[] = {
1398         "0dB", "3.5dB", "6dB", "9.5dB"
1399 };
1400 static char     *link_train_names[] = {
1401         "pattern 1", "pattern 2", "idle", "off"
1402 };
1403 #endif
1404
1405 /*
1406  * These are source-specific values; current Intel hardware supports
1407  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1408  */
1409
1410 static uint8_t
1411 intel_dp_voltage_max(struct intel_dp *intel_dp)
1412 {
1413         struct drm_device *dev = intel_dp->base.base.dev;
1414
1415         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1416                 return DP_TRAIN_VOLTAGE_SWING_800;
1417         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1418                 return DP_TRAIN_VOLTAGE_SWING_1200;
1419         else
1420                 return DP_TRAIN_VOLTAGE_SWING_800;
1421 }
1422
1423 static uint8_t
1424 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1425 {
1426         struct drm_device *dev = intel_dp->base.base.dev;
1427
1428         if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1429                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1430                 case DP_TRAIN_VOLTAGE_SWING_400:
1431                         return DP_TRAIN_PRE_EMPHASIS_6;
1432                 case DP_TRAIN_VOLTAGE_SWING_600:
1433                 case DP_TRAIN_VOLTAGE_SWING_800:
1434                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1435                 default:
1436                         return DP_TRAIN_PRE_EMPHASIS_0;
1437                 }
1438         } else {
1439                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1440                 case DP_TRAIN_VOLTAGE_SWING_400:
1441                         return DP_TRAIN_PRE_EMPHASIS_6;
1442                 case DP_TRAIN_VOLTAGE_SWING_600:
1443                         return DP_TRAIN_PRE_EMPHASIS_6;
1444                 case DP_TRAIN_VOLTAGE_SWING_800:
1445                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1446                 case DP_TRAIN_VOLTAGE_SWING_1200:
1447                 default:
1448                         return DP_TRAIN_PRE_EMPHASIS_0;
1449                 }
1450         }
1451 }
1452
1453 static void
1454 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1455 {
1456         uint8_t v = 0;
1457         uint8_t p = 0;
1458         int lane;
1459         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1460         uint8_t voltage_max;
1461         uint8_t preemph_max;
1462
1463         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1464                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1465                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1466
1467                 if (this_v > v)
1468                         v = this_v;
1469                 if (this_p > p)
1470                         p = this_p;
1471         }
1472
1473         voltage_max = intel_dp_voltage_max(intel_dp);
1474         if (v >= voltage_max)
1475                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1476
1477         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1478         if (p >= preemph_max)
1479                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1480
1481         for (lane = 0; lane < 4; lane++)
1482                 intel_dp->train_set[lane] = v | p;
1483 }
1484
1485 static uint32_t
1486 intel_dp_signal_levels(uint8_t train_set)
1487 {
1488         uint32_t        signal_levels = 0;
1489
1490         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1491         case DP_TRAIN_VOLTAGE_SWING_400:
1492         default:
1493                 signal_levels |= DP_VOLTAGE_0_4;
1494                 break;
1495         case DP_TRAIN_VOLTAGE_SWING_600:
1496                 signal_levels |= DP_VOLTAGE_0_6;
1497                 break;
1498         case DP_TRAIN_VOLTAGE_SWING_800:
1499                 signal_levels |= DP_VOLTAGE_0_8;
1500                 break;
1501         case DP_TRAIN_VOLTAGE_SWING_1200:
1502                 signal_levels |= DP_VOLTAGE_1_2;
1503                 break;
1504         }
1505         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1506         case DP_TRAIN_PRE_EMPHASIS_0:
1507         default:
1508                 signal_levels |= DP_PRE_EMPHASIS_0;
1509                 break;
1510         case DP_TRAIN_PRE_EMPHASIS_3_5:
1511                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1512                 break;
1513         case DP_TRAIN_PRE_EMPHASIS_6:
1514                 signal_levels |= DP_PRE_EMPHASIS_6;
1515                 break;
1516         case DP_TRAIN_PRE_EMPHASIS_9_5:
1517                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1518                 break;
1519         }
1520         return signal_levels;
1521 }
1522
1523 /* Gen6's DP voltage swing and pre-emphasis control */
1524 static uint32_t
1525 intel_gen6_edp_signal_levels(uint8_t train_set)
1526 {
1527         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1528                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1529         switch (signal_levels) {
1530         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1531         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1532                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1533         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1534                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1535         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1536         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1537                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1538         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1539         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1540                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1541         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1542         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1543                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1544         default:
1545                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1546                               "0x%x\n", signal_levels);
1547                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1548         }
1549 }
1550
1551 /* Gen7's DP voltage swing and pre-emphasis control */
1552 static uint32_t
1553 intel_gen7_edp_signal_levels(uint8_t train_set)
1554 {
1555         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1556                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1557         switch (signal_levels) {
1558         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1559                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1560         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1561                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1562         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1563                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1564
1565         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1566                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1567         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1568                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1569
1570         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1571                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1572         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1573                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1574
1575         default:
1576                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1577                               "0x%x\n", signal_levels);
1578                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1579         }
1580 }
1581
1582 static uint8_t
1583 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1584                       int lane)
1585 {
1586         int s = (lane & 1) * 4;
1587         uint8_t l = link_status[lane>>1];
1588
1589         return (l >> s) & 0xf;
1590 }
1591
1592 /* Check for clock recovery is done on all channels */
1593 static bool
1594 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1595 {
1596         int lane;
1597         uint8_t lane_status;
1598
1599         for (lane = 0; lane < lane_count; lane++) {
1600                 lane_status = intel_get_lane_status(link_status, lane);
1601                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1602                         return false;
1603         }
1604         return true;
1605 }
1606
1607 /* Check to see if channel eq is done on all channels */
1608 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1609                          DP_LANE_CHANNEL_EQ_DONE|\
1610                          DP_LANE_SYMBOL_LOCKED)
1611 static bool
1612 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1613 {
1614         uint8_t lane_align;
1615         uint8_t lane_status;
1616         int lane;
1617
1618         lane_align = intel_dp_link_status(link_status,
1619                                           DP_LANE_ALIGN_STATUS_UPDATED);
1620         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1621                 return false;
1622         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1623                 lane_status = intel_get_lane_status(link_status, lane);
1624                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1625                         return false;
1626         }
1627         return true;
1628 }
1629
1630 static bool
1631 intel_dp_set_link_train(struct intel_dp *intel_dp,
1632                         uint32_t dp_reg_value,
1633                         uint8_t dp_train_pat)
1634 {
1635         struct drm_device *dev = intel_dp->base.base.dev;
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637         int ret;
1638
1639         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1640         POSTING_READ(intel_dp->output_reg);
1641
1642         intel_dp_aux_native_write_1(intel_dp,
1643                                     DP_TRAINING_PATTERN_SET,
1644                                     dp_train_pat);
1645
1646         ret = intel_dp_aux_native_write(intel_dp,
1647                                         DP_TRAINING_LANE0_SET,
1648                                         intel_dp->train_set,
1649                                         intel_dp->lane_count);
1650         if (ret != intel_dp->lane_count)
1651                 return false;
1652
1653         return true;
1654 }
1655
1656 /* Enable corresponding port and start training pattern 1 */
1657 static void
1658 intel_dp_start_link_train(struct intel_dp *intel_dp)
1659 {
1660         struct drm_device *dev = intel_dp->base.base.dev;
1661         struct drm_i915_private *dev_priv = dev->dev_private;
1662         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1663         int i;
1664         uint8_t voltage;
1665         bool clock_recovery = false;
1666         int voltage_tries, loop_tries;
1667         u32 reg;
1668         uint32_t DP = intel_dp->DP;
1669
1670         /* Enable output, wait for it to become active */
1671         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1672         POSTING_READ(intel_dp->output_reg);
1673         intel_wait_for_vblank(dev, intel_crtc->pipe);
1674
1675         /* Write the link configuration data */
1676         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1677                                   intel_dp->link_configuration,
1678                                   DP_LINK_CONFIGURATION_SIZE);
1679
1680         DP |= DP_PORT_EN;
1681
1682         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1683                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1684         else
1685                 DP &= ~DP_LINK_TRAIN_MASK;
1686         memset(intel_dp->train_set, 0, 4);
1687         voltage = 0xff;
1688         voltage_tries = 0;
1689         loop_tries = 0;
1690         clock_recovery = false;
1691         for (;;) {
1692                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1693                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1694                 uint32_t    signal_levels;
1695
1696
1697                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1698                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1699                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1700                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1701                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1702                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1703                 } else {
1704                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1705                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1706                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1707                 }
1708
1709                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1710                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1711                 else
1712                         reg = DP | DP_LINK_TRAIN_PAT_1;
1713
1714                 if (!intel_dp_set_link_train(intel_dp, reg,
1715                                              DP_TRAINING_PATTERN_1))
1716                         break;
1717                 /* Set training pattern 1 */
1718
1719                 DELAY(100);
1720                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1721                         DRM_ERROR("failed to get link status\n");
1722                         break;
1723                 }
1724
1725                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1726                         DRM_DEBUG_KMS("clock recovery OK\n");
1727                         clock_recovery = true;
1728                         break;
1729                 }
1730
1731                 /* Check to see if we've tried the max voltage */
1732                 for (i = 0; i < intel_dp->lane_count; i++)
1733                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1734                                 break;
1735                 if (i == intel_dp->lane_count) {
1736                         ++loop_tries;
1737                         if (loop_tries == 5) {
1738                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1739                                 break;
1740                         }
1741                         memset(intel_dp->train_set, 0, 4);
1742                         voltage_tries = 0;
1743                         continue;
1744                 }
1745
1746                 /* Check to see if we've tried the same voltage 5 times */
1747                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1748                         ++voltage_tries;
1749                         if (voltage_tries == 5) {
1750                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1751                                 break;
1752                         }
1753                 } else
1754                         voltage_tries = 0;
1755                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1756
1757                 /* Compute new intel_dp->train_set as requested by target */
1758                 intel_get_adjust_train(intel_dp, link_status);
1759         }
1760
1761         intel_dp->DP = DP;
1762 }
1763
1764 static void
1765 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1766 {
1767         struct drm_device *dev = intel_dp->base.base.dev;
1768         struct drm_i915_private *dev_priv = dev->dev_private;
1769         bool channel_eq = false;
1770         int tries, cr_tries;
1771         u32 reg;
1772         uint32_t DP = intel_dp->DP;
1773
1774         /* channel equalization */
1775         tries = 0;
1776         cr_tries = 0;
1777         channel_eq = false;
1778         for (;;) {
1779                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1780                 uint32_t    signal_levels;
1781                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1782
1783                 if (cr_tries > 5) {
1784                         DRM_ERROR("failed to train DP, aborting\n");
1785                         intel_dp_link_down(intel_dp);
1786                         break;
1787                 }
1788
1789                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1790                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1791                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1792                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1793                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1794                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1795                 } else {
1796                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1797                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1798                 }
1799
1800                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1801                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1802                 else
1803                         reg = DP | DP_LINK_TRAIN_PAT_2;
1804
1805                 /* channel eq pattern */
1806                 if (!intel_dp_set_link_train(intel_dp, reg,
1807                                              DP_TRAINING_PATTERN_2))
1808                         break;
1809
1810                 DELAY(400);
1811                 if (!intel_dp_get_link_status(intel_dp, link_status))
1812                         break;
1813
1814                 /* Make sure clock is still ok */
1815                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1816                         intel_dp_start_link_train(intel_dp);
1817                         cr_tries++;
1818                         continue;
1819                 }
1820
1821                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1822                         channel_eq = true;
1823                         break;
1824                 }
1825
1826                 /* Try 5 times, then try clock recovery if that fails */
1827                 if (tries > 5) {
1828                         intel_dp_link_down(intel_dp);
1829                         intel_dp_start_link_train(intel_dp);
1830                         tries = 0;
1831                         cr_tries++;
1832                         continue;
1833                 }
1834
1835                 /* Compute new intel_dp->train_set as requested by target */
1836                 intel_get_adjust_train(intel_dp, link_status);
1837                 ++tries;
1838         }
1839
1840         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1841                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1842         else
1843                 reg = DP | DP_LINK_TRAIN_OFF;
1844
1845         I915_WRITE(intel_dp->output_reg, reg);
1846         POSTING_READ(intel_dp->output_reg);
1847         intel_dp_aux_native_write_1(intel_dp,
1848                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1849 }
1850
1851 static void
1852 intel_dp_link_down(struct intel_dp *intel_dp)
1853 {
1854         struct drm_device *dev = intel_dp->base.base.dev;
1855         struct drm_i915_private *dev_priv = dev->dev_private;
1856         uint32_t DP = intel_dp->DP;
1857
1858         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1859                 return;
1860
1861         DRM_DEBUG_KMS("\n");
1862
1863         if (is_edp(intel_dp)) {
1864                 DP &= ~DP_PLL_ENABLE;
1865                 I915_WRITE(intel_dp->output_reg, DP);
1866                 POSTING_READ(intel_dp->output_reg);
1867                 DELAY(100);
1868         }
1869
1870         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1871                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1872                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1873         } else {
1874                 DP &= ~DP_LINK_TRAIN_MASK;
1875                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1876         }
1877         POSTING_READ(intel_dp->output_reg);
1878
1879         drm_msleep(17, "915dlo");
1880
1881         if (is_edp(intel_dp)) {
1882                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1883                         DP |= DP_LINK_TRAIN_OFF_CPT;
1884                 else
1885                         DP |= DP_LINK_TRAIN_OFF;
1886         }
1887
1888
1889         if (!HAS_PCH_CPT(dev) &&
1890             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1891                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1892
1893                 /* Hardware workaround: leaving our transcoder select
1894                  * set to transcoder B while it's off will prevent the
1895                  * corresponding HDMI output on transcoder A.
1896                  *
1897                  * Combine this with another hardware workaround:
1898                  * transcoder select bit can only be cleared while the
1899                  * port is enabled.
1900                  */
1901                 DP &= ~DP_PIPEB_SELECT;
1902                 I915_WRITE(intel_dp->output_reg, DP);
1903
1904                 /* Changes to enable or select take place the vblank
1905                  * after being written.
1906                  */
1907                 if (crtc == NULL) {
1908                         /* We can arrive here never having been attached
1909                          * to a CRTC, for instance, due to inheriting
1910                          * random state from the BIOS.
1911                          *
1912                          * If the pipe is not running, play safe and
1913                          * wait for the clocks to stabilise before
1914                          * continuing.
1915                          */
1916                         POSTING_READ(intel_dp->output_reg);
1917                         drm_msleep(50, "915dla");
1918                 } else
1919                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1920         }
1921
1922         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1923         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1924         POSTING_READ(intel_dp->output_reg);
1925         drm_msleep(intel_dp->panel_power_down_delay, "915ldo");
1926 }
1927
1928 static bool
1929 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1930 {
1931         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1932                                            sizeof(intel_dp->dpcd)) &&
1933             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1934                 return true;
1935         }
1936
1937         return false;
1938 }
1939
1940 static bool
1941 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1942 {
1943         int ret;
1944
1945         ret = intel_dp_aux_native_read_retry(intel_dp,
1946                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
1947                                              sink_irq_vector, 1);
1948         if (!ret)
1949                 return false;
1950
1951         return true;
1952 }
1953
1954 static void
1955 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1956 {
1957         /* NAK by default */
1958         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1959 }
1960
1961 /*
1962  * According to DP spec
1963  * 5.1.2:
1964  *  1. Read DPCD
1965  *  2. Configure link according to Receiver Capabilities
1966  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1967  *  4. Check link status on receipt of hot-plug interrupt
1968  */
1969
1970 static void
1971 intel_dp_check_link_status(struct intel_dp *intel_dp)
1972 {
1973         u8 sink_irq_vector;
1974         u8 link_status[DP_LINK_STATUS_SIZE];
1975
1976         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1977                 return;
1978
1979         if (!intel_dp->base.base.crtc)
1980                 return;
1981
1982         /* Try to read receiver status if the link appears to be up */
1983         if (!intel_dp_get_link_status(intel_dp, link_status)) {
1984                 intel_dp_link_down(intel_dp);
1985                 return;
1986         }
1987
1988         /* Now read the DPCD to see if it's actually running */
1989         if (!intel_dp_get_dpcd(intel_dp)) {
1990                 intel_dp_link_down(intel_dp);
1991                 return;
1992         }
1993
1994         /* Try to read the source of the interrupt */
1995         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1996             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1997                 /* Clear interrupt source */
1998                 intel_dp_aux_native_write_1(intel_dp,
1999                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2000                                             sink_irq_vector);
2001
2002                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2003                         intel_dp_handle_test_request(intel_dp);
2004                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2005                         DRM_DEBUG_KMS("CP or sink specific irq unhandled\n");
2006         }
2007
2008         if (!intel_channel_eq_ok(intel_dp, link_status)) {
2009                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2010                               drm_get_encoder_name(&intel_dp->base.base));
2011                 intel_dp_start_link_train(intel_dp);
2012                 intel_dp_complete_link_train(intel_dp);
2013         }
2014 }
2015
2016 static enum drm_connector_status
2017 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2018 {
2019         if (intel_dp_get_dpcd(intel_dp))
2020                 return connector_status_connected;
2021         return connector_status_disconnected;
2022 }
2023
2024 static enum drm_connector_status
2025 ironlake_dp_detect(struct intel_dp *intel_dp)
2026 {
2027         enum drm_connector_status status;
2028
2029         /* Can't disconnect eDP, but you can close the lid... */
2030         if (is_edp(intel_dp)) {
2031                 status = intel_panel_detect(intel_dp->base.base.dev);
2032                 if (status == connector_status_unknown)
2033                         status = connector_status_connected;
2034                 return status;
2035         }
2036
2037         return intel_dp_detect_dpcd(intel_dp);
2038 }
2039
2040 static enum drm_connector_status
2041 g4x_dp_detect(struct intel_dp *intel_dp)
2042 {
2043         struct drm_device *dev = intel_dp->base.base.dev;
2044         struct drm_i915_private *dev_priv = dev->dev_private;
2045         uint32_t temp, bit;
2046
2047         switch (intel_dp->output_reg) {
2048         case DP_B:
2049                 bit = DPB_HOTPLUG_INT_STATUS;
2050                 break;
2051         case DP_C:
2052                 bit = DPC_HOTPLUG_INT_STATUS;
2053                 break;
2054         case DP_D:
2055                 bit = DPD_HOTPLUG_INT_STATUS;
2056                 break;
2057         default:
2058                 return connector_status_unknown;
2059         }
2060
2061         temp = I915_READ(PORT_HOTPLUG_STAT);
2062
2063         if ((temp & bit) == 0)
2064                 return connector_status_disconnected;
2065
2066         return intel_dp_detect_dpcd(intel_dp);
2067 }
2068
2069 static struct edid *
2070 intel_dp_get_edid(struct drm_connector *connector, device_t adapter)
2071 {
2072         struct intel_dp *intel_dp = intel_attached_dp(connector);
2073         struct edid     *edid;
2074
2075         ironlake_edp_panel_vdd_on(intel_dp);
2076         edid = drm_get_edid(connector, adapter);
2077         ironlake_edp_panel_vdd_off(intel_dp, false);
2078         return edid;
2079 }
2080
2081 static int
2082 intel_dp_get_edid_modes(struct drm_connector *connector, device_t adapter)
2083 {
2084         struct intel_dp *intel_dp = intel_attached_dp(connector);
2085         int     ret;
2086
2087         ironlake_edp_panel_vdd_on(intel_dp);
2088         ret = intel_ddc_get_modes(connector, adapter);
2089         ironlake_edp_panel_vdd_off(intel_dp, false);
2090         return ret;
2091 }
2092
2093
2094 /**
2095  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2096  *
2097  * \return true if DP port is connected.
2098  * \return false if DP port is disconnected.
2099  */
2100 static enum drm_connector_status
2101 intel_dp_detect(struct drm_connector *connector, bool force)
2102 {
2103         struct intel_dp *intel_dp = intel_attached_dp(connector);
2104         struct drm_device *dev = intel_dp->base.base.dev;
2105         enum drm_connector_status status;
2106         struct edid *edid = NULL;
2107
2108         intel_dp->has_audio = false;
2109
2110         if (HAS_PCH_SPLIT(dev))
2111                 status = ironlake_dp_detect(intel_dp);
2112         else
2113                 status = g4x_dp_detect(intel_dp);
2114         if (status != connector_status_connected)
2115                 return status;
2116
2117         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2118                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2119         } else {
2120                 edid = intel_dp_get_edid(connector, intel_dp->adapter);
2121                 if (edid) {
2122                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2123                         connector->display_info.raw_edid = NULL;
2124                         free(edid, DRM_MEM_KMS);
2125                 }
2126         }
2127
2128         return connector_status_connected;
2129 }
2130
2131 static int intel_dp_get_modes(struct drm_connector *connector)
2132 {
2133         struct intel_dp *intel_dp = intel_attached_dp(connector);
2134         struct drm_device *dev = intel_dp->base.base.dev;
2135         struct drm_i915_private *dev_priv = dev->dev_private;
2136         int ret;
2137
2138         /* We should parse the EDID data and find out if it has an audio sink
2139          */
2140
2141         ret = intel_dp_get_edid_modes(connector, intel_dp->adapter);
2142         if (ret) {
2143                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2144                         struct drm_display_mode *newmode;
2145                         list_for_each_entry(newmode, &connector->probed_modes,
2146                                             head) {
2147                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2148                                         intel_dp->panel_fixed_mode =
2149                                                 drm_mode_duplicate(dev, newmode);
2150                                         break;
2151                                 }
2152                         }
2153                 }
2154                 return ret;
2155         }
2156
2157         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2158         if (is_edp(intel_dp)) {
2159                 /* initialize panel mode from VBT if available for eDP */
2160                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2161                         intel_dp->panel_fixed_mode =
2162                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2163                         if (intel_dp->panel_fixed_mode) {
2164                                 intel_dp->panel_fixed_mode->type |=
2165                                         DRM_MODE_TYPE_PREFERRED;
2166                         }
2167                 }
2168                 if (intel_dp->panel_fixed_mode) {
2169                         struct drm_display_mode *mode;
2170                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2171                         drm_mode_probed_add(connector, mode);
2172                         return 1;
2173                 }
2174         }
2175         return 0;
2176 }
2177
2178 static bool
2179 intel_dp_detect_audio(struct drm_connector *connector)
2180 {
2181         struct intel_dp *intel_dp = intel_attached_dp(connector);
2182         struct edid *edid;
2183         bool has_audio = false;
2184
2185         edid = intel_dp_get_edid(connector, intel_dp->adapter);
2186         if (edid) {
2187                 has_audio = drm_detect_monitor_audio(edid);
2188
2189                 connector->display_info.raw_edid = NULL;
2190                 free(edid, DRM_MEM_KMS);
2191         }
2192
2193         return has_audio;
2194 }
2195
2196 static int
2197 intel_dp_set_property(struct drm_connector *connector,
2198                       struct drm_property *property,
2199                       uint64_t val)
2200 {
2201         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2202         struct intel_dp *intel_dp = intel_attached_dp(connector);
2203         int ret;
2204
2205         ret = drm_connector_property_set_value(connector, property, val);
2206         if (ret)
2207                 return ret;
2208
2209         if (property == dev_priv->force_audio_property) {
2210                 int i = val;
2211                 bool has_audio;
2212
2213                 if (i == intel_dp->force_audio)
2214                         return 0;
2215
2216                 intel_dp->force_audio = i;
2217
2218                 if (i == HDMI_AUDIO_AUTO)
2219                         has_audio = intel_dp_detect_audio(connector);
2220                 else
2221                         has_audio = (i == HDMI_AUDIO_ON);
2222
2223                 if (has_audio == intel_dp->has_audio)
2224                         return 0;
2225
2226                 intel_dp->has_audio = has_audio;
2227                 goto done;
2228         }
2229
2230         if (property == dev_priv->broadcast_rgb_property) {
2231                 if (val == !!intel_dp->color_range)
2232                         return 0;
2233
2234                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2235                 goto done;
2236         }
2237
2238         return -EINVAL;
2239
2240 done:
2241         if (intel_dp->base.base.crtc) {
2242                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2243                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2244                                          crtc->x, crtc->y,
2245                                          crtc->fb);
2246         }
2247
2248         return 0;
2249 }
2250
2251 static void
2252 intel_dp_destroy(struct drm_connector *connector)
2253 {
2254         struct drm_device *dev = connector->dev;
2255
2256         if (intel_dpd_is_edp(dev))
2257                 intel_panel_destroy_backlight(dev);
2258
2259 #if 0
2260         drm_sysfs_connector_remove(connector);
2261 #endif
2262         drm_connector_cleanup(connector);
2263         free(connector, DRM_MEM_KMS);
2264 }
2265
2266 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2267 {
2268         struct drm_device *dev;
2269         struct intel_dp *intel_dp;
2270
2271         intel_dp = enc_to_intel_dp(encoder);
2272         dev = encoder->dev;
2273
2274         if (intel_dp->dp_iic_bus != NULL) {
2275                 if (intel_dp->adapter != NULL) {
2276                         device_delete_child(intel_dp->dp_iic_bus,
2277                             intel_dp->adapter);
2278                 }
2279                 device_delete_child(dev->device, intel_dp->dp_iic_bus);
2280         }
2281         drm_encoder_cleanup(encoder);
2282         if (is_edp(intel_dp)) {
2283                 struct drm_i915_private *dev_priv = intel_dp->base.base.dev->dev_private;
2284
2285                 taskqueue_cancel_timeout(dev_priv->tq,
2286                     &intel_dp->panel_vdd_task, NULL);
2287                 taskqueue_drain_timeout(dev_priv->tq,
2288                     &intel_dp->panel_vdd_task);
2289                 ironlake_panel_vdd_off_sync(intel_dp);
2290         }
2291         free(intel_dp, DRM_MEM_KMS);
2292 }
2293
2294 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2295         .dpms = intel_dp_dpms,
2296         .mode_fixup = intel_dp_mode_fixup,
2297         .prepare = intel_dp_prepare,
2298         .mode_set = intel_dp_mode_set,
2299         .commit = intel_dp_commit,
2300 };
2301
2302 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2303         .dpms = drm_helper_connector_dpms,
2304         .detect = intel_dp_detect,
2305         .fill_modes = drm_helper_probe_single_connector_modes,
2306         .set_property = intel_dp_set_property,
2307         .destroy = intel_dp_destroy,
2308 };
2309
2310 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2311         .get_modes = intel_dp_get_modes,
2312         .mode_valid = intel_dp_mode_valid,
2313         .best_encoder = intel_best_encoder,
2314 };
2315
2316 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2317         .destroy = intel_dp_encoder_destroy,
2318 };
2319
2320 static void
2321 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2322 {
2323         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2324
2325         intel_dp_check_link_status(intel_dp);
2326 }
2327
2328 /* Return which DP Port should be selected for Transcoder DP control */
2329 int
2330 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2331 {
2332         struct drm_device *dev = crtc->dev;
2333         struct drm_mode_config *mode_config = &dev->mode_config;
2334         struct drm_encoder *encoder;
2335
2336         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2337                 struct intel_dp *intel_dp;
2338
2339                 if (encoder->crtc != crtc)
2340                         continue;
2341
2342                 intel_dp = enc_to_intel_dp(encoder);
2343                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2344                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2345                         return intel_dp->output_reg;
2346         }
2347
2348         return -1;
2349 }
2350
2351 /* check the VBT to see whether the eDP is on DP-D port */
2352 bool intel_dpd_is_edp(struct drm_device *dev)
2353 {
2354         struct drm_i915_private *dev_priv = dev->dev_private;
2355         struct child_device_config *p_child;
2356         int i;
2357
2358         if (!dev_priv->child_dev_num)
2359                 return false;
2360
2361         for (i = 0; i < dev_priv->child_dev_num; i++) {
2362                 p_child = dev_priv->child_dev + i;
2363
2364                 if (p_child->dvo_port == PORT_IDPD &&
2365                     p_child->device_type == DEVICE_TYPE_eDP)
2366                         return true;
2367         }
2368         return false;
2369 }
2370
2371 static void
2372 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2373 {
2374         intel_attach_force_audio_property(connector);
2375         intel_attach_broadcast_rgb_property(connector);
2376 }
2377
2378 void
2379 intel_dp_init(struct drm_device *dev, int output_reg)
2380 {
2381         struct drm_i915_private *dev_priv = dev->dev_private;
2382         struct drm_connector *connector;
2383         struct intel_dp *intel_dp;
2384         struct intel_encoder *intel_encoder;
2385         struct intel_connector *intel_connector;
2386         const char *name = NULL;
2387         int type;
2388
2389         intel_dp = malloc(sizeof(struct intel_dp), DRM_MEM_KMS,
2390             M_WAITOK | M_ZERO);
2391
2392         intel_dp->output_reg = output_reg;
2393         intel_dp->dpms_mode = -1;
2394
2395         intel_connector = malloc(sizeof(struct intel_connector), DRM_MEM_KMS,
2396             M_WAITOK | M_ZERO);
2397         intel_encoder = &intel_dp->base;
2398
2399         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2400                 if (intel_dpd_is_edp(dev))
2401                         intel_dp->is_pch_edp = true;
2402
2403         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2404                 type = DRM_MODE_CONNECTOR_eDP;
2405                 intel_encoder->type = INTEL_OUTPUT_EDP;
2406         } else {
2407                 type = DRM_MODE_CONNECTOR_DisplayPort;
2408                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2409         }
2410
2411         connector = &intel_connector->base;
2412         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2413         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2414
2415         connector->polled = DRM_CONNECTOR_POLL_HPD;
2416
2417         if (output_reg == DP_B || output_reg == PCH_DP_B)
2418                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2419         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2420                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2421         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2422                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2423
2424         if (is_edp(intel_dp)) {
2425                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2426                 TIMEOUT_TASK_INIT(dev_priv->tq, &intel_dp->panel_vdd_task, 0,
2427                     ironlake_panel_vdd_work, intel_dp);
2428         }
2429
2430         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2431         connector->interlace_allowed = true;
2432         connector->doublescan_allowed = 0;
2433
2434         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2435                          DRM_MODE_ENCODER_TMDS);
2436         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2437
2438         intel_connector_attach_encoder(intel_connector, intel_encoder);
2439 #if 0
2440         drm_sysfs_connector_add(connector);
2441 #endif
2442
2443         /* Set up the DDC bus. */
2444         switch (output_reg) {
2445                 case DP_A:
2446                         name = "DPDDC-A";
2447                         break;
2448                 case DP_B:
2449                 case PCH_DP_B:
2450                         dev_priv->hotplug_supported_mask |=
2451                                 HDMIB_HOTPLUG_INT_STATUS;
2452                         name = "DPDDC-B";
2453                         break;
2454                 case DP_C:
2455                 case PCH_DP_C:
2456                         dev_priv->hotplug_supported_mask |=
2457                                 HDMIC_HOTPLUG_INT_STATUS;
2458                         name = "DPDDC-C";
2459                         break;
2460                 case DP_D:
2461                 case PCH_DP_D:
2462                         dev_priv->hotplug_supported_mask |=
2463                                 HDMID_HOTPLUG_INT_STATUS;
2464                         name = "DPDDC-D";
2465                         break;
2466         }
2467
2468         /* Cache some DPCD data in the eDP case */
2469         if (is_edp(intel_dp)) {
2470                 bool ret;
2471                 struct edp_power_seq    cur, vbt;
2472                 u32 pp_on, pp_off, pp_div;
2473
2474                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2475                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2476                 pp_div = I915_READ(PCH_PP_DIVISOR);
2477
2478                 /* Pull timing values out of registers */
2479                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2480                         PANEL_POWER_UP_DELAY_SHIFT;
2481
2482                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2483                         PANEL_LIGHT_ON_DELAY_SHIFT;
2484
2485                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2486                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2487
2488                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2489                         PANEL_POWER_DOWN_DELAY_SHIFT;
2490
2491                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2492                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2493
2494                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2495                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2496
2497                 vbt = dev_priv->edp.pps;
2498
2499                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2500                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2501
2502 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2503
2504                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2505                 intel_dp->backlight_on_delay = get_delay(t8);
2506                 intel_dp->backlight_off_delay = get_delay(t9);
2507                 intel_dp->panel_power_down_delay = get_delay(t10);
2508                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2509
2510                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2511                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2512                               intel_dp->panel_power_cycle_delay);
2513
2514                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2515                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2516
2517                 ironlake_edp_panel_vdd_on(intel_dp);
2518                 ret = intel_dp_get_dpcd(intel_dp);
2519                 ironlake_edp_panel_vdd_off(intel_dp, false);
2520
2521                 if (ret) {
2522                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2523                                 dev_priv->no_aux_handshake =
2524                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2525                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2526                 } else {
2527                         /* if this fails, presume the device is a ghost */
2528                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2529                         intel_dp_encoder_destroy(&intel_dp->base.base);
2530                         intel_dp_destroy(&intel_connector->base);
2531                         return;
2532                 }
2533         }
2534
2535         intel_dp_i2c_init(intel_dp, intel_connector, name);
2536
2537         intel_encoder->hot_plug = intel_dp_hot_plug;
2538
2539         if (is_edp(intel_dp)) {
2540                 dev_priv->int_edp_connector = connector;
2541                 intel_panel_setup_backlight(dev);
2542         }
2543
2544         intel_dp_add_properties(intel_dp, connector);
2545
2546         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2547          * 0xd.  Failure to do so will result in spurious interrupts being
2548          * generated on the port when a cable is not attached.
2549          */
2550         if (IS_G4X(dev) && !IS_GM45(dev)) {
2551                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2552                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2553         }
2554 }