]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/dev/e1000/e1000_80003es2lan.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / dev / e1000 / e1000_80003es2lan.c
1 /******************************************************************************
2
3   Copyright (c) 2001-2013, Intel Corporation 
4   All rights reserved.
5   
6   Redistribution and use in source and binary forms, with or without 
7   modification, are permitted provided that the following conditions are met:
8   
9    1. Redistributions of source code must retain the above copyright notice, 
10       this list of conditions and the following disclaimer.
11   
12    2. Redistributions in binary form must reproduce the above copyright 
13       notice, this list of conditions and the following disclaimer in the 
14       documentation and/or other materials provided with the distribution.
15   
16    3. Neither the name of the Intel Corporation nor the names of its 
17       contributors may be used to endorse or promote products derived from 
18       this software without specific prior written permission.
19   
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31
32 ******************************************************************************/
33 /*$FreeBSD$*/
34
35 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
36  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
37  */
38
39 #include "e1000_api.h"
40
41 static s32  e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
42 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
43 static s32  e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
44 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
45 static s32  e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
46                                                    u32 offset,
47                                                    u16 *data);
48 static s32  e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
49                                                     u32 offset,
50                                                     u16 data);
51 static s32  e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
52                                         u16 words, u16 *data);
53 static s32  e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
54 static s32  e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
55 static s32  e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
56 static s32  e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
57                                                u16 *duplex);
58 static s32  e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
59 static s32  e1000_init_hw_80003es2lan(struct e1000_hw *hw);
60 static s32  e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
61 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
62 static s32  e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
63 static s32  e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
64 static s32  e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
65 static s32  e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
66 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
67                                             u16 *data);
68 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
69                                              u16 data);
70 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
71 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
72 static s32  e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw);
73 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
74
75 /* A table for the GG82563 cable length where the range is defined
76  * with a lower bound at "index" and the upper bound at
77  * "index + 5".
78  */
79 static const u16 e1000_gg82563_cable_length_table[] = {
80         0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
81 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
82                 (sizeof(e1000_gg82563_cable_length_table) / \
83                  sizeof(e1000_gg82563_cable_length_table[0]))
84
85 /**
86  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
87  *  @hw: pointer to the HW structure
88  **/
89 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
90 {
91         struct e1000_phy_info *phy = &hw->phy;
92         s32 ret_val;
93
94         DEBUGFUNC("e1000_init_phy_params_80003es2lan");
95
96         if (hw->phy.media_type != e1000_media_type_copper) {
97                 phy->type = e1000_phy_none;
98                 return E1000_SUCCESS;
99         } else {
100                 phy->ops.power_up = e1000_power_up_phy_copper;
101                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
102         }
103
104         phy->addr               = 1;
105         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
106         phy->reset_delay_us     = 100;
107         phy->type               = e1000_phy_gg82563;
108
109         phy->ops.acquire        = e1000_acquire_phy_80003es2lan;
110         phy->ops.check_polarity = e1000_check_polarity_m88;
111         phy->ops.check_reset_block = e1000_check_reset_block_generic;
112         phy->ops.commit         = e1000_phy_sw_reset_generic;
113         phy->ops.get_cfg_done   = e1000_get_cfg_done_80003es2lan;
114         phy->ops.get_info       = e1000_get_phy_info_m88;
115         phy->ops.release        = e1000_release_phy_80003es2lan;
116         phy->ops.reset          = e1000_phy_hw_reset_generic;
117         phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
118
119         phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
120         phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan;
121         phy->ops.read_reg       = e1000_read_phy_reg_gg82563_80003es2lan;
122         phy->ops.write_reg      = e1000_write_phy_reg_gg82563_80003es2lan;
123
124         phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan;
125
126         /* This can only be done after all function pointers are setup. */
127         ret_val = e1000_get_phy_id(hw);
128
129         /* Verify phy id */
130         if (phy->id != GG82563_E_PHY_ID)
131                 return -E1000_ERR_PHY;
132
133         return ret_val;
134 }
135
136 /**
137  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
138  *  @hw: pointer to the HW structure
139  **/
140 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
141 {
142         struct e1000_nvm_info *nvm = &hw->nvm;
143         u32 eecd = E1000_READ_REG(hw, E1000_EECD);
144         u16 size;
145
146         DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
147
148         nvm->opcode_bits = 8;
149         nvm->delay_usec = 1;
150         switch (nvm->override) {
151         case e1000_nvm_override_spi_large:
152                 nvm->page_size = 32;
153                 nvm->address_bits = 16;
154                 break;
155         case e1000_nvm_override_spi_small:
156                 nvm->page_size = 8;
157                 nvm->address_bits = 8;
158                 break;
159         default:
160                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
161                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
162                 break;
163         }
164
165         nvm->type = e1000_nvm_eeprom_spi;
166
167         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
168                      E1000_EECD_SIZE_EX_SHIFT);
169
170         /* Added to a constant, "size" becomes the left-shift value
171          * for setting word_size.
172          */
173         size += NVM_WORD_SIZE_BASE_SHIFT;
174
175         /* EEPROM access above 16k is unsupported */
176         if (size > 14)
177                 size = 14;
178         nvm->word_size = 1 << size;
179
180         /* Function Pointers */
181         nvm->ops.acquire        = e1000_acquire_nvm_80003es2lan;
182         nvm->ops.read           = e1000_read_nvm_eerd;
183         nvm->ops.release        = e1000_release_nvm_80003es2lan;
184         nvm->ops.update         = e1000_update_nvm_checksum_generic;
185         nvm->ops.valid_led_default = e1000_valid_led_default_generic;
186         nvm->ops.validate       = e1000_validate_nvm_checksum_generic;
187         nvm->ops.write          = e1000_write_nvm_80003es2lan;
188
189         return E1000_SUCCESS;
190 }
191
192 /**
193  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
194  *  @hw: pointer to the HW structure
195  **/
196 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
197 {
198         struct e1000_mac_info *mac = &hw->mac;
199
200         DEBUGFUNC("e1000_init_mac_params_80003es2lan");
201
202         /* Set media type and media-dependent function pointers */
203         switch (hw->device_id) {
204         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
205                 hw->phy.media_type = e1000_media_type_internal_serdes;
206                 mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
207                 mac->ops.setup_physical_interface =
208                                         e1000_setup_fiber_serdes_link_generic;
209                 break;
210         default:
211                 hw->phy.media_type = e1000_media_type_copper;
212                 mac->ops.check_for_link = e1000_check_for_copper_link_generic;
213                 mac->ops.setup_physical_interface =
214                                         e1000_setup_copper_link_80003es2lan;
215                 break;
216         }
217
218         /* Set mta register count */
219         mac->mta_reg_count = 128;
220         /* Set rar entry count */
221         mac->rar_entry_count = E1000_RAR_ENTRIES;
222         /* Set if part includes ASF firmware */
223         mac->asf_firmware_present = TRUE;
224         /* FWSM register */
225         mac->has_fwsm = TRUE;
226         /* ARC supported; valid only if manageability features are enabled. */
227         mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
228                                       E1000_FWSM_MODE_MASK);
229         /* Adaptive IFS not supported */
230         mac->adaptive_ifs = FALSE;
231
232         /* Function pointers */
233
234         /* bus type/speed/width */
235         mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
236         /* reset */
237         mac->ops.reset_hw = e1000_reset_hw_80003es2lan;
238         /* hw initialization */
239         mac->ops.init_hw = e1000_init_hw_80003es2lan;
240         /* link setup */
241         mac->ops.setup_link = e1000_setup_link_generic;
242         /* check management mode */
243         mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
244         /* multicast address update */
245         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
246         /* writing VFTA */
247         mac->ops.write_vfta = e1000_write_vfta_generic;
248         /* clearing VFTA */
249         mac->ops.clear_vfta = e1000_clear_vfta_generic;
250         /* read mac address */
251         mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan;
252         /* ID LED init */
253         mac->ops.id_led_init = e1000_id_led_init_generic;
254         /* blink LED */
255         mac->ops.blink_led = e1000_blink_led_generic;
256         /* setup LED */
257         mac->ops.setup_led = e1000_setup_led_generic;
258         /* cleanup LED */
259         mac->ops.cleanup_led = e1000_cleanup_led_generic;
260         /* turn on/off LED */
261         mac->ops.led_on = e1000_led_on_generic;
262         mac->ops.led_off = e1000_led_off_generic;
263         /* clear hardware counters */
264         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
265         /* link info */
266         mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan;
267
268         /* set lan id for port to determine which phy lock to use */
269         hw->mac.ops.set_lan_id(hw);
270
271         return E1000_SUCCESS;
272 }
273
274 /**
275  *  e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
276  *  @hw: pointer to the HW structure
277  *
278  *  Called to initialize all function pointers and parameters.
279  **/
280 void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
281 {
282         DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
283
284         hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan;
285         hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan;
286         hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan;
287 }
288
289 /**
290  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
291  *  @hw: pointer to the HW structure
292  *
293  *  A wrapper to acquire access rights to the correct PHY.
294  **/
295 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
296 {
297         u16 mask;
298
299         DEBUGFUNC("e1000_acquire_phy_80003es2lan");
300
301         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
302         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
303 }
304
305 /**
306  *  e1000_release_phy_80003es2lan - Release rights to access PHY
307  *  @hw: pointer to the HW structure
308  *
309  *  A wrapper to release access rights to the correct PHY.
310  **/
311 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
312 {
313         u16 mask;
314
315         DEBUGFUNC("e1000_release_phy_80003es2lan");
316
317         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
318         e1000_release_swfw_sync_80003es2lan(hw, mask);
319 }
320
321 /**
322  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
323  *  @hw: pointer to the HW structure
324  *
325  *  Acquire the semaphore to access the Kumeran interface.
326  *
327  **/
328 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
329 {
330         u16 mask;
331
332         DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan");
333
334         mask = E1000_SWFW_CSR_SM;
335
336         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
337 }
338
339 /**
340  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
341  *  @hw: pointer to the HW structure
342  *
343  *  Release the semaphore used to access the Kumeran interface
344  **/
345 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
346 {
347         u16 mask;
348
349         DEBUGFUNC("e1000_release_mac_csr_80003es2lan");
350
351         mask = E1000_SWFW_CSR_SM;
352
353         e1000_release_swfw_sync_80003es2lan(hw, mask);
354 }
355
356 /**
357  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
358  *  @hw: pointer to the HW structure
359  *
360  *  Acquire the semaphore to access the EEPROM.
361  **/
362 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
363 {
364         s32 ret_val;
365
366         DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
367
368         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
369         if (ret_val)
370                 return ret_val;
371
372         ret_val = e1000_acquire_nvm_generic(hw);
373
374         if (ret_val)
375                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
376
377         return ret_val;
378 }
379
380 /**
381  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
382  *  @hw: pointer to the HW structure
383  *
384  *  Release the semaphore used to access the EEPROM.
385  **/
386 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
387 {
388         DEBUGFUNC("e1000_release_nvm_80003es2lan");
389
390         e1000_release_nvm_generic(hw);
391         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
392 }
393
394 /**
395  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
396  *  @hw: pointer to the HW structure
397  *  @mask: specifies which semaphore to acquire
398  *
399  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
400  *  will also specify which port we're acquiring the lock for.
401  **/
402 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
403 {
404         u32 swfw_sync;
405         u32 swmask = mask;
406         u32 fwmask = mask << 16;
407         s32 i = 0;
408         s32 timeout = 50;
409
410         DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
411
412         while (i < timeout) {
413                 if (e1000_get_hw_semaphore_generic(hw))
414                         return -E1000_ERR_SWFW_SYNC;
415
416                 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
417                 if (!(swfw_sync & (fwmask | swmask)))
418                         break;
419
420                 /* Firmware currently using resource (fwmask)
421                  * or other software thread using resource (swmask)
422                  */
423                 e1000_put_hw_semaphore_generic(hw);
424                 msec_delay_irq(5);
425                 i++;
426         }
427
428         if (i == timeout) {
429                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
430                 return -E1000_ERR_SWFW_SYNC;
431         }
432
433         swfw_sync |= swmask;
434         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
435
436         e1000_put_hw_semaphore_generic(hw);
437
438         return E1000_SUCCESS;
439 }
440
441 /**
442  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
443  *  @hw: pointer to the HW structure
444  *  @mask: specifies which semaphore to acquire
445  *
446  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
447  *  will also specify which port we're releasing the lock for.
448  **/
449 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
450 {
451         u32 swfw_sync;
452
453         DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
454
455         while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
456                 ; /* Empty */
457
458         swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
459         swfw_sync &= ~mask;
460         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
461
462         e1000_put_hw_semaphore_generic(hw);
463 }
464
465 /**
466  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
467  *  @hw: pointer to the HW structure
468  *  @offset: offset of the register to read
469  *  @data: pointer to the data returned from the operation
470  *
471  *  Read the GG82563 PHY register.
472  **/
473 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
474                                                   u32 offset, u16 *data)
475 {
476         s32 ret_val;
477         u32 page_select;
478         u16 temp;
479
480         DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
481
482         ret_val = e1000_acquire_phy_80003es2lan(hw);
483         if (ret_val)
484                 return ret_val;
485
486         /* Select Configuration Page */
487         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
488                 page_select = GG82563_PHY_PAGE_SELECT;
489         } else {
490                 /* Use Alternative Page Select register to access
491                  * registers 30 and 31
492                  */
493                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
494         }
495
496         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
497         ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
498         if (ret_val) {
499                 e1000_release_phy_80003es2lan(hw);
500                 return ret_val;
501         }
502
503         if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
504                 /* The "ready" bit in the MDIC register may be incorrectly set
505                  * before the device has completed the "Page Select" MDI
506                  * transaction.  So we wait 200us after each MDI command...
507                  */
508                 usec_delay(200);
509
510                 /* ...and verify the command was successful. */
511                 ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
512
513                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
514                         e1000_release_phy_80003es2lan(hw);
515                         return -E1000_ERR_PHY;
516                 }
517
518                 usec_delay(200);
519
520                 ret_val = e1000_read_phy_reg_mdic(hw,
521                                                   MAX_PHY_REG_ADDRESS & offset,
522                                                   data);
523
524                 usec_delay(200);
525         } else {
526                 ret_val = e1000_read_phy_reg_mdic(hw,
527                                                   MAX_PHY_REG_ADDRESS & offset,
528                                                   data);
529         }
530
531         e1000_release_phy_80003es2lan(hw);
532
533         return ret_val;
534 }
535
536 /**
537  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
538  *  @hw: pointer to the HW structure
539  *  @offset: offset of the register to read
540  *  @data: value to write to the register
541  *
542  *  Write to the GG82563 PHY register.
543  **/
544 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
545                                                    u32 offset, u16 data)
546 {
547         s32 ret_val;
548         u32 page_select;
549         u16 temp;
550
551         DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
552
553         ret_val = e1000_acquire_phy_80003es2lan(hw);
554         if (ret_val)
555                 return ret_val;
556
557         /* Select Configuration Page */
558         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
559                 page_select = GG82563_PHY_PAGE_SELECT;
560         } else {
561                 /* Use Alternative Page Select register to access
562                  * registers 30 and 31
563                  */
564                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
565         }
566
567         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
568         ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
569         if (ret_val) {
570                 e1000_release_phy_80003es2lan(hw);
571                 return ret_val;
572         }
573
574         if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
575                 /* The "ready" bit in the MDIC register may be incorrectly set
576                  * before the device has completed the "Page Select" MDI
577                  * transaction.  So we wait 200us after each MDI command...
578                  */
579                 usec_delay(200);
580
581                 /* ...and verify the command was successful. */
582                 ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
583
584                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
585                         e1000_release_phy_80003es2lan(hw);
586                         return -E1000_ERR_PHY;
587                 }
588
589                 usec_delay(200);
590
591                 ret_val = e1000_write_phy_reg_mdic(hw,
592                                                   MAX_PHY_REG_ADDRESS & offset,
593                                                   data);
594
595                 usec_delay(200);
596         } else {
597                 ret_val = e1000_write_phy_reg_mdic(hw,
598                                                   MAX_PHY_REG_ADDRESS & offset,
599                                                   data);
600         }
601
602         e1000_release_phy_80003es2lan(hw);
603
604         return ret_val;
605 }
606
607 /**
608  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
609  *  @hw: pointer to the HW structure
610  *  @offset: offset of the register to read
611  *  @words: number of words to write
612  *  @data: buffer of data to write to the NVM
613  *
614  *  Write "words" of data to the ESB2 NVM.
615  **/
616 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
617                                        u16 words, u16 *data)
618 {
619         DEBUGFUNC("e1000_write_nvm_80003es2lan");
620
621         return e1000_write_nvm_spi(hw, offset, words, data);
622 }
623
624 /**
625  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
626  *  @hw: pointer to the HW structure
627  *
628  *  Wait a specific amount of time for manageability processes to complete.
629  *  This is a function pointer entry point called by the phy module.
630  **/
631 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
632 {
633         s32 timeout = PHY_CFG_TIMEOUT;
634         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
635
636         DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
637
638         if (hw->bus.func == 1)
639                 mask = E1000_NVM_CFG_DONE_PORT_1;
640
641         while (timeout) {
642                 if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
643                         break;
644                 msec_delay(1);
645                 timeout--;
646         }
647         if (!timeout) {
648                 DEBUGOUT("MNG configuration cycle has not completed.\n");
649                 return -E1000_ERR_RESET;
650         }
651
652         return E1000_SUCCESS;
653 }
654
655 /**
656  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
657  *  @hw: pointer to the HW structure
658  *
659  *  Force the speed and duplex settings onto the PHY.  This is a
660  *  function pointer entry point called by the phy module.
661  **/
662 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
663 {
664         s32 ret_val;
665         u16 phy_data;
666         bool link;
667
668         DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
669
670         if (!(hw->phy.ops.read_reg))
671                 return E1000_SUCCESS;
672
673         /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
674          * forced whenever speed and duplex are forced.
675          */
676         ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
677         if (ret_val)
678                 return ret_val;
679
680         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
681         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
682         if (ret_val)
683                 return ret_val;
684
685         DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
686
687         ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data);
688         if (ret_val)
689                 return ret_val;
690
691         e1000_phy_force_speed_duplex_setup(hw, &phy_data);
692
693         /* Reset the phy to commit changes. */
694         phy_data |= MII_CR_RESET;
695
696         ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data);
697         if (ret_val)
698                 return ret_val;
699
700         usec_delay(1);
701
702         if (hw->phy.autoneg_wait_to_complete) {
703                 DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n");
704
705                 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
706                                                      100000, &link);
707                 if (ret_val)
708                         return ret_val;
709
710                 if (!link) {
711                         /* We didn't get link.
712                          * Reset the DSP and cross our fingers.
713                          */
714                         ret_val = e1000_phy_reset_dsp_generic(hw);
715                         if (ret_val)
716                                 return ret_val;
717                 }
718
719                 /* Try once more */
720                 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
721                                                      100000, &link);
722                 if (ret_val)
723                         return ret_val;
724         }
725
726         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
727                                        &phy_data);
728         if (ret_val)
729                 return ret_val;
730
731         /* Resetting the phy means we need to verify the TX_CLK corresponds
732          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
733          */
734         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
735         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
736                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
737         else
738                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
739
740         /* In addition, we must re-enable CRS on Tx for both half and full
741          * duplex.
742          */
743         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
744         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
745                                         phy_data);
746
747         return ret_val;
748 }
749
750 /**
751  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
752  *  @hw: pointer to the HW structure
753  *
754  *  Find the approximate cable length as measured by the GG82563 PHY.
755  *  This is a function pointer entry point called by the phy module.
756  **/
757 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
758 {
759         struct e1000_phy_info *phy = &hw->phy;
760         s32 ret_val;
761         u16 phy_data, index;
762
763         DEBUGFUNC("e1000_get_cable_length_80003es2lan");
764
765         if (!(hw->phy.ops.read_reg))
766                 return E1000_SUCCESS;
767
768         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
769         if (ret_val)
770                 return ret_val;
771
772         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
773
774         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
775                 return -E1000_ERR_PHY;
776
777         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
778         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
779
780         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
781
782         return E1000_SUCCESS;
783 }
784
785 /**
786  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
787  *  @hw: pointer to the HW structure
788  *  @speed: pointer to speed buffer
789  *  @duplex: pointer to duplex buffer
790  *
791  *  Retrieve the current speed and duplex configuration.
792  **/
793 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
794                                               u16 *duplex)
795 {
796         s32 ret_val;
797
798         DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
799
800         if (hw->phy.media_type == e1000_media_type_copper) {
801                 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
802                                                                     duplex);
803                 hw->phy.ops.cfg_on_link_up(hw);
804         } else {
805                 ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
806                                                                   speed,
807                                                                   duplex);
808         }
809
810         return ret_val;
811 }
812
813 /**
814  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
815  *  @hw: pointer to the HW structure
816  *
817  *  Perform a global reset to the ESB2 controller.
818  **/
819 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
820 {
821         u32 ctrl;
822         s32 ret_val;
823         u16 kum_reg_data;
824
825         DEBUGFUNC("e1000_reset_hw_80003es2lan");
826
827         /* Prevent the PCI-E bus from sticking if there is no TLP connection
828          * on the last TLP read/write transaction when MAC is reset.
829          */
830         ret_val = e1000_disable_pcie_master_generic(hw);
831         if (ret_val)
832                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
833
834         DEBUGOUT("Masking off all interrupts\n");
835         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
836
837         E1000_WRITE_REG(hw, E1000_RCTL, 0);
838         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
839         E1000_WRITE_FLUSH(hw);
840
841         msec_delay(10);
842
843         ctrl = E1000_READ_REG(hw, E1000_CTRL);
844
845         ret_val = e1000_acquire_phy_80003es2lan(hw);
846         if (ret_val)
847                 return ret_val;
848
849         DEBUGOUT("Issuing a global reset to MAC\n");
850         E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
851         e1000_release_phy_80003es2lan(hw);
852
853         /* Disable IBIST slave mode (far-end loopback) */
854         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
855                                         &kum_reg_data);
856         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
857         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
858                                         kum_reg_data);
859
860         ret_val = e1000_get_auto_rd_done_generic(hw);
861         if (ret_val)
862                 /* We don't want to continue accessing MAC registers. */
863                 return ret_val;
864
865         /* Clear any pending interrupt events. */
866         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
867         E1000_READ_REG(hw, E1000_ICR);
868
869         return e1000_check_alt_mac_addr_generic(hw);
870 }
871
872 /**
873  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
874  *  @hw: pointer to the HW structure
875  *
876  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
877  **/
878 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
879 {
880         struct e1000_mac_info *mac = &hw->mac;
881         u32 reg_data;
882         s32 ret_val;
883         u16 kum_reg_data;
884         u16 i;
885
886         DEBUGFUNC("e1000_init_hw_80003es2lan");
887
888         e1000_initialize_hw_bits_80003es2lan(hw);
889
890         /* Initialize identification LED */
891         ret_val = mac->ops.id_led_init(hw);
892         /* An error is not fatal and we should not stop init due to this */
893         if (ret_val)
894                 DEBUGOUT("Error initializing identification LED\n");
895
896         /* Disabling VLAN filtering */
897         DEBUGOUT("Initializing the IEEE VLAN\n");
898         mac->ops.clear_vfta(hw);
899
900         /* Setup the receive address. */
901         e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
902
903         /* Zero out the Multicast HASH table */
904         DEBUGOUT("Zeroing the MTA\n");
905         for (i = 0; i < mac->mta_reg_count; i++)
906                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
907
908         /* Setup link and flow control */
909         ret_val = mac->ops.setup_link(hw);
910         if (ret_val)
911                 return ret_val;
912
913         /* Disable IBIST slave mode (far-end loopback) */
914         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
915                                         &kum_reg_data);
916         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
917         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
918                                          kum_reg_data);
919
920         /* Set the transmit descriptor write-back policy */
921         reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
922         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
923                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
924         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
925
926         /* ...for both queues. */
927         reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
928         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
929                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
930         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
931
932         /* Enable retransmit on late collisions */
933         reg_data = E1000_READ_REG(hw, E1000_TCTL);
934         reg_data |= E1000_TCTL_RTLC;
935         E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
936
937         /* Configure Gigabit Carry Extend Padding */
938         reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
939         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
940         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
941         E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
942
943         /* Configure Transmit Inter-Packet Gap */
944         reg_data = E1000_READ_REG(hw, E1000_TIPG);
945         reg_data &= ~E1000_TIPG_IPGT_MASK;
946         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
947         E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
948
949         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
950         reg_data &= ~0x00100000;
951         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
952
953         /* default to TRUE to enable the MDIC W/A */
954         hw->dev_spec._80003es2lan.mdic_wa_enable = TRUE;
955
956         ret_val =
957             e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
958                                             E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
959         if (!ret_val) {
960                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
961                      E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
962                         hw->dev_spec._80003es2lan.mdic_wa_enable = FALSE;
963         }
964
965         /* Clear all of the statistics registers (clear on read).  It is
966          * important that we do this after we have tried to establish link
967          * because the symbol error count will increment wildly if there
968          * is no link.
969          */
970         e1000_clear_hw_cntrs_80003es2lan(hw);
971
972         return ret_val;
973 }
974
975 /**
976  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
977  *  @hw: pointer to the HW structure
978  *
979  *  Initializes required hardware-dependent bits needed for normal operation.
980  **/
981 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
982 {
983         u32 reg;
984
985         DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
986
987         /* Transmit Descriptor Control 0 */
988         reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
989         reg |= (1 << 22);
990         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
991
992         /* Transmit Descriptor Control 1 */
993         reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
994         reg |= (1 << 22);
995         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
996
997         /* Transmit Arbitration Control 0 */
998         reg = E1000_READ_REG(hw, E1000_TARC(0));
999         reg &= ~(0xF << 27); /* 30:27 */
1000         if (hw->phy.media_type != e1000_media_type_copper)
1001                 reg &= ~(1 << 20);
1002         E1000_WRITE_REG(hw, E1000_TARC(0), reg);
1003
1004         /* Transmit Arbitration Control 1 */
1005         reg = E1000_READ_REG(hw, E1000_TARC(1));
1006         if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
1007                 reg &= ~(1 << 28);
1008         else
1009                 reg |= (1 << 28);
1010         E1000_WRITE_REG(hw, E1000_TARC(1), reg);
1011
1012         /* Disable IPv6 extension header parsing because some malformed
1013          * IPv6 headers can hang the Rx.
1014          */
1015         reg = E1000_READ_REG(hw, E1000_RFCTL);
1016         reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1017         E1000_WRITE_REG(hw, E1000_RFCTL, reg);
1018
1019         return;
1020 }
1021
1022 /**
1023  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
1024  *  @hw: pointer to the HW structure
1025  *
1026  *  Setup some GG82563 PHY registers for obtaining link
1027  **/
1028 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
1029 {
1030         struct e1000_phy_info *phy = &hw->phy;
1031         s32 ret_val;
1032         u32 reg;
1033         u16 data;
1034
1035         DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
1036
1037         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
1038         if (ret_val)
1039                 return ret_val;
1040
1041         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1042         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
1043         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
1044
1045         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
1046         if (ret_val)
1047                 return ret_val;
1048
1049         /* Options:
1050          *   MDI/MDI-X = 0 (default)
1051          *   0 - Auto for all speeds
1052          *   1 - MDI mode
1053          *   2 - MDI-X mode
1054          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1055          */
1056         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
1057         if (ret_val)
1058                 return ret_val;
1059
1060         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1061
1062         switch (phy->mdix) {
1063         case 1:
1064                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1065                 break;
1066         case 2:
1067                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1068                 break;
1069         case 0:
1070         default:
1071                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1072                 break;
1073         }
1074
1075         /* Options:
1076          *   disable_polarity_correction = 0 (default)
1077          *       Automatic Correction for Reversed Cable Polarity
1078          *   0 - Disabled
1079          *   1 - Enabled
1080          */
1081         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1082         if (phy->disable_polarity_correction)
1083                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1084
1085         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data);
1086         if (ret_val)
1087                 return ret_val;
1088
1089         /* SW Reset the PHY so all changes take effect */
1090         ret_val = hw->phy.ops.commit(hw);
1091         if (ret_val) {
1092                 DEBUGOUT("Error Resetting the PHY\n");
1093                 return ret_val;
1094         }
1095
1096         /* Bypass Rx and Tx FIFO's */
1097         reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
1098         data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1099                 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1100         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
1101         if (ret_val)
1102                 return ret_val;
1103
1104         reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
1105         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
1106         if (ret_val)
1107                 return ret_val;
1108         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1109         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
1110         if (ret_val)
1111                 return ret_val;
1112
1113         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1114         if (ret_val)
1115                 return ret_val;
1116
1117         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1118         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
1119         if (ret_val)
1120                 return ret_val;
1121
1122         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1123         reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
1124         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1125
1126         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1127         if (ret_val)
1128                 return ret_val;
1129
1130         /* Do not init these registers when the HW is in IAMT mode, since the
1131          * firmware will have already initialized them.  We only initialize
1132          * them if the HW is not in IAMT mode.
1133          */
1134         if (!hw->mac.ops.check_mng_mode(hw)) {
1135                 /* Enable Electrical Idle on the PHY */
1136                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1137                 ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1138                                                 data);
1139                 if (ret_val)
1140                         return ret_val;
1141
1142                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1143                                                &data);
1144                 if (ret_val)
1145                         return ret_val;
1146
1147                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1148                 ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1149                                                 data);
1150                 if (ret_val)
1151                         return ret_val;
1152         }
1153
1154         /* Workaround: Disable padding in Kumeran interface in the MAC
1155          * and in the PHY to avoid CRC errors.
1156          */
1157         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
1158         if (ret_val)
1159                 return ret_val;
1160
1161         data |= GG82563_ICR_DIS_PADDING;
1162         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data);
1163         if (ret_val)
1164                 return ret_val;
1165
1166         return E1000_SUCCESS;
1167 }
1168
1169 /**
1170  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1171  *  @hw: pointer to the HW structure
1172  *
1173  *  Essentially a wrapper for setting up all things "copper" related.
1174  *  This is a function pointer entry point called by the mac module.
1175  **/
1176 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1177 {
1178         u32 ctrl;
1179         s32 ret_val;
1180         u16 reg_data;
1181
1182         DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
1183
1184         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1185         ctrl |= E1000_CTRL_SLU;
1186         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1187         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1188
1189         /* Set the mac to wait the maximum time between each
1190          * iteration and increase the max iterations when
1191          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1192          */
1193         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1194                                                    0xFFFF);
1195         if (ret_val)
1196                 return ret_val;
1197         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1198                                                   &reg_data);
1199         if (ret_val)
1200                 return ret_val;
1201         reg_data |= 0x3F;
1202         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1203                                                    reg_data);
1204         if (ret_val)
1205                 return ret_val;
1206         ret_val =
1207             e1000_read_kmrn_reg_80003es2lan(hw,
1208                                             E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1209                                             &reg_data);
1210         if (ret_val)
1211                 return ret_val;
1212         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1213         ret_val =
1214             e1000_write_kmrn_reg_80003es2lan(hw,
1215                                              E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1216                                              reg_data);
1217         if (ret_val)
1218                 return ret_val;
1219
1220         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1221         if (ret_val)
1222                 return ret_val;
1223
1224         return e1000_setup_copper_link_generic(hw);
1225 }
1226
1227 /**
1228  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1229  *  @hw: pointer to the HW structure
1230  *  @duplex: current duplex setting
1231  *
1232  *  Configure the KMRN interface by applying last minute quirks for
1233  *  10/100 operation.
1234  **/
1235 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1236 {
1237         s32 ret_val = E1000_SUCCESS;
1238         u16 speed;
1239         u16 duplex;
1240
1241         DEBUGFUNC("e1000_configure_on_link_up");
1242
1243         if (hw->phy.media_type == e1000_media_type_copper) {
1244                 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed,
1245                                                                     &duplex);
1246                 if (ret_val)
1247                         return ret_val;
1248
1249                 if (speed == SPEED_1000)
1250                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1251                 else
1252                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1253         }
1254
1255         return ret_val;
1256 }
1257
1258 /**
1259  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1260  *  @hw: pointer to the HW structure
1261  *  @duplex: current duplex setting
1262  *
1263  *  Configure the KMRN interface by applying last minute quirks for
1264  *  10/100 operation.
1265  **/
1266 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1267 {
1268         s32 ret_val;
1269         u32 tipg;
1270         u32 i = 0;
1271         u16 reg_data, reg_data2;
1272
1273         DEBUGFUNC("e1000_configure_kmrn_for_10_100");
1274
1275         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1276         ret_val =
1277             e1000_write_kmrn_reg_80003es2lan(hw,
1278                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1279                                              reg_data);
1280         if (ret_val)
1281                 return ret_val;
1282
1283         /* Configure Transmit Inter-Packet Gap */
1284         tipg = E1000_READ_REG(hw, E1000_TIPG);
1285         tipg &= ~E1000_TIPG_IPGT_MASK;
1286         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1287         E1000_WRITE_REG(hw, E1000_TIPG, tipg);
1288
1289         do {
1290                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1291                                                &reg_data);
1292                 if (ret_val)
1293                         return ret_val;
1294
1295                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1296                                                &reg_data2);
1297                 if (ret_val)
1298                         return ret_val;
1299                 i++;
1300         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1301
1302         if (duplex == HALF_DUPLEX)
1303                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1304         else
1305                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1306
1307         return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1308 }
1309
1310 /**
1311  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1312  *  @hw: pointer to the HW structure
1313  *
1314  *  Configure the KMRN interface by applying last minute quirks for
1315  *  gigabit operation.
1316  **/
1317 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1318 {
1319         s32 ret_val;
1320         u16 reg_data, reg_data2;
1321         u32 tipg;
1322         u32 i = 0;
1323
1324         DEBUGFUNC("e1000_configure_kmrn_for_1000");
1325
1326         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1327         ret_val =
1328             e1000_write_kmrn_reg_80003es2lan(hw,
1329                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1330                                              reg_data);
1331         if (ret_val)
1332                 return ret_val;
1333
1334         /* Configure Transmit Inter-Packet Gap */
1335         tipg = E1000_READ_REG(hw, E1000_TIPG);
1336         tipg &= ~E1000_TIPG_IPGT_MASK;
1337         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1338         E1000_WRITE_REG(hw, E1000_TIPG, tipg);
1339
1340         do {
1341                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1342                                                &reg_data);
1343                 if (ret_val)
1344                         return ret_val;
1345
1346                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1347                                                &reg_data2);
1348                 if (ret_val)
1349                         return ret_val;
1350                 i++;
1351         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1352
1353         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1354
1355         return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1356 }
1357
1358 /**
1359  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1360  *  @hw: pointer to the HW structure
1361  *  @offset: register offset to be read
1362  *  @data: pointer to the read data
1363  *
1364  *  Acquire semaphore, then read the PHY register at offset
1365  *  using the kumeran interface.  The information retrieved is stored in data.
1366  *  Release the semaphore before exiting.
1367  **/
1368 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1369                                            u16 *data)
1370 {
1371         u32 kmrnctrlsta;
1372         s32 ret_val;
1373
1374         DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan");
1375
1376         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1377         if (ret_val)
1378                 return ret_val;
1379
1380         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1381                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1382         E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
1383         E1000_WRITE_FLUSH(hw);
1384
1385         usec_delay(2);
1386
1387         kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
1388         *data = (u16)kmrnctrlsta;
1389
1390         e1000_release_mac_csr_80003es2lan(hw);
1391
1392         return ret_val;
1393 }
1394
1395 /**
1396  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1397  *  @hw: pointer to the HW structure
1398  *  @offset: register offset to write to
1399  *  @data: data to write at register offset
1400  *
1401  *  Acquire semaphore, then write the data to PHY register
1402  *  at the offset using the kumeran interface.  Release semaphore
1403  *  before exiting.
1404  **/
1405 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1406                                             u16 data)
1407 {
1408         u32 kmrnctrlsta;
1409         s32 ret_val;
1410
1411         DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan");
1412
1413         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1414         if (ret_val)
1415                 return ret_val;
1416
1417         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1418                        E1000_KMRNCTRLSTA_OFFSET) | data;
1419         E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
1420         E1000_WRITE_FLUSH(hw);
1421
1422         usec_delay(2);
1423
1424         e1000_release_mac_csr_80003es2lan(hw);
1425
1426         return ret_val;
1427 }
1428
1429 /**
1430  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1431  *  @hw: pointer to the HW structure
1432  **/
1433 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1434 {
1435         s32 ret_val;
1436
1437         DEBUGFUNC("e1000_read_mac_addr_80003es2lan");
1438
1439         /* If there's an alternate MAC address place it in RAR0
1440          * so that it will override the Si installed default perm
1441          * address.
1442          */
1443         ret_val = e1000_check_alt_mac_addr_generic(hw);
1444         if (ret_val)
1445                 return ret_val;
1446
1447         return e1000_read_mac_addr_generic(hw);
1448 }
1449
1450 /**
1451  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1452  * @hw: pointer to the HW structure
1453  *
1454  * In the case of a PHY power down to save power, or to turn off link during a
1455  * driver unload, or wake on lan is not enabled, remove the link.
1456  **/
1457 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1458 {
1459         /* If the management interface is not enabled, then power down */
1460         if (!(hw->mac.ops.check_mng_mode(hw) ||
1461               hw->phy.ops.check_reset_block(hw)))
1462                 e1000_power_down_phy_copper(hw);
1463
1464         return;
1465 }
1466
1467 /**
1468  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1469  *  @hw: pointer to the HW structure
1470  *
1471  *  Clears the hardware counters by reading the counter registers.
1472  **/
1473 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1474 {
1475         DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
1476
1477         e1000_clear_hw_cntrs_base_generic(hw);
1478
1479         E1000_READ_REG(hw, E1000_PRC64);
1480         E1000_READ_REG(hw, E1000_PRC127);
1481         E1000_READ_REG(hw, E1000_PRC255);
1482         E1000_READ_REG(hw, E1000_PRC511);
1483         E1000_READ_REG(hw, E1000_PRC1023);
1484         E1000_READ_REG(hw, E1000_PRC1522);
1485         E1000_READ_REG(hw, E1000_PTC64);
1486         E1000_READ_REG(hw, E1000_PTC127);
1487         E1000_READ_REG(hw, E1000_PTC255);
1488         E1000_READ_REG(hw, E1000_PTC511);
1489         E1000_READ_REG(hw, E1000_PTC1023);
1490         E1000_READ_REG(hw, E1000_PTC1522);
1491
1492         E1000_READ_REG(hw, E1000_ALGNERRC);
1493         E1000_READ_REG(hw, E1000_RXERRC);
1494         E1000_READ_REG(hw, E1000_TNCRS);
1495         E1000_READ_REG(hw, E1000_CEXTERR);
1496         E1000_READ_REG(hw, E1000_TSCTC);
1497         E1000_READ_REG(hw, E1000_TSCTFC);
1498
1499         E1000_READ_REG(hw, E1000_MGTPRC);
1500         E1000_READ_REG(hw, E1000_MGTPDC);
1501         E1000_READ_REG(hw, E1000_MGTPTC);
1502
1503         E1000_READ_REG(hw, E1000_IAC);
1504         E1000_READ_REG(hw, E1000_ICRXOC);
1505
1506         E1000_READ_REG(hw, E1000_ICRXPTC);
1507         E1000_READ_REG(hw, E1000_ICRXATC);
1508         E1000_READ_REG(hw, E1000_ICTXPTC);
1509         E1000_READ_REG(hw, E1000_ICTXATC);
1510         E1000_READ_REG(hw, E1000_ICTXQEC);
1511         E1000_READ_REG(hw, E1000_ICTXQMTC);
1512         E1000_READ_REG(hw, E1000_ICRXDMTC);
1513 }