]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/dev/isci/isci_controller.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / dev / isci / isci_controller.c
1 /*-
2  * BSD LICENSE
3  *
4  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  *   * Redistributions of source code must retain the above copyright
12  *     notice, this list of conditions and the following disclaimer.
13  *   * Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in
15  *     the documentation and/or other materials provided with the
16  *     distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <dev/isci/isci.h>
35
36 #include <sys/conf.h>
37 #include <sys/malloc.h>
38
39 #include <cam/cam_periph.h>
40 #include <cam/cam_xpt_periph.h>
41
42 #include <dev/isci/scil/sci_memory_descriptor_list.h>
43 #include <dev/isci/scil/sci_memory_descriptor_list_decorator.h>
44
45 #include <dev/isci/scil/scif_controller.h>
46 #include <dev/isci/scil/scif_library.h>
47 #include <dev/isci/scil/scif_io_request.h>
48 #include <dev/isci/scil/scif_task_request.h>
49 #include <dev/isci/scil/scif_remote_device.h>
50 #include <dev/isci/scil/scif_domain.h>
51 #include <dev/isci/scil/scif_user_callback.h>
52 #include <dev/isci/scil/scic_sgpio.h>
53
54 #include <dev/led/led.h>
55
56 void isci_action(struct cam_sim *sim, union ccb *ccb);
57 void isci_poll(struct cam_sim *sim);
58
59 #define ccb_sim_ptr sim_priv.entries[0].ptr
60
61 /**
62  * @brief This user callback will inform the user that the controller has
63  *        had a serious unexpected error.  The user should not the error,
64  *        disable interrupts, and wait for current ongoing processing to
65  *        complete.  Subsequently, the user should reset the controller.
66  *
67  * @param[in]  controller This parameter specifies the controller that had
68  *                        an error.
69  *
70  * @return none
71  */
72 void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller,
73     SCI_CONTROLLER_ERROR error)
74 {
75
76         isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n",
77             error);
78 }
79
80 /**
81  * @brief This user callback will inform the user that the controller has
82  *        finished the start process.
83  *
84  * @param[in]  controller This parameter specifies the controller that was
85  *             started.
86  * @param[in]  completion_status This parameter specifies the results of
87  *             the start operation.  SCI_SUCCESS indicates successful
88  *             completion.
89  *
90  * @return none
91  */
92 void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller,
93     SCI_STATUS completion_status)
94 {
95         uint32_t index;
96         struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
97             sci_object_get_association(controller);
98
99         isci_controller->is_started = TRUE;
100
101         /* Set bits for all domains.  We will clear them one-by-one once
102          *  the domains complete discovery, or return error when calling
103          *  scif_domain_discover.  Once all bits are clear, we will register
104          *  the controller with CAM.
105          */
106         isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1;
107
108         for(index = 0; index < SCI_MAX_DOMAINS; index++) {
109                 SCI_STATUS status;
110                 SCI_DOMAIN_HANDLE_T domain =
111                     isci_controller->domain[index].sci_object;
112
113                 status = scif_domain_discover(
114                         domain,
115                         scif_domain_get_suggested_discover_timeout(domain),
116                         DEVICE_TIMEOUT
117                 );
118
119                 if (status != SCI_SUCCESS)
120                 {
121                         isci_controller_domain_discovery_complete(
122                             isci_controller, &isci_controller->domain[index]);
123                 }
124         }
125 }
126
127 /**
128  * @brief This user callback will inform the user that the controller has
129  *        finished the stop process. Note, after user calls
130  *        scif_controller_stop(), before user receives this controller stop
131  *        complete callback, user should not expect any callback from
132  *        framework, such like scif_cb_domain_change_notification().
133  *
134  * @param[in]  controller This parameter specifies the controller that was
135  *             stopped.
136  * @param[in]  completion_status This parameter specifies the results of
137  *             the stop operation.  SCI_SUCCESS indicates successful
138  *             completion.
139  *
140  * @return none
141  */
142 void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller,
143     SCI_STATUS completion_status)
144 {
145         struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
146             sci_object_get_association(controller);
147
148         isci_controller->is_started = FALSE;
149 }
150
151 static void
152 isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
153 {
154         SCI_PHYSICAL_ADDRESS *phys_addr = arg;
155
156         *phys_addr = seg[0].ds_addr;
157 }
158
159 /**
160  * @brief This method will be invoked to allocate memory dynamically.
161  *
162  * @param[in]  controller This parameter represents the controller
163  *             object for which to allocate memory.
164  * @param[out] mde This parameter represents the memory descriptor to
165  *             be filled in by the user that will reference the newly
166  *             allocated memory.
167  *
168  * @return none
169  */
170 void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller,
171     SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde)
172 {
173         struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
174             sci_object_get_association(controller);
175
176         /*
177          * Note this routine is only used for buffers needed to translate
178          * SCSI UNMAP commands to ATA DSM commands for SATA disks.
179          *
180          * We first try to pull a buffer from the controller's pool, and only
181          * call contigmalloc if one isn't there.
182          */
183         if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) {
184                 sci_pool_get(isci_controller->unmap_buffer_pool,
185                     mde->virtual_address);
186         } else
187                 mde->virtual_address = contigmalloc(PAGE_SIZE,
188                     M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR,
189                     mde->constant_memory_alignment, 0);
190
191         if (mde->virtual_address != NULL)
192                 bus_dmamap_load(isci_controller->buffer_dma_tag,
193                     NULL, mde->virtual_address, PAGE_SIZE,
194                     isci_single_map, &mde->physical_address,
195                     BUS_DMA_NOWAIT);
196 }
197
198 /**
199  * @brief This method will be invoked to allocate memory dynamically.
200  *
201  * @param[in]  controller This parameter represents the controller
202  *             object for which to allocate memory.
203  * @param[out] mde This parameter represents the memory descriptor to
204  *             be filled in by the user that will reference the newly
205  *             allocated memory.
206  *
207  * @return none
208  */
209 void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller,
210     SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde)
211 {
212         struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
213             sci_object_get_association(controller);
214
215         /*
216          * Put the buffer back into the controller's buffer pool, rather
217          * than invoking configfree.  This helps reduce chance we won't
218          * have buffers available when system is under memory pressure.
219          */ 
220         sci_pool_put(isci_controller->unmap_buffer_pool,
221             mde->virtual_address);
222 }
223
224 void isci_controller_construct(struct ISCI_CONTROLLER *controller,
225     struct isci_softc *isci)
226 {
227         SCI_CONTROLLER_HANDLE_T scif_controller_handle;
228
229         scif_library_allocate_controller(isci->sci_library_handle,
230             &scif_controller_handle);
231
232         scif_controller_construct(isci->sci_library_handle,
233             scif_controller_handle, NULL);
234
235         controller->isci = isci;
236         controller->scif_controller_handle = scif_controller_handle;
237
238         /* This allows us to later use
239          *  sci_object_get_association(scif_controller_handle)
240          * inside of a callback routine to get our struct ISCI_CONTROLLER object
241          */
242         sci_object_set_association(scif_controller_handle, (void *)controller);
243
244         controller->is_started = FALSE;
245         controller->is_frozen = FALSE;
246         controller->release_queued_ccbs = FALSE;
247         controller->sim = NULL;
248         controller->initial_discovery_mask = 0;
249
250         sci_fast_list_init(&controller->pending_device_reset_list);
251
252         mtx_init(&controller->lock, "isci", NULL, MTX_DEF);
253
254         uint32_t domain_index;
255
256         for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) {
257                 isci_domain_construct( &controller->domain[domain_index],
258                     domain_index, controller);
259         }
260
261         controller->timer_memory = malloc(
262             sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI,
263             M_NOWAIT | M_ZERO);
264
265         sci_pool_initialize(controller->timer_pool);
266
267         struct ISCI_TIMER *timer = (struct ISCI_TIMER *)
268             controller->timer_memory;
269
270         for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) {
271                 sci_pool_put(controller->timer_pool, timer++);
272         }
273
274         sci_pool_initialize(controller->unmap_buffer_pool);
275 }
276
277 static void isci_led_fault_func(void *priv, int onoff)
278 {
279         struct ISCI_PHY *phy = priv;
280
281         /* map onoff to the fault LED */
282         phy->led_fault = onoff;
283         scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 
284                 phy->led_fault, phy->led_locate, 0);
285 }
286
287 static void isci_led_locate_func(void *priv, int onoff)
288 {
289         struct ISCI_PHY *phy = priv;
290
291         /* map onoff to the locate LED */
292         phy->led_locate = onoff;
293         scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 
294                 phy->led_fault, phy->led_locate, 0);
295 }
296
297 SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller)
298 {
299         SCIC_USER_PARAMETERS_T scic_user_parameters;
300         SCI_CONTROLLER_HANDLE_T scic_controller_handle;
301         char led_name[64];
302         unsigned long tunable;
303         int i;
304
305         scic_controller_handle =
306             scif_controller_get_scic_handle(controller->scif_controller_handle);
307
308         if (controller->isci->oem_parameters_found == TRUE)
309         {
310                 scic_oem_parameters_set(
311                     scic_controller_handle,
312                     &controller->oem_parameters,
313                     (uint8_t)(controller->oem_parameters_version));
314         }
315
316         scic_user_parameters_get(scic_controller_handle, &scic_user_parameters);
317
318         if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable))
319                 scic_user_parameters.sds1.no_outbound_task_timeout =
320                     (uint8_t)tunable;
321
322         if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable))
323                 scic_user_parameters.sds1.ssp_max_occupancy_timeout =
324                     (uint16_t)tunable;
325
326         if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable))
327                 scic_user_parameters.sds1.stp_max_occupancy_timeout =
328                     (uint16_t)tunable;
329
330         if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable))
331                 scic_user_parameters.sds1.ssp_inactivity_timeout =
332                     (uint16_t)tunable;
333
334         if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable))
335                 scic_user_parameters.sds1.stp_inactivity_timeout =
336                     (uint16_t)tunable;
337
338         if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable))
339                 for (i = 0; i < SCI_MAX_PHYS; i++)
340                         scic_user_parameters.sds1.phys[i].max_speed_generation =
341                             (uint8_t)tunable;
342
343         scic_user_parameters_set(scic_controller_handle, &scic_user_parameters);
344
345         /* Scheduler bug in SCU requires SCIL to reserve some task contexts as a
346          *  a workaround - one per domain.
347          */
348         controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS;
349
350         if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth",
351             &controller->queue_depth)) {
352                 controller->queue_depth = max(1, min(controller->queue_depth,
353                     SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS));
354         }
355
356         /* Reserve one request so that we can ensure we have one available TC
357          *  to do internal device resets.
358          */
359         controller->sim_queue_depth = controller->queue_depth - 1;
360
361         /* Although we save one TC to do internal device resets, it is possible
362          *  we could end up using several TCs for simultaneous device resets
363          *  while at the same time having CAM fill our controller queue.  To
364          *  simulate this condition, and how our driver handles it, we can set
365          *  this io_shortage parameter, which will tell CAM that we have a
366          *  large queue depth than we really do.
367          */
368         uint32_t io_shortage = 0;
369         TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage);
370         controller->sim_queue_depth += io_shortage;
371
372         /* Attach to CAM using xpt_bus_register now, then immediately freeze
373          *  the simq.  It will get released later when initial domain discovery
374          *  is complete.
375          */
376         controller->has_been_scanned = FALSE;
377         mtx_lock(&controller->lock);
378         isci_controller_attach_to_cam(controller);
379         xpt_freeze_simq(controller->sim, 1);
380         mtx_unlock(&controller->lock);
381
382         for (i = 0; i < SCI_MAX_PHYS; i++) {
383                 controller->phys[i].handle = scic_controller_handle;
384                 controller->phys[i].index = i;
385
386                 /* fault */
387                 controller->phys[i].led_fault = 0;
388                 sprintf(led_name, "isci.bus%d.port%d.fault", controller->index, i);
389                 controller->phys[i].cdev_fault = led_create(isci_led_fault_func,
390                     &controller->phys[i], led_name);
391                         
392                 /* locate */
393                 controller->phys[i].led_locate = 0;
394                 sprintf(led_name, "isci.bus%d.port%d.locate", controller->index, i);
395                 controller->phys[i].cdev_locate = led_create(isci_led_locate_func,
396                     &controller->phys[i], led_name);
397         }
398
399         return (scif_controller_initialize(controller->scif_controller_handle));
400 }
401
402 int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller)
403 {
404         int error;
405         device_t device =  controller->isci->device;
406         uint32_t max_segment_size = isci_io_request_get_max_io_size();
407         uint32_t status = 0;
408         struct ISCI_MEMORY *uncached_controller_memory =
409             &controller->uncached_controller_memory;
410         struct ISCI_MEMORY *cached_controller_memory =
411             &controller->cached_controller_memory;
412         struct ISCI_MEMORY *request_memory =
413             &controller->request_memory;
414         POINTER_UINT virtual_address;
415         bus_addr_t physical_address;
416
417         controller->mdl = sci_controller_get_memory_descriptor_list_handle(
418             controller->scif_controller_handle);
419
420         uncached_controller_memory->size = sci_mdl_decorator_get_memory_size(
421             controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS);
422
423         error = isci_allocate_dma_buffer(device, uncached_controller_memory);
424
425         if (error != 0)
426             return (error);
427
428         sci_mdl_decorator_assign_memory( controller->mdl,
429             SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
430             uncached_controller_memory->virtual_address,
431             uncached_controller_memory->physical_address);
432
433         cached_controller_memory->size = sci_mdl_decorator_get_memory_size(
434             controller->mdl,
435             SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
436         );
437
438         error = isci_allocate_dma_buffer(device, cached_controller_memory);
439
440         if (error != 0)
441             return (error);
442
443         sci_mdl_decorator_assign_memory(controller->mdl,
444             SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
445             cached_controller_memory->virtual_address,
446             cached_controller_memory->physical_address);
447
448         request_memory->size =
449             controller->queue_depth * isci_io_request_get_object_size();
450
451         error = isci_allocate_dma_buffer(device, request_memory);
452
453         if (error != 0)
454             return (error);
455
456         /* For STP PIO testing, we want to ensure we can force multiple SGLs
457          *  since this has been a problem area in SCIL.  This tunable parameter
458          *  will allow us to force DMA segments to a smaller size, ensuring
459          *  that even if a physically contiguous buffer is attached to this
460          *  I/O, the DMA subsystem will pass us multiple segments in our DMA
461          *  load callback.
462          */
463         TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size);
464
465         /* Create DMA tag for our I/O requests.  Then we can create DMA maps based off
466          *  of this tag and store them in each of our ISCI_IO_REQUEST objects.  This
467          *  will enable better performance than creating the DMA maps everytime we get
468          *  an I/O.
469          */
470         status = bus_dma_tag_create(bus_get_dma_tag(device), 0x1, 0x0,
471             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
472             isci_io_request_get_max_io_size(),
473             SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0, NULL, NULL,
474             &controller->buffer_dma_tag);
475
476         sci_pool_initialize(controller->request_pool);
477
478         virtual_address = request_memory->virtual_address;
479         physical_address = request_memory->physical_address;
480
481         for (int i = 0; i < controller->queue_depth; i++) {
482                 struct ISCI_REQUEST *request =
483                     (struct ISCI_REQUEST *)virtual_address;
484
485                 isci_request_construct(request,
486                     controller->scif_controller_handle,
487                     controller->buffer_dma_tag, physical_address);
488
489                 sci_pool_put(controller->request_pool, request);
490
491                 virtual_address += isci_request_get_object_size();
492                 physical_address += isci_request_get_object_size();
493         }
494
495         uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) +
496             scif_remote_device_get_object_size();
497
498         controller->remote_device_memory = (uint8_t *) malloc(
499             remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI,
500             M_NOWAIT | M_ZERO);
501
502         sci_pool_initialize(controller->remote_device_pool);
503
504         uint8_t *remote_device_memory_ptr = controller->remote_device_memory;
505
506         for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
507                 struct ISCI_REMOTE_DEVICE *remote_device =
508                     (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr;
509
510                 controller->remote_device[i] = NULL;
511                 remote_device->index = i;
512                 remote_device->is_resetting = FALSE;
513                 remote_device->frozen_lun_mask = 0;
514                 sci_fast_list_element_init(remote_device,
515                     &remote_device->pending_device_reset_element);
516                 TAILQ_INIT(&remote_device->queued_ccbs);
517                 remote_device->release_queued_ccb = FALSE;
518                 remote_device->queued_ccb_in_progress = NULL;
519
520                 /*
521                  * For the first SCI_MAX_DOMAINS device objects, do not put
522                  *  them in the pool, rather assign them to each domain.  This
523                  *  ensures that any device attached directly to port "i" will
524                  *  always get CAM target id "i".
525                  */
526                 if (i < SCI_MAX_DOMAINS)
527                         controller->domain[i].da_remote_device = remote_device;
528                 else
529                         sci_pool_put(controller->remote_device_pool,
530                             remote_device);
531                 remote_device_memory_ptr += remote_device_size;
532         }
533
534         return (0);
535 }
536
537 void isci_controller_start(void *controller_handle)
538 {
539         struct ISCI_CONTROLLER *controller =
540             (struct ISCI_CONTROLLER *)controller_handle;
541         SCI_CONTROLLER_HANDLE_T scif_controller_handle =
542             controller->scif_controller_handle;
543
544         scif_controller_start(scif_controller_handle,
545             scif_controller_get_suggested_start_timeout(scif_controller_handle));
546
547         scic_controller_enable_interrupts(
548             scif_controller_get_scic_handle(controller->scif_controller_handle));
549 }
550
551 void isci_controller_domain_discovery_complete(
552     struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain)
553 {
554         if (!isci_controller->has_been_scanned)
555         {
556                 /* Controller has not been scanned yet.  We'll clear
557                  *  the discovery bit for this domain, then check if all bits
558                  *  are now clear.  That would indicate that all domains are
559                  *  done with discovery and we can then proceed with initial
560                  *  scan.
561                  */
562
563                 isci_controller->initial_discovery_mask &=
564                     ~(1 << isci_domain->index);
565
566                 if (isci_controller->initial_discovery_mask == 0) {
567                         struct isci_softc *driver = isci_controller->isci;
568                         uint8_t next_index = isci_controller->index + 1;
569
570                         isci_controller->has_been_scanned = TRUE;
571
572                         /* Unfreeze simq to allow initial scan to proceed. */
573                         xpt_release_simq(isci_controller->sim, TRUE);
574
575 #if __FreeBSD_version < 800000
576                         /* When driver is loaded after boot, we need to
577                          *  explicitly rescan here for versions <8.0, because
578                          *  CAM only automatically scans new buses at boot
579                          *  time.
580                          */
581                         union ccb *ccb = xpt_alloc_ccb_nowait();
582
583                         xpt_create_path(&ccb->ccb_h.path, NULL,
584                             cam_sim_path(isci_controller->sim),
585                             CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
586
587                         xpt_rescan(ccb);
588 #endif
589
590                         if (next_index < driver->controller_count) {
591                                 /*  There are more controllers that need to
592                                  *   start.  So start the next one.
593                                  */
594                                 isci_controller_start(
595                                     &driver->controllers[next_index]);
596                         }
597                         else
598                         {
599                                 /* All controllers have been started and completed discovery.
600                                  *  Disestablish the config hook while will signal to the
601                                  *  kernel during boot that it is safe to try to find and
602                                  *  mount the root partition.
603                                  */
604                                 config_intrhook_disestablish(
605                                     &driver->config_hook);
606                         }
607                 }
608         }
609 }
610
611 int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller)
612 {
613         struct isci_softc *isci = controller->isci;
614         device_t parent = device_get_parent(isci->device);
615         int unit = device_get_unit(isci->device);
616         struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth);
617
618         if(isci_devq == NULL) {
619                 isci_log_message(0, "ISCI", "isci_devq is NULL \n");
620                 return (-1);
621         }
622
623         controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci",
624             controller, unit, &controller->lock, controller->sim_queue_depth,
625             controller->sim_queue_depth, isci_devq);
626
627         if(controller->sim == NULL) {
628                 isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n");
629                 cam_simq_free(isci_devq);
630                 return (-1);
631         }
632
633         if(xpt_bus_register(controller->sim, parent, controller->index)
634             != CAM_SUCCESS) {
635                 isci_log_message(0, "ISCI", "xpt_bus_register...fails \n");
636                 cam_sim_free(controller->sim, TRUE);
637                 mtx_unlock(&controller->lock);
638                 return (-1);
639         }
640
641         if(xpt_create_path(&controller->path, NULL,
642             cam_sim_path(controller->sim), CAM_TARGET_WILDCARD,
643             CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
644                 isci_log_message(0, "ISCI", "xpt_create_path....fails\n");
645                 xpt_bus_deregister(cam_sim_path(controller->sim));
646                 cam_sim_free(controller->sim, TRUE);
647                 mtx_unlock(&controller->lock);
648                 return (-1);
649         }
650
651         return (0);
652 }
653
654 void isci_poll(struct cam_sim *sim)
655 {
656         struct ISCI_CONTROLLER *controller =
657             (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
658
659         isci_interrupt_poll_handler(controller);
660 }
661
662 void isci_action(struct cam_sim *sim, union ccb *ccb)
663 {
664         struct ISCI_CONTROLLER *controller =
665             (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
666
667         switch ( ccb->ccb_h.func_code ) {
668         case XPT_PATH_INQ:
669                 {
670                         struct ccb_pathinq *cpi = &ccb->cpi;
671                         int bus = cam_sim_bus(sim);
672                         ccb->ccb_h.ccb_sim_ptr = sim;
673                         cpi->version_num = 1;
674                         cpi->hba_inquiry = PI_TAG_ABLE;
675                         cpi->target_sprt = 0;
676                         cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN |
677                             PIM_UNMAPPED;
678                         cpi->hba_eng_cnt = 0;
679                         cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1;
680                         cpi->max_lun = ISCI_MAX_LUN;
681 #if __FreeBSD_version >= 800102
682                         cpi->maxio = isci_io_request_get_max_io_size();
683 #endif
684                         cpi->unit_number = cam_sim_unit(sim);
685                         cpi->bus_id = bus;
686                         cpi->initiator_id = SCI_MAX_REMOTE_DEVICES;
687                         cpi->base_transfer_speed = 300000;
688                         strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
689                         strncpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN);
690                         strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
691                         cpi->transport = XPORT_SAS;
692                         cpi->transport_version = 0;
693                         cpi->protocol = PROTO_SCSI;
694                         cpi->protocol_version = SCSI_REV_SPC2;
695                         cpi->ccb_h.status = CAM_REQ_CMP;
696                         xpt_done(ccb);
697                 }
698                 break;
699         case XPT_GET_TRAN_SETTINGS:
700                 {
701                         struct ccb_trans_settings *general_settings = &ccb->cts;
702                         struct ccb_trans_settings_sas *sas_settings =
703                             &general_settings->xport_specific.sas;
704                         struct ccb_trans_settings_scsi *scsi_settings =
705                             &general_settings->proto_specific.scsi;
706                         struct ISCI_REMOTE_DEVICE *remote_device;
707
708                         remote_device = controller->remote_device[ccb->ccb_h.target_id];
709
710                         if (remote_device == NULL) {
711                                 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
712                                 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
713                                 ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
714                                 xpt_done(ccb);
715                                 break;
716                         }
717
718                         general_settings->protocol = PROTO_SCSI;
719                         general_settings->transport = XPORT_SAS;
720                         general_settings->protocol_version = SCSI_REV_SPC2;
721                         general_settings->transport_version = 0;
722                         scsi_settings->valid = CTS_SCSI_VALID_TQ;
723                         scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB;
724                         ccb->ccb_h.status &= ~CAM_STATUS_MASK;
725                         ccb->ccb_h.status |= CAM_REQ_CMP;
726
727                         sas_settings->bitrate =
728                             isci_remote_device_get_bitrate(remote_device);
729
730                         if (sas_settings->bitrate != 0)
731                                 sas_settings->valid = CTS_SAS_VALID_SPEED;
732
733                         xpt_done(ccb);
734                 }
735                 break;
736         case XPT_SCSI_IO:
737                 isci_io_request_execute_scsi_io(ccb, controller);
738                 break;
739 #if __FreeBSD_version >= 900026
740         case XPT_SMP_IO:
741                 isci_io_request_execute_smp_io(ccb, controller);
742                 break;
743 #endif
744         case XPT_SET_TRAN_SETTINGS:
745                 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
746                 ccb->ccb_h.status |= CAM_REQ_CMP;
747                 xpt_done(ccb);
748                 break;
749         case XPT_CALC_GEOMETRY:
750                 cam_calc_geometry(&ccb->ccg, /*extended*/1);
751                 xpt_done(ccb);
752                 break;
753         case XPT_RESET_DEV:
754                 {
755                         struct ISCI_REMOTE_DEVICE *remote_device =
756                             controller->remote_device[ccb->ccb_h.target_id];
757
758                         if (remote_device != NULL)
759                                 isci_remote_device_reset(remote_device, ccb);
760                         else {
761                                 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
762                                 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
763                                 ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
764                                 xpt_done(ccb);
765                         }
766                 }
767                 break;
768         case XPT_RESET_BUS:
769                 ccb->ccb_h.status = CAM_REQ_CMP;
770                 xpt_done(ccb);
771                 break;
772         default:
773                 isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n",
774                     ccb->ccb_h.func_code);
775                 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
776                 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
777                 ccb->ccb_h.status |= CAM_REQ_INVALID;
778                 xpt_done(ccb);
779                 break;
780         }
781 }
782
783 /*
784  * Unfortunately, SCIL doesn't cleanly handle retry conditions.
785  *  CAM_REQUEUE_REQ works only when no one is using the pass(4) interface.  So
786  *  when SCIL denotes an I/O needs to be retried (typically because of mixing
787  *  tagged/non-tagged ATA commands, or running out of NCQ slots), we queue
788  *  these I/O internally.  Once SCIL completes an I/O to this device, or we get
789  *  a ready notification, we will retry the first I/O on the queue.
790  *  Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within
791  *  the context of the completion handler, so we need to retry these I/O after
792  *  the completion handler is done executing.
793  */
794 void
795 isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller)
796 {
797         struct ISCI_REMOTE_DEVICE *dev;
798         struct ccb_hdr *ccb_h;
799         int dev_idx;
800
801         KASSERT(mtx_owned(&controller->lock), ("controller lock not owned"));
802
803         controller->release_queued_ccbs = FALSE;
804         for (dev_idx = 0;
805              dev_idx < SCI_MAX_REMOTE_DEVICES;
806              dev_idx++) {
807
808                 dev = controller->remote_device[dev_idx];
809                 if (dev != NULL &&
810                     dev->release_queued_ccb == TRUE &&
811                     dev->queued_ccb_in_progress == NULL) {
812                         dev->release_queued_ccb = FALSE;
813                         ccb_h = TAILQ_FIRST(&dev->queued_ccbs);
814
815                         if (ccb_h == NULL)
816                                 continue;
817
818                         isci_log_message(1, "ISCI", "release %p %x\n", ccb_h,
819                             ((union ccb *)ccb_h)->csio.cdb_io.cdb_bytes[0]);
820
821                         dev->queued_ccb_in_progress = (union ccb *)ccb_h;
822                         isci_io_request_execute_scsi_io(
823                             (union ccb *)ccb_h, controller);
824                 }
825         }
826 }