]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/dev/sound/pcm/feeder_volume.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / dev / sound / pcm / feeder_volume.c
1 /*-
2  * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 /* feeder_volume, a long 'Lost Technology' rather than a new feature. */
28
29 #ifdef _KERNEL
30 #ifdef HAVE_KERNEL_OPTION_HEADERS
31 #include "opt_snd.h"
32 #endif
33 #include <dev/sound/pcm/sound.h>
34 #include <dev/sound/pcm/pcm.h>
35 #include "feeder_if.h"
36
37 #define SND_USE_FXDIV
38 #include "snd_fxdiv_gen.h"
39
40 SND_DECLARE_FILE("$FreeBSD$");
41 #endif
42
43 typedef void (*feed_volume_t)(int *, int *, uint32_t, uint8_t *, uint32_t);
44
45 #define FEEDVOLUME_CALC8(s, v)  (SND_VOL_CALC_SAMPLE((intpcm_t)         \
46                                  (s) << 8, v) >> 8)
47 #define FEEDVOLUME_CALC16(s, v) SND_VOL_CALC_SAMPLE((intpcm_t)(s), v)
48 #define FEEDVOLUME_CALC24(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
49 #define FEEDVOLUME_CALC32(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
50
51 #define FEEDVOLUME_DECLARE(SIGN, BIT, ENDIAN)                           \
52 static void                                                             \
53 feed_volume_##SIGN##BIT##ENDIAN(int *vol, int *matrix,                  \
54     uint32_t channels, uint8_t *dst, uint32_t count)                    \
55 {                                                                       \
56         intpcm##BIT##_t v;                                              \
57         intpcm_t x;                                                     \
58         uint32_t i;                                                     \
59                                                                         \
60         dst += count * PCM_##BIT##_BPS * channels;                      \
61         do {                                                            \
62                 i = channels;                                           \
63                 do {                                                    \
64                         dst -= PCM_##BIT##_BPS;                         \
65                         i--;                                            \
66                         x = PCM_READ_##SIGN##BIT##_##ENDIAN(dst);       \
67                         v = FEEDVOLUME_CALC##BIT(x, vol[matrix[i]]);    \
68                         x = PCM_CLAMP_##SIGN##BIT(v);                   \
69                         _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x);      \
70                 } while (i != 0);                                       \
71         } while (--count != 0);                                         \
72 }
73
74 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
75 FEEDVOLUME_DECLARE(S, 16, LE)
76 FEEDVOLUME_DECLARE(S, 32, LE)
77 #endif
78 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
79 FEEDVOLUME_DECLARE(S, 16, BE)
80 FEEDVOLUME_DECLARE(S, 32, BE)
81 #endif
82 #ifdef SND_FEEDER_MULTIFORMAT
83 FEEDVOLUME_DECLARE(S,  8, NE)
84 FEEDVOLUME_DECLARE(S, 24, LE)
85 FEEDVOLUME_DECLARE(S, 24, BE)
86 FEEDVOLUME_DECLARE(U,  8, NE)
87 FEEDVOLUME_DECLARE(U, 16, LE)
88 FEEDVOLUME_DECLARE(U, 24, LE)
89 FEEDVOLUME_DECLARE(U, 32, LE)
90 FEEDVOLUME_DECLARE(U, 16, BE)
91 FEEDVOLUME_DECLARE(U, 24, BE)
92 FEEDVOLUME_DECLARE(U, 32, BE)
93 #endif
94
95 struct feed_volume_info {
96         uint32_t bps, channels;
97         feed_volume_t apply;
98         int volume_class;
99         int state;
100         int matrix[SND_CHN_MAX];
101 };
102
103 #define FEEDVOLUME_ENTRY(SIGN, BIT, ENDIAN)                             \
104         {                                                               \
105                 AFMT_##SIGN##BIT##_##ENDIAN,                            \
106                 feed_volume_##SIGN##BIT##ENDIAN                         \
107         }
108
109 static const struct {
110         uint32_t format;
111         feed_volume_t apply;
112 } feed_volume_info_tab[] = {
113 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
114         FEEDVOLUME_ENTRY(S, 16, LE),
115         FEEDVOLUME_ENTRY(S, 32, LE),
116 #endif
117 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
118         FEEDVOLUME_ENTRY(S, 16, BE),
119         FEEDVOLUME_ENTRY(S, 32, BE),
120 #endif
121 #ifdef SND_FEEDER_MULTIFORMAT
122         FEEDVOLUME_ENTRY(S,  8, NE),
123         FEEDVOLUME_ENTRY(S, 24, LE),
124         FEEDVOLUME_ENTRY(S, 24, BE),
125         FEEDVOLUME_ENTRY(U,  8, NE),
126         FEEDVOLUME_ENTRY(U, 16, LE),
127         FEEDVOLUME_ENTRY(U, 24, LE),
128         FEEDVOLUME_ENTRY(U, 32, LE),
129         FEEDVOLUME_ENTRY(U, 16, BE),
130         FEEDVOLUME_ENTRY(U, 24, BE),
131         FEEDVOLUME_ENTRY(U, 32, BE)
132 #endif
133 };
134
135 #define FEEDVOLUME_TAB_SIZE     ((int32_t)                              \
136                                  (sizeof(feed_volume_info_tab) /        \
137                                   sizeof(feed_volume_info_tab[0])))
138
139 static int
140 feed_volume_init(struct pcm_feeder *f)
141 {
142         struct feed_volume_info *info;
143         struct pcmchan_matrix *m;
144         uint32_t i;
145         int ret;
146
147         if (f->desc->in != f->desc->out ||
148             AFMT_CHANNEL(f->desc->in) > SND_CHN_MAX)
149                 return (EINVAL);
150
151         for (i = 0; i < FEEDVOLUME_TAB_SIZE; i++) {
152                 if (AFMT_ENCODING(f->desc->in) ==
153                     feed_volume_info_tab[i].format) {
154                         info = malloc(sizeof(*info), M_DEVBUF,
155                             M_NOWAIT | M_ZERO);
156                         if (info == NULL)
157                                 return (ENOMEM);
158
159                         info->bps = AFMT_BPS(f->desc->in);
160                         info->channels = AFMT_CHANNEL(f->desc->in);
161                         info->apply = feed_volume_info_tab[i].apply;
162                         info->volume_class = SND_VOL_C_PCM;
163                         info->state = FEEDVOLUME_ENABLE;
164
165                         f->data = info;
166                         m = feeder_matrix_default_channel_map(info->channels);
167                         if (m == NULL) {
168                                 free(info, M_DEVBUF);
169                                 return (EINVAL);
170                         }
171
172                         ret = feeder_volume_apply_matrix(f, m);
173                         if (ret != 0)
174                                 free(info, M_DEVBUF);
175
176                         return (ret);
177                 }
178         }
179
180         return (EINVAL);
181 }
182
183 static int
184 feed_volume_free(struct pcm_feeder *f)
185 {
186         struct feed_volume_info *info;
187
188         info = f->data;
189         if (info != NULL)
190                 free(info, M_DEVBUF);
191
192         f->data = NULL;
193
194         return (0);
195 }
196
197 static int
198 feed_volume_set(struct pcm_feeder *f, int what, int value)
199 {
200         struct feed_volume_info *info;
201         struct pcmchan_matrix *m;
202         int ret;
203
204         info = f->data;
205         ret = 0;
206
207         switch (what) {
208         case FEEDVOLUME_CLASS:
209                 if (value < SND_VOL_C_BEGIN || value > SND_VOL_C_END)
210                         return (EINVAL);
211                 info->volume_class = value;
212                 break;
213         case FEEDVOLUME_CHANNELS:
214                 if (value < SND_CHN_MIN || value > SND_CHN_MAX)
215                         return (EINVAL);
216                 m = feeder_matrix_default_channel_map(value);
217                 if (m == NULL)
218                         return (EINVAL);
219                 ret = feeder_volume_apply_matrix(f, m);
220                 break;
221         case FEEDVOLUME_STATE:
222                 if (!(value == FEEDVOLUME_ENABLE || value == FEEDVOLUME_BYPASS))
223                         return (EINVAL);
224                 info->state = value;
225                 break;
226         default:
227                 return (EINVAL);
228                 break;
229         }
230
231         return (ret);
232 }
233
234 static int
235 feed_volume_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
236     uint32_t count, void *source)
237 {
238         struct feed_volume_info *info;
239         uint32_t j, align;
240         int i, *vol, *matrix;
241         uint8_t *dst;
242
243         /*
244          * Fetch filter data operation.
245          */
246         info = f->data;
247
248         if (info->state == FEEDVOLUME_BYPASS)
249                 return (FEEDER_FEED(f->source, c, b, count, source));
250
251         vol = c->volume[SND_VOL_C_VAL(info->volume_class)];
252         matrix = info->matrix;
253
254         /*
255          * First, let see if we really need to apply gain at all.
256          */
257         j = 0;
258         i = info->channels;
259         do {
260                 if (vol[matrix[--i]] != SND_VOL_FLAT) {
261                         j = 1;
262                         break;
263                 }
264         } while (i != 0);
265
266         /* Nope, just bypass entirely. */
267         if (j == 0)
268                 return (FEEDER_FEED(f->source, c, b, count, source));
269
270         dst = b;
271         align = info->bps * info->channels;
272
273         do {
274                 if (count < align)
275                         break;
276
277                 j = SND_FXDIV(FEEDER_FEED(f->source, c, dst, count, source),
278                     align);
279                 if (j == 0)
280                         break;
281
282                 info->apply(vol, matrix, info->channels, dst, j);
283
284                 j *= align;
285                 dst += j;
286                 count -= j;
287
288         } while (count != 0);
289
290         return (dst - b);
291 }
292
293 static struct pcm_feederdesc feeder_volume_desc[] = {
294         { FEEDER_VOLUME, 0, 0, 0, 0 },
295         { 0, 0, 0, 0, 0 }
296 };
297
298 static kobj_method_t feeder_volume_methods[] = {
299         KOBJMETHOD(feeder_init,         feed_volume_init),
300         KOBJMETHOD(feeder_free,         feed_volume_free),
301         KOBJMETHOD(feeder_set,          feed_volume_set),
302         KOBJMETHOD(feeder_feed,         feed_volume_feed),
303         KOBJMETHOD_END
304 };
305
306 FEEDER_DECLARE(feeder_volume, NULL);
307
308 /* Extern */
309
310 /*
311  * feeder_volume_apply_matrix(): For given matrix map, apply its configuration
312  *                               to feeder_volume matrix structure. There are
313  *                               possibilites that feeder_volume be inserted
314  *                               before or after feeder_matrix, which in this
315  *                               case feeder_volume must be in a good terms
316  *                               with _current_ matrix.
317  */
318 int
319 feeder_volume_apply_matrix(struct pcm_feeder *f, struct pcmchan_matrix *m)
320 {
321         struct feed_volume_info *info;
322         uint32_t i;
323
324         if (f == NULL || f->desc == NULL || f->desc->type != FEEDER_VOLUME ||
325             f->data == NULL || m == NULL || m->channels < SND_CHN_MIN ||
326             m->channels > SND_CHN_MAX)
327                 return (EINVAL);
328
329         info = f->data;
330
331         for (i = 0; i < (sizeof(info->matrix) / sizeof(info->matrix[0])); i++) {
332                 if (i < m->channels)
333                         info->matrix[i] = m->map[i].type;
334                 else
335                         info->matrix[i] = SND_CHN_T_FL;
336         }
337
338         info->channels = m->channels;
339
340         return (0);
341 }