]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/dev/vge/if_vge.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / dev / vge / if_vge.c
1 /*-
2  * Copyright (c) 2004
3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *      o Jumbo frame support up to 16K
50  *      o Transmit and receive flow control
51  *      o IPv4 checksum offload
52  *      o VLAN tag insertion and stripping
53  *      o TCP large send
54  *      o 64-bit multicast hash table filter
55  *      o 64 entry CAM filter
56  *      o 16K RX FIFO and 48K TX FIFO memory
57  *      o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105
106 #include <net/bpf.h>
107
108 #include <machine/bus.h>
109 #include <machine/resource.h>
110 #include <sys/bus.h>
111 #include <sys/rman.h>
112
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118
119 MODULE_DEPEND(vge, pci, 1, 1, 1);
120 MODULE_DEPEND(vge, ether, 1, 1, 1);
121 MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123 /* "device miibus" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125
126 #include <dev/vge/if_vgereg.h>
127 #include <dev/vge/if_vgevar.h>
128
129 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131 /* Tunables */
132 static int msi_disable = 0;
133 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
134
135 /*
136  * The SQE error counter of MIB seems to report bogus value.
137  * Vendor's workaround does not seem to work on PCIe based
138  * controllers. Disable it until we find better workaround.
139  */
140 #undef VGE_ENABLE_SQEERR
141
142 /*
143  * Various supported device vendors/types and their names.
144  */
145 static struct vge_type vge_devs[] = {
146         { VIA_VENDORID, VIA_DEVICEID_61XX,
147                 "VIA Networking Velocity Gigabit Ethernet" },
148         { 0, 0, NULL }
149 };
150
151 static int      vge_attach(device_t);
152 static int      vge_detach(device_t);
153 static int      vge_probe(device_t);
154 static int      vge_resume(device_t);
155 static int      vge_shutdown(device_t);
156 static int      vge_suspend(device_t);
157
158 static void     vge_cam_clear(struct vge_softc *);
159 static int      vge_cam_set(struct vge_softc *, uint8_t *);
160 static void     vge_clrwol(struct vge_softc *);
161 static void     vge_discard_rxbuf(struct vge_softc *, int);
162 static int      vge_dma_alloc(struct vge_softc *);
163 static void     vge_dma_free(struct vge_softc *);
164 static void     vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
165 #ifdef VGE_EEPROM
166 static void     vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
167 #endif
168 static int      vge_encap(struct vge_softc *, struct mbuf **);
169 #ifndef __NO_STRICT_ALIGNMENT
170 static __inline void
171                 vge_fixup_rx(struct mbuf *);
172 #endif
173 static void     vge_freebufs(struct vge_softc *);
174 static void     vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175 static int      vge_ifmedia_upd(struct ifnet *);
176 static int      vge_ifmedia_upd_locked(struct vge_softc *);
177 static void     vge_init(void *);
178 static void     vge_init_locked(struct vge_softc *);
179 static void     vge_intr(void *);
180 static void     vge_intr_holdoff(struct vge_softc *);
181 static int      vge_ioctl(struct ifnet *, u_long, caddr_t);
182 static void     vge_link_statchg(void *);
183 static int      vge_miibus_readreg(device_t, int, int);
184 static int      vge_miibus_writereg(device_t, int, int, int);
185 static void     vge_miipoll_start(struct vge_softc *);
186 static void     vge_miipoll_stop(struct vge_softc *);
187 static int      vge_newbuf(struct vge_softc *, int);
188 static void     vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
189 static void     vge_reset(struct vge_softc *);
190 static int      vge_rx_list_init(struct vge_softc *);
191 static int      vge_rxeof(struct vge_softc *, int);
192 static void     vge_rxfilter(struct vge_softc *);
193 static void     vge_setmedia(struct vge_softc *);
194 static void     vge_setvlan(struct vge_softc *);
195 static void     vge_setwol(struct vge_softc *);
196 static void     vge_start(struct ifnet *);
197 static void     vge_start_locked(struct ifnet *);
198 static void     vge_stats_clear(struct vge_softc *);
199 static void     vge_stats_update(struct vge_softc *);
200 static void     vge_stop(struct vge_softc *);
201 static void     vge_sysctl_node(struct vge_softc *);
202 static int      vge_tx_list_init(struct vge_softc *);
203 static void     vge_txeof(struct vge_softc *);
204 static void     vge_watchdog(void *);
205
206 static device_method_t vge_methods[] = {
207         /* Device interface */
208         DEVMETHOD(device_probe,         vge_probe),
209         DEVMETHOD(device_attach,        vge_attach),
210         DEVMETHOD(device_detach,        vge_detach),
211         DEVMETHOD(device_suspend,       vge_suspend),
212         DEVMETHOD(device_resume,        vge_resume),
213         DEVMETHOD(device_shutdown,      vge_shutdown),
214
215         /* MII interface */
216         DEVMETHOD(miibus_readreg,       vge_miibus_readreg),
217         DEVMETHOD(miibus_writereg,      vge_miibus_writereg),
218
219         DEVMETHOD_END
220 };
221
222 static driver_t vge_driver = {
223         "vge",
224         vge_methods,
225         sizeof(struct vge_softc)
226 };
227
228 static devclass_t vge_devclass;
229
230 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
231 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
232
233 #ifdef VGE_EEPROM
234 /*
235  * Read a word of data stored in the EEPROM at address 'addr.'
236  */
237 static void
238 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
239 {
240         int i;
241         uint16_t word = 0;
242
243         /*
244          * Enter EEPROM embedded programming mode. In order to
245          * access the EEPROM at all, we first have to set the
246          * EELOAD bit in the CHIPCFG2 register.
247          */
248         CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
249         CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
250
251         /* Select the address of the word we want to read */
252         CSR_WRITE_1(sc, VGE_EEADDR, addr);
253
254         /* Issue read command */
255         CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
256
257         /* Wait for the done bit to be set. */
258         for (i = 0; i < VGE_TIMEOUT; i++) {
259                 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
260                         break;
261         }
262
263         if (i == VGE_TIMEOUT) {
264                 device_printf(sc->vge_dev, "EEPROM read timed out\n");
265                 *dest = 0;
266                 return;
267         }
268
269         /* Read the result */
270         word = CSR_READ_2(sc, VGE_EERDDAT);
271
272         /* Turn off EEPROM access mode. */
273         CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
274         CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
275
276         *dest = word;
277 }
278 #endif
279
280 /*
281  * Read a sequence of words from the EEPROM.
282  */
283 static void
284 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
285 {
286         int i;
287 #ifdef VGE_EEPROM
288         uint16_t word = 0, *ptr;
289
290         for (i = 0; i < cnt; i++) {
291                 vge_eeprom_getword(sc, off + i, &word);
292                 ptr = (uint16_t *)(dest + (i * 2));
293                 if (swap)
294                         *ptr = ntohs(word);
295                 else
296                         *ptr = word;
297         }
298 #else
299         for (i = 0; i < ETHER_ADDR_LEN; i++)
300                 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
301 #endif
302 }
303
304 static void
305 vge_miipoll_stop(struct vge_softc *sc)
306 {
307         int i;
308
309         CSR_WRITE_1(sc, VGE_MIICMD, 0);
310
311         for (i = 0; i < VGE_TIMEOUT; i++) {
312                 DELAY(1);
313                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
314                         break;
315         }
316
317         if (i == VGE_TIMEOUT)
318                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
319 }
320
321 static void
322 vge_miipoll_start(struct vge_softc *sc)
323 {
324         int i;
325
326         /* First, make sure we're idle. */
327
328         CSR_WRITE_1(sc, VGE_MIICMD, 0);
329         CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
330
331         for (i = 0; i < VGE_TIMEOUT; i++) {
332                 DELAY(1);
333                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
334                         break;
335         }
336
337         if (i == VGE_TIMEOUT) {
338                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
339                 return;
340         }
341
342         /* Now enable auto poll mode. */
343
344         CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
345
346         /* And make sure it started. */
347
348         for (i = 0; i < VGE_TIMEOUT; i++) {
349                 DELAY(1);
350                 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
351                         break;
352         }
353
354         if (i == VGE_TIMEOUT)
355                 device_printf(sc->vge_dev, "failed to start MII autopoll\n");
356 }
357
358 static int
359 vge_miibus_readreg(device_t dev, int phy, int reg)
360 {
361         struct vge_softc *sc;
362         int i;
363         uint16_t rval = 0;
364
365         sc = device_get_softc(dev);
366
367         vge_miipoll_stop(sc);
368
369         /* Specify the register we want to read. */
370         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
371
372         /* Issue read command. */
373         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
374
375         /* Wait for the read command bit to self-clear. */
376         for (i = 0; i < VGE_TIMEOUT; i++) {
377                 DELAY(1);
378                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
379                         break;
380         }
381
382         if (i == VGE_TIMEOUT)
383                 device_printf(sc->vge_dev, "MII read timed out\n");
384         else
385                 rval = CSR_READ_2(sc, VGE_MIIDATA);
386
387         vge_miipoll_start(sc);
388
389         return (rval);
390 }
391
392 static int
393 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
394 {
395         struct vge_softc *sc;
396         int i, rval = 0;
397
398         sc = device_get_softc(dev);
399
400         vge_miipoll_stop(sc);
401
402         /* Specify the register we want to write. */
403         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
404
405         /* Specify the data we want to write. */
406         CSR_WRITE_2(sc, VGE_MIIDATA, data);
407
408         /* Issue write command. */
409         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
410
411         /* Wait for the write command bit to self-clear. */
412         for (i = 0; i < VGE_TIMEOUT; i++) {
413                 DELAY(1);
414                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
415                         break;
416         }
417
418         if (i == VGE_TIMEOUT) {
419                 device_printf(sc->vge_dev, "MII write timed out\n");
420                 rval = EIO;
421         }
422
423         vge_miipoll_start(sc);
424
425         return (rval);
426 }
427
428 static void
429 vge_cam_clear(struct vge_softc *sc)
430 {
431         int i;
432
433         /*
434          * Turn off all the mask bits. This tells the chip
435          * that none of the entries in the CAM filter are valid.
436          * desired entries will be enabled as we fill the filter in.
437          */
438
439         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
440         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
441         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
442         for (i = 0; i < 8; i++)
443                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
444
445         /* Clear the VLAN filter too. */
446
447         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
448         for (i = 0; i < 8; i++)
449                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
450
451         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
452         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
453         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
454
455         sc->vge_camidx = 0;
456 }
457
458 static int
459 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
460 {
461         int i, error = 0;
462
463         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
464                 return (ENOSPC);
465
466         /* Select the CAM data page. */
467         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
469
470         /* Set the filter entry we want to update and enable writing. */
471         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
472
473         /* Write the address to the CAM registers */
474         for (i = 0; i < ETHER_ADDR_LEN; i++)
475                 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
476
477         /* Issue a write command. */
478         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
479
480         /* Wake for it to clear. */
481         for (i = 0; i < VGE_TIMEOUT; i++) {
482                 DELAY(1);
483                 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
484                         break;
485         }
486
487         if (i == VGE_TIMEOUT) {
488                 device_printf(sc->vge_dev, "setting CAM filter failed\n");
489                 error = EIO;
490                 goto fail;
491         }
492
493         /* Select the CAM mask page. */
494         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
495         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
496
497         /* Set the mask bit that enables this filter. */
498         CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
499             1<<(sc->vge_camidx & 7));
500
501         sc->vge_camidx++;
502
503 fail:
504         /* Turn off access to CAM. */
505         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
506         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
507         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
508
509         return (error);
510 }
511
512 static void
513 vge_setvlan(struct vge_softc *sc)
514 {
515         struct ifnet *ifp;
516         uint8_t cfg;
517
518         VGE_LOCK_ASSERT(sc);
519
520         ifp = sc->vge_ifp;
521         cfg = CSR_READ_1(sc, VGE_RXCFG);
522         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
523                 cfg |= VGE_VTAG_OPT2;
524         else
525                 cfg &= ~VGE_VTAG_OPT2;
526         CSR_WRITE_1(sc, VGE_RXCFG, cfg);
527 }
528
529 /*
530  * Program the multicast filter. We use the 64-entry CAM filter
531  * for perfect filtering. If there's more than 64 multicast addresses,
532  * we use the hash filter instead.
533  */
534 static void
535 vge_rxfilter(struct vge_softc *sc)
536 {
537         struct ifnet *ifp;
538         struct ifmultiaddr *ifma;
539         uint32_t h, hashes[2];
540         uint8_t rxcfg;
541         int error = 0;
542
543         VGE_LOCK_ASSERT(sc);
544
545         /* First, zot all the multicast entries. */
546         hashes[0] = 0;
547         hashes[1] = 0;
548
549         rxcfg = CSR_READ_1(sc, VGE_RXCTL);
550         rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
551             VGE_RXCTL_RX_PROMISC);
552         /*
553          * Always allow VLAN oversized frames and frames for
554          * this host.
555          */
556         rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
557
558         ifp = sc->vge_ifp;
559         if ((ifp->if_flags & IFF_BROADCAST) != 0)
560                 rxcfg |= VGE_RXCTL_RX_BCAST;
561         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
562                 if ((ifp->if_flags & IFF_PROMISC) != 0)
563                         rxcfg |= VGE_RXCTL_RX_PROMISC;
564                 if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
565                         hashes[0] = 0xFFFFFFFF;
566                         hashes[1] = 0xFFFFFFFF;
567                 }
568                 goto done;
569         }
570
571         vge_cam_clear(sc);
572         /* Now program new ones */
573         if_maddr_rlock(ifp);
574         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
575                 if (ifma->ifma_addr->sa_family != AF_LINK)
576                         continue;
577                 error = vge_cam_set(sc,
578                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
579                 if (error)
580                         break;
581         }
582
583         /* If there were too many addresses, use the hash filter. */
584         if (error) {
585                 vge_cam_clear(sc);
586
587                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
588                         if (ifma->ifma_addr->sa_family != AF_LINK)
589                                 continue;
590                         h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
591                             ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
592                         if (h < 32)
593                                 hashes[0] |= (1 << h);
594                         else
595                                 hashes[1] |= (1 << (h - 32));
596                 }
597         }
598         if_maddr_runlock(ifp);
599
600 done:
601         if (hashes[0] != 0 || hashes[1] != 0)
602                 rxcfg |= VGE_RXCTL_RX_MCAST;
603         CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
604         CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
605         CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
606 }
607
608 static void
609 vge_reset(struct vge_softc *sc)
610 {
611         int i;
612
613         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
614
615         for (i = 0; i < VGE_TIMEOUT; i++) {
616                 DELAY(5);
617                 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
618                         break;
619         }
620
621         if (i == VGE_TIMEOUT) {
622                 device_printf(sc->vge_dev, "soft reset timed out\n");
623                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
624                 DELAY(2000);
625         }
626
627         DELAY(5000);
628 }
629
630 /*
631  * Probe for a VIA gigabit chip. Check the PCI vendor and device
632  * IDs against our list and return a device name if we find a match.
633  */
634 static int
635 vge_probe(device_t dev)
636 {
637         struct vge_type *t;
638
639         t = vge_devs;
640
641         while (t->vge_name != NULL) {
642                 if ((pci_get_vendor(dev) == t->vge_vid) &&
643                     (pci_get_device(dev) == t->vge_did)) {
644                         device_set_desc(dev, t->vge_name);
645                         return (BUS_PROBE_DEFAULT);
646                 }
647                 t++;
648         }
649
650         return (ENXIO);
651 }
652
653 /*
654  * Map a single buffer address.
655  */
656
657 struct vge_dmamap_arg {
658         bus_addr_t      vge_busaddr;
659 };
660
661 static void
662 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
663 {
664         struct vge_dmamap_arg *ctx;
665
666         if (error != 0)
667                 return;
668
669         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
670
671         ctx = (struct vge_dmamap_arg *)arg;
672         ctx->vge_busaddr = segs[0].ds_addr;
673 }
674
675 static int
676 vge_dma_alloc(struct vge_softc *sc)
677 {
678         struct vge_dmamap_arg ctx;
679         struct vge_txdesc *txd;
680         struct vge_rxdesc *rxd;
681         bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
682         int error, i;
683
684         /*
685          * It seems old PCI controllers do not support DAC.  DAC
686          * configuration can be enabled by accessing VGE_CHIPCFG3
687          * register but honor EEPROM configuration instead of
688          * blindly overriding DAC configuration.  PCIe based
689          * controllers are supposed to support 64bit DMA so enable
690          * 64bit DMA on these controllers.
691          */
692         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
693                 lowaddr = BUS_SPACE_MAXADDR;
694         else
695                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
696
697 again:
698         /* Create parent ring tag. */
699         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
700             1, 0,                       /* algnmnt, boundary */
701             lowaddr,                    /* lowaddr */
702             BUS_SPACE_MAXADDR,          /* highaddr */
703             NULL, NULL,                 /* filter, filterarg */
704             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
705             0,                          /* nsegments */
706             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
707             0,                          /* flags */
708             NULL, NULL,                 /* lockfunc, lockarg */
709             &sc->vge_cdata.vge_ring_tag);
710         if (error != 0) {
711                 device_printf(sc->vge_dev,
712                     "could not create parent DMA tag.\n");
713                 goto fail;
714         }
715
716         /* Create tag for Tx ring. */
717         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
718             VGE_TX_RING_ALIGN, 0,       /* algnmnt, boundary */
719             BUS_SPACE_MAXADDR,          /* lowaddr */
720             BUS_SPACE_MAXADDR,          /* highaddr */
721             NULL, NULL,                 /* filter, filterarg */
722             VGE_TX_LIST_SZ,             /* maxsize */
723             1,                          /* nsegments */
724             VGE_TX_LIST_SZ,             /* maxsegsize */
725             0,                          /* flags */
726             NULL, NULL,                 /* lockfunc, lockarg */
727             &sc->vge_cdata.vge_tx_ring_tag);
728         if (error != 0) {
729                 device_printf(sc->vge_dev,
730                     "could not allocate Tx ring DMA tag.\n");
731                 goto fail;
732         }
733
734         /* Create tag for Rx ring. */
735         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
736             VGE_RX_RING_ALIGN, 0,       /* algnmnt, boundary */
737             BUS_SPACE_MAXADDR,          /* lowaddr */
738             BUS_SPACE_MAXADDR,          /* highaddr */
739             NULL, NULL,                 /* filter, filterarg */
740             VGE_RX_LIST_SZ,             /* maxsize */
741             1,                          /* nsegments */
742             VGE_RX_LIST_SZ,             /* maxsegsize */
743             0,                          /* flags */
744             NULL, NULL,                 /* lockfunc, lockarg */
745             &sc->vge_cdata.vge_rx_ring_tag);
746         if (error != 0) {
747                 device_printf(sc->vge_dev,
748                     "could not allocate Rx ring DMA tag.\n");
749                 goto fail;
750         }
751
752         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
753         error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
754             (void **)&sc->vge_rdata.vge_tx_ring,
755             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
756             &sc->vge_cdata.vge_tx_ring_map);
757         if (error != 0) {
758                 device_printf(sc->vge_dev,
759                     "could not allocate DMA'able memory for Tx ring.\n");
760                 goto fail;
761         }
762
763         ctx.vge_busaddr = 0;
764         error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
765             sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
766             VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
767         if (error != 0 || ctx.vge_busaddr == 0) {
768                 device_printf(sc->vge_dev,
769                     "could not load DMA'able memory for Tx ring.\n");
770                 goto fail;
771         }
772         sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
773
774         /* Allocate DMA'able memory and load the DMA map for Rx ring. */
775         error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
776             (void **)&sc->vge_rdata.vge_rx_ring,
777             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
778             &sc->vge_cdata.vge_rx_ring_map);
779         if (error != 0) {
780                 device_printf(sc->vge_dev,
781                     "could not allocate DMA'able memory for Rx ring.\n");
782                 goto fail;
783         }
784
785         ctx.vge_busaddr = 0;
786         error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
787             sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
788             VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
789         if (error != 0 || ctx.vge_busaddr == 0) {
790                 device_printf(sc->vge_dev,
791                     "could not load DMA'able memory for Rx ring.\n");
792                 goto fail;
793         }
794         sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
795
796         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
797         tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
798         rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
799         if ((VGE_ADDR_HI(tx_ring_end) !=
800             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
801             (VGE_ADDR_HI(rx_ring_end) !=
802             VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
803             VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
804                 device_printf(sc->vge_dev, "4GB boundary crossed, "
805                     "switching to 32bit DMA address mode.\n");
806                 vge_dma_free(sc);
807                 /* Limit DMA address space to 32bit and try again. */
808                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
809                 goto again;
810         }
811
812         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
813                 lowaddr = VGE_BUF_DMA_MAXADDR;
814         else
815                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
816         /* Create parent buffer tag. */
817         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
818             1, 0,                       /* algnmnt, boundary */
819             lowaddr,                    /* lowaddr */
820             BUS_SPACE_MAXADDR,          /* highaddr */
821             NULL, NULL,                 /* filter, filterarg */
822             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
823             0,                          /* nsegments */
824             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
825             0,                          /* flags */
826             NULL, NULL,                 /* lockfunc, lockarg */
827             &sc->vge_cdata.vge_buffer_tag);
828         if (error != 0) {
829                 device_printf(sc->vge_dev,
830                     "could not create parent buffer DMA tag.\n");
831                 goto fail;
832         }
833
834         /* Create tag for Tx buffers. */
835         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
836             1, 0,                       /* algnmnt, boundary */
837             BUS_SPACE_MAXADDR,          /* lowaddr */
838             BUS_SPACE_MAXADDR,          /* highaddr */
839             NULL, NULL,                 /* filter, filterarg */
840             MCLBYTES * VGE_MAXTXSEGS,   /* maxsize */
841             VGE_MAXTXSEGS,              /* nsegments */
842             MCLBYTES,                   /* maxsegsize */
843             0,                          /* flags */
844             NULL, NULL,                 /* lockfunc, lockarg */
845             &sc->vge_cdata.vge_tx_tag);
846         if (error != 0) {
847                 device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
848                 goto fail;
849         }
850
851         /* Create tag for Rx buffers. */
852         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
853             VGE_RX_BUF_ALIGN, 0,        /* algnmnt, boundary */
854             BUS_SPACE_MAXADDR,          /* lowaddr */
855             BUS_SPACE_MAXADDR,          /* highaddr */
856             NULL, NULL,                 /* filter, filterarg */
857             MCLBYTES,                   /* maxsize */
858             1,                          /* nsegments */
859             MCLBYTES,                   /* maxsegsize */
860             0,                          /* flags */
861             NULL, NULL,                 /* lockfunc, lockarg */
862             &sc->vge_cdata.vge_rx_tag);
863         if (error != 0) {
864                 device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
865                 goto fail;
866         }
867
868         /* Create DMA maps for Tx buffers. */
869         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
870                 txd = &sc->vge_cdata.vge_txdesc[i];
871                 txd->tx_m = NULL;
872                 txd->tx_dmamap = NULL;
873                 error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
874                     &txd->tx_dmamap);
875                 if (error != 0) {
876                         device_printf(sc->vge_dev,
877                             "could not create Tx dmamap.\n");
878                         goto fail;
879                 }
880         }
881         /* Create DMA maps for Rx buffers. */
882         if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
883             &sc->vge_cdata.vge_rx_sparemap)) != 0) {
884                 device_printf(sc->vge_dev,
885                     "could not create spare Rx dmamap.\n");
886                 goto fail;
887         }
888         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
889                 rxd = &sc->vge_cdata.vge_rxdesc[i];
890                 rxd->rx_m = NULL;
891                 rxd->rx_dmamap = NULL;
892                 error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
893                     &rxd->rx_dmamap);
894                 if (error != 0) {
895                         device_printf(sc->vge_dev,
896                             "could not create Rx dmamap.\n");
897                         goto fail;
898                 }
899         }
900
901 fail:
902         return (error);
903 }
904
905 static void
906 vge_dma_free(struct vge_softc *sc)
907 {
908         struct vge_txdesc *txd;
909         struct vge_rxdesc *rxd;
910         int i;
911
912         /* Tx ring. */
913         if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
914                 if (sc->vge_cdata.vge_tx_ring_map)
915                         bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
916                             sc->vge_cdata.vge_tx_ring_map);
917                 if (sc->vge_cdata.vge_tx_ring_map &&
918                     sc->vge_rdata.vge_tx_ring)
919                         bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
920                             sc->vge_rdata.vge_tx_ring,
921                             sc->vge_cdata.vge_tx_ring_map);
922                 sc->vge_rdata.vge_tx_ring = NULL;
923                 sc->vge_cdata.vge_tx_ring_map = NULL;
924                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
925                 sc->vge_cdata.vge_tx_ring_tag = NULL;
926         }
927         /* Rx ring. */
928         if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
929                 if (sc->vge_cdata.vge_rx_ring_map)
930                         bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
931                             sc->vge_cdata.vge_rx_ring_map);
932                 if (sc->vge_cdata.vge_rx_ring_map &&
933                     sc->vge_rdata.vge_rx_ring)
934                         bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
935                             sc->vge_rdata.vge_rx_ring,
936                             sc->vge_cdata.vge_rx_ring_map);
937                 sc->vge_rdata.vge_rx_ring = NULL;
938                 sc->vge_cdata.vge_rx_ring_map = NULL;
939                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
940                 sc->vge_cdata.vge_rx_ring_tag = NULL;
941         }
942         /* Tx buffers. */
943         if (sc->vge_cdata.vge_tx_tag != NULL) {
944                 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
945                         txd = &sc->vge_cdata.vge_txdesc[i];
946                         if (txd->tx_dmamap != NULL) {
947                                 bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
948                                     txd->tx_dmamap);
949                                 txd->tx_dmamap = NULL;
950                         }
951                 }
952                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
953                 sc->vge_cdata.vge_tx_tag = NULL;
954         }
955         /* Rx buffers. */
956         if (sc->vge_cdata.vge_rx_tag != NULL) {
957                 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
958                         rxd = &sc->vge_cdata.vge_rxdesc[i];
959                         if (rxd->rx_dmamap != NULL) {
960                                 bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
961                                     rxd->rx_dmamap);
962                                 rxd->rx_dmamap = NULL;
963                         }
964                 }
965                 if (sc->vge_cdata.vge_rx_sparemap != NULL) {
966                         bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
967                             sc->vge_cdata.vge_rx_sparemap);
968                         sc->vge_cdata.vge_rx_sparemap = NULL;
969                 }
970                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
971                 sc->vge_cdata.vge_rx_tag = NULL;
972         }
973
974         if (sc->vge_cdata.vge_buffer_tag != NULL) {
975                 bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
976                 sc->vge_cdata.vge_buffer_tag = NULL;
977         }
978         if (sc->vge_cdata.vge_ring_tag != NULL) {
979                 bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
980                 sc->vge_cdata.vge_ring_tag = NULL;
981         }
982 }
983
984 /*
985  * Attach the interface. Allocate softc structures, do ifmedia
986  * setup and ethernet/BPF attach.
987  */
988 static int
989 vge_attach(device_t dev)
990 {
991         u_char eaddr[ETHER_ADDR_LEN];
992         struct vge_softc *sc;
993         struct ifnet *ifp;
994         int error = 0, cap, i, msic, rid;
995
996         sc = device_get_softc(dev);
997         sc->vge_dev = dev;
998
999         mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1000             MTX_DEF);
1001         callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1002
1003         /*
1004          * Map control/status registers.
1005          */
1006         pci_enable_busmaster(dev);
1007
1008         rid = PCIR_BAR(1);
1009         sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1010             RF_ACTIVE);
1011
1012         if (sc->vge_res == NULL) {
1013                 device_printf(dev, "couldn't map ports/memory\n");
1014                 error = ENXIO;
1015                 goto fail;
1016         }
1017
1018         if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1019                 sc->vge_flags |= VGE_FLAG_PCIE;
1020                 sc->vge_expcap = cap;
1021         } else
1022                 sc->vge_flags |= VGE_FLAG_JUMBO;
1023         if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1024                 sc->vge_flags |= VGE_FLAG_PMCAP;
1025                 sc->vge_pmcap = cap;
1026         }
1027         rid = 0;
1028         msic = pci_msi_count(dev);
1029         if (msi_disable == 0 && msic > 0) {
1030                 msic = 1;
1031                 if (pci_alloc_msi(dev, &msic) == 0) {
1032                         if (msic == 1) {
1033                                 sc->vge_flags |= VGE_FLAG_MSI;
1034                                 device_printf(dev, "Using %d MSI message\n",
1035                                     msic);
1036                                 rid = 1;
1037                         } else
1038                                 pci_release_msi(dev);
1039                 }
1040         }
1041
1042         /* Allocate interrupt */
1043         sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1044             ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1045         if (sc->vge_irq == NULL) {
1046                 device_printf(dev, "couldn't map interrupt\n");
1047                 error = ENXIO;
1048                 goto fail;
1049         }
1050
1051         /* Reset the adapter. */
1052         vge_reset(sc);
1053         /* Reload EEPROM. */
1054         CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1055         for (i = 0; i < VGE_TIMEOUT; i++) {
1056                 DELAY(5);
1057                 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1058                         break;
1059         }
1060         if (i == VGE_TIMEOUT)
1061                 device_printf(dev, "EEPROM reload timed out\n");
1062         /*
1063          * Clear PACPI as EEPROM reload will set the bit. Otherwise
1064          * MAC will receive magic packet which in turn confuses
1065          * controller.
1066          */
1067         CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1068
1069         /*
1070          * Get station address from the EEPROM.
1071          */
1072         vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1073         /*
1074          * Save configured PHY address.
1075          * It seems the PHY address of PCIe controllers just
1076          * reflects media jump strapping status so we assume the
1077          * internal PHY address of PCIe controller is at 1.
1078          */
1079         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1080                 sc->vge_phyaddr = 1;
1081         else
1082                 sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1083                     VGE_MIICFG_PHYADDR;
1084         /* Clear WOL and take hardware from powerdown. */
1085         vge_clrwol(sc);
1086         vge_sysctl_node(sc);
1087         error = vge_dma_alloc(sc);
1088         if (error)
1089                 goto fail;
1090
1091         ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1092         if (ifp == NULL) {
1093                 device_printf(dev, "can not if_alloc()\n");
1094                 error = ENOSPC;
1095                 goto fail;
1096         }
1097
1098         vge_miipoll_start(sc);
1099         /* Do MII setup */
1100         error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1101             vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1102             MIIF_DOPAUSE);
1103         if (error != 0) {
1104                 device_printf(dev, "attaching PHYs failed\n");
1105                 goto fail;
1106         }
1107
1108         ifp->if_softc = sc;
1109         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1110         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1111         ifp->if_ioctl = vge_ioctl;
1112         ifp->if_capabilities = IFCAP_VLAN_MTU;
1113         ifp->if_start = vge_start;
1114         ifp->if_hwassist = VGE_CSUM_FEATURES;
1115         ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1116             IFCAP_VLAN_HWTAGGING;
1117         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1118                 ifp->if_capabilities |= IFCAP_WOL;
1119         ifp->if_capenable = ifp->if_capabilities;
1120 #ifdef DEVICE_POLLING
1121         ifp->if_capabilities |= IFCAP_POLLING;
1122 #endif
1123         ifp->if_init = vge_init;
1124         IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1125         ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1126         IFQ_SET_READY(&ifp->if_snd);
1127
1128         /*
1129          * Call MI attach routine.
1130          */
1131         ether_ifattach(ifp, eaddr);
1132
1133         /* Tell the upper layer(s) we support long frames. */
1134         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1135
1136         /* Hook interrupt last to avoid having to lock softc */
1137         error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1138             NULL, vge_intr, sc, &sc->vge_intrhand);
1139
1140         if (error) {
1141                 device_printf(dev, "couldn't set up irq\n");
1142                 ether_ifdetach(ifp);
1143                 goto fail;
1144         }
1145
1146 fail:
1147         if (error)
1148                 vge_detach(dev);
1149
1150         return (error);
1151 }
1152
1153 /*
1154  * Shutdown hardware and free up resources. This can be called any
1155  * time after the mutex has been initialized. It is called in both
1156  * the error case in attach and the normal detach case so it needs
1157  * to be careful about only freeing resources that have actually been
1158  * allocated.
1159  */
1160 static int
1161 vge_detach(device_t dev)
1162 {
1163         struct vge_softc *sc;
1164         struct ifnet *ifp;
1165
1166         sc = device_get_softc(dev);
1167         KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1168         ifp = sc->vge_ifp;
1169
1170 #ifdef DEVICE_POLLING
1171         if (ifp->if_capenable & IFCAP_POLLING)
1172                 ether_poll_deregister(ifp);
1173 #endif
1174
1175         /* These should only be active if attach succeeded */
1176         if (device_is_attached(dev)) {
1177                 ether_ifdetach(ifp);
1178                 VGE_LOCK(sc);
1179                 vge_stop(sc);
1180                 VGE_UNLOCK(sc);
1181                 callout_drain(&sc->vge_watchdog);
1182         }
1183         if (sc->vge_miibus)
1184                 device_delete_child(dev, sc->vge_miibus);
1185         bus_generic_detach(dev);
1186
1187         if (sc->vge_intrhand)
1188                 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1189         if (sc->vge_irq)
1190                 bus_release_resource(dev, SYS_RES_IRQ,
1191                     sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1192         if (sc->vge_flags & VGE_FLAG_MSI)
1193                 pci_release_msi(dev);
1194         if (sc->vge_res)
1195                 bus_release_resource(dev, SYS_RES_MEMORY,
1196                     PCIR_BAR(1), sc->vge_res);
1197         if (ifp)
1198                 if_free(ifp);
1199
1200         vge_dma_free(sc);
1201         mtx_destroy(&sc->vge_mtx);
1202
1203         return (0);
1204 }
1205
1206 static void
1207 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1208 {
1209         struct vge_rxdesc *rxd;
1210         int i;
1211
1212         rxd = &sc->vge_cdata.vge_rxdesc[prod];
1213         rxd->rx_desc->vge_sts = 0;
1214         rxd->rx_desc->vge_ctl = 0;
1215
1216         /*
1217          * Note: the manual fails to document the fact that for
1218          * proper opration, the driver needs to replentish the RX
1219          * DMA ring 4 descriptors at a time (rather than one at a
1220          * time, like most chips). We can allocate the new buffers
1221          * but we should not set the OWN bits until we're ready
1222          * to hand back 4 of them in one shot.
1223          */
1224         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1225                 for (i = VGE_RXCHUNK; i > 0; i--) {
1226                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1227                         rxd = rxd->rxd_prev;
1228                 }
1229                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1230         }
1231 }
1232
1233 static int
1234 vge_newbuf(struct vge_softc *sc, int prod)
1235 {
1236         struct vge_rxdesc *rxd;
1237         struct mbuf *m;
1238         bus_dma_segment_t segs[1];
1239         bus_dmamap_t map;
1240         int i, nsegs;
1241
1242         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1243         if (m == NULL)
1244                 return (ENOBUFS);
1245         /*
1246          * This is part of an evil trick to deal with strict-alignment
1247          * architectures. The VIA chip requires RX buffers to be aligned
1248          * on 32-bit boundaries, but that will hose strict-alignment
1249          * architectures. To get around this, we leave some empty space
1250          * at the start of each buffer and for non-strict-alignment hosts,
1251          * we copy the buffer back two bytes to achieve word alignment.
1252          * This is slightly more efficient than allocating a new buffer,
1253          * copying the contents, and discarding the old buffer.
1254          */
1255         m->m_len = m->m_pkthdr.len = MCLBYTES;
1256         m_adj(m, VGE_RX_BUF_ALIGN);
1257
1258         if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1259             sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1260                 m_freem(m);
1261                 return (ENOBUFS);
1262         }
1263         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1264
1265         rxd = &sc->vge_cdata.vge_rxdesc[prod];
1266         if (rxd->rx_m != NULL) {
1267                 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1268                     BUS_DMASYNC_POSTREAD);
1269                 bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1270         }
1271         map = rxd->rx_dmamap;
1272         rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1273         sc->vge_cdata.vge_rx_sparemap = map;
1274         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1275             BUS_DMASYNC_PREREAD);
1276         rxd->rx_m = m;
1277
1278         rxd->rx_desc->vge_sts = 0;
1279         rxd->rx_desc->vge_ctl = 0;
1280         rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1281         rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1282             (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1283
1284         /*
1285          * Note: the manual fails to document the fact that for
1286          * proper operation, the driver needs to replenish the RX
1287          * DMA ring 4 descriptors at a time (rather than one at a
1288          * time, like most chips). We can allocate the new buffers
1289          * but we should not set the OWN bits until we're ready
1290          * to hand back 4 of them in one shot.
1291          */
1292         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1293                 for (i = VGE_RXCHUNK; i > 0; i--) {
1294                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1295                         rxd = rxd->rxd_prev;
1296                 }
1297                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1298         }
1299
1300         return (0);
1301 }
1302
1303 static int
1304 vge_tx_list_init(struct vge_softc *sc)
1305 {
1306         struct vge_ring_data *rd;
1307         struct vge_txdesc *txd;
1308         int i;
1309
1310         VGE_LOCK_ASSERT(sc);
1311
1312         sc->vge_cdata.vge_tx_prodidx = 0;
1313         sc->vge_cdata.vge_tx_considx = 0;
1314         sc->vge_cdata.vge_tx_cnt = 0;
1315
1316         rd = &sc->vge_rdata;
1317         bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1318         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1319                 txd = &sc->vge_cdata.vge_txdesc[i];
1320                 txd->tx_m = NULL;
1321                 txd->tx_desc = &rd->vge_tx_ring[i];
1322         }
1323
1324         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1325             sc->vge_cdata.vge_tx_ring_map,
1326             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1327
1328         return (0);
1329 }
1330
1331 static int
1332 vge_rx_list_init(struct vge_softc *sc)
1333 {
1334         struct vge_ring_data *rd;
1335         struct vge_rxdesc *rxd;
1336         int i;
1337
1338         VGE_LOCK_ASSERT(sc);
1339
1340         sc->vge_cdata.vge_rx_prodidx = 0;
1341         sc->vge_cdata.vge_head = NULL;
1342         sc->vge_cdata.vge_tail = NULL;
1343         sc->vge_cdata.vge_rx_commit = 0;
1344
1345         rd = &sc->vge_rdata;
1346         bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1347         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1348                 rxd = &sc->vge_cdata.vge_rxdesc[i];
1349                 rxd->rx_m = NULL;
1350                 rxd->rx_desc = &rd->vge_rx_ring[i];
1351                 if (i == 0)
1352                         rxd->rxd_prev =
1353                             &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1354                 else
1355                         rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1356                 if (vge_newbuf(sc, i) != 0)
1357                         return (ENOBUFS);
1358         }
1359
1360         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1361             sc->vge_cdata.vge_rx_ring_map,
1362             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1363
1364         sc->vge_cdata.vge_rx_commit = 0;
1365
1366         return (0);
1367 }
1368
1369 static void
1370 vge_freebufs(struct vge_softc *sc)
1371 {
1372         struct vge_txdesc *txd;
1373         struct vge_rxdesc *rxd;
1374         struct ifnet *ifp;
1375         int i;
1376
1377         VGE_LOCK_ASSERT(sc);
1378
1379         ifp = sc->vge_ifp;
1380         /*
1381          * Free RX and TX mbufs still in the queues.
1382          */
1383         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1384                 rxd = &sc->vge_cdata.vge_rxdesc[i];
1385                 if (rxd->rx_m != NULL) {
1386                         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1387                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1388                         bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1389                             rxd->rx_dmamap);
1390                         m_freem(rxd->rx_m);
1391                         rxd->rx_m = NULL;
1392                 }
1393         }
1394
1395         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1396                 txd = &sc->vge_cdata.vge_txdesc[i];
1397                 if (txd->tx_m != NULL) {
1398                         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1399                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1400                         bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1401                             txd->tx_dmamap);
1402                         m_freem(txd->tx_m);
1403                         txd->tx_m = NULL;
1404                         ifp->if_oerrors++;
1405                 }
1406         }
1407 }
1408
1409 #ifndef __NO_STRICT_ALIGNMENT
1410 static __inline void
1411 vge_fixup_rx(struct mbuf *m)
1412 {
1413         int i;
1414         uint16_t *src, *dst;
1415
1416         src = mtod(m, uint16_t *);
1417         dst = src - 1;
1418
1419         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1420                 *dst++ = *src++;
1421
1422         m->m_data -= ETHER_ALIGN;
1423 }
1424 #endif
1425
1426 /*
1427  * RX handler. We support the reception of jumbo frames that have
1428  * been fragmented across multiple 2K mbuf cluster buffers.
1429  */
1430 static int
1431 vge_rxeof(struct vge_softc *sc, int count)
1432 {
1433         struct mbuf *m;
1434         struct ifnet *ifp;
1435         int prod, prog, total_len;
1436         struct vge_rxdesc *rxd;
1437         struct vge_rx_desc *cur_rx;
1438         uint32_t rxstat, rxctl;
1439
1440         VGE_LOCK_ASSERT(sc);
1441
1442         ifp = sc->vge_ifp;
1443
1444         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1445             sc->vge_cdata.vge_rx_ring_map,
1446             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1447
1448         prod = sc->vge_cdata.vge_rx_prodidx;
1449         for (prog = 0; count > 0 &&
1450             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1451             VGE_RX_DESC_INC(prod)) {
1452                 cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1453                 rxstat = le32toh(cur_rx->vge_sts);
1454                 if ((rxstat & VGE_RDSTS_OWN) != 0)
1455                         break;
1456                 count--;
1457                 prog++;
1458                 rxctl = le32toh(cur_rx->vge_ctl);
1459                 total_len = VGE_RXBYTES(rxstat);
1460                 rxd = &sc->vge_cdata.vge_rxdesc[prod];
1461                 m = rxd->rx_m;
1462
1463                 /*
1464                  * If the 'start of frame' bit is set, this indicates
1465                  * either the first fragment in a multi-fragment receive,
1466                  * or an intermediate fragment. Either way, we want to
1467                  * accumulate the buffers.
1468                  */
1469                 if ((rxstat & VGE_RXPKT_SOF) != 0) {
1470                         if (vge_newbuf(sc, prod) != 0) {
1471                                 ifp->if_iqdrops++;
1472                                 VGE_CHAIN_RESET(sc);
1473                                 vge_discard_rxbuf(sc, prod);
1474                                 continue;
1475                         }
1476                         m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1477                         if (sc->vge_cdata.vge_head == NULL) {
1478                                 sc->vge_cdata.vge_head = m;
1479                                 sc->vge_cdata.vge_tail = m;
1480                         } else {
1481                                 m->m_flags &= ~M_PKTHDR;
1482                                 sc->vge_cdata.vge_tail->m_next = m;
1483                                 sc->vge_cdata.vge_tail = m;
1484                         }
1485                         continue;
1486                 }
1487
1488                 /*
1489                  * Bad/error frames will have the RXOK bit cleared.
1490                  * However, there's one error case we want to allow:
1491                  * if a VLAN tagged frame arrives and the chip can't
1492                  * match it against the CAM filter, it considers this
1493                  * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1494                  * We don't want to drop the frame though: our VLAN
1495                  * filtering is done in software.
1496                  * We also want to receive bad-checksummed frames and
1497                  * and frames with bad-length.
1498                  */
1499                 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1500                     (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1501                     VGE_RDSTS_CSUMERR)) == 0) {
1502                         ifp->if_ierrors++;
1503                         /*
1504                          * If this is part of a multi-fragment packet,
1505                          * discard all the pieces.
1506                          */
1507                         VGE_CHAIN_RESET(sc);
1508                         vge_discard_rxbuf(sc, prod);
1509                         continue;
1510                 }
1511
1512                 if (vge_newbuf(sc, prod) != 0) {
1513                         ifp->if_iqdrops++;
1514                         VGE_CHAIN_RESET(sc);
1515                         vge_discard_rxbuf(sc, prod);
1516                         continue;
1517                 }
1518
1519                 /* Chain received mbufs. */
1520                 if (sc->vge_cdata.vge_head != NULL) {
1521                         m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1522                         /*
1523                          * Special case: if there's 4 bytes or less
1524                          * in this buffer, the mbuf can be discarded:
1525                          * the last 4 bytes is the CRC, which we don't
1526                          * care about anyway.
1527                          */
1528                         if (m->m_len <= ETHER_CRC_LEN) {
1529                                 sc->vge_cdata.vge_tail->m_len -=
1530                                     (ETHER_CRC_LEN - m->m_len);
1531                                 m_freem(m);
1532                         } else {
1533                                 m->m_len -= ETHER_CRC_LEN;
1534                                 m->m_flags &= ~M_PKTHDR;
1535                                 sc->vge_cdata.vge_tail->m_next = m;
1536                         }
1537                         m = sc->vge_cdata.vge_head;
1538                         m->m_flags |= M_PKTHDR;
1539                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1540                 } else {
1541                         m->m_flags |= M_PKTHDR;
1542                         m->m_pkthdr.len = m->m_len =
1543                             (total_len - ETHER_CRC_LEN);
1544                 }
1545
1546 #ifndef __NO_STRICT_ALIGNMENT
1547                 vge_fixup_rx(m);
1548 #endif
1549                 m->m_pkthdr.rcvif = ifp;
1550
1551                 /* Do RX checksumming if enabled */
1552                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1553                     (rxctl & VGE_RDCTL_FRAG) == 0) {
1554                         /* Check IP header checksum */
1555                         if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1556                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1557                         if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1558                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1559
1560                         /* Check TCP/UDP checksum */
1561                         if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1562                             rxctl & VGE_RDCTL_PROTOCSUMOK) {
1563                                 m->m_pkthdr.csum_flags |=
1564                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1565                                 m->m_pkthdr.csum_data = 0xffff;
1566                         }
1567                 }
1568
1569                 if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1570                         /*
1571                          * The 32-bit rxctl register is stored in little-endian.
1572                          * However, the 16-bit vlan tag is stored in big-endian,
1573                          * so we have to byte swap it.
1574                          */
1575                         m->m_pkthdr.ether_vtag =
1576                             bswap16(rxctl & VGE_RDCTL_VLANID);
1577                         m->m_flags |= M_VLANTAG;
1578                 }
1579
1580                 VGE_UNLOCK(sc);
1581                 (*ifp->if_input)(ifp, m);
1582                 VGE_LOCK(sc);
1583                 sc->vge_cdata.vge_head = NULL;
1584                 sc->vge_cdata.vge_tail = NULL;
1585         }
1586
1587         if (prog > 0) {
1588                 sc->vge_cdata.vge_rx_prodidx = prod;
1589                 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1590                     sc->vge_cdata.vge_rx_ring_map,
1591                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1592                 /* Update residue counter. */
1593                 if (sc->vge_cdata.vge_rx_commit != 0) {
1594                         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1595                             sc->vge_cdata.vge_rx_commit);
1596                         sc->vge_cdata.vge_rx_commit = 0;
1597                 }
1598         }
1599         return (prog);
1600 }
1601
1602 static void
1603 vge_txeof(struct vge_softc *sc)
1604 {
1605         struct ifnet *ifp;
1606         struct vge_tx_desc *cur_tx;
1607         struct vge_txdesc *txd;
1608         uint32_t txstat;
1609         int cons, prod;
1610
1611         VGE_LOCK_ASSERT(sc);
1612
1613         ifp = sc->vge_ifp;
1614
1615         if (sc->vge_cdata.vge_tx_cnt == 0)
1616                 return;
1617
1618         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1619             sc->vge_cdata.vge_tx_ring_map,
1620             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1621
1622         /*
1623          * Go through our tx list and free mbufs for those
1624          * frames that have been transmitted.
1625          */
1626         cons = sc->vge_cdata.vge_tx_considx;
1627         prod = sc->vge_cdata.vge_tx_prodidx;
1628         for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1629                 cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1630                 txstat = le32toh(cur_tx->vge_sts);
1631                 if ((txstat & VGE_TDSTS_OWN) != 0)
1632                         break;
1633                 sc->vge_cdata.vge_tx_cnt--;
1634                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1635
1636                 txd = &sc->vge_cdata.vge_txdesc[cons];
1637                 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1638                     BUS_DMASYNC_POSTWRITE);
1639                 bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1640
1641                 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1642                     __func__));
1643                 m_freem(txd->tx_m);
1644                 txd->tx_m = NULL;
1645                 txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1646         }
1647         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1648             sc->vge_cdata.vge_tx_ring_map,
1649             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1650         sc->vge_cdata.vge_tx_considx = cons;
1651         if (sc->vge_cdata.vge_tx_cnt == 0)
1652                 sc->vge_timer = 0;
1653 }
1654
1655 static void
1656 vge_link_statchg(void *xsc)
1657 {
1658         struct vge_softc *sc;
1659         struct ifnet *ifp;
1660         uint8_t physts;
1661
1662         sc = xsc;
1663         ifp = sc->vge_ifp;
1664         VGE_LOCK_ASSERT(sc);
1665
1666         physts = CSR_READ_1(sc, VGE_PHYSTS0);
1667         if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1668                 if ((physts & VGE_PHYSTS_LINK) == 0) {
1669                         sc->vge_flags &= ~VGE_FLAG_LINK;
1670                         if_link_state_change(sc->vge_ifp,
1671                             LINK_STATE_DOWN);
1672                 } else {
1673                         sc->vge_flags |= VGE_FLAG_LINK;
1674                         if_link_state_change(sc->vge_ifp,
1675                             LINK_STATE_UP);
1676                         CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1677                             VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1678                         if ((physts & VGE_PHYSTS_FDX) != 0) {
1679                                 if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1680                                         CSR_WRITE_1(sc, VGE_CRS2,
1681                                             VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1682                                 if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1683                                         CSR_WRITE_1(sc, VGE_CRS2,
1684                                             VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1685                         }
1686                         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1687                                 vge_start_locked(ifp);
1688                 }
1689         }
1690         /*
1691          * Restart MII auto-polling because link state change interrupt
1692          * will disable it.
1693          */
1694         vge_miipoll_start(sc);
1695 }
1696
1697 #ifdef DEVICE_POLLING
1698 static int
1699 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1700 {
1701         struct vge_softc *sc = ifp->if_softc;
1702         int rx_npkts = 0;
1703
1704         VGE_LOCK(sc);
1705         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1706                 goto done;
1707
1708         rx_npkts = vge_rxeof(sc, count);
1709         vge_txeof(sc);
1710
1711         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1712                 vge_start_locked(ifp);
1713
1714         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1715                 uint32_t       status;
1716                 status = CSR_READ_4(sc, VGE_ISR);
1717                 if (status == 0xFFFFFFFF)
1718                         goto done;
1719                 if (status)
1720                         CSR_WRITE_4(sc, VGE_ISR, status);
1721
1722                 /*
1723                  * XXX check behaviour on receiver stalls.
1724                  */
1725
1726                 if (status & VGE_ISR_TXDMA_STALL ||
1727                     status & VGE_ISR_RXDMA_STALL) {
1728                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1729                         vge_init_locked(sc);
1730                 }
1731
1732                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1733                         vge_rxeof(sc, count);
1734                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1735                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1736                 }
1737         }
1738 done:
1739         VGE_UNLOCK(sc);
1740         return (rx_npkts);
1741 }
1742 #endif /* DEVICE_POLLING */
1743
1744 static void
1745 vge_intr(void *arg)
1746 {
1747         struct vge_softc *sc;
1748         struct ifnet *ifp;
1749         uint32_t status;
1750
1751         sc = arg;
1752         VGE_LOCK(sc);
1753
1754         ifp = sc->vge_ifp;
1755         if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1756             (ifp->if_flags & IFF_UP) == 0) {
1757                 VGE_UNLOCK(sc);
1758                 return;
1759         }
1760
1761 #ifdef DEVICE_POLLING
1762         if  (ifp->if_capenable & IFCAP_POLLING) {
1763                 status = CSR_READ_4(sc, VGE_ISR);
1764                 CSR_WRITE_4(sc, VGE_ISR, status);
1765                 if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1766                         vge_link_statchg(sc);
1767                 VGE_UNLOCK(sc);
1768                 return;
1769         }
1770 #endif
1771
1772         /* Disable interrupts */
1773         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1774         status = CSR_READ_4(sc, VGE_ISR);
1775         CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1776         /* If the card has gone away the read returns 0xffff. */
1777         if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1778                 goto done;
1779         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1780                 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1781                         vge_rxeof(sc, VGE_RX_DESC_CNT);
1782                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1783                         vge_rxeof(sc, VGE_RX_DESC_CNT);
1784                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1785                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1786                 }
1787
1788                 if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1789                         vge_txeof(sc);
1790
1791                 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1792                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1793                         vge_init_locked(sc);
1794                 }
1795
1796                 if (status & VGE_ISR_LINKSTS)
1797                         vge_link_statchg(sc);
1798         }
1799 done:
1800         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1801                 /* Re-enable interrupts */
1802                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1803
1804                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1805                         vge_start_locked(ifp);
1806         }
1807         VGE_UNLOCK(sc);
1808 }
1809
1810 static int
1811 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1812 {
1813         struct vge_txdesc *txd;
1814         struct vge_tx_frag *frag;
1815         struct mbuf *m;
1816         bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1817         int error, i, nsegs, padlen;
1818         uint32_t cflags;
1819
1820         VGE_LOCK_ASSERT(sc);
1821
1822         M_ASSERTPKTHDR((*m_head));
1823
1824         /* Argh. This chip does not autopad short frames. */
1825         if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1826                 m = *m_head;
1827                 padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1828                 if (M_WRITABLE(m) == 0) {
1829                         /* Get a writable copy. */
1830                         m = m_dup(*m_head, M_NOWAIT);
1831                         m_freem(*m_head);
1832                         if (m == NULL) {
1833                                 *m_head = NULL;
1834                                 return (ENOBUFS);
1835                         }
1836                         *m_head = m;
1837                 }
1838                 if (M_TRAILINGSPACE(m) < padlen) {
1839                         m = m_defrag(m, M_NOWAIT);
1840                         if (m == NULL) {
1841                                 m_freem(*m_head);
1842                                 *m_head = NULL;
1843                                 return (ENOBUFS);
1844                         }
1845                 }
1846                 /*
1847                  * Manually pad short frames, and zero the pad space
1848                  * to avoid leaking data.
1849                  */
1850                 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1851                 m->m_pkthdr.len += padlen;
1852                 m->m_len = m->m_pkthdr.len;
1853                 *m_head = m;
1854         }
1855
1856         txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1857
1858         error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1859             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1860         if (error == EFBIG) {
1861                 m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1862                 if (m == NULL) {
1863                         m_freem(*m_head);
1864                         *m_head = NULL;
1865                         return (ENOMEM);
1866                 }
1867                 *m_head = m;
1868                 error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1869                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1870                 if (error != 0) {
1871                         m_freem(*m_head);
1872                         *m_head = NULL;
1873                         return (error);
1874                 }
1875         } else if (error != 0)
1876                 return (error);
1877         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1878             BUS_DMASYNC_PREWRITE);
1879
1880         m = *m_head;
1881         cflags = 0;
1882
1883         /* Configure checksum offload. */
1884         if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1885                 cflags |= VGE_TDCTL_IPCSUM;
1886         if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1887                 cflags |= VGE_TDCTL_TCPCSUM;
1888         if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1889                 cflags |= VGE_TDCTL_UDPCSUM;
1890
1891         /* Configure VLAN. */
1892         if ((m->m_flags & M_VLANTAG) != 0)
1893                 cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1894         txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1895         /*
1896          * XXX
1897          * Velocity family seems to support TSO but no information
1898          * for MSS configuration is available. Also the number of
1899          * fragments supported by a descriptor is too small to hold
1900          * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1901          * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1902          * longer chain of buffers but no additional information is
1903          * available.
1904          *
1905          * When telling the chip how many segments there are, we
1906          * must use nsegs + 1 instead of just nsegs. Darned if I
1907          * know why. This also means we can't use the last fragment
1908          * field of Tx descriptor.
1909          */
1910         txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1911             VGE_TD_LS_NORM);
1912         for (i = 0; i < nsegs; i++) {
1913                 frag = &txd->tx_desc->vge_frag[i];
1914                 frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1915                 frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1916                     (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1917         }
1918
1919         sc->vge_cdata.vge_tx_cnt++;
1920         VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1921
1922         /*
1923          * Finally request interrupt and give the first descriptor
1924          * ownership to hardware.
1925          */
1926         txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1927         txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1928         txd->tx_m = m;
1929
1930         return (0);
1931 }
1932
1933 /*
1934  * Main transmit routine.
1935  */
1936
1937 static void
1938 vge_start(struct ifnet *ifp)
1939 {
1940         struct vge_softc *sc;
1941
1942         sc = ifp->if_softc;
1943         VGE_LOCK(sc);
1944         vge_start_locked(ifp);
1945         VGE_UNLOCK(sc);
1946 }
1947
1948
1949 static void
1950 vge_start_locked(struct ifnet *ifp)
1951 {
1952         struct vge_softc *sc;
1953         struct vge_txdesc *txd;
1954         struct mbuf *m_head;
1955         int enq, idx;
1956
1957         sc = ifp->if_softc;
1958
1959         VGE_LOCK_ASSERT(sc);
1960
1961         if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1962             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1963             IFF_DRV_RUNNING)
1964                 return;
1965
1966         idx = sc->vge_cdata.vge_tx_prodidx;
1967         VGE_TX_DESC_DEC(idx);
1968         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1969             sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1970                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1971                 if (m_head == NULL)
1972                         break;
1973                 /*
1974                  * Pack the data into the transmit ring. If we
1975                  * don't have room, set the OACTIVE flag and wait
1976                  * for the NIC to drain the ring.
1977                  */
1978                 if (vge_encap(sc, &m_head)) {
1979                         if (m_head == NULL)
1980                                 break;
1981                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1982                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1983                         break;
1984                 }
1985
1986                 txd = &sc->vge_cdata.vge_txdesc[idx];
1987                 txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1988                 VGE_TX_DESC_INC(idx);
1989
1990                 enq++;
1991                 /*
1992                  * If there's a BPF listener, bounce a copy of this frame
1993                  * to him.
1994                  */
1995                 ETHER_BPF_MTAP(ifp, m_head);
1996         }
1997
1998         if (enq > 0) {
1999                 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2000                     sc->vge_cdata.vge_tx_ring_map,
2001                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2002                 /* Issue a transmit command. */
2003                 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2004                 /*
2005                  * Set a timeout in case the chip goes out to lunch.
2006                  */
2007                 sc->vge_timer = 5;
2008         }
2009 }
2010
2011 static void
2012 vge_init(void *xsc)
2013 {
2014         struct vge_softc *sc = xsc;
2015
2016         VGE_LOCK(sc);
2017         vge_init_locked(sc);
2018         VGE_UNLOCK(sc);
2019 }
2020
2021 static void
2022 vge_init_locked(struct vge_softc *sc)
2023 {
2024         struct ifnet *ifp = sc->vge_ifp;
2025         int error, i;
2026
2027         VGE_LOCK_ASSERT(sc);
2028
2029         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2030                 return;
2031
2032         /*
2033          * Cancel pending I/O and free all RX/TX buffers.
2034          */
2035         vge_stop(sc);
2036         vge_reset(sc);
2037         vge_miipoll_start(sc);
2038
2039         /*
2040          * Initialize the RX and TX descriptors and mbufs.
2041          */
2042
2043         error = vge_rx_list_init(sc);
2044         if (error != 0) {
2045                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2046                 return;
2047         }
2048         vge_tx_list_init(sc);
2049         /* Clear MAC statistics. */
2050         vge_stats_clear(sc);
2051         /* Set our station address */
2052         for (i = 0; i < ETHER_ADDR_LEN; i++)
2053                 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2054
2055         /*
2056          * Set receive FIFO threshold. Also allow transmission and
2057          * reception of VLAN tagged frames.
2058          */
2059         CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2060         CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2061
2062         /* Set DMA burst length */
2063         CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2064         CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2065
2066         CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2067
2068         /* Set collision backoff algorithm */
2069         CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2070             VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2071         CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2072
2073         /* Disable LPSEL field in priority resolution */
2074         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2075
2076         /*
2077          * Load the addresses of the DMA queues into the chip.
2078          * Note that we only use one transmit queue.
2079          */
2080
2081         CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2082             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2083         CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2084             VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2085         CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2086
2087         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2088             VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2089         CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2090         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2091
2092         /* Configure interrupt moderation. */
2093         vge_intr_holdoff(sc);
2094
2095         /* Enable and wake up the RX descriptor queue */
2096         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2097         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2098
2099         /* Enable the TX descriptor queue */
2100         CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2101
2102         /* Init the cam filter. */
2103         vge_cam_clear(sc);
2104
2105         /* Set up receiver filter. */
2106         vge_rxfilter(sc);
2107         vge_setvlan(sc);
2108
2109         /* Initialize pause timer. */
2110         CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2111         /*
2112          * Initialize flow control parameters.
2113          *  TX XON high threshold : 48
2114          *  TX pause low threshold : 24
2115          *  Disable hald-duplex flow control
2116          */
2117         CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2118         CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2119
2120         /* Enable jumbo frame reception (if desired) */
2121
2122         /* Start the MAC. */
2123         CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2124         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2125         CSR_WRITE_1(sc, VGE_CRS0,
2126             VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2127
2128 #ifdef DEVICE_POLLING
2129         /*
2130          * Disable interrupts except link state change if we are polling.
2131          */
2132         if (ifp->if_capenable & IFCAP_POLLING) {
2133                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2134         } else  /* otherwise ... */
2135 #endif
2136         {
2137         /*
2138          * Enable interrupts.
2139          */
2140                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2141         }
2142         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2143         CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2144
2145         sc->vge_flags &= ~VGE_FLAG_LINK;
2146         vge_ifmedia_upd_locked(sc);
2147
2148         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2149         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2150         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2151 }
2152
2153 /*
2154  * Set media options.
2155  */
2156 static int
2157 vge_ifmedia_upd(struct ifnet *ifp)
2158 {
2159         struct vge_softc *sc;
2160         int error;
2161
2162         sc = ifp->if_softc;
2163         VGE_LOCK(sc);
2164         error = vge_ifmedia_upd_locked(sc);
2165         VGE_UNLOCK(sc);
2166
2167         return (error);
2168 }
2169
2170 static int
2171 vge_ifmedia_upd_locked(struct vge_softc *sc)
2172 {
2173         struct mii_data *mii;
2174         struct mii_softc *miisc;
2175         int error;
2176
2177         mii = device_get_softc(sc->vge_miibus);
2178         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2179                 PHY_RESET(miisc);
2180         vge_setmedia(sc);
2181         error = mii_mediachg(mii);
2182
2183         return (error);
2184 }
2185
2186 /*
2187  * Report current media status.
2188  */
2189 static void
2190 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2191 {
2192         struct vge_softc *sc;
2193         struct mii_data *mii;
2194
2195         sc = ifp->if_softc;
2196         mii = device_get_softc(sc->vge_miibus);
2197
2198         VGE_LOCK(sc);
2199         if ((ifp->if_flags & IFF_UP) == 0) {
2200                 VGE_UNLOCK(sc);
2201                 return;
2202         }
2203         mii_pollstat(mii);
2204         ifmr->ifm_active = mii->mii_media_active;
2205         ifmr->ifm_status = mii->mii_media_status;
2206         VGE_UNLOCK(sc);
2207 }
2208
2209 static void
2210 vge_setmedia(struct vge_softc *sc)
2211 {
2212         struct mii_data *mii;
2213         struct ifmedia_entry *ife;
2214
2215         mii = device_get_softc(sc->vge_miibus);
2216         ife = mii->mii_media.ifm_cur;
2217
2218         /*
2219          * If the user manually selects a media mode, we need to turn
2220          * on the forced MAC mode bit in the DIAGCTL register. If the
2221          * user happens to choose a full duplex mode, we also need to
2222          * set the 'force full duplex' bit. This applies only to
2223          * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2224          * mode is disabled, and in 1000baseT mode, full duplex is
2225          * always implied, so we turn on the forced mode bit but leave
2226          * the FDX bit cleared.
2227          */
2228
2229         switch (IFM_SUBTYPE(ife->ifm_media)) {
2230         case IFM_AUTO:
2231                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2232                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2233                 break;
2234         case IFM_1000_T:
2235                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2236                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2237                 break;
2238         case IFM_100_TX:
2239         case IFM_10_T:
2240                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2241                 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2242                         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2243                 } else {
2244                         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2245                 }
2246                 break;
2247         default:
2248                 device_printf(sc->vge_dev, "unknown media type: %x\n",
2249                     IFM_SUBTYPE(ife->ifm_media));
2250                 break;
2251         }
2252 }
2253
2254 static int
2255 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2256 {
2257         struct vge_softc *sc = ifp->if_softc;
2258         struct ifreq *ifr = (struct ifreq *) data;
2259         struct mii_data *mii;
2260         int error = 0, mask;
2261
2262         switch (command) {
2263         case SIOCSIFMTU:
2264                 VGE_LOCK(sc);
2265                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2266                         error = EINVAL;
2267                 else if (ifp->if_mtu != ifr->ifr_mtu) {
2268                         if (ifr->ifr_mtu > ETHERMTU &&
2269                             (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2270                                 error = EINVAL;
2271                         else
2272                                 ifp->if_mtu = ifr->ifr_mtu;
2273                 }
2274                 VGE_UNLOCK(sc);
2275                 break;
2276         case SIOCSIFFLAGS:
2277                 VGE_LOCK(sc);
2278                 if ((ifp->if_flags & IFF_UP) != 0) {
2279                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2280                             ((ifp->if_flags ^ sc->vge_if_flags) &
2281                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2282                                 vge_rxfilter(sc);
2283                         else
2284                                 vge_init_locked(sc);
2285                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2286                         vge_stop(sc);
2287                 sc->vge_if_flags = ifp->if_flags;
2288                 VGE_UNLOCK(sc);
2289                 break;
2290         case SIOCADDMULTI:
2291         case SIOCDELMULTI:
2292                 VGE_LOCK(sc);
2293                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2294                         vge_rxfilter(sc);
2295                 VGE_UNLOCK(sc);
2296                 break;
2297         case SIOCGIFMEDIA:
2298         case SIOCSIFMEDIA:
2299                 mii = device_get_softc(sc->vge_miibus);
2300                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2301                 break;
2302         case SIOCSIFCAP:
2303                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2304 #ifdef DEVICE_POLLING
2305                 if (mask & IFCAP_POLLING) {
2306                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
2307                                 error = ether_poll_register(vge_poll, ifp);
2308                                 if (error)
2309                                         return (error);
2310                                 VGE_LOCK(sc);
2311                                         /* Disable interrupts */
2312                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2313                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2314                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2315                                 ifp->if_capenable |= IFCAP_POLLING;
2316                                 VGE_UNLOCK(sc);
2317                         } else {
2318                                 error = ether_poll_deregister(ifp);
2319                                 /* Enable interrupts. */
2320                                 VGE_LOCK(sc);
2321                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2322                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2323                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2324                                 ifp->if_capenable &= ~IFCAP_POLLING;
2325                                 VGE_UNLOCK(sc);
2326                         }
2327                 }
2328 #endif /* DEVICE_POLLING */
2329                 VGE_LOCK(sc);
2330                 if ((mask & IFCAP_TXCSUM) != 0 &&
2331                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2332                         ifp->if_capenable ^= IFCAP_TXCSUM;
2333                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2334                                 ifp->if_hwassist |= VGE_CSUM_FEATURES;
2335                         else
2336                                 ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2337                 }
2338                 if ((mask & IFCAP_RXCSUM) != 0 &&
2339                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2340                         ifp->if_capenable ^= IFCAP_RXCSUM;
2341                 if ((mask & IFCAP_WOL_UCAST) != 0 &&
2342                     (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2343                         ifp->if_capenable ^= IFCAP_WOL_UCAST;
2344                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
2345                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2346                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
2347                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2348                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2349                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2350                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2351                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2352                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2353                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2354                     (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2355                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2356                         vge_setvlan(sc);
2357                 }
2358                 VGE_UNLOCK(sc);
2359                 VLAN_CAPABILITIES(ifp);
2360                 break;
2361         default:
2362                 error = ether_ioctl(ifp, command, data);
2363                 break;
2364         }
2365
2366         return (error);
2367 }
2368
2369 static void
2370 vge_watchdog(void *arg)
2371 {
2372         struct vge_softc *sc;
2373         struct ifnet *ifp;
2374
2375         sc = arg;
2376         VGE_LOCK_ASSERT(sc);
2377         vge_stats_update(sc);
2378         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2379         if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2380                 return;
2381
2382         ifp = sc->vge_ifp;
2383         if_printf(ifp, "watchdog timeout\n");
2384         ifp->if_oerrors++;
2385
2386         vge_txeof(sc);
2387         vge_rxeof(sc, VGE_RX_DESC_CNT);
2388
2389         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2390         vge_init_locked(sc);
2391 }
2392
2393 /*
2394  * Stop the adapter and free any mbufs allocated to the
2395  * RX and TX lists.
2396  */
2397 static void
2398 vge_stop(struct vge_softc *sc)
2399 {
2400         struct ifnet *ifp;
2401
2402         VGE_LOCK_ASSERT(sc);
2403         ifp = sc->vge_ifp;
2404         sc->vge_timer = 0;
2405         callout_stop(&sc->vge_watchdog);
2406
2407         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2408
2409         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2410         CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2411         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2412         CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2413         CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2414         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2415
2416         vge_stats_update(sc);
2417         VGE_CHAIN_RESET(sc);
2418         vge_txeof(sc);
2419         vge_freebufs(sc);
2420 }
2421
2422 /*
2423  * Device suspend routine.  Stop the interface and save some PCI
2424  * settings in case the BIOS doesn't restore them properly on
2425  * resume.
2426  */
2427 static int
2428 vge_suspend(device_t dev)
2429 {
2430         struct vge_softc *sc;
2431
2432         sc = device_get_softc(dev);
2433
2434         VGE_LOCK(sc);
2435         vge_stop(sc);
2436         vge_setwol(sc);
2437         sc->vge_flags |= VGE_FLAG_SUSPENDED;
2438         VGE_UNLOCK(sc);
2439
2440         return (0);
2441 }
2442
2443 /*
2444  * Device resume routine.  Restore some PCI settings in case the BIOS
2445  * doesn't, re-enable busmastering, and restart the interface if
2446  * appropriate.
2447  */
2448 static int
2449 vge_resume(device_t dev)
2450 {
2451         struct vge_softc *sc;
2452         struct ifnet *ifp;
2453         uint16_t pmstat;
2454
2455         sc = device_get_softc(dev);
2456         VGE_LOCK(sc);
2457         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2458                 /* Disable PME and clear PME status. */
2459                 pmstat = pci_read_config(sc->vge_dev,
2460                     sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2461                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2462                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
2463                         pci_write_config(sc->vge_dev,
2464                             sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2465                 }
2466         }
2467         vge_clrwol(sc);
2468         /* Restart MII auto-polling. */
2469         vge_miipoll_start(sc);
2470         ifp = sc->vge_ifp;
2471         /* Reinitialize interface if necessary. */
2472         if ((ifp->if_flags & IFF_UP) != 0) {
2473                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2474                 vge_init_locked(sc);
2475         }
2476         sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2477         VGE_UNLOCK(sc);
2478
2479         return (0);
2480 }
2481
2482 /*
2483  * Stop all chip I/O so that the kernel's probe routines don't
2484  * get confused by errant DMAs when rebooting.
2485  */
2486 static int
2487 vge_shutdown(device_t dev)
2488 {
2489
2490         return (vge_suspend(dev));
2491 }
2492
2493 #define VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
2494             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2495
2496 static void
2497 vge_sysctl_node(struct vge_softc *sc)
2498 {
2499         struct sysctl_ctx_list *ctx;
2500         struct sysctl_oid_list *child, *parent;
2501         struct sysctl_oid *tree;
2502         struct vge_hw_stats *stats;
2503
2504         stats = &sc->vge_stats;
2505         ctx = device_get_sysctl_ctx(sc->vge_dev);
2506         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2507
2508         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2509             CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2510         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2511             CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2512         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2513             CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2514
2515         /* Pull in device tunables. */
2516         sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2517         resource_int_value(device_get_name(sc->vge_dev),
2518             device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2519         sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2520         resource_int_value(device_get_name(sc->vge_dev),
2521             device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2522         sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2523         resource_int_value(device_get_name(sc->vge_dev),
2524             device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2525
2526         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2527             NULL, "VGE statistics");
2528         parent = SYSCTL_CHILDREN(tree);
2529
2530         /* Rx statistics. */
2531         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2532             NULL, "RX MAC statistics");
2533         child = SYSCTL_CHILDREN(tree);
2534         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2535             &stats->rx_frames, "frames");
2536         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2537             &stats->rx_good_frames, "Good frames");
2538         VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2539             &stats->rx_fifo_oflows, "FIFO overflows");
2540         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2541             &stats->rx_runts, "Too short frames");
2542         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2543             &stats->rx_runts_errs, "Too short frames with errors");
2544         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2545             &stats->rx_pkts_64, "64 bytes frames");
2546         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2547             &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2548         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2549             &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2550         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2551             &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2552         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2553             &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2554         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2555             &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2556         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2557             &stats->rx_pkts_1519_max, "1519 to max frames");
2558         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2559             &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2560         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2561             &stats->rx_jumbos, "Jumbo frames");
2562         VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2563             &stats->rx_crcerrs, "CRC errors");
2564         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2565             &stats->rx_pause_frames, "CRC errors");
2566         VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2567             &stats->rx_alignerrs, "Alignment errors");
2568         VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2569             &stats->rx_nobufs, "Frames with no buffer event");
2570         VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2571             &stats->rx_symerrs, "Frames with symbol errors");
2572         VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2573             &stats->rx_lenerrs, "Frames with length mismatched");
2574
2575         /* Tx statistics. */
2576         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2577             NULL, "TX MAC statistics");
2578         child = SYSCTL_CHILDREN(tree);
2579         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2580             &stats->tx_good_frames, "Good frames");
2581         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2582             &stats->tx_pkts_64, "64 bytes frames");
2583         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2584             &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2585         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2586             &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2587         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2588             &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2589         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2590             &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2591         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2592             &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2593         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2594             &stats->tx_jumbos, "Jumbo frames");
2595         VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2596             &stats->tx_colls, "Collisions");
2597         VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2598             &stats->tx_latecolls, "Late collisions");
2599         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2600             &stats->tx_pause, "Pause frames");
2601 #ifdef VGE_ENABLE_SQEERR
2602         VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2603             &stats->tx_sqeerrs, "SQE errors");
2604 #endif
2605         /* Clear MAC statistics. */
2606         vge_stats_clear(sc);
2607 }
2608
2609 #undef  VGE_SYSCTL_STAT_ADD32
2610
2611 static void
2612 vge_stats_clear(struct vge_softc *sc)
2613 {
2614         int i;
2615
2616         CSR_WRITE_1(sc, VGE_MIBCSR,
2617             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2618         CSR_WRITE_1(sc, VGE_MIBCSR,
2619             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2620         for (i = VGE_TIMEOUT; i > 0; i--) {
2621                 DELAY(1);
2622                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2623                         break;
2624         }
2625         if (i == 0)
2626                 device_printf(sc->vge_dev, "MIB clear timed out!\n");
2627         CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2628             ~VGE_MIBCSR_FREEZE);
2629 }
2630
2631 static void
2632 vge_stats_update(struct vge_softc *sc)
2633 {
2634         struct vge_hw_stats *stats;
2635         struct ifnet *ifp;
2636         uint32_t mib[VGE_MIB_CNT], val;
2637         int i;
2638
2639         VGE_LOCK_ASSERT(sc);
2640
2641         stats = &sc->vge_stats;
2642         ifp = sc->vge_ifp;
2643
2644         CSR_WRITE_1(sc, VGE_MIBCSR,
2645             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2646         for (i = VGE_TIMEOUT; i > 0; i--) {
2647                 DELAY(1);
2648                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2649                         break;
2650         }
2651         if (i == 0) {
2652                 device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2653                 vge_stats_clear(sc);
2654                 return;
2655         }
2656
2657         bzero(mib, sizeof(mib));
2658 reset_idx:
2659         /* Set MIB read index to 0. */
2660         CSR_WRITE_1(sc, VGE_MIBCSR,
2661             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2662         for (i = 0; i < VGE_MIB_CNT; i++) {
2663                 val = CSR_READ_4(sc, VGE_MIBDATA);
2664                 if (i != VGE_MIB_DATA_IDX(val)) {
2665                         /* Reading interrupted. */
2666                         goto reset_idx;
2667                 }
2668                 mib[i] = val & VGE_MIB_DATA_MASK;
2669         }
2670
2671         /* Rx stats. */
2672         stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2673         stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2674         stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2675         stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2676         stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2677         stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2678         stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2679         stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2680         stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2681         stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2682         stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2683         stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2684         stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2685         stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2686         stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2687         stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2688         stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2689         stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2690         stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2691         stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2692
2693         /* Tx stats. */
2694         stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2695         stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2696         stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2697         stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2698         stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2699         stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2700         stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2701         stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2702         stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2703         stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2704 #ifdef VGE_ENABLE_SQEERR
2705         stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2706 #endif
2707         stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2708
2709         /* Update counters in ifnet. */
2710         ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
2711
2712         ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
2713             mib[VGE_MIB_TX_LATECOLLS];
2714
2715         ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
2716             mib[VGE_MIB_TX_LATECOLLS];
2717
2718         ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
2719
2720         ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2721             mib[VGE_MIB_RX_RUNTS] +
2722             mib[VGE_MIB_RX_RUNTS_ERRS] +
2723             mib[VGE_MIB_RX_CRCERRS] +
2724             mib[VGE_MIB_RX_ALIGNERRS] +
2725             mib[VGE_MIB_RX_NOBUFS] +
2726             mib[VGE_MIB_RX_SYMERRS] +
2727             mib[VGE_MIB_RX_LENERRS];
2728 }
2729
2730 static void
2731 vge_intr_holdoff(struct vge_softc *sc)
2732 {
2733         uint8_t intctl;
2734
2735         VGE_LOCK_ASSERT(sc);
2736
2737         /*
2738          * Set Tx interrupt supression threshold.
2739          * It's possible to use single-shot timer in VGE_CRS1 register
2740          * in Tx path such that driver can remove most of Tx completion
2741          * interrupts. However this requires additional access to
2742          * VGE_CRS1 register to reload the timer in addintion to
2743          * activating Tx kick command. Another downside is we don't know
2744          * what single-shot timer value should be used in advance so
2745          * reclaiming transmitted mbufs could be delayed a lot which in
2746          * turn slows down Tx operation.
2747          */
2748         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2749         CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2750
2751         /* Set Rx interrupt suppresion threshold. */
2752         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2753         CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2754
2755         intctl = CSR_READ_1(sc, VGE_INTCTL1);
2756         intctl &= ~VGE_INTCTL_SC_RELOAD;
2757         intctl |= VGE_INTCTL_HC_RELOAD;
2758         if (sc->vge_tx_coal_pkt <= 0)
2759                 intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2760         else
2761                 intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2762         if (sc->vge_rx_coal_pkt <= 0)
2763                 intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2764         else
2765                 intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2766         CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2767         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2768         if (sc->vge_int_holdoff > 0) {
2769                 /* Set interrupt holdoff timer. */
2770                 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2771                 CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2772                     VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2773                 /* Enable holdoff timer. */
2774                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2775         }
2776 }
2777
2778 static void
2779 vge_setlinkspeed(struct vge_softc *sc)
2780 {
2781         struct mii_data *mii;
2782         int aneg, i;
2783
2784         VGE_LOCK_ASSERT(sc);
2785
2786         mii = device_get_softc(sc->vge_miibus);
2787         mii_pollstat(mii);
2788         aneg = 0;
2789         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2790             (IFM_ACTIVE | IFM_AVALID)) {
2791                 switch IFM_SUBTYPE(mii->mii_media_active) {
2792                 case IFM_10_T:
2793                 case IFM_100_TX:
2794                         return;
2795                 case IFM_1000_T:
2796                         aneg++;
2797                 default:
2798                         break;
2799                 }
2800         }
2801         /* Clear forced MAC speed/duplex configuration. */
2802         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2803         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2804         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2805         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2806             ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2807         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2808             BMCR_AUTOEN | BMCR_STARTNEG);
2809         DELAY(1000);
2810         if (aneg != 0) {
2811                 /* Poll link state until vge(4) get a 10/100 link. */
2812                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2813                         mii_pollstat(mii);
2814                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2815                             == (IFM_ACTIVE | IFM_AVALID)) {
2816                                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2817                                 case IFM_10_T:
2818                                 case IFM_100_TX:
2819                                         return;
2820                                 default:
2821                                         break;
2822                                 }
2823                         }
2824                         VGE_UNLOCK(sc);
2825                         pause("vgelnk", hz);
2826                         VGE_LOCK(sc);
2827                 }
2828                 if (i == MII_ANEGTICKS_GIGE)
2829                         device_printf(sc->vge_dev, "establishing link failed, "
2830                             "WOL may not work!");
2831         }
2832         /*
2833          * No link, force MAC to have 100Mbps, full-duplex link.
2834          * This is the last resort and may/may not work.
2835          */
2836         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2837         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2838 }
2839
2840 static void
2841 vge_setwol(struct vge_softc *sc)
2842 {
2843         struct ifnet *ifp;
2844         uint16_t pmstat;
2845         uint8_t val;
2846
2847         VGE_LOCK_ASSERT(sc);
2848
2849         if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2850                 /* No PME capability, PHY power down. */
2851                 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2852                     BMCR_PDOWN);
2853                 vge_miipoll_stop(sc);
2854                 return;
2855         }
2856
2857         ifp = sc->vge_ifp;
2858
2859         /* Clear WOL on pattern match. */
2860         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2861         /* Disable WOL on magic/unicast packet. */
2862         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2863         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2864             VGE_WOLCFG_PMEOVR);
2865         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2866                 vge_setlinkspeed(sc);
2867                 val = 0;
2868                 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2869                         val |= VGE_WOLCR1_UCAST;
2870                 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2871                         val |= VGE_WOLCR1_MAGIC;
2872                 CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2873                 val = 0;
2874                 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2875                         val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2876                 CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2877                 /* Disable MII auto-polling. */
2878                 vge_miipoll_stop(sc);
2879         }
2880         CSR_SETBIT_1(sc, VGE_DIAGCTL,
2881             VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2882         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2883
2884         /* Clear WOL status on pattern match. */
2885         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2886         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2887
2888         val = CSR_READ_1(sc, VGE_PWRSTAT);
2889         val |= VGE_STICKHW_SWPTAG;
2890         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2891         /* Put hardware into sleep. */
2892         val = CSR_READ_1(sc, VGE_PWRSTAT);
2893         val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2894         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2895         /* Request PME if WOL is requested. */
2896         pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2897             PCIR_POWER_STATUS, 2);
2898         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2899         if ((ifp->if_capenable & IFCAP_WOL) != 0)
2900                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2901         pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2902             pmstat, 2);
2903 }
2904
2905 static void
2906 vge_clrwol(struct vge_softc *sc)
2907 {
2908         uint8_t val;
2909
2910         val = CSR_READ_1(sc, VGE_PWRSTAT);
2911         val &= ~VGE_STICKHW_SWPTAG;
2912         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2913         /* Disable WOL and clear power state indicator. */
2914         val = CSR_READ_1(sc, VGE_PWRSTAT);
2915         val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2916         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2917
2918         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2919         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2920
2921         /* Clear WOL on pattern match. */
2922         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2923         /* Disable WOL on magic/unicast packet. */
2924         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2925         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2926             VGE_WOLCFG_PMEOVR);
2927         /* Clear WOL status on pattern match. */
2928         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2929         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2930 }