]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/dev/wpi/if_wpi.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / dev / wpi / if_wpi.c
1 /*-
2  * Copyright (c) 2006,2007
3  *      Damien Bergamini <damien.bergamini@free.fr>
4  *      Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18
19 #define VERSION "20071127"
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61
62 #include "opt_wlan.h"
63
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/sockio.h>
67 #include <sys/mbuf.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/queue.h>
73 #include <sys/taskqueue.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/endian.h>
77 #include <sys/linker.h>
78 #include <sys/firmware.h>
79
80 #include <machine/bus.h>
81 #include <machine/resource.h>
82 #include <sys/rman.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86
87 #include <net/bpf.h>
88 #include <net/if.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94
95 #include <net80211/ieee80211_var.h>
96 #include <net80211/ieee80211_radiotap.h>
97 #include <net80211/ieee80211_regdomain.h>
98 #include <net80211/ieee80211_ratectl.h>
99
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip.h>
104 #include <netinet/if_ether.h>
105
106 #include <dev/wpi/if_wpireg.h>
107 #include <dev/wpi/if_wpivar.h>
108
109 #define WPI_DEBUG
110
111 #ifdef WPI_DEBUG
112 #define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
113 #define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)
114 #define WPI_DEBUG_SET   (wpi_debug != 0)
115
116 enum {
117         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
118         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
119         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
120         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
121         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
122         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
123         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
124         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
125         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
126         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
127         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
128         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
129         WPI_DEBUG_ANY           = 0xffffffff
130 };
131
132 static int wpi_debug = 0;
133 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
134 TUNABLE_INT("debug.wpi", &wpi_debug);
135
136 #else
137 #define DPRINTF(x)
138 #define DPRINTFN(n, x)
139 #define WPI_DEBUG_SET   0
140 #endif
141
142 struct wpi_ident {
143         uint16_t        vendor;
144         uint16_t        device;
145         uint16_t        subdevice;
146         const char      *name;
147 };
148
149 static const struct wpi_ident wpi_ident_table[] = {
150         /* The below entries support ABG regardless of the subid */
151         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
152         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153         /* The below entries only support BG */
154         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
155         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
156         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
157         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
158         { 0, 0, 0, NULL }
159 };
160
161 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
162                     const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
163                     const uint8_t [IEEE80211_ADDR_LEN],
164                     const uint8_t [IEEE80211_ADDR_LEN]);
165 static void     wpi_vap_delete(struct ieee80211vap *);
166 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
167                     void **, bus_size_t, bus_size_t, int);
168 static void     wpi_dma_contig_free(struct wpi_dma_info *);
169 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
170 static int      wpi_alloc_shared(struct wpi_softc *);
171 static void     wpi_free_shared(struct wpi_softc *);
172 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
176                     int, int);
177 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
178 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
180 static void     wpi_mem_lock(struct wpi_softc *);
181 static void     wpi_mem_unlock(struct wpi_softc *);
182 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
183 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
184 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
185                     const uint32_t *, int);
186 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
187 static int      wpi_alloc_fwmem(struct wpi_softc *);
188 static void     wpi_free_fwmem(struct wpi_softc *);
189 static int      wpi_load_firmware(struct wpi_softc *);
190 static void     wpi_unload_firmware(struct wpi_softc *);
191 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
192 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
193                     struct wpi_rx_data *);
194 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
196 static void     wpi_notif_intr(struct wpi_softc *);
197 static void     wpi_intr(void *);
198 static uint8_t  wpi_plcp_signal(int);
199 static void     wpi_watchdog(void *);
200 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
201                     struct ieee80211_node *, int);
202 static void     wpi_start(struct ifnet *);
203 static void     wpi_start_locked(struct ifnet *);
204 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
205                     const struct ieee80211_bpf_params *);
206 static void     wpi_scan_start(struct ieee80211com *);
207 static void     wpi_scan_end(struct ieee80211com *);
208 static void     wpi_set_channel(struct ieee80211com *);
209 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
210 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
211 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t);
212 static void     wpi_read_eeprom(struct wpi_softc *,
213                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
214 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
215 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
216 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
217 static int      wpi_wme_update(struct ieee80211com *);
218 static int      wpi_mrr_setup(struct wpi_softc *);
219 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
220 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
221 #if 0
222 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
223 #endif
224 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
225 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
226 static int      wpi_scan(struct wpi_softc *);
227 static int      wpi_config(struct wpi_softc *);
228 static void     wpi_stop_master(struct wpi_softc *);
229 static int      wpi_power_up(struct wpi_softc *);
230 static int      wpi_reset(struct wpi_softc *);
231 static void     wpi_hwreset(void *, int);
232 static void     wpi_rfreset(void *, int);
233 static void     wpi_hw_config(struct wpi_softc *);
234 static void     wpi_init(void *);
235 static void     wpi_init_locked(struct wpi_softc *, int);
236 static void     wpi_stop(struct wpi_softc *);
237 static void     wpi_stop_locked(struct wpi_softc *);
238
239 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240                     int);
241 static void     wpi_calib_timeout(void *);
242 static void     wpi_power_calibration(struct wpi_softc *, int);
243 static int      wpi_get_power_index(struct wpi_softc *,
244                     struct wpi_power_group *, struct ieee80211_channel *, int);
245 #ifdef WPI_DEBUG
246 static const char *wpi_cmd_str(int);
247 #endif
248 static int wpi_probe(device_t);
249 static int wpi_attach(device_t);
250 static int wpi_detach(device_t);
251 static int wpi_shutdown(device_t);
252 static int wpi_suspend(device_t);
253 static int wpi_resume(device_t);
254
255
256 static device_method_t wpi_methods[] = {
257         /* Device interface */
258         DEVMETHOD(device_probe,         wpi_probe),
259         DEVMETHOD(device_attach,        wpi_attach),
260         DEVMETHOD(device_detach,        wpi_detach),
261         DEVMETHOD(device_shutdown,      wpi_shutdown),
262         DEVMETHOD(device_suspend,       wpi_suspend),
263         DEVMETHOD(device_resume,        wpi_resume),
264
265         { 0, 0 }
266 };
267
268 static driver_t wpi_driver = {
269         "wpi",
270         wpi_methods,
271         sizeof (struct wpi_softc)
272 };
273
274 static devclass_t wpi_devclass;
275
276 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
277
278 MODULE_VERSION(wpi, 1);
279
280 static const uint8_t wpi_ridx_to_plcp[] = {
281         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
282         /* R1-R4 (ral/ural is R4-R1) */
283         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
284         /* CCK: device-dependent */
285         10, 20, 55, 110
286 };
287 static const uint8_t wpi_ridx_to_rate[] = {
288         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
289         2, 4, 11, 22 /*CCK */
290 };
291
292
293 static int
294 wpi_probe(device_t dev)
295 {
296         const struct wpi_ident *ident;
297
298         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
299                 if (pci_get_vendor(dev) == ident->vendor &&
300                     pci_get_device(dev) == ident->device) {
301                         device_set_desc(dev, ident->name);
302                         return 0;
303                 }
304         }
305         return ENXIO;
306 }
307
308 /**
309  * Load the firmare image from disk to the allocated dma buffer.
310  * we also maintain the reference to the firmware pointer as there
311  * is times where we may need to reload the firmware but we are not
312  * in a context that can access the filesystem (ie taskq cause by restart)
313  *
314  * @return 0 on success, an errno on failure
315  */
316 static int
317 wpi_load_firmware(struct wpi_softc *sc)
318 {
319         const struct firmware *fp;
320         struct wpi_dma_info *dma = &sc->fw_dma;
321         const struct wpi_firmware_hdr *hdr;
322         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
323         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
324         int error;
325
326         DPRINTFN(WPI_DEBUG_FIRMWARE,
327             ("Attempting Loading Firmware from wpi_fw module\n"));
328
329         WPI_UNLOCK(sc);
330
331         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
332                 device_printf(sc->sc_dev,
333                     "could not load firmware image 'wpifw'\n");
334                 error = ENOENT;
335                 WPI_LOCK(sc);
336                 goto fail;
337         }
338
339         fp = sc->fw_fp;
340
341         WPI_LOCK(sc);
342
343         /* Validate the firmware is minimum a particular version */
344         if (fp->version < WPI_FW_MINVERSION) {
345             device_printf(sc->sc_dev,
346                            "firmware version is too old. Need %d, got %d\n",
347                            WPI_FW_MINVERSION,
348                            fp->version);
349             error = ENXIO;
350             goto fail;
351         }
352
353         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
354                 device_printf(sc->sc_dev,
355                     "firmware file too short: %zu bytes\n", fp->datasize);
356                 error = ENXIO;
357                 goto fail;
358         }
359
360         hdr = (const struct wpi_firmware_hdr *)fp->data;
361
362         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
363            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
364
365         rtextsz = le32toh(hdr->rtextsz);
366         rdatasz = le32toh(hdr->rdatasz);
367         itextsz = le32toh(hdr->itextsz);
368         idatasz = le32toh(hdr->idatasz);
369         btextsz = le32toh(hdr->btextsz);
370
371         /* check that all firmware segments are present */
372         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
373                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
374                 device_printf(sc->sc_dev,
375                     "firmware file too short: %zu bytes\n", fp->datasize);
376                 error = ENXIO; /* XXX appropriate error code? */
377                 goto fail;
378         }
379
380         /* get pointers to firmware segments */
381         rtext = (const uint8_t *)(hdr + 1);
382         rdata = rtext + rtextsz;
383         itext = rdata + rdatasz;
384         idata = itext + itextsz;
385         btext = idata + idatasz;
386
387         DPRINTFN(WPI_DEBUG_FIRMWARE,
388             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
389              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
390              (le32toh(hdr->version) & 0xff000000) >> 24,
391              (le32toh(hdr->version) & 0x00ff0000) >> 16,
392              (le32toh(hdr->version) & 0x0000ffff),
393              rtextsz, rdatasz,
394              itextsz, idatasz, btextsz));
395
396         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
397         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
398         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
399         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
400         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
401
402         /* sanity checks */
403         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
404             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
405             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
406             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
407             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
408             (btextsz & 3) != 0) {
409                 device_printf(sc->sc_dev, "firmware invalid\n");
410                 error = EINVAL;
411                 goto fail;
412         }
413
414         /* copy initialization images into pre-allocated DMA-safe memory */
415         memcpy(dma->vaddr, idata, idatasz);
416         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
417
418         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
419
420         /* tell adapter where to find initialization images */
421         wpi_mem_lock(sc);
422         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
423         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
424         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
425             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
426         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
427         wpi_mem_unlock(sc);
428
429         /* load firmware boot code */
430         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
431             device_printf(sc->sc_dev, "Failed to load microcode\n");
432             goto fail;
433         }
434
435         /* now press "execute" */
436         WPI_WRITE(sc, WPI_RESET, 0);
437
438         /* wait at most one second for the first alive notification */
439         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
440                 device_printf(sc->sc_dev,
441                     "timeout waiting for adapter to initialize\n");
442                 goto fail;
443         }
444
445         /* copy runtime images into pre-allocated DMA-sage memory */
446         memcpy(dma->vaddr, rdata, rdatasz);
447         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
448         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
449
450         /* tell adapter where to find runtime images */
451         wpi_mem_lock(sc);
452         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
453         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
454         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
455             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
456         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
457         wpi_mem_unlock(sc);
458
459         /* wait at most one second for the first alive notification */
460         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
461                 device_printf(sc->sc_dev,
462                     "timeout waiting for adapter to initialize2\n");
463                 goto fail;
464         }
465
466         DPRINTFN(WPI_DEBUG_FIRMWARE,
467             ("Firmware loaded to driver successfully\n"));
468         return error;
469 fail:
470         wpi_unload_firmware(sc);
471         return error;
472 }
473
474 /**
475  * Free the referenced firmware image
476  */
477 static void
478 wpi_unload_firmware(struct wpi_softc *sc)
479 {
480
481         if (sc->fw_fp) {
482                 WPI_UNLOCK(sc);
483                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
484                 WPI_LOCK(sc);
485                 sc->fw_fp = NULL;
486         }
487 }
488
489 static int
490 wpi_attach(device_t dev)
491 {
492         struct wpi_softc *sc = device_get_softc(dev);
493         struct ifnet *ifp;
494         struct ieee80211com *ic;
495         int ac, error, supportsa = 1;
496         uint32_t tmp;
497         const struct wpi_ident *ident;
498         uint8_t macaddr[IEEE80211_ADDR_LEN];
499
500         sc->sc_dev = dev;
501
502         if (bootverbose || WPI_DEBUG_SET)
503             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
504
505         /*
506          * Some card's only support 802.11b/g not a, check to see if
507          * this is one such card. A 0x0 in the subdevice table indicates
508          * the entire subdevice range is to be ignored.
509          */
510         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
511                 if (ident->subdevice &&
512                     pci_get_subdevice(dev) == ident->subdevice) {
513                     supportsa = 0;
514                     break;
515                 }
516         }
517
518         /* Create the tasks that can be queued */
519         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
520         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
521
522         WPI_LOCK_INIT(sc);
523
524         callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
525         callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
526
527         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
528                 device_printf(dev, "chip is in D%d power mode "
529                     "-- setting to D0\n", pci_get_powerstate(dev));
530                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
531         }
532
533         /* disable the retry timeout register */
534         pci_write_config(dev, 0x41, 0, 1);
535
536         /* enable bus-mastering */
537         pci_enable_busmaster(dev);
538
539         sc->mem_rid = PCIR_BAR(0);
540         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
541             RF_ACTIVE);
542         if (sc->mem == NULL) {
543                 device_printf(dev, "could not allocate memory resource\n");
544                 error = ENOMEM;
545                 goto fail;
546         }
547
548         sc->sc_st = rman_get_bustag(sc->mem);
549         sc->sc_sh = rman_get_bushandle(sc->mem);
550
551         sc->irq_rid = 0;
552         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
553             RF_ACTIVE | RF_SHAREABLE);
554         if (sc->irq == NULL) {
555                 device_printf(dev, "could not allocate interrupt resource\n");
556                 error = ENOMEM;
557                 goto fail;
558         }
559
560         /*
561          * Allocate DMA memory for firmware transfers.
562          */
563         if ((error = wpi_alloc_fwmem(sc)) != 0) {
564                 printf(": could not allocate firmware memory\n");
565                 error = ENOMEM;
566                 goto fail;
567         }
568
569         /*
570          * Put adapter into a known state.
571          */
572         if ((error = wpi_reset(sc)) != 0) {
573                 device_printf(dev, "could not reset adapter\n");
574                 goto fail;
575         }
576
577         wpi_mem_lock(sc);
578         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
579         if (bootverbose || WPI_DEBUG_SET)
580             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
581
582         wpi_mem_unlock(sc);
583
584         /* Allocate shared page */
585         if ((error = wpi_alloc_shared(sc)) != 0) {
586                 device_printf(dev, "could not allocate shared page\n");
587                 goto fail;
588         }
589
590         /* tx data queues  - 4 for QoS purposes */
591         for (ac = 0; ac < WME_NUM_AC; ac++) {
592                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
593                 if (error != 0) {
594                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
595                     goto fail;
596                 }
597         }
598
599         /* command queue to talk to the card's firmware */
600         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
601         if (error != 0) {
602                 device_printf(dev, "could not allocate command ring\n");
603                 goto fail;
604         }
605
606         /* receive data queue */
607         error = wpi_alloc_rx_ring(sc, &sc->rxq);
608         if (error != 0) {
609                 device_printf(dev, "could not allocate Rx ring\n");
610                 goto fail;
611         }
612
613         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
614         if (ifp == NULL) {
615                 device_printf(dev, "can not if_alloc()\n");
616                 error = ENOMEM;
617                 goto fail;
618         }
619         ic = ifp->if_l2com;
620
621         ic->ic_ifp = ifp;
622         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
623         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
624
625         /* set device capabilities */
626         ic->ic_caps =
627                   IEEE80211_C_STA               /* station mode supported */
628                 | IEEE80211_C_MONITOR           /* monitor mode supported */
629                 | IEEE80211_C_TXPMGT            /* tx power management */
630                 | IEEE80211_C_SHSLOT            /* short slot time supported */
631                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
632                 | IEEE80211_C_WPA               /* 802.11i */
633 /* XXX looks like WME is partly supported? */
634 #if 0
635                 | IEEE80211_C_IBSS              /* IBSS mode support */
636                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
637                 | IEEE80211_C_WME               /* 802.11e */
638                 | IEEE80211_C_HOSTAP            /* Host access point mode */
639 #endif
640                 ;
641
642         /*
643          * Read in the eeprom and also setup the channels for
644          * net80211. We don't set the rates as net80211 does this for us
645          */
646         wpi_read_eeprom(sc, macaddr);
647
648         if (bootverbose || WPI_DEBUG_SET) {
649             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
650             device_printf(sc->sc_dev, "Hardware Type: %c\n",
651                           sc->type > 1 ? 'B': '?');
652             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
653                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
654             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
655                           supportsa ? "does" : "does not");
656
657             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
658                what sc->rev really represents - benjsc 20070615 */
659         }
660
661         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
662         ifp->if_softc = sc;
663         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
664         ifp->if_init = wpi_init;
665         ifp->if_ioctl = wpi_ioctl;
666         ifp->if_start = wpi_start;
667         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
668         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
669         IFQ_SET_READY(&ifp->if_snd);
670
671         ieee80211_ifattach(ic, macaddr);
672         /* override default methods */
673         ic->ic_raw_xmit = wpi_raw_xmit;
674         ic->ic_wme.wme_update = wpi_wme_update;
675         ic->ic_scan_start = wpi_scan_start;
676         ic->ic_scan_end = wpi_scan_end;
677         ic->ic_set_channel = wpi_set_channel;
678         ic->ic_scan_curchan = wpi_scan_curchan;
679         ic->ic_scan_mindwell = wpi_scan_mindwell;
680
681         ic->ic_vap_create = wpi_vap_create;
682         ic->ic_vap_delete = wpi_vap_delete;
683
684         ieee80211_radiotap_attach(ic,
685             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
686                 WPI_TX_RADIOTAP_PRESENT,
687             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
688                 WPI_RX_RADIOTAP_PRESENT);
689
690         /*
691          * Hook our interrupt after all initialization is complete.
692          */
693         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
694             NULL, wpi_intr, sc, &sc->sc_ih);
695         if (error != 0) {
696                 device_printf(dev, "could not set up interrupt\n");
697                 goto fail;
698         }
699
700         if (bootverbose)
701                 ieee80211_announce(ic);
702 #ifdef XXX_DEBUG
703         ieee80211_announce_channels(ic);
704 #endif
705         return 0;
706
707 fail:   wpi_detach(dev);
708         return ENXIO;
709 }
710
711 static int
712 wpi_detach(device_t dev)
713 {
714         struct wpi_softc *sc = device_get_softc(dev);
715         struct ifnet *ifp = sc->sc_ifp;
716         struct ieee80211com *ic;
717         int ac;
718
719         if (ifp != NULL) {
720                 ic = ifp->if_l2com;
721
722                 ieee80211_draintask(ic, &sc->sc_restarttask);
723                 ieee80211_draintask(ic, &sc->sc_radiotask);
724                 wpi_stop(sc);
725                 callout_drain(&sc->watchdog_to);
726                 callout_drain(&sc->calib_to);
727                 ieee80211_ifdetach(ic);
728         }
729
730         WPI_LOCK(sc);
731         if (sc->txq[0].data_dmat) {
732                 for (ac = 0; ac < WME_NUM_AC; ac++)
733                         wpi_free_tx_ring(sc, &sc->txq[ac]);
734
735                 wpi_free_tx_ring(sc, &sc->cmdq);
736                 wpi_free_rx_ring(sc, &sc->rxq);
737                 wpi_free_shared(sc);
738         }
739
740         if (sc->fw_fp != NULL) {
741                 wpi_unload_firmware(sc);
742         }
743
744         if (sc->fw_dma.tag)
745                 wpi_free_fwmem(sc);
746         WPI_UNLOCK(sc);
747
748         if (sc->irq != NULL) {
749                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
750                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
751         }
752
753         if (sc->mem != NULL)
754                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
755
756         if (ifp != NULL)
757                 if_free(ifp);
758
759         WPI_LOCK_DESTROY(sc);
760
761         return 0;
762 }
763
764 static struct ieee80211vap *
765 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
766     enum ieee80211_opmode opmode, int flags,
767     const uint8_t bssid[IEEE80211_ADDR_LEN],
768     const uint8_t mac[IEEE80211_ADDR_LEN])
769 {
770         struct wpi_vap *wvp;
771         struct ieee80211vap *vap;
772
773         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
774                 return NULL;
775         wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
776             M_80211_VAP, M_NOWAIT | M_ZERO);
777         if (wvp == NULL)
778                 return NULL;
779         vap = &wvp->vap;
780         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
781         /* override with driver methods */
782         wvp->newstate = vap->iv_newstate;
783         vap->iv_newstate = wpi_newstate;
784
785         ieee80211_ratectl_init(vap);
786         /* complete setup */
787         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
788         ic->ic_opmode = opmode;
789         return vap;
790 }
791
792 static void
793 wpi_vap_delete(struct ieee80211vap *vap)
794 {
795         struct wpi_vap *wvp = WPI_VAP(vap);
796
797         ieee80211_ratectl_deinit(vap);
798         ieee80211_vap_detach(vap);
799         free(wvp, M_80211_VAP);
800 }
801
802 static void
803 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
804 {
805         if (error != 0)
806                 return;
807
808         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
809
810         *(bus_addr_t *)arg = segs[0].ds_addr;
811 }
812
813 /*
814  * Allocates a contiguous block of dma memory of the requested size and
815  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
816  * allocations greater than 4096 may fail. Hence if the requested alignment is
817  * greater we allocate 'alignment' size extra memory and shift the vaddr and
818  * paddr after the dma load. This bypasses the problem at the cost of a little
819  * more memory.
820  */
821 static int
822 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
823     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
824 {
825         int error;
826         bus_size_t align;
827         bus_size_t reqsize;
828
829         DPRINTFN(WPI_DEBUG_DMA,
830             ("Size: %zd - alignment %zd\n", size, alignment));
831
832         dma->size = size;
833         dma->tag = NULL;
834
835         if (alignment > 4096) {
836                 align = PAGE_SIZE;
837                 reqsize = size + alignment;
838         } else {
839                 align = alignment;
840                 reqsize = size;
841         }
842         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
843             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
844             NULL, NULL, reqsize,
845             1, reqsize, flags,
846             NULL, NULL, &dma->tag);
847         if (error != 0) {
848                 device_printf(sc->sc_dev,
849                     "could not create shared page DMA tag\n");
850                 goto fail;
851         }
852         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
853             flags | BUS_DMA_ZERO, &dma->map);
854         if (error != 0) {
855                 device_printf(sc->sc_dev,
856                     "could not allocate shared page DMA memory\n");
857                 goto fail;
858         }
859
860         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
861             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
862
863         /* Save the original pointers so we can free all the memory */
864         dma->paddr = dma->paddr_start;
865         dma->vaddr = dma->vaddr_start;
866
867         /*
868          * Check the alignment and increment by 4096 until we get the
869          * requested alignment. Fail if can't obtain the alignment
870          * we requested.
871          */
872         if ((dma->paddr & (alignment -1 )) != 0) {
873                 int i;
874
875                 for (i = 0; i < alignment / 4096; i++) {
876                         if ((dma->paddr & (alignment - 1 )) == 0)
877                                 break;
878                         dma->paddr += 4096;
879                         dma->vaddr += 4096;
880                 }
881                 if (i == alignment / 4096) {
882                         device_printf(sc->sc_dev,
883                             "alignment requirement was not satisfied\n");
884                         goto fail;
885                 }
886         }
887
888         if (error != 0) {
889                 device_printf(sc->sc_dev,
890                     "could not load shared page DMA map\n");
891                 goto fail;
892         }
893
894         if (kvap != NULL)
895                 *kvap = dma->vaddr;
896
897         return 0;
898
899 fail:
900         wpi_dma_contig_free(dma);
901         return error;
902 }
903
904 static void
905 wpi_dma_contig_free(struct wpi_dma_info *dma)
906 {
907         if (dma->tag) {
908                 if (dma->map != NULL) {
909                         if (dma->paddr_start != 0) {
910                                 bus_dmamap_sync(dma->tag, dma->map,
911                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
912                                 bus_dmamap_unload(dma->tag, dma->map);
913                         }
914                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
915                 }
916                 bus_dma_tag_destroy(dma->tag);
917         }
918 }
919
920 /*
921  * Allocate a shared page between host and NIC.
922  */
923 static int
924 wpi_alloc_shared(struct wpi_softc *sc)
925 {
926         int error;
927
928         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
929             (void **)&sc->shared, sizeof (struct wpi_shared),
930             PAGE_SIZE,
931             BUS_DMA_NOWAIT);
932
933         if (error != 0) {
934                 device_printf(sc->sc_dev,
935                     "could not allocate shared area DMA memory\n");
936         }
937
938         return error;
939 }
940
941 static void
942 wpi_free_shared(struct wpi_softc *sc)
943 {
944         wpi_dma_contig_free(&sc->shared_dma);
945 }
946
947 static int
948 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
949 {
950
951         int i, error;
952
953         ring->cur = 0;
954
955         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
956             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
957             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
958
959         if (error != 0) {
960                 device_printf(sc->sc_dev,
961                     "%s: could not allocate rx ring DMA memory, error %d\n",
962                     __func__, error);
963                 goto fail;
964         }
965
966         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
967             BUS_SPACE_MAXADDR_32BIT,
968             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
969             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
970         if (error != 0) {
971                 device_printf(sc->sc_dev,
972                     "%s: bus_dma_tag_create_failed, error %d\n",
973                     __func__, error);
974                 goto fail;
975         }
976
977         /*
978          * Setup Rx buffers.
979          */
980         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
981                 struct wpi_rx_data *data = &ring->data[i];
982                 struct mbuf *m;
983                 bus_addr_t paddr;
984
985                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
986                 if (error != 0) {
987                         device_printf(sc->sc_dev,
988                             "%s: bus_dmamap_create failed, error %d\n",
989                             __func__, error);
990                         goto fail;
991                 }
992                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
993                 if (m == NULL) {
994                         device_printf(sc->sc_dev,
995                            "%s: could not allocate rx mbuf\n", __func__);
996                         error = ENOMEM;
997                         goto fail;
998                 }
999                 /* map page */
1000                 error = bus_dmamap_load(ring->data_dmat, data->map,
1001                     mtod(m, caddr_t), MJUMPAGESIZE,
1002                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1003                 if (error != 0 && error != EFBIG) {
1004                         device_printf(sc->sc_dev,
1005                             "%s: bus_dmamap_load failed, error %d\n",
1006                             __func__, error);
1007                         m_freem(m);
1008                         error = ENOMEM; /* XXX unique code */
1009                         goto fail;
1010                 }
1011                 bus_dmamap_sync(ring->data_dmat, data->map, 
1012                     BUS_DMASYNC_PREWRITE);
1013
1014                 data->m = m;
1015                 ring->desc[i] = htole32(paddr);
1016         }
1017         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1018             BUS_DMASYNC_PREWRITE);
1019         return 0;
1020 fail:
1021         wpi_free_rx_ring(sc, ring);
1022         return error;
1023 }
1024
1025 static void
1026 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1027 {
1028         int ntries;
1029
1030         wpi_mem_lock(sc);
1031
1032         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1033
1034         for (ntries = 0; ntries < 100; ntries++) {
1035                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1036                         break;
1037                 DELAY(10);
1038         }
1039
1040         wpi_mem_unlock(sc);
1041
1042 #ifdef WPI_DEBUG
1043         if (ntries == 100 && wpi_debug > 0)
1044                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1045 #endif
1046
1047         ring->cur = 0;
1048 }
1049
1050 static void
1051 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1052 {
1053         int i;
1054
1055         wpi_dma_contig_free(&ring->desc_dma);
1056
1057         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1058                 struct wpi_rx_data *data = &ring->data[i];
1059
1060                 if (data->m != NULL) {
1061                         bus_dmamap_sync(ring->data_dmat, data->map,
1062                             BUS_DMASYNC_POSTREAD);
1063                         bus_dmamap_unload(ring->data_dmat, data->map);
1064                         m_freem(data->m);
1065                 }
1066                 if (data->map != NULL)
1067                         bus_dmamap_destroy(ring->data_dmat, data->map);
1068         }
1069 }
1070
1071 static int
1072 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1073         int qid)
1074 {
1075         struct wpi_tx_data *data;
1076         int i, error;
1077
1078         ring->qid = qid;
1079         ring->count = count;
1080         ring->queued = 0;
1081         ring->cur = 0;
1082         ring->data = NULL;
1083
1084         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1085                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1086                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1087
1088         if (error != 0) {
1089             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1090             goto fail;
1091         }
1092
1093         /* update shared page with ring's base address */
1094         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1095
1096         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1097                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1098                 BUS_DMA_NOWAIT);
1099
1100         if (error != 0) {
1101                 device_printf(sc->sc_dev,
1102                     "could not allocate tx command DMA memory\n");
1103                 goto fail;
1104         }
1105
1106         ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1107             M_NOWAIT | M_ZERO);
1108         if (ring->data == NULL) {
1109                 device_printf(sc->sc_dev,
1110                     "could not allocate tx data slots\n");
1111                 goto fail;
1112         }
1113
1114         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1115             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1116             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1117             &ring->data_dmat);
1118         if (error != 0) {
1119                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1120                 goto fail;
1121         }
1122
1123         for (i = 0; i < count; i++) {
1124                 data = &ring->data[i];
1125
1126                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1127                 if (error != 0) {
1128                         device_printf(sc->sc_dev,
1129                             "could not create tx buf DMA map\n");
1130                         goto fail;
1131                 }
1132                 bus_dmamap_sync(ring->data_dmat, data->map,
1133                     BUS_DMASYNC_PREWRITE);
1134         }
1135
1136         return 0;
1137
1138 fail:
1139         wpi_free_tx_ring(sc, ring);
1140         return error;
1141 }
1142
1143 static void
1144 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1145 {
1146         struct wpi_tx_data *data;
1147         int i, ntries;
1148
1149         wpi_mem_lock(sc);
1150
1151         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1152         for (ntries = 0; ntries < 100; ntries++) {
1153                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1154                         break;
1155                 DELAY(10);
1156         }
1157 #ifdef WPI_DEBUG
1158         if (ntries == 100 && wpi_debug > 0)
1159                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1160                     ring->qid);
1161 #endif
1162         wpi_mem_unlock(sc);
1163
1164         for (i = 0; i < ring->count; i++) {
1165                 data = &ring->data[i];
1166
1167                 if (data->m != NULL) {
1168                         bus_dmamap_unload(ring->data_dmat, data->map);
1169                         m_freem(data->m);
1170                         data->m = NULL;
1171                 }
1172         }
1173
1174         ring->queued = 0;
1175         ring->cur = 0;
1176 }
1177
1178 static void
1179 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1180 {
1181         struct wpi_tx_data *data;
1182         int i;
1183
1184         wpi_dma_contig_free(&ring->desc_dma);
1185         wpi_dma_contig_free(&ring->cmd_dma);
1186
1187         if (ring->data != NULL) {
1188                 for (i = 0; i < ring->count; i++) {
1189                         data = &ring->data[i];
1190
1191                         if (data->m != NULL) {
1192                                 bus_dmamap_sync(ring->data_dmat, data->map,
1193                                     BUS_DMASYNC_POSTWRITE);
1194                                 bus_dmamap_unload(ring->data_dmat, data->map);
1195                                 m_freem(data->m);
1196                                 data->m = NULL;
1197                         }
1198                 }
1199                 free(ring->data, M_DEVBUF);
1200         }
1201
1202         if (ring->data_dmat != NULL)
1203                 bus_dma_tag_destroy(ring->data_dmat);
1204 }
1205
1206 static int
1207 wpi_shutdown(device_t dev)
1208 {
1209         struct wpi_softc *sc = device_get_softc(dev);
1210
1211         WPI_LOCK(sc);
1212         wpi_stop_locked(sc);
1213         wpi_unload_firmware(sc);
1214         WPI_UNLOCK(sc);
1215
1216         return 0;
1217 }
1218
1219 static int
1220 wpi_suspend(device_t dev)
1221 {
1222         struct wpi_softc *sc = device_get_softc(dev);
1223         struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1224
1225         ieee80211_suspend_all(ic);
1226         return 0;
1227 }
1228
1229 static int
1230 wpi_resume(device_t dev)
1231 {
1232         struct wpi_softc *sc = device_get_softc(dev);
1233         struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1234
1235         pci_write_config(dev, 0x41, 0, 1);
1236
1237         ieee80211_resume_all(ic);
1238         return 0;
1239 }
1240
1241 /**
1242  * Called by net80211 when ever there is a change to 80211 state machine
1243  */
1244 static int
1245 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1246 {
1247         struct wpi_vap *wvp = WPI_VAP(vap);
1248         struct ieee80211com *ic = vap->iv_ic;
1249         struct ifnet *ifp = ic->ic_ifp;
1250         struct wpi_softc *sc = ifp->if_softc;
1251         int error;
1252
1253         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1254                 ieee80211_state_name[vap->iv_state],
1255                 ieee80211_state_name[nstate], sc->flags));
1256
1257         IEEE80211_UNLOCK(ic);
1258         WPI_LOCK(sc);
1259         if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1260                 /*
1261                  * On !INIT -> SCAN transitions, we need to clear any possible
1262                  * knowledge about associations.
1263                  */
1264                 error = wpi_config(sc);
1265                 if (error != 0) {
1266                         device_printf(sc->sc_dev,
1267                             "%s: device config failed, error %d\n",
1268                             __func__, error);
1269                 }
1270         }
1271         if (nstate == IEEE80211_S_AUTH ||
1272             (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1273                 /*
1274                  * The node must be registered in the firmware before auth.
1275                  * Also the associd must be cleared on RUN -> ASSOC
1276                  * transitions.
1277                  */
1278                 error = wpi_auth(sc, vap);
1279                 if (error != 0) {
1280                         device_printf(sc->sc_dev,
1281                             "%s: could not move to auth state, error %d\n",
1282                             __func__, error);
1283                 }
1284         }
1285         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1286                 error = wpi_run(sc, vap);
1287                 if (error != 0) {
1288                         device_printf(sc->sc_dev,
1289                             "%s: could not move to run state, error %d\n",
1290                             __func__, error);
1291                 }
1292         }
1293         if (nstate == IEEE80211_S_RUN) {
1294                 /* RUN -> RUN transition; just restart the timers */
1295                 wpi_calib_timeout(sc);
1296                 /* XXX split out rate control timer */
1297         }
1298         WPI_UNLOCK(sc);
1299         IEEE80211_LOCK(ic);
1300         return wvp->newstate(vap, nstate, arg);
1301 }
1302
1303 /*
1304  * Grab exclusive access to NIC memory.
1305  */
1306 static void
1307 wpi_mem_lock(struct wpi_softc *sc)
1308 {
1309         int ntries;
1310         uint32_t tmp;
1311
1312         tmp = WPI_READ(sc, WPI_GPIO_CTL);
1313         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1314
1315         /* spin until we actually get the lock */
1316         for (ntries = 0; ntries < 100; ntries++) {
1317                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1318                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1319                         break;
1320                 DELAY(10);
1321         }
1322         if (ntries == 100)
1323                 device_printf(sc->sc_dev, "could not lock memory\n");
1324 }
1325
1326 /*
1327  * Release lock on NIC memory.
1328  */
1329 static void
1330 wpi_mem_unlock(struct wpi_softc *sc)
1331 {
1332         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1333         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1334 }
1335
1336 static uint32_t
1337 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1338 {
1339         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1340         return WPI_READ(sc, WPI_READ_MEM_DATA);
1341 }
1342
1343 static void
1344 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1345 {
1346         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1347         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1348 }
1349
1350 static void
1351 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1352     const uint32_t *data, int wlen)
1353 {
1354         for (; wlen > 0; wlen--, data++, addr+=4)
1355                 wpi_mem_write(sc, addr, *data);
1356 }
1357
1358 /*
1359  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1360  * using the traditional bit-bang method. Data is read up until len bytes have
1361  * been obtained.
1362  */
1363 static uint16_t
1364 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1365 {
1366         int ntries;
1367         uint32_t val;
1368         uint8_t *out = data;
1369
1370         wpi_mem_lock(sc);
1371
1372         for (; len > 0; len -= 2, addr++) {
1373                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1374
1375                 for (ntries = 0; ntries < 10; ntries++) {
1376                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1377                                 break;
1378                         DELAY(5);
1379                 }
1380
1381                 if (ntries == 10) {
1382                         device_printf(sc->sc_dev, "could not read EEPROM\n");
1383                         return ETIMEDOUT;
1384                 }
1385
1386                 *out++= val >> 16;
1387                 if (len > 1)
1388                         *out ++= val >> 24;
1389         }
1390
1391         wpi_mem_unlock(sc);
1392
1393         return 0;
1394 }
1395
1396 /*
1397  * The firmware text and data segments are transferred to the NIC using DMA.
1398  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1399  * where to find it.  Once the NIC has copied the firmware into its internal
1400  * memory, we can free our local copy in the driver.
1401  */
1402 static int
1403 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1404 {
1405         int error, ntries;
1406
1407         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1408
1409         size /= sizeof(uint32_t);
1410
1411         wpi_mem_lock(sc);
1412
1413         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1414             (const uint32_t *)fw, size);
1415
1416         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1417         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1418         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1419
1420         /* run microcode */
1421         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1422
1423         /* wait while the adapter is busy copying the firmware */
1424         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1425                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1426                 DPRINTFN(WPI_DEBUG_HW,
1427                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1428                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1429                 if (status & WPI_TX_IDLE(6)) {
1430                         DPRINTFN(WPI_DEBUG_HW,
1431                             ("Status Match! - ntries = %d\n", ntries));
1432                         break;
1433                 }
1434                 DELAY(10);
1435         }
1436         if (ntries == 1000) {
1437                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1438                 error = ETIMEDOUT;
1439         }
1440
1441         /* start the microcode executing */
1442         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1443
1444         wpi_mem_unlock(sc);
1445
1446         return (error);
1447 }
1448
1449 static void
1450 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1451         struct wpi_rx_data *data)
1452 {
1453         struct ifnet *ifp = sc->sc_ifp;
1454         struct ieee80211com *ic = ifp->if_l2com;
1455         struct wpi_rx_ring *ring = &sc->rxq;
1456         struct wpi_rx_stat *stat;
1457         struct wpi_rx_head *head;
1458         struct wpi_rx_tail *tail;
1459         struct ieee80211_node *ni;
1460         struct mbuf *m, *mnew;
1461         bus_addr_t paddr;
1462         int error;
1463
1464         stat = (struct wpi_rx_stat *)(desc + 1);
1465
1466         if (stat->len > WPI_STAT_MAXLEN) {
1467                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1468                 ifp->if_ierrors++;
1469                 return;
1470         }
1471
1472         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1473         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1474         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1475
1476         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1477             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1478             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1479             (uintmax_t)le64toh(tail->tstamp)));
1480
1481         /* discard Rx frames with bad CRC early */
1482         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1483                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1484                     le32toh(tail->flags)));
1485                 ifp->if_ierrors++;
1486                 return;
1487         }
1488         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1489                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1490                     le16toh(head->len)));
1491                 ifp->if_ierrors++;
1492                 return;
1493         }
1494
1495         /* XXX don't need mbuf, just dma buffer */
1496         mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1497         if (mnew == NULL) {
1498                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1499                     __func__));
1500                 ifp->if_ierrors++;
1501                 return;
1502         }
1503         bus_dmamap_unload(ring->data_dmat, data->map);
1504
1505         error = bus_dmamap_load(ring->data_dmat, data->map,
1506             mtod(mnew, caddr_t), MJUMPAGESIZE,
1507             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1508         if (error != 0 && error != EFBIG) {
1509                 device_printf(sc->sc_dev,
1510                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1511                 m_freem(mnew);
1512                 ifp->if_ierrors++;
1513                 return;
1514         }
1515         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1516
1517         /* finalize mbuf and swap in new one */
1518         m = data->m;
1519         m->m_pkthdr.rcvif = ifp;
1520         m->m_data = (caddr_t)(head + 1);
1521         m->m_pkthdr.len = m->m_len = le16toh(head->len);
1522
1523         data->m = mnew;
1524         /* update Rx descriptor */
1525         ring->desc[ring->cur] = htole32(paddr);
1526
1527         if (ieee80211_radiotap_active(ic)) {
1528                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1529
1530                 tap->wr_flags = 0;
1531                 tap->wr_chan_freq =
1532                         htole16(ic->ic_channels[head->chan].ic_freq);
1533                 tap->wr_chan_flags =
1534                         htole16(ic->ic_channels[head->chan].ic_flags);
1535                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1536                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1537                 tap->wr_tsft = tail->tstamp;
1538                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1539                 switch (head->rate) {
1540                 /* CCK rates */
1541                 case  10: tap->wr_rate =   2; break;
1542                 case  20: tap->wr_rate =   4; break;
1543                 case  55: tap->wr_rate =  11; break;
1544                 case 110: tap->wr_rate =  22; break;
1545                 /* OFDM rates */
1546                 case 0xd: tap->wr_rate =  12; break;
1547                 case 0xf: tap->wr_rate =  18; break;
1548                 case 0x5: tap->wr_rate =  24; break;
1549                 case 0x7: tap->wr_rate =  36; break;
1550                 case 0x9: tap->wr_rate =  48; break;
1551                 case 0xb: tap->wr_rate =  72; break;
1552                 case 0x1: tap->wr_rate =  96; break;
1553                 case 0x3: tap->wr_rate = 108; break;
1554                 /* unknown rate: should not happen */
1555                 default:  tap->wr_rate =   0;
1556                 }
1557                 if (le16toh(head->flags) & 0x4)
1558                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1559         }
1560
1561         WPI_UNLOCK(sc);
1562
1563         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1564         if (ni != NULL) {
1565                 (void) ieee80211_input(ni, m, stat->rssi, 0);
1566                 ieee80211_free_node(ni);
1567         } else
1568                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1569
1570         WPI_LOCK(sc);
1571 }
1572
1573 static void
1574 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1575 {
1576         struct ifnet *ifp = sc->sc_ifp;
1577         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1578         struct wpi_tx_data *txdata = &ring->data[desc->idx];
1579         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1580         struct ieee80211_node *ni = txdata->ni;
1581         struct ieee80211vap *vap = ni->ni_vap;
1582         int retrycnt = 0;
1583
1584         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1585             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1586             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1587             le32toh(stat->status)));
1588
1589         /*
1590          * Update rate control statistics for the node.
1591          * XXX we should not count mgmt frames since they're always sent at
1592          * the lowest available bit-rate.
1593          * XXX frames w/o ACK shouldn't be used either
1594          */
1595         if (stat->ntries > 0) {
1596                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1597                 retrycnt = 1;
1598         }
1599         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1600             &retrycnt, NULL);
1601
1602         /* XXX oerrors should only count errors !maxtries */
1603         if ((le32toh(stat->status) & 0xff) != 1)
1604                 ifp->if_oerrors++;
1605         else
1606                 ifp->if_opackets++;
1607
1608         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1609         bus_dmamap_unload(ring->data_dmat, txdata->map);
1610         /* XXX handle M_TXCB? */
1611         m_freem(txdata->m);
1612         txdata->m = NULL;
1613         ieee80211_free_node(txdata->ni);
1614         txdata->ni = NULL;
1615
1616         ring->queued--;
1617
1618         sc->sc_tx_timer = 0;
1619         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1620         wpi_start_locked(ifp);
1621 }
1622
1623 static void
1624 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1625 {
1626         struct wpi_tx_ring *ring = &sc->cmdq;
1627         struct wpi_tx_data *data;
1628
1629         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1630                                  "type=%s len=%d\n", desc->qid, desc->idx,
1631                                  desc->flags, wpi_cmd_str(desc->type),
1632                                  le32toh(desc->len)));
1633
1634         if ((desc->qid & 7) != 4)
1635                 return; /* not a command ack */
1636
1637         data = &ring->data[desc->idx];
1638
1639         /* if the command was mapped in a mbuf, free it */
1640         if (data->m != NULL) {
1641                 bus_dmamap_unload(ring->data_dmat, data->map);
1642                 m_freem(data->m);
1643                 data->m = NULL;
1644         }
1645
1646         sc->flags &= ~WPI_FLAG_BUSY;
1647         wakeup(&ring->cmd[desc->idx]);
1648 }
1649
1650 static void
1651 wpi_notif_intr(struct wpi_softc *sc)
1652 {
1653         struct ifnet *ifp = sc->sc_ifp;
1654         struct ieee80211com *ic = ifp->if_l2com;
1655         struct wpi_rx_desc *desc;
1656         struct wpi_rx_data *data;
1657         uint32_t hw;
1658
1659         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1660             BUS_DMASYNC_POSTREAD);
1661
1662         hw = le32toh(sc->shared->next);
1663         while (sc->rxq.cur != hw) {
1664                 data = &sc->rxq.data[sc->rxq.cur];
1665
1666                 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1667                     BUS_DMASYNC_POSTREAD);
1668                 desc = (void *)data->m->m_ext.ext_buf;
1669
1670                 DPRINTFN(WPI_DEBUG_NOTIFY,
1671                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1672                           desc->qid,
1673                           desc->idx,
1674                           desc->flags,
1675                           desc->type,
1676                           le32toh(desc->len)));
1677
1678                 if (!(desc->qid & 0x80))        /* reply to a command */
1679                         wpi_cmd_intr(sc, desc);
1680
1681                 switch (desc->type) {
1682                 case WPI_RX_DONE:
1683                         /* a 802.11 frame was received */
1684                         wpi_rx_intr(sc, desc, data);
1685                         break;
1686
1687                 case WPI_TX_DONE:
1688                         /* a 802.11 frame has been transmitted */
1689                         wpi_tx_intr(sc, desc);
1690                         break;
1691
1692                 case WPI_UC_READY:
1693                 {
1694                         struct wpi_ucode_info *uc =
1695                                 (struct wpi_ucode_info *)(desc + 1);
1696
1697                         /* the microcontroller is ready */
1698                         DPRINTF(("microcode alive notification version %x "
1699                                 "alive %x\n", le32toh(uc->version),
1700                                 le32toh(uc->valid)));
1701
1702                         if (le32toh(uc->valid) != 1) {
1703                                 device_printf(sc->sc_dev,
1704                                     "microcontroller initialization failed\n");
1705                                 wpi_stop_locked(sc);
1706                         }
1707                         break;
1708                 }
1709                 case WPI_STATE_CHANGED:
1710                 {
1711                         uint32_t *status = (uint32_t *)(desc + 1);
1712
1713                         /* enabled/disabled notification */
1714                         DPRINTF(("state changed to %x\n", le32toh(*status)));
1715
1716                         if (le32toh(*status) & 1) {
1717                                 device_printf(sc->sc_dev,
1718                                     "Radio transmitter is switched off\n");
1719                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1720                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1721                                 /* Disable firmware commands */
1722                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1723                         }
1724                         break;
1725                 }
1726                 case WPI_START_SCAN:
1727                 {
1728 #ifdef WPI_DEBUG
1729                         struct wpi_start_scan *scan =
1730                                 (struct wpi_start_scan *)(desc + 1);
1731 #endif
1732
1733                         DPRINTFN(WPI_DEBUG_SCANNING,
1734                                  ("scanning channel %d status %x\n",
1735                             scan->chan, le32toh(scan->status)));
1736                         break;
1737                 }
1738                 case WPI_STOP_SCAN:
1739                 {
1740 #ifdef WPI_DEBUG
1741                         struct wpi_stop_scan *scan =
1742                                 (struct wpi_stop_scan *)(desc + 1);
1743 #endif
1744                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1745
1746                         DPRINTFN(WPI_DEBUG_SCANNING,
1747                             ("scan finished nchan=%d status=%d chan=%d\n",
1748                              scan->nchan, scan->status, scan->chan));
1749
1750                         sc->sc_scan_timer = 0;
1751                         ieee80211_scan_next(vap);
1752                         break;
1753                 }
1754                 case WPI_MISSED_BEACON:
1755                 {
1756                         struct wpi_missed_beacon *beacon =
1757                                 (struct wpi_missed_beacon *)(desc + 1);
1758                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1759
1760                         if (le32toh(beacon->consecutive) >=
1761                             vap->iv_bmissthreshold) {
1762                                 DPRINTF(("Beacon miss: %u >= %u\n",
1763                                          le32toh(beacon->consecutive),
1764                                          vap->iv_bmissthreshold));
1765                                 ieee80211_beacon_miss(ic);
1766                         }
1767                         break;
1768                 }
1769                 }
1770
1771                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1772         }
1773
1774         /* tell the firmware what we have processed */
1775         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1776         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1777 }
1778
1779 static void
1780 wpi_intr(void *arg)
1781 {
1782         struct wpi_softc *sc = arg;
1783         uint32_t r;
1784
1785         WPI_LOCK(sc);
1786
1787         r = WPI_READ(sc, WPI_INTR);
1788         if (r == 0 || r == 0xffffffff) {
1789                 WPI_UNLOCK(sc);
1790                 return;
1791         }
1792
1793         /* disable interrupts */
1794         WPI_WRITE(sc, WPI_MASK, 0);
1795         /* ack interrupts */
1796         WPI_WRITE(sc, WPI_INTR, r);
1797
1798         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1799                 struct ifnet *ifp = sc->sc_ifp;
1800                 struct ieee80211com *ic = ifp->if_l2com;
1801                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1802
1803                 device_printf(sc->sc_dev, "fatal firmware error\n");
1804                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1805                                 "(Hardware Error)"));
1806                 if (vap != NULL)
1807                         ieee80211_cancel_scan(vap);
1808                 ieee80211_runtask(ic, &sc->sc_restarttask);
1809                 sc->flags &= ~WPI_FLAG_BUSY;
1810                 WPI_UNLOCK(sc);
1811                 return;
1812         }
1813
1814         if (r & WPI_RX_INTR)
1815                 wpi_notif_intr(sc);
1816
1817         if (r & WPI_ALIVE_INTR) /* firmware initialized */
1818                 wakeup(sc);
1819
1820         /* re-enable interrupts */
1821         if (sc->sc_ifp->if_flags & IFF_UP)
1822                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1823
1824         WPI_UNLOCK(sc);
1825 }
1826
1827 static uint8_t
1828 wpi_plcp_signal(int rate)
1829 {
1830         switch (rate) {
1831         /* CCK rates (returned values are device-dependent) */
1832         case 2:         return 10;
1833         case 4:         return 20;
1834         case 11:        return 55;
1835         case 22:        return 110;
1836
1837         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1838         /* R1-R4 (ral/ural is R4-R1) */
1839         case 12:        return 0xd;
1840         case 18:        return 0xf;
1841         case 24:        return 0x5;
1842         case 36:        return 0x7;
1843         case 48:        return 0x9;
1844         case 72:        return 0xb;
1845         case 96:        return 0x1;
1846         case 108:       return 0x3;
1847
1848         /* unsupported rates (should not get there) */
1849         default:        return 0;
1850         }
1851 }
1852
1853 /* quickly determine if a given rate is CCK or OFDM */
1854 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1855
1856 /*
1857  * Construct the data packet for a transmit buffer and acutally put
1858  * the buffer onto the transmit ring, kicking the card to process the
1859  * the buffer.
1860  */
1861 static int
1862 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1863         int ac)
1864 {
1865         struct ieee80211vap *vap = ni->ni_vap;
1866         struct ifnet *ifp = sc->sc_ifp;
1867         struct ieee80211com *ic = ifp->if_l2com;
1868         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1869         struct wpi_tx_ring *ring = &sc->txq[ac];
1870         struct wpi_tx_desc *desc;
1871         struct wpi_tx_data *data;
1872         struct wpi_tx_cmd *cmd;
1873         struct wpi_cmd_data *tx;
1874         struct ieee80211_frame *wh;
1875         const struct ieee80211_txparam *tp;
1876         struct ieee80211_key *k;
1877         struct mbuf *mnew;
1878         int i, error, nsegs, rate, hdrlen, ismcast;
1879         bus_dma_segment_t segs[WPI_MAX_SCATTER];
1880
1881         desc = &ring->desc[ring->cur];
1882         data = &ring->data[ring->cur];
1883
1884         wh = mtod(m0, struct ieee80211_frame *);
1885
1886         hdrlen = ieee80211_hdrsize(wh);
1887         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1888
1889         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1890                 k = ieee80211_crypto_encap(ni, m0);
1891                 if (k == NULL) {
1892                         m_freem(m0);
1893                         return ENOBUFS;
1894                 }
1895                 /* packet header may have moved, reset our local pointer */
1896                 wh = mtod(m0, struct ieee80211_frame *);
1897         }
1898
1899         cmd = &ring->cmd[ring->cur];
1900         cmd->code = WPI_CMD_TX_DATA;
1901         cmd->flags = 0;
1902         cmd->qid = ring->qid;
1903         cmd->idx = ring->cur;
1904
1905         tx = (struct wpi_cmd_data *)cmd->data;
1906         tx->flags = htole32(WPI_TX_AUTO_SEQ);
1907         tx->timeout = htole16(0);
1908         tx->ofdm_mask = 0xff;
1909         tx->cck_mask = 0x0f;
1910         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1911         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1912         tx->len = htole16(m0->m_pkthdr.len);
1913
1914         if (!ismcast) {
1915                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1916                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
1917                         tx->flags |= htole32(WPI_TX_NEED_ACK);
1918                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1919                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1920                         tx->rts_ntries = 7;
1921                 }
1922         }
1923         /* pick a rate */
1924         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1925         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1926                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1927                 /* tell h/w to set timestamp in probe responses */
1928                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1929                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1930                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1931                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1932                         tx->timeout = htole16(3);
1933                 else
1934                         tx->timeout = htole16(2);
1935                 rate = tp->mgmtrate;
1936         } else if (ismcast) {
1937                 rate = tp->mcastrate;
1938         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1939                 rate = tp->ucastrate;
1940         } else {
1941                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1942                 rate = ni->ni_txrate;
1943         }
1944         tx->rate = wpi_plcp_signal(rate);
1945
1946         /* be very persistant at sending frames out */
1947 #if 0
1948         tx->data_ntries = tp->maxretry;
1949 #else
1950         tx->data_ntries = 15;           /* XXX way too high */
1951 #endif
1952
1953         if (ieee80211_radiotap_active_vap(vap)) {
1954                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1955                 tap->wt_flags = 0;
1956                 tap->wt_rate = rate;
1957                 tap->wt_hwqueue = ac;
1958                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1959                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1960
1961                 ieee80211_radiotap_tx(vap, m0);
1962         }
1963
1964         /* save and trim IEEE802.11 header */
1965         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1966         m_adj(m0, hdrlen);
1967
1968         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1969             &nsegs, BUS_DMA_NOWAIT);
1970         if (error != 0 && error != EFBIG) {
1971                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1972                     error);
1973                 m_freem(m0);
1974                 return error;
1975         }
1976         if (error != 0) {
1977                 /* XXX use m_collapse */
1978                 mnew = m_defrag(m0, M_NOWAIT);
1979                 if (mnew == NULL) {
1980                         device_printf(sc->sc_dev,
1981                             "could not defragment mbuf\n");
1982                         m_freem(m0);
1983                         return ENOBUFS;
1984                 }
1985                 m0 = mnew;
1986
1987                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1988                     m0, segs, &nsegs, BUS_DMA_NOWAIT);
1989                 if (error != 0) {
1990                         device_printf(sc->sc_dev,
1991                             "could not map mbuf (error %d)\n", error);
1992                         m_freem(m0);
1993                         return error;
1994                 }
1995         }
1996
1997         data->m = m0;
1998         data->ni = ni;
1999
2000         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2001             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2002
2003         /* first scatter/gather segment is used by the tx data command */
2004         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2005             (1 + nsegs) << 24);
2006         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2007             ring->cur * sizeof (struct wpi_tx_cmd));
2008         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2009         for (i = 1; i <= nsegs; i++) {
2010                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2011                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2012         }
2013
2014         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2015         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2016             BUS_DMASYNC_PREWRITE);
2017
2018         ring->queued++;
2019
2020         /* kick ring */
2021         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2022         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2023
2024         return 0;
2025 }
2026
2027 /**
2028  * Process data waiting to be sent on the IFNET output queue
2029  */
2030 static void
2031 wpi_start(struct ifnet *ifp)
2032 {
2033         struct wpi_softc *sc = ifp->if_softc;
2034
2035         WPI_LOCK(sc);
2036         wpi_start_locked(ifp);
2037         WPI_UNLOCK(sc);
2038 }
2039
2040 static void
2041 wpi_start_locked(struct ifnet *ifp)
2042 {
2043         struct wpi_softc *sc = ifp->if_softc;
2044         struct ieee80211_node *ni;
2045         struct mbuf *m;
2046         int ac;
2047
2048         WPI_LOCK_ASSERT(sc);
2049
2050         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2051                 return;
2052
2053         for (;;) {
2054                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2055                 if (m == NULL)
2056                         break;
2057                 ac = M_WME_GETAC(m);
2058                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2059                         /* there is no place left in this ring */
2060                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
2061                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2062                         break;
2063                 }
2064                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2065                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2066                         ieee80211_free_node(ni);
2067                         ifp->if_oerrors++;
2068                         break;
2069                 }
2070                 sc->sc_tx_timer = 5;
2071         }
2072 }
2073
2074 static int
2075 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2076         const struct ieee80211_bpf_params *params)
2077 {
2078         struct ieee80211com *ic = ni->ni_ic;
2079         struct ifnet *ifp = ic->ic_ifp;
2080         struct wpi_softc *sc = ifp->if_softc;
2081
2082         /* prevent management frames from being sent if we're not ready */
2083         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2084                 m_freem(m);
2085                 ieee80211_free_node(ni);
2086                 return ENETDOWN;
2087         }
2088         WPI_LOCK(sc);
2089
2090         /* management frames go into ring 0 */
2091         if (sc->txq[0].queued > sc->txq[0].count - 8) {
2092                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2093                 m_freem(m);
2094                 WPI_UNLOCK(sc);
2095                 ieee80211_free_node(ni);
2096                 return ENOBUFS;         /* XXX */
2097         }
2098
2099         ifp->if_opackets++;
2100         if (wpi_tx_data(sc, m, ni, 0) != 0)
2101                 goto bad;
2102         sc->sc_tx_timer = 5;
2103         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2104
2105         WPI_UNLOCK(sc);
2106         return 0;
2107 bad:
2108         ifp->if_oerrors++;
2109         WPI_UNLOCK(sc);
2110         ieee80211_free_node(ni);
2111         return EIO;             /* XXX */
2112 }
2113
2114 static int
2115 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2116 {
2117         struct wpi_softc *sc = ifp->if_softc;
2118         struct ieee80211com *ic = ifp->if_l2com;
2119         struct ifreq *ifr = (struct ifreq *) data;
2120         int error = 0, startall = 0;
2121
2122         switch (cmd) {
2123         case SIOCSIFFLAGS:
2124                 WPI_LOCK(sc);
2125                 if ((ifp->if_flags & IFF_UP)) {
2126                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2127                                 wpi_init_locked(sc, 0);
2128                                 startall = 1;
2129                         }
2130                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2131                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2132                         wpi_stop_locked(sc);
2133                 WPI_UNLOCK(sc);
2134                 if (startall)
2135                         ieee80211_start_all(ic);
2136                 break;
2137         case SIOCGIFMEDIA:
2138                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2139                 break;
2140         case SIOCGIFADDR:
2141                 error = ether_ioctl(ifp, cmd, data);
2142                 break;
2143         default:
2144                 error = EINVAL;
2145                 break;
2146         }
2147         return error;
2148 }
2149
2150 /*
2151  * Extract various information from EEPROM.
2152  */
2153 static void
2154 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2155 {
2156         int i;
2157
2158         /* read the hardware capabilities, revision and SKU type */
2159         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2160         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2161         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2162
2163         /* read the regulatory domain */
2164         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2165
2166         /* read in the hw MAC address */
2167         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2168
2169         /* read the list of authorized channels */
2170         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2171                 wpi_read_eeprom_channels(sc,i);
2172
2173         /* read the power level calibration info for each group */
2174         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2175                 wpi_read_eeprom_group(sc,i);
2176 }
2177
2178 /*
2179  * Send a command to the firmware.
2180  */
2181 static int
2182 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2183 {
2184         struct wpi_tx_ring *ring = &sc->cmdq;
2185         struct wpi_tx_desc *desc;
2186         struct wpi_tx_cmd *cmd;
2187
2188 #ifdef WPI_DEBUG
2189         if (!async) {
2190                 WPI_LOCK_ASSERT(sc);
2191         }
2192 #endif
2193
2194         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2195                     async));
2196
2197         if (sc->flags & WPI_FLAG_BUSY) {
2198                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2199                     __func__, code);
2200                 return EAGAIN;
2201         }
2202         sc->flags|= WPI_FLAG_BUSY;
2203
2204         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2205             code, size));
2206
2207         desc = &ring->desc[ring->cur];
2208         cmd = &ring->cmd[ring->cur];
2209
2210         cmd->code = code;
2211         cmd->flags = 0;
2212         cmd->qid = ring->qid;
2213         cmd->idx = ring->cur;
2214         memcpy(cmd->data, buf, size);
2215
2216         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2217         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2218                 ring->cur * sizeof (struct wpi_tx_cmd));
2219         desc->segs[0].len  = htole32(4 + size);
2220
2221         /* kick cmd ring */
2222         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2223         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2224
2225         if (async) {
2226                 sc->flags &= ~ WPI_FLAG_BUSY;
2227                 return 0;
2228         }
2229
2230         return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2231 }
2232
2233 static int
2234 wpi_wme_update(struct ieee80211com *ic)
2235 {
2236 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
2237 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
2238         struct wpi_softc *sc = ic->ic_ifp->if_softc;
2239         const struct wmeParams *wmep;
2240         struct wpi_wme_setup wme;
2241         int ac;
2242
2243         /* don't override default WME values if WME is not actually enabled */
2244         if (!(ic->ic_flags & IEEE80211_F_WME))
2245                 return 0;
2246
2247         wme.flags = 0;
2248         for (ac = 0; ac < WME_NUM_AC; ac++) {
2249                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2250                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2251                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2252                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2253                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2254
2255                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2256                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2257                     wme.ac[ac].cwmax, wme.ac[ac].txop));
2258         }
2259         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2260 #undef WPI_USEC
2261 #undef WPI_EXP2
2262 }
2263
2264 /*
2265  * Configure h/w multi-rate retries.
2266  */
2267 static int
2268 wpi_mrr_setup(struct wpi_softc *sc)
2269 {
2270         struct ifnet *ifp = sc->sc_ifp;
2271         struct ieee80211com *ic = ifp->if_l2com;
2272         struct wpi_mrr_setup mrr;
2273         int i, error;
2274
2275         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2276
2277         /* CCK rates (not used with 802.11a) */
2278         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2279                 mrr.rates[i].flags = 0;
2280                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2281                 /* fallback to the immediate lower CCK rate (if any) */
2282                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2283                 /* try one time at this rate before falling back to "next" */
2284                 mrr.rates[i].ntries = 1;
2285         }
2286
2287         /* OFDM rates (not used with 802.11b) */
2288         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2289                 mrr.rates[i].flags = 0;
2290                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2291                 /* fallback to the immediate lower OFDM rate (if any) */
2292                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2293                 mrr.rates[i].next = (i == WPI_OFDM6) ?
2294                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2295                         WPI_OFDM6 : WPI_CCK2) :
2296                     i - 1;
2297                 /* try one time at this rate before falling back to "next" */
2298                 mrr.rates[i].ntries = 1;
2299         }
2300
2301         /* setup MRR for control frames */
2302         mrr.which = WPI_MRR_CTL;
2303         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2304         if (error != 0) {
2305                 device_printf(sc->sc_dev,
2306                     "could not setup MRR for control frames\n");
2307                 return error;
2308         }
2309
2310         /* setup MRR for data frames */
2311         mrr.which = WPI_MRR_DATA;
2312         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2313         if (error != 0) {
2314                 device_printf(sc->sc_dev,
2315                     "could not setup MRR for data frames\n");
2316                 return error;
2317         }
2318
2319         return 0;
2320 }
2321
2322 static void
2323 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2324 {
2325         struct wpi_cmd_led led;
2326
2327         led.which = which;
2328         led.unit = htole32(100000);     /* on/off in unit of 100ms */
2329         led.off = off;
2330         led.on = on;
2331
2332         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2333 }
2334
2335 static void
2336 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2337 {
2338         struct wpi_cmd_tsf tsf;
2339         uint64_t val, mod;
2340
2341         memset(&tsf, 0, sizeof tsf);
2342         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2343         tsf.bintval = htole16(ni->ni_intval);
2344         tsf.lintval = htole16(10);
2345
2346         /* compute remaining time until next beacon */
2347         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
2348         mod = le64toh(tsf.tstamp) % val;
2349         tsf.binitval = htole32((uint32_t)(val - mod));
2350
2351         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2352                 device_printf(sc->sc_dev, "could not enable TSF\n");
2353 }
2354
2355 #if 0
2356 /*
2357  * Build a beacon frame that the firmware will broadcast periodically in
2358  * IBSS or HostAP modes.
2359  */
2360 static int
2361 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2362 {
2363         struct ifnet *ifp = sc->sc_ifp;
2364         struct ieee80211com *ic = ifp->if_l2com;
2365         struct wpi_tx_ring *ring = &sc->cmdq;
2366         struct wpi_tx_desc *desc;
2367         struct wpi_tx_data *data;
2368         struct wpi_tx_cmd *cmd;
2369         struct wpi_cmd_beacon *bcn;
2370         struct ieee80211_beacon_offsets bo;
2371         struct mbuf *m0;
2372         bus_addr_t physaddr;
2373         int error;
2374
2375         desc = &ring->desc[ring->cur];
2376         data = &ring->data[ring->cur];
2377
2378         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2379         if (m0 == NULL) {
2380                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2381                 return ENOMEM;
2382         }
2383
2384         cmd = &ring->cmd[ring->cur];
2385         cmd->code = WPI_CMD_SET_BEACON;
2386         cmd->flags = 0;
2387         cmd->qid = ring->qid;
2388         cmd->idx = ring->cur;
2389
2390         bcn = (struct wpi_cmd_beacon *)cmd->data;
2391         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2392         bcn->id = WPI_ID_BROADCAST;
2393         bcn->ofdm_mask = 0xff;
2394         bcn->cck_mask = 0x0f;
2395         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2396         bcn->len = htole16(m0->m_pkthdr.len);
2397         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2398                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2399         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2400
2401         /* save and trim IEEE802.11 header */
2402         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2403         m_adj(m0, sizeof (struct ieee80211_frame));
2404
2405         /* assume beacon frame is contiguous */
2406         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2407             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2408         if (error != 0) {
2409                 device_printf(sc->sc_dev, "could not map beacon\n");
2410                 m_freem(m0);
2411                 return error;
2412         }
2413
2414         data->m = m0;
2415
2416         /* first scatter/gather segment is used by the beacon command */
2417         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2418         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2419                 ring->cur * sizeof (struct wpi_tx_cmd));
2420         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2421         desc->segs[1].addr = htole32(physaddr);
2422         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2423
2424         /* kick cmd ring */
2425         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2426         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2427
2428         return 0;
2429 }
2430 #endif
2431
2432 static int
2433 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2434 {
2435         struct ieee80211com *ic = vap->iv_ic;
2436         struct ieee80211_node *ni = vap->iv_bss;
2437         struct wpi_node_info node;
2438         int error;
2439
2440
2441         /* update adapter's configuration */
2442         sc->config.associd = 0;
2443         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2444         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2445         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2446         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2447                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2448                     WPI_CONFIG_24GHZ);
2449         } else {
2450                 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2451                     WPI_CONFIG_24GHZ);
2452         }
2453         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2454                 sc->config.cck_mask  = 0;
2455                 sc->config.ofdm_mask = 0x15;
2456         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2457                 sc->config.cck_mask  = 0x03;
2458                 sc->config.ofdm_mask = 0;
2459         } else {
2460                 /* XXX assume 802.11b/g */
2461                 sc->config.cck_mask  = 0x0f;
2462                 sc->config.ofdm_mask = 0x15;
2463         }
2464
2465         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2466                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2467         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2468                 sizeof (struct wpi_config), 1);
2469         if (error != 0) {
2470                 device_printf(sc->sc_dev, "could not configure\n");
2471                 return error;
2472         }
2473
2474         /* configuration has changed, set Tx power accordingly */
2475         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2476                 device_printf(sc->sc_dev, "could not set Tx power\n");
2477                 return error;
2478         }
2479
2480         /* add default node */
2481         memset(&node, 0, sizeof node);
2482         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2483         node.id = WPI_ID_BSS;
2484         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2485             wpi_plcp_signal(12) : wpi_plcp_signal(2);
2486         node.action = htole32(WPI_ACTION_SET_RATE);
2487         node.antenna = WPI_ANTENNA_BOTH;
2488         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2489         if (error != 0)
2490                 device_printf(sc->sc_dev, "could not add BSS node\n");
2491
2492         return (error);
2493 }
2494
2495 static int
2496 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2497 {
2498         struct ieee80211com *ic = vap->iv_ic;
2499         struct ieee80211_node *ni = vap->iv_bss;
2500         int error;
2501
2502         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2503                 /* link LED blinks while monitoring */
2504                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2505                 return 0;
2506         }
2507
2508         wpi_enable_tsf(sc, ni);
2509
2510         /* update adapter's configuration */
2511         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2512         /* short preamble/slot time are negotiated when associating */
2513         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2514             WPI_CONFIG_SHSLOT);
2515         if (ic->ic_flags & IEEE80211_F_SHSLOT)
2516                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2517         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2518                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2519         sc->config.filter |= htole32(WPI_FILTER_BSS);
2520
2521         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2522
2523         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2524                     sc->config.flags));
2525         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2526                     wpi_config), 1);
2527         if (error != 0) {
2528                 device_printf(sc->sc_dev, "could not update configuration\n");
2529                 return error;
2530         }
2531
2532         error = wpi_set_txpower(sc, ni->ni_chan, 1);
2533         if (error != 0) {
2534                 device_printf(sc->sc_dev, "could set txpower\n");
2535                 return error;
2536         }
2537
2538         /* link LED always on while associated */
2539         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2540
2541         /* start automatic rate control timer */
2542         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2543
2544         return (error);
2545 }
2546
2547 /*
2548  * Send a scan request to the firmware.  Since this command is huge, we map it
2549  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2550  * much of this code is similar to that in wpi_cmd but because we must manually
2551  * construct the probe & channels, we duplicate what's needed here. XXX In the
2552  * future, this function should be modified to use wpi_cmd to help cleanup the
2553  * code base.
2554  */
2555 static int
2556 wpi_scan(struct wpi_softc *sc)
2557 {
2558         struct ifnet *ifp = sc->sc_ifp;
2559         struct ieee80211com *ic = ifp->if_l2com;
2560         struct ieee80211_scan_state *ss = ic->ic_scan;
2561         struct wpi_tx_ring *ring = &sc->cmdq;
2562         struct wpi_tx_desc *desc;
2563         struct wpi_tx_data *data;
2564         struct wpi_tx_cmd *cmd;
2565         struct wpi_scan_hdr *hdr;
2566         struct wpi_scan_chan *chan;
2567         struct ieee80211_frame *wh;
2568         struct ieee80211_rateset *rs;
2569         struct ieee80211_channel *c;
2570         enum ieee80211_phymode mode;
2571         uint8_t *frm;
2572         int nrates, pktlen, error, i, nssid;
2573         bus_addr_t physaddr;
2574
2575         desc = &ring->desc[ring->cur];
2576         data = &ring->data[ring->cur];
2577
2578         data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2579         if (data->m == NULL) {
2580                 device_printf(sc->sc_dev,
2581                     "could not allocate mbuf for scan command\n");
2582                 return ENOMEM;
2583         }
2584
2585         cmd = mtod(data->m, struct wpi_tx_cmd *);
2586         cmd->code = WPI_CMD_SCAN;
2587         cmd->flags = 0;
2588         cmd->qid = ring->qid;
2589         cmd->idx = ring->cur;
2590
2591         hdr = (struct wpi_scan_hdr *)cmd->data;
2592         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2593
2594         /*
2595          * Move to the next channel if no packets are received within 5 msecs
2596          * after sending the probe request (this helps to reduce the duration
2597          * of active scans).
2598          */
2599         hdr->quiet = htole16(5);
2600         hdr->threshold = htole16(1);
2601
2602         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2603                 /* send probe requests at 6Mbps */
2604                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2605
2606                 /* Enable crc checking */
2607                 hdr->promotion = htole16(1);
2608         } else {
2609                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2610                 /* send probe requests at 1Mbps */
2611                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2612         }
2613         hdr->tx.id = WPI_ID_BROADCAST;
2614         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2615         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2616
2617         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2618         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2619         for (i = 0; i < nssid; i++) {
2620                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2621                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2622                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2623                     hdr->scan_essids[i].esslen);
2624 #ifdef WPI_DEBUG
2625                 if (wpi_debug & WPI_DEBUG_SCANNING) {
2626                         printf("Scanning Essid: ");
2627                         ieee80211_print_essid(hdr->scan_essids[i].essid,
2628                             hdr->scan_essids[i].esslen);
2629                         printf("\n");
2630                 }
2631 #endif
2632         }
2633
2634         /*
2635          * Build a probe request frame.  Most of the following code is a
2636          * copy & paste of what is done in net80211.
2637          */
2638         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2639         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2640                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2641         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2642         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2643         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2644         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2645         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
2646         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
2647
2648         frm = (uint8_t *)(wh + 1);
2649
2650         /* add essid IE, the hardware will fill this in for us */
2651         *frm++ = IEEE80211_ELEMID_SSID;
2652         *frm++ = 0;
2653
2654         mode = ieee80211_chan2mode(ic->ic_curchan);
2655         rs = &ic->ic_sup_rates[mode];
2656
2657         /* add supported rates IE */
2658         *frm++ = IEEE80211_ELEMID_RATES;
2659         nrates = rs->rs_nrates;
2660         if (nrates > IEEE80211_RATE_SIZE)
2661                 nrates = IEEE80211_RATE_SIZE;
2662         *frm++ = nrates;
2663         memcpy(frm, rs->rs_rates, nrates);
2664         frm += nrates;
2665
2666         /* add supported xrates IE */
2667         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2668                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2669                 *frm++ = IEEE80211_ELEMID_XRATES;
2670                 *frm++ = nrates;
2671                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2672                 frm += nrates;
2673         }
2674
2675         /* setup length of probe request */
2676         hdr->tx.len = htole16(frm - (uint8_t *)wh);
2677
2678         /*
2679          * Construct information about the channel that we
2680          * want to scan. The firmware expects this to be directly
2681          * after the scan probe request
2682          */
2683         c = ic->ic_curchan;
2684         chan = (struct wpi_scan_chan *)frm;
2685         chan->chan = ieee80211_chan2ieee(ic, c);
2686         chan->flags = 0;
2687         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2688                 chan->flags |= WPI_CHAN_ACTIVE;
2689                 if (nssid != 0)
2690                         chan->flags |= WPI_CHAN_DIRECT;
2691         }
2692         chan->gain_dsp = 0x6e; /* Default level */
2693         if (IEEE80211_IS_CHAN_5GHZ(c)) {
2694                 chan->active = htole16(10);
2695                 chan->passive = htole16(ss->ss_maxdwell);
2696                 chan->gain_radio = 0x3b;
2697         } else {
2698                 chan->active = htole16(20);
2699                 chan->passive = htole16(ss->ss_maxdwell);
2700                 chan->gain_radio = 0x28;
2701         }
2702
2703         DPRINTFN(WPI_DEBUG_SCANNING,
2704             ("Scanning %u Passive: %d\n",
2705              chan->chan,
2706              c->ic_flags & IEEE80211_CHAN_PASSIVE));
2707
2708         hdr->nchan++;
2709         chan++;
2710
2711         frm += sizeof (struct wpi_scan_chan);
2712 #if 0
2713         // XXX All Channels....
2714         for (c  = &ic->ic_channels[1];
2715              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2716                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2717                         continue;
2718
2719                 chan->chan = ieee80211_chan2ieee(ic, c);
2720                 chan->flags = 0;
2721                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2722                     chan->flags |= WPI_CHAN_ACTIVE;
2723                     if (ic->ic_des_ssid[0].len != 0)
2724                         chan->flags |= WPI_CHAN_DIRECT;
2725                 }
2726                 chan->gain_dsp = 0x6e; /* Default level */
2727                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2728                         chan->active = htole16(10);
2729                         chan->passive = htole16(110);
2730                         chan->gain_radio = 0x3b;
2731                 } else {
2732                         chan->active = htole16(20);
2733                         chan->passive = htole16(120);
2734                         chan->gain_radio = 0x28;
2735                 }
2736
2737                 DPRINTFN(WPI_DEBUG_SCANNING,
2738                          ("Scanning %u Passive: %d\n",
2739                           chan->chan,
2740                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
2741
2742                 hdr->nchan++;
2743                 chan++;
2744
2745                 frm += sizeof (struct wpi_scan_chan);
2746         }
2747 #endif
2748
2749         hdr->len = htole16(frm - (uint8_t *)hdr);
2750         pktlen = frm - (uint8_t *)cmd;
2751
2752         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2753             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2754         if (error != 0) {
2755                 device_printf(sc->sc_dev, "could not map scan command\n");
2756                 m_freem(data->m);
2757                 data->m = NULL;
2758                 return error;
2759         }
2760
2761         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2762         desc->segs[0].addr = htole32(physaddr);
2763         desc->segs[0].len  = htole32(pktlen);
2764
2765         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2766             BUS_DMASYNC_PREWRITE);
2767         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2768
2769         /* kick cmd ring */
2770         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2771         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2772
2773         sc->sc_scan_timer = 5;
2774         return 0;       /* will be notified async. of failure/success */
2775 }
2776
2777 /**
2778  * Configure the card to listen to a particular channel, this transisions the
2779  * card in to being able to receive frames from remote devices.
2780  */
2781 static int
2782 wpi_config(struct wpi_softc *sc)
2783 {
2784         struct ifnet *ifp = sc->sc_ifp;
2785         struct ieee80211com *ic = ifp->if_l2com;
2786         struct wpi_power power;
2787         struct wpi_bluetooth bluetooth;
2788         struct wpi_node_info node;
2789         int error;
2790
2791         /* set power mode */
2792         memset(&power, 0, sizeof power);
2793         power.flags = htole32(WPI_POWER_CAM|0x8);
2794         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2795         if (error != 0) {
2796                 device_printf(sc->sc_dev, "could not set power mode\n");
2797                 return error;
2798         }
2799
2800         /* configure bluetooth coexistence */
2801         memset(&bluetooth, 0, sizeof bluetooth);
2802         bluetooth.flags = 3;
2803         bluetooth.lead = 0xaa;
2804         bluetooth.kill = 1;
2805         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2806             0);
2807         if (error != 0) {
2808                 device_printf(sc->sc_dev,
2809                     "could not configure bluetooth coexistence\n");
2810                 return error;
2811         }
2812
2813         /* configure adapter */
2814         memset(&sc->config, 0, sizeof (struct wpi_config));
2815         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2816         /*set default channel*/
2817         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2818         sc->config.flags = htole32(WPI_CONFIG_TSF);
2819         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2820                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2821                     WPI_CONFIG_24GHZ);
2822         }
2823         sc->config.filter = 0;
2824         switch (ic->ic_opmode) {
2825         case IEEE80211_M_STA:
2826         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
2827                 sc->config.mode = WPI_MODE_STA;
2828                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2829                 break;
2830         case IEEE80211_M_IBSS:
2831         case IEEE80211_M_AHDEMO:
2832                 sc->config.mode = WPI_MODE_IBSS;
2833                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2834                                              WPI_FILTER_MULTICAST);
2835                 break;
2836         case IEEE80211_M_HOSTAP:
2837                 sc->config.mode = WPI_MODE_HOSTAP;
2838                 break;
2839         case IEEE80211_M_MONITOR:
2840                 sc->config.mode = WPI_MODE_MONITOR;
2841                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2842                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2843                 break;
2844         default:
2845                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2846                 return EINVAL;
2847         }
2848         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
2849         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
2850         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2851                 sizeof (struct wpi_config), 0);
2852         if (error != 0) {
2853                 device_printf(sc->sc_dev, "configure command failed\n");
2854                 return error;
2855         }
2856
2857         /* configuration has changed, set Tx power accordingly */
2858         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2859             device_printf(sc->sc_dev, "could not set Tx power\n");
2860             return error;
2861         }
2862
2863         /* add broadcast node */
2864         memset(&node, 0, sizeof node);
2865         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2866         node.id = WPI_ID_BROADCAST;
2867         node.rate = wpi_plcp_signal(2);
2868         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2869         if (error != 0) {
2870                 device_printf(sc->sc_dev, "could not add broadcast node\n");
2871                 return error;
2872         }
2873
2874         /* Setup rate scalling */
2875         error = wpi_mrr_setup(sc);
2876         if (error != 0) {
2877                 device_printf(sc->sc_dev, "could not setup MRR\n");
2878                 return error;
2879         }
2880
2881         return 0;
2882 }
2883
2884 static void
2885 wpi_stop_master(struct wpi_softc *sc)
2886 {
2887         uint32_t tmp;
2888         int ntries;
2889
2890         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2891
2892         tmp = WPI_READ(sc, WPI_RESET);
2893         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2894
2895         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2896         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2897                 return; /* already asleep */
2898
2899         for (ntries = 0; ntries < 100; ntries++) {
2900                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2901                         break;
2902                 DELAY(10);
2903         }
2904         if (ntries == 100) {
2905                 device_printf(sc->sc_dev, "timeout waiting for master\n");
2906         }
2907 }
2908
2909 static int
2910 wpi_power_up(struct wpi_softc *sc)
2911 {
2912         uint32_t tmp;
2913         int ntries;
2914
2915         wpi_mem_lock(sc);
2916         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2917         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2918         wpi_mem_unlock(sc);
2919
2920         for (ntries = 0; ntries < 5000; ntries++) {
2921                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2922                         break;
2923                 DELAY(10);
2924         }
2925         if (ntries == 5000) {
2926                 device_printf(sc->sc_dev,
2927                     "timeout waiting for NIC to power up\n");
2928                 return ETIMEDOUT;
2929         }
2930         return 0;
2931 }
2932
2933 static int
2934 wpi_reset(struct wpi_softc *sc)
2935 {
2936         uint32_t tmp;
2937         int ntries;
2938
2939         DPRINTFN(WPI_DEBUG_HW,
2940             ("Resetting the card - clearing any uploaded firmware\n"));
2941
2942         /* clear any pending interrupts */
2943         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2944
2945         tmp = WPI_READ(sc, WPI_PLL_CTL);
2946         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2947
2948         tmp = WPI_READ(sc, WPI_CHICKEN);
2949         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2950
2951         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2952         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2953
2954         /* wait for clock stabilization */
2955         for (ntries = 0; ntries < 25000; ntries++) {
2956                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2957                         break;
2958                 DELAY(10);
2959         }
2960         if (ntries == 25000) {
2961                 device_printf(sc->sc_dev,
2962                     "timeout waiting for clock stabilization\n");
2963                 return ETIMEDOUT;
2964         }
2965
2966         /* initialize EEPROM */
2967         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2968
2969         if ((tmp & WPI_EEPROM_VERSION) == 0) {
2970                 device_printf(sc->sc_dev, "EEPROM not found\n");
2971                 return EIO;
2972         }
2973         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2974
2975         return 0;
2976 }
2977
2978 static void
2979 wpi_hw_config(struct wpi_softc *sc)
2980 {
2981         uint32_t rev, hw;
2982
2983         /* voodoo from the Linux "driver".. */
2984         hw = WPI_READ(sc, WPI_HWCONFIG);
2985
2986         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2987         if ((rev & 0xc0) == 0x40)
2988                 hw |= WPI_HW_ALM_MB;
2989         else if (!(rev & 0x80))
2990                 hw |= WPI_HW_ALM_MM;
2991
2992         if (sc->cap == 0x80)
2993                 hw |= WPI_HW_SKU_MRC;
2994
2995         hw &= ~WPI_HW_REV_D;
2996         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2997                 hw |= WPI_HW_REV_D;
2998
2999         if (sc->type > 1)
3000                 hw |= WPI_HW_TYPE_B;
3001
3002         WPI_WRITE(sc, WPI_HWCONFIG, hw);
3003 }
3004
3005 static void
3006 wpi_rfkill_resume(struct wpi_softc *sc)
3007 {
3008         struct ifnet *ifp = sc->sc_ifp;
3009         struct ieee80211com *ic = ifp->if_l2com;
3010         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3011         int ntries;
3012
3013         /* enable firmware again */
3014         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3015         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3016
3017         /* wait for thermal sensors to calibrate */
3018         for (ntries = 0; ntries < 1000; ntries++) {
3019                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3020                         break;
3021                 DELAY(10);
3022         }
3023
3024         if (ntries == 1000) {
3025                 device_printf(sc->sc_dev,
3026                     "timeout waiting for thermal calibration\n");
3027                 return;
3028         }
3029         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3030
3031         if (wpi_config(sc) != 0) {
3032                 device_printf(sc->sc_dev, "device config failed\n");
3033                 return;
3034         }
3035
3036         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3037         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3038         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3039
3040         if (vap != NULL) {
3041                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3042                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3043                                 ieee80211_beacon_miss(ic);
3044                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3045                         } else
3046                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3047                 } else {
3048                         ieee80211_scan_next(vap);
3049                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3050                 }
3051         }
3052
3053         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3054 }
3055
3056 static void
3057 wpi_init_locked(struct wpi_softc *sc, int force)
3058 {
3059         struct ifnet *ifp = sc->sc_ifp;
3060         uint32_t tmp;
3061         int ntries, qid;
3062
3063         wpi_stop_locked(sc);
3064         (void)wpi_reset(sc);
3065
3066         wpi_mem_lock(sc);
3067         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3068         DELAY(20);
3069         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3070         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3071         wpi_mem_unlock(sc);
3072
3073         (void)wpi_power_up(sc);
3074         wpi_hw_config(sc);
3075
3076         /* init Rx ring */
3077         wpi_mem_lock(sc);
3078         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3079         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3080             offsetof(struct wpi_shared, next));
3081         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3082         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3083         wpi_mem_unlock(sc);
3084
3085         /* init Tx rings */
3086         wpi_mem_lock(sc);
3087         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3088         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3089         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3090         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3091         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3092         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3093         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3094
3095         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3096         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3097
3098         for (qid = 0; qid < 6; qid++) {
3099                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3100                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3101                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3102         }
3103         wpi_mem_unlock(sc);
3104
3105         /* clear "radio off" and "disable command" bits (reversed logic) */
3106         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3107         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3108         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3109
3110         /* clear any pending interrupts */
3111         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3112
3113         /* enable interrupts */
3114         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3115
3116         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3117         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3118
3119         if ((wpi_load_firmware(sc)) != 0) {
3120             device_printf(sc->sc_dev,
3121                 "A problem occurred loading the firmware to the driver\n");
3122             return;
3123         }
3124
3125         /* At this point the firmware is up and running. If the hardware
3126          * RF switch is turned off thermal calibration will fail, though
3127          * the card is still happy to continue to accept commands, catch
3128          * this case and schedule a task to watch for it to be turned on.
3129          */
3130         wpi_mem_lock(sc);
3131         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3132         wpi_mem_unlock(sc);
3133
3134         if (!(tmp & 0x1)) {
3135                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3136                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3137                 goto out;
3138         }
3139
3140         /* wait for thermal sensors to calibrate */
3141         for (ntries = 0; ntries < 1000; ntries++) {
3142                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3143                         break;
3144                 DELAY(10);
3145         }
3146
3147         if (ntries == 1000) {
3148                 device_printf(sc->sc_dev,
3149                     "timeout waiting for thermal sensors calibration\n");
3150                 return;
3151         }
3152         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3153
3154         if (wpi_config(sc) != 0) {
3155                 device_printf(sc->sc_dev, "device config failed\n");
3156                 return;
3157         }
3158
3159         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3160         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3161 out:
3162         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3163 }
3164
3165 static void
3166 wpi_init(void *arg)
3167 {
3168         struct wpi_softc *sc = arg;
3169         struct ifnet *ifp = sc->sc_ifp;
3170         struct ieee80211com *ic = ifp->if_l2com;
3171
3172         WPI_LOCK(sc);
3173         wpi_init_locked(sc, 0);
3174         WPI_UNLOCK(sc);
3175
3176         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3177                 ieee80211_start_all(ic);                /* start all vaps */
3178 }
3179
3180 static void
3181 wpi_stop_locked(struct wpi_softc *sc)
3182 {
3183         struct ifnet *ifp = sc->sc_ifp;
3184         uint32_t tmp;
3185         int ac;
3186
3187         sc->sc_tx_timer = 0;
3188         sc->sc_scan_timer = 0;
3189         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3190         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3191         callout_stop(&sc->watchdog_to);
3192         callout_stop(&sc->calib_to);
3193
3194
3195         /* disable interrupts */
3196         WPI_WRITE(sc, WPI_MASK, 0);
3197         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3198         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3199         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3200
3201         wpi_mem_lock(sc);
3202         wpi_mem_write(sc, WPI_MEM_MODE, 0);
3203         wpi_mem_unlock(sc);
3204
3205         /* reset all Tx rings */
3206         for (ac = 0; ac < 4; ac++)
3207                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3208         wpi_reset_tx_ring(sc, &sc->cmdq);
3209
3210         /* reset Rx ring */
3211         wpi_reset_rx_ring(sc, &sc->rxq);
3212
3213         wpi_mem_lock(sc);
3214         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3215         wpi_mem_unlock(sc);
3216
3217         DELAY(5);
3218
3219         wpi_stop_master(sc);
3220
3221         tmp = WPI_READ(sc, WPI_RESET);
3222         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3223         sc->flags &= ~WPI_FLAG_BUSY;
3224 }
3225
3226 static void
3227 wpi_stop(struct wpi_softc *sc)
3228 {
3229         WPI_LOCK(sc);
3230         wpi_stop_locked(sc);
3231         WPI_UNLOCK(sc);
3232 }
3233
3234 static void
3235 wpi_calib_timeout(void *arg)
3236 {
3237         struct wpi_softc *sc = arg;
3238         struct ifnet *ifp = sc->sc_ifp;
3239         struct ieee80211com *ic = ifp->if_l2com;
3240         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3241         int temp;
3242
3243         if (vap->iv_state != IEEE80211_S_RUN)
3244                 return;
3245
3246         /* update sensor data */
3247         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3248         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3249
3250         wpi_power_calibration(sc, temp);
3251
3252         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3253 }
3254
3255 /*
3256  * This function is called periodically (every 60 seconds) to adjust output
3257  * power to temperature changes.
3258  */
3259 static void
3260 wpi_power_calibration(struct wpi_softc *sc, int temp)
3261 {
3262         struct ifnet *ifp = sc->sc_ifp;
3263         struct ieee80211com *ic = ifp->if_l2com;
3264         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3265
3266         /* sanity-check read value */
3267         if (temp < -260 || temp > 25) {
3268                 /* this can't be correct, ignore */
3269                 DPRINTFN(WPI_DEBUG_TEMP,
3270                     ("out-of-range temperature reported: %d\n", temp));
3271                 return;
3272         }
3273
3274         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3275
3276         /* adjust Tx power if need be */
3277         if (abs(temp - sc->temp) <= 6)
3278                 return;
3279
3280         sc->temp = temp;
3281
3282         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3283                 /* just warn, too bad for the automatic calibration... */
3284                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3285         }
3286 }
3287
3288 /**
3289  * Read the eeprom to find out what channels are valid for the given
3290  * band and update net80211 with what we find.
3291  */
3292 static void
3293 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3294 {
3295         struct ifnet *ifp = sc->sc_ifp;
3296         struct ieee80211com *ic = ifp->if_l2com;
3297         const struct wpi_chan_band *band = &wpi_bands[n];
3298         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3299         struct ieee80211_channel *c;
3300         int chan, i, passive;
3301
3302         wpi_read_prom_data(sc, band->addr, channels,
3303             band->nchan * sizeof (struct wpi_eeprom_chan));
3304
3305         for (i = 0; i < band->nchan; i++) {
3306                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3307                         DPRINTFN(WPI_DEBUG_HW,
3308                             ("Channel Not Valid: %d, band %d\n",
3309                              band->chan[i],n));
3310                         continue;
3311                 }
3312
3313                 passive = 0;
3314                 chan = band->chan[i];
3315                 c = &ic->ic_channels[ic->ic_nchans++];
3316
3317                 /* is active scan allowed on this channel? */
3318                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3319                         passive = IEEE80211_CHAN_PASSIVE;
3320                 }
3321
3322                 if (n == 0) {   /* 2GHz band */
3323                         c->ic_ieee = chan;
3324                         c->ic_freq = ieee80211_ieee2mhz(chan,
3325                             IEEE80211_CHAN_2GHZ);
3326                         c->ic_flags = IEEE80211_CHAN_B | passive;
3327
3328                         c = &ic->ic_channels[ic->ic_nchans++];
3329                         c->ic_ieee = chan;
3330                         c->ic_freq = ieee80211_ieee2mhz(chan,
3331                             IEEE80211_CHAN_2GHZ);
3332                         c->ic_flags = IEEE80211_CHAN_G | passive;
3333
3334                 } else {        /* 5GHz band */
3335                         /*
3336                          * Some 3945ABG adapters support channels 7, 8, 11
3337                          * and 12 in the 2GHz *and* 5GHz bands.
3338                          * Because of limitations in our net80211(9) stack,
3339                          * we can't support these channels in 5GHz band.
3340                          * XXX not true; just need to map to proper frequency
3341                          */
3342                         if (chan <= 14)
3343                                 continue;
3344
3345                         c->ic_ieee = chan;
3346                         c->ic_freq = ieee80211_ieee2mhz(chan,
3347                             IEEE80211_CHAN_5GHZ);
3348                         c->ic_flags = IEEE80211_CHAN_A | passive;
3349                 }
3350
3351                 /* save maximum allowed power for this channel */
3352                 sc->maxpwr[chan] = channels[i].maxpwr;
3353
3354 #if 0
3355                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3356                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3357                 //ic->ic_channels[chan].ic_minpower...
3358                 //ic->ic_channels[chan].ic_maxregtxpower...
3359 #endif
3360
3361                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3362                     " passive=%d, offset %d\n", chan, c->ic_freq,
3363                     channels[i].flags, sc->maxpwr[chan],
3364                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3365                     ic->ic_nchans));
3366         }
3367 }
3368
3369 static void
3370 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3371 {
3372         struct wpi_power_group *group = &sc->groups[n];
3373         struct wpi_eeprom_group rgroup;
3374         int i;
3375
3376         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3377             sizeof rgroup);
3378
3379         /* save power group information */
3380         group->chan   = rgroup.chan;
3381         group->maxpwr = rgroup.maxpwr;
3382         /* temperature at which the samples were taken */
3383         group->temp   = (int16_t)le16toh(rgroup.temp);
3384
3385         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3386                     group->chan, group->maxpwr, group->temp));
3387
3388         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3389                 group->samples[i].index = rgroup.samples[i].index;
3390                 group->samples[i].power = rgroup.samples[i].power;
3391
3392                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3393                             group->samples[i].index, group->samples[i].power));
3394         }
3395 }
3396
3397 /*
3398  * Update Tx power to match what is defined for channel `c'.
3399  */
3400 static int
3401 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3402 {
3403         struct ifnet *ifp = sc->sc_ifp;
3404         struct ieee80211com *ic = ifp->if_l2com;
3405         struct wpi_power_group *group;
3406         struct wpi_cmd_txpower txpower;
3407         u_int chan;
3408         int i;
3409
3410         /* get channel number */
3411         chan = ieee80211_chan2ieee(ic, c);
3412
3413         /* find the power group to which this channel belongs */
3414         if (IEEE80211_IS_CHAN_5GHZ(c)) {
3415                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3416                         if (chan <= group->chan)
3417                                 break;
3418         } else
3419                 group = &sc->groups[0];
3420
3421         memset(&txpower, 0, sizeof txpower);
3422         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3423         txpower.channel = htole16(chan);
3424
3425         /* set Tx power for all OFDM and CCK rates */
3426         for (i = 0; i <= 11 ; i++) {
3427                 /* retrieve Tx power for this channel/rate combination */
3428                 int idx = wpi_get_power_index(sc, group, c,
3429                     wpi_ridx_to_rate[i]);
3430
3431                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3432
3433                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3434                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3435                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3436                 } else {
3437                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3438                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3439                 }
3440                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3441                             chan, wpi_ridx_to_rate[i], idx));
3442         }
3443
3444         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3445 }
3446
3447 /*
3448  * Determine Tx power index for a given channel/rate combination.
3449  * This takes into account the regulatory information from EEPROM and the
3450  * current temperature.
3451  */
3452 static int
3453 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3454     struct ieee80211_channel *c, int rate)
3455 {
3456 /* fixed-point arithmetic division using a n-bit fractional part */
3457 #define fdivround(a, b, n)      \
3458         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3459
3460 /* linear interpolation */
3461 #define interpolate(x, x1, y1, x2, y2, n)       \
3462         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3463
3464         struct ifnet *ifp = sc->sc_ifp;
3465         struct ieee80211com *ic = ifp->if_l2com;
3466         struct wpi_power_sample *sample;
3467         int pwr, idx;
3468         u_int chan;
3469
3470         /* get channel number */
3471         chan = ieee80211_chan2ieee(ic, c);
3472
3473         /* default power is group's maximum power - 3dB */
3474         pwr = group->maxpwr / 2;
3475
3476         /* decrease power for highest OFDM rates to reduce distortion */
3477         switch (rate) {
3478                 case 72:        /* 36Mb/s */
3479                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3480                         break;
3481                 case 96:        /* 48Mb/s */
3482                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3483                         break;
3484                 case 108:       /* 54Mb/s */
3485                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3486                         break;
3487         }
3488
3489         /* never exceed channel's maximum allowed Tx power */
3490         pwr = min(pwr, sc->maxpwr[chan]);
3491
3492         /* retrieve power index into gain tables from samples */
3493         for (sample = group->samples; sample < &group->samples[3]; sample++)
3494                 if (pwr > sample[1].power)
3495                         break;
3496         /* fixed-point linear interpolation using a 19-bit fractional part */
3497         idx = interpolate(pwr, sample[0].power, sample[0].index,
3498             sample[1].power, sample[1].index, 19);
3499
3500         /*
3501          *  Adjust power index based on current temperature
3502          *      - if colder than factory-calibrated: decreate output power
3503          *      - if warmer than factory-calibrated: increase output power
3504          */
3505         idx -= (sc->temp - group->temp) * 11 / 100;
3506
3507         /* decrease power for CCK rates (-5dB) */
3508         if (!WPI_RATE_IS_OFDM(rate))
3509                 idx += 10;
3510
3511         /* keep power index in a valid range */
3512         if (idx < 0)
3513                 return 0;
3514         if (idx > WPI_MAX_PWR_INDEX)
3515                 return WPI_MAX_PWR_INDEX;
3516         return idx;
3517
3518 #undef interpolate
3519 #undef fdivround
3520 }
3521
3522 /**
3523  * Called by net80211 framework to indicate that a scan
3524  * is starting. This function doesn't actually do the scan,
3525  * wpi_scan_curchan starts things off. This function is more
3526  * of an early warning from the framework we should get ready
3527  * for the scan.
3528  */
3529 static void
3530 wpi_scan_start(struct ieee80211com *ic)
3531 {
3532         struct ifnet *ifp = ic->ic_ifp;
3533         struct wpi_softc *sc = ifp->if_softc;
3534
3535         WPI_LOCK(sc);
3536         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3537         WPI_UNLOCK(sc);
3538 }
3539
3540 /**
3541  * Called by the net80211 framework, indicates that the
3542  * scan has ended. If there is a scan in progress on the card
3543  * then it should be aborted.
3544  */
3545 static void
3546 wpi_scan_end(struct ieee80211com *ic)
3547 {
3548         /* XXX ignore */
3549 }
3550
3551 /**
3552  * Called by the net80211 framework to indicate to the driver
3553  * that the channel should be changed
3554  */
3555 static void
3556 wpi_set_channel(struct ieee80211com *ic)
3557 {
3558         struct ifnet *ifp = ic->ic_ifp;
3559         struct wpi_softc *sc = ifp->if_softc;
3560         int error;
3561
3562         /*
3563          * Only need to set the channel in Monitor mode. AP scanning and auth
3564          * are already taken care of by their respective firmware commands.
3565          */
3566         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3567                 WPI_LOCK(sc);
3568                 error = wpi_config(sc);
3569                 WPI_UNLOCK(sc);
3570                 if (error != 0)
3571                         device_printf(sc->sc_dev,
3572                             "error %d settting channel\n", error);
3573         }
3574 }
3575
3576 /**
3577  * Called by net80211 to indicate that we need to scan the current
3578  * channel. The channel is previously be set via the wpi_set_channel
3579  * callback.
3580  */
3581 static void
3582 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3583 {
3584         struct ieee80211vap *vap = ss->ss_vap;
3585         struct ifnet *ifp = vap->iv_ic->ic_ifp;
3586         struct wpi_softc *sc = ifp->if_softc;
3587
3588         WPI_LOCK(sc);
3589         if (wpi_scan(sc))
3590                 ieee80211_cancel_scan(vap);
3591         WPI_UNLOCK(sc);
3592 }
3593
3594 /**
3595  * Called by the net80211 framework to indicate
3596  * the minimum dwell time has been met, terminate the scan.
3597  * We don't actually terminate the scan as the firmware will notify
3598  * us when it's finished and we have no way to interrupt it.
3599  */
3600 static void
3601 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3602 {
3603         /* NB: don't try to abort scan; wait for firmware to finish */
3604 }
3605
3606 static void
3607 wpi_hwreset(void *arg, int pending)
3608 {
3609         struct wpi_softc *sc = arg;
3610
3611         WPI_LOCK(sc);
3612         wpi_init_locked(sc, 0);
3613         WPI_UNLOCK(sc);
3614 }
3615
3616 static void
3617 wpi_rfreset(void *arg, int pending)
3618 {
3619         struct wpi_softc *sc = arg;
3620
3621         WPI_LOCK(sc);
3622         wpi_rfkill_resume(sc);
3623         WPI_UNLOCK(sc);
3624 }
3625
3626 /*
3627  * Allocate DMA-safe memory for firmware transfer.
3628  */
3629 static int
3630 wpi_alloc_fwmem(struct wpi_softc *sc)
3631 {
3632         /* allocate enough contiguous space to store text and data */
3633         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3634             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3635             BUS_DMA_NOWAIT);
3636 }
3637
3638 static void
3639 wpi_free_fwmem(struct wpi_softc *sc)
3640 {
3641         wpi_dma_contig_free(&sc->fw_dma);
3642 }
3643
3644 /**
3645  * Called every second, wpi_watchdog used by the watch dog timer
3646  * to check that the card is still alive
3647  */
3648 static void
3649 wpi_watchdog(void *arg)
3650 {
3651         struct wpi_softc *sc = arg;
3652         struct ifnet *ifp = sc->sc_ifp;
3653         struct ieee80211com *ic = ifp->if_l2com;
3654         uint32_t tmp;
3655
3656         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3657
3658         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3659                 /* No need to lock firmware memory */
3660                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3661
3662                 if ((tmp & 0x1) == 0) {
3663                         /* Radio kill switch is still off */
3664                         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3665                         return;
3666                 }
3667
3668                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3669                 ieee80211_runtask(ic, &sc->sc_radiotask);
3670                 return;
3671         }
3672
3673         if (sc->sc_tx_timer > 0) {
3674                 if (--sc->sc_tx_timer == 0) {
3675                         device_printf(sc->sc_dev,"device timeout\n");
3676                         ifp->if_oerrors++;
3677                         ieee80211_runtask(ic, &sc->sc_restarttask);
3678                 }
3679         }
3680         if (sc->sc_scan_timer > 0) {
3681                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3682                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3683                         device_printf(sc->sc_dev,"scan timeout\n");
3684                         ieee80211_cancel_scan(vap);
3685                         ieee80211_runtask(ic, &sc->sc_restarttask);
3686                 }
3687         }
3688
3689         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3690                 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3691 }
3692
3693 #ifdef WPI_DEBUG
3694 static const char *wpi_cmd_str(int cmd)
3695 {
3696         switch (cmd) {
3697         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
3698         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3699         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3700         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
3701         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
3702         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
3703         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
3704         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3705         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
3706         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3707         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
3708         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3709         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
3710         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3711
3712         default:
3713                 KASSERT(1, ("Unknown Command: %d\n", cmd));
3714                 return "UNKNOWN CMD";   /* Make the compiler happy */
3715         }
3716 }
3717 #endif
3718
3719 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3720 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3721 MODULE_DEPEND(wpi, firmware, 1, 1, 1);