]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/i386/i386/vm86.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / i386 / i386 / vm86.c
1 /*-
2  * Copyright (c) 1997 Jonathan Lemon
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/priv.h>
33 #include <sys/proc.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37
38 #include <vm/vm.h>
39 #include <vm/pmap.h>
40 #include <vm/vm_map.h>
41 #include <vm/vm_page.h>
42
43 #include <machine/md_var.h>
44 #include <machine/pcb.h>
45 #include <machine/pcb_ext.h>
46 #include <machine/psl.h>
47 #include <machine/specialreg.h>
48 #include <machine/sysarch.h>
49
50 extern int vm86pa;
51 extern struct pcb *vm86pcb;
52
53 static struct mtx vm86_lock;
54
55 extern int vm86_bioscall(struct vm86frame *);
56 extern void vm86_biosret(struct vm86frame *);
57
58 void vm86_prepcall(struct vm86frame *);
59
60 struct system_map {
61         int             type;
62         vm_offset_t     start;
63         vm_offset_t     end;
64 };
65
66 #define HLT     0xf4
67 #define CLI     0xfa
68 #define STI     0xfb
69 #define PUSHF   0x9c
70 #define POPF    0x9d
71 #define INTn    0xcd
72 #define IRET    0xcf
73 #define CALLm   0xff
74 #define OPERAND_SIZE_PREFIX     0x66
75 #define ADDRESS_SIZE_PREFIX     0x67
76 #define PUSH_MASK       ~(PSL_VM | PSL_RF | PSL_I)
77 #define POP_MASK        ~(PSL_VIP | PSL_VIF | PSL_VM | PSL_RF | PSL_IOPL)
78
79 static __inline caddr_t
80 MAKE_ADDR(u_short sel, u_short off)
81 {
82         return ((caddr_t)((sel << 4) + off));
83 }
84
85 static __inline void
86 GET_VEC(u_int vec, u_short *sel, u_short *off)
87 {
88         *sel = vec >> 16;
89         *off = vec & 0xffff;
90 }
91
92 static __inline u_int
93 MAKE_VEC(u_short sel, u_short off)
94 {
95         return ((sel << 16) | off);
96 }
97
98 static __inline void
99 PUSH(u_short x, struct vm86frame *vmf)
100 {
101         vmf->vmf_sp -= 2;
102         suword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
103 }
104
105 static __inline void
106 PUSHL(u_int x, struct vm86frame *vmf)
107 {
108         vmf->vmf_sp -= 4;
109         suword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
110 }
111
112 static __inline u_short
113 POP(struct vm86frame *vmf)
114 {
115         u_short x = fuword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
116
117         vmf->vmf_sp += 2;
118         return (x);
119 }
120
121 static __inline u_int
122 POPL(struct vm86frame *vmf)
123 {
124         u_int x = fuword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
125
126         vmf->vmf_sp += 4;
127         return (x);
128 }
129
130 int
131 vm86_emulate(vmf)
132         struct vm86frame *vmf;
133 {
134         struct vm86_kernel *vm86;
135         caddr_t addr;
136         u_char i_byte;
137         u_int temp_flags;
138         int inc_ip = 1;
139         int retcode = 0;
140
141         /*
142          * pcb_ext contains the address of the extension area, or zero if
143          * the extension is not present.  (This check should not be needed,
144          * as we can't enter vm86 mode until we set up an extension area)
145          */
146         if (curpcb->pcb_ext == 0)
147                 return (SIGBUS);
148         vm86 = &curpcb->pcb_ext->ext_vm86;
149
150         if (vmf->vmf_eflags & PSL_T)
151                 retcode = SIGTRAP;
152
153         addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
154         i_byte = fubyte(addr);
155         if (i_byte == ADDRESS_SIZE_PREFIX) {
156                 i_byte = fubyte(++addr);
157                 inc_ip++;
158         }
159
160         if (vm86->vm86_has_vme) {
161                 switch (i_byte) {
162                 case OPERAND_SIZE_PREFIX:
163                         i_byte = fubyte(++addr);
164                         inc_ip++;
165                         switch (i_byte) {
166                         case PUSHF:
167                                 if (vmf->vmf_eflags & PSL_VIF)
168                                         PUSHL((vmf->vmf_eflags & PUSH_MASK)
169                                             | PSL_IOPL | PSL_I, vmf);
170                                 else
171                                         PUSHL((vmf->vmf_eflags & PUSH_MASK)
172                                             | PSL_IOPL, vmf);
173                                 vmf->vmf_ip += inc_ip;
174                                 return (0);
175
176                         case POPF:
177                                 temp_flags = POPL(vmf) & POP_MASK;
178                                 vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
179                                     | temp_flags | PSL_VM | PSL_I;
180                                 vmf->vmf_ip += inc_ip;
181                                 if (temp_flags & PSL_I) {
182                                         vmf->vmf_eflags |= PSL_VIF;
183                                         if (vmf->vmf_eflags & PSL_VIP)
184                                                 break;
185                                 } else {
186                                         vmf->vmf_eflags &= ~PSL_VIF;
187                                 }
188                                 return (0);
189                         }
190                         break;
191
192                 /* VME faults here if VIP is set, but does not set VIF. */
193                 case STI:
194                         vmf->vmf_eflags |= PSL_VIF;
195                         vmf->vmf_ip += inc_ip;
196                         if ((vmf->vmf_eflags & PSL_VIP) == 0) {
197                                 uprintf("fatal sti\n");
198                                 return (SIGKILL);
199                         }
200                         break;
201
202                 /* VME if no redirection support */
203                 case INTn:
204                         break;
205
206                 /* VME if trying to set PSL_TF, or PSL_I when VIP is set */
207                 case POPF:
208                         temp_flags = POP(vmf) & POP_MASK;
209                         vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
210                             | temp_flags | PSL_VM | PSL_I;
211                         vmf->vmf_ip += inc_ip;
212                         if (temp_flags & PSL_I) {
213                                 vmf->vmf_eflags |= PSL_VIF;
214                                 if (vmf->vmf_eflags & PSL_VIP)
215                                         break;
216                         } else {
217                                 vmf->vmf_eflags &= ~PSL_VIF;
218                         }
219                         return (retcode);
220
221                 /* VME if trying to set PSL_TF, or PSL_I when VIP is set */
222                 case IRET:
223                         vmf->vmf_ip = POP(vmf);
224                         vmf->vmf_cs = POP(vmf);
225                         temp_flags = POP(vmf) & POP_MASK;
226                         vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
227                             | temp_flags | PSL_VM | PSL_I;
228                         if (temp_flags & PSL_I) {
229                                 vmf->vmf_eflags |= PSL_VIF;
230                                 if (vmf->vmf_eflags & PSL_VIP)
231                                         break;
232                         } else {
233                                 vmf->vmf_eflags &= ~PSL_VIF;
234                         }
235                         return (retcode);
236
237                 }
238                 return (SIGBUS);
239         }
240
241         switch (i_byte) {
242         case OPERAND_SIZE_PREFIX:
243                 i_byte = fubyte(++addr);
244                 inc_ip++;
245                 switch (i_byte) {
246                 case PUSHF:
247                         if (vm86->vm86_eflags & PSL_VIF)
248                                 PUSHL((vmf->vmf_flags & PUSH_MASK)
249                                     | PSL_IOPL | PSL_I, vmf);
250                         else
251                                 PUSHL((vmf->vmf_flags & PUSH_MASK)
252                                     | PSL_IOPL, vmf);
253                         vmf->vmf_ip += inc_ip;
254                         return (retcode);
255
256                 case POPF:
257                         temp_flags = POPL(vmf) & POP_MASK;
258                         vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
259                             | temp_flags | PSL_VM | PSL_I;
260                         vmf->vmf_ip += inc_ip;
261                         if (temp_flags & PSL_I) {
262                                 vm86->vm86_eflags |= PSL_VIF;
263                                 if (vm86->vm86_eflags & PSL_VIP)
264                                         break;
265                         } else {
266                                 vm86->vm86_eflags &= ~PSL_VIF;
267                         }
268                         return (retcode);
269                 }
270                 return (SIGBUS);
271
272         case CLI:
273                 vm86->vm86_eflags &= ~PSL_VIF;
274                 vmf->vmf_ip += inc_ip;
275                 return (retcode);
276
277         case STI:
278                 /* if there is a pending interrupt, go to the emulator */
279                 vm86->vm86_eflags |= PSL_VIF;
280                 vmf->vmf_ip += inc_ip;
281                 if (vm86->vm86_eflags & PSL_VIP)
282                         break;
283                 return (retcode);
284
285         case PUSHF:
286                 if (vm86->vm86_eflags & PSL_VIF)
287                         PUSH((vmf->vmf_flags & PUSH_MASK)
288                             | PSL_IOPL | PSL_I, vmf);
289                 else
290                         PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
291                 vmf->vmf_ip += inc_ip;
292                 return (retcode);
293
294         case INTn:
295                 i_byte = fubyte(addr + 1);
296                 if ((vm86->vm86_intmap[i_byte >> 3] & (1 << (i_byte & 7))) != 0)
297                         break;
298                 if (vm86->vm86_eflags & PSL_VIF)
299                         PUSH((vmf->vmf_flags & PUSH_MASK)
300                             | PSL_IOPL | PSL_I, vmf);
301                 else
302                         PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
303                 PUSH(vmf->vmf_cs, vmf);
304                 PUSH(vmf->vmf_ip + inc_ip + 1, vmf);    /* increment IP */
305                 GET_VEC(fuword((caddr_t)(i_byte * 4)),
306                      &vmf->vmf_cs, &vmf->vmf_ip);
307                 vmf->vmf_flags &= ~PSL_T;
308                 vm86->vm86_eflags &= ~PSL_VIF;
309                 return (retcode);
310
311         case IRET:
312                 vmf->vmf_ip = POP(vmf);
313                 vmf->vmf_cs = POP(vmf);
314                 temp_flags = POP(vmf) & POP_MASK;
315                 vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
316                     | temp_flags | PSL_VM | PSL_I;
317                 if (temp_flags & PSL_I) {
318                         vm86->vm86_eflags |= PSL_VIF;
319                         if (vm86->vm86_eflags & PSL_VIP)
320                                 break;
321                 } else {
322                         vm86->vm86_eflags &= ~PSL_VIF;
323                 }
324                 return (retcode);
325
326         case POPF:
327                 temp_flags = POP(vmf) & POP_MASK;
328                 vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
329                     | temp_flags | PSL_VM | PSL_I;
330                 vmf->vmf_ip += inc_ip;
331                 if (temp_flags & PSL_I) {
332                         vm86->vm86_eflags |= PSL_VIF;
333                         if (vm86->vm86_eflags & PSL_VIP)
334                                 break;
335                 } else {
336                         vm86->vm86_eflags &= ~PSL_VIF;
337                 }
338                 return (retcode);
339         }
340         return (SIGBUS);
341 }
342
343 #define PGTABLE_SIZE    ((1024 + 64) * 1024 / PAGE_SIZE)
344 #define INTMAP_SIZE     32
345 #define IOMAP_SIZE      ctob(IOPAGES)
346 #define TSS_SIZE \
347         (sizeof(struct pcb_ext) - sizeof(struct segment_descriptor) + \
348          INTMAP_SIZE + IOMAP_SIZE + 1)
349
350 struct vm86_layout {
351         pt_entry_t      vml_pgtbl[PGTABLE_SIZE];
352         struct  pcb vml_pcb;
353         struct  pcb_ext vml_ext;
354         char    vml_intmap[INTMAP_SIZE];
355         char    vml_iomap[IOMAP_SIZE];
356         char    vml_iomap_trailer;
357 };
358
359 void
360 vm86_initialize(void)
361 {
362         int i;
363         u_int *addr;
364         struct vm86_layout *vml = (struct vm86_layout *)vm86paddr;
365         struct pcb *pcb;
366         struct pcb_ext *ext;
367         struct soft_segment_descriptor ssd = {
368                 0,                      /* segment base address (overwritten) */
369                 0,                      /* length (overwritten) */
370                 SDT_SYS386TSS,          /* segment type */
371                 0,                      /* priority level */
372                 1,                      /* descriptor present */
373                 0, 0,
374                 0,                      /* default 16 size */
375                 0                       /* granularity */
376         };
377
378         /*
379          * this should be a compile time error, but cpp doesn't grok sizeof().
380          */
381         if (sizeof(struct vm86_layout) > ctob(3))
382                 panic("struct vm86_layout exceeds space allocated in locore.s");
383
384         /*
385          * Below is the memory layout that we use for the vm86 region.
386          *
387          * +--------+
388          * |        | 
389          * |        |
390          * | page 0 |       
391          * |        | +--------+
392          * |        | | stack  |
393          * +--------+ +--------+ <--------- vm86paddr
394          * |        | |Page Tbl| 1M + 64K = 272 entries = 1088 bytes
395          * |        | +--------+
396          * |        | |  PCB   | size: ~240 bytes
397          * | page 1 | |PCB Ext | size: ~140 bytes (includes TSS)
398          * |        | +--------+
399          * |        | |int map |
400          * |        | +--------+
401          * +--------+ |        |
402          * | page 2 | |  I/O   |
403          * +--------+ | bitmap |
404          * | page 3 | |        |
405          * |        | +--------+
406          * +--------+ 
407          */
408
409         /*
410          * A rudimentary PCB must be installed, in order to get to the
411          * PCB extension area.  We use the PCB area as a scratchpad for
412          * data storage, the layout of which is shown below.
413          *
414          * pcb_esi      = new PTD entry 0
415          * pcb_ebp      = pointer to frame on vm86 stack
416          * pcb_esp      =    stack frame pointer at time of switch
417          * pcb_ebx      = va of vm86 page table
418          * pcb_eip      =    argument pointer to initial call
419          * pcb_spare[0] =    saved TSS descriptor, word 0
420          * pcb_space[1] =    saved TSS descriptor, word 1
421          */
422 #define new_ptd         pcb_esi
423 #define vm86_frame      pcb_ebp
424 #define pgtable_va      pcb_ebx
425
426         pcb = &vml->vml_pcb;
427         ext = &vml->vml_ext;
428
429         mtx_init(&vm86_lock, "vm86 lock", NULL, MTX_DEF);
430
431         bzero(pcb, sizeof(struct pcb));
432         pcb->new_ptd = vm86pa | PG_V | PG_RW | PG_U;
433         pcb->vm86_frame = vm86paddr - sizeof(struct vm86frame);
434         pcb->pgtable_va = vm86paddr;
435         pcb->pcb_flags = PCB_VM86CALL; 
436         pcb->pcb_ext = ext;
437
438         bzero(ext, sizeof(struct pcb_ext)); 
439         ext->ext_tss.tss_esp0 = vm86paddr;
440         ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
441         ext->ext_tss.tss_ioopt = 
442                 ((u_int)vml->vml_iomap - (u_int)&ext->ext_tss) << 16;
443         ext->ext_iomap = vml->vml_iomap;
444         ext->ext_vm86.vm86_intmap = vml->vml_intmap;
445
446         if (cpu_feature & CPUID_VME)
447                 ext->ext_vm86.vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
448
449         addr = (u_int *)ext->ext_vm86.vm86_intmap;
450         for (i = 0; i < (INTMAP_SIZE + IOMAP_SIZE) / sizeof(u_int); i++)
451                 *addr++ = 0;
452         vml->vml_iomap_trailer = 0xff;
453
454         ssd.ssd_base = (u_int)&ext->ext_tss;
455         ssd.ssd_limit = TSS_SIZE - 1; 
456         ssdtosd(&ssd, &ext->ext_tssd);
457
458         vm86pcb = pcb;
459
460 #if 0
461         /*
462          * use whatever is leftover of the vm86 page layout as a
463          * message buffer so we can capture early output.
464          */
465         msgbufinit((vm_offset_t)vm86paddr + sizeof(struct vm86_layout),
466             ctob(3) - sizeof(struct vm86_layout));
467 #endif
468 }
469
470 vm_offset_t
471 vm86_getpage(struct vm86context *vmc, int pagenum)
472 {
473         int i;
474
475         for (i = 0; i < vmc->npages; i++)
476                 if (vmc->pmap[i].pte_num == pagenum)
477                         return (vmc->pmap[i].kva);
478         return (0);
479 }
480
481 vm_offset_t
482 vm86_addpage(struct vm86context *vmc, int pagenum, vm_offset_t kva)
483 {
484         int i, flags = 0;
485
486         for (i = 0; i < vmc->npages; i++)
487                 if (vmc->pmap[i].pte_num == pagenum)
488                         goto overlap;
489
490         if (vmc->npages == VM86_PMAPSIZE)
491                 goto full;                      /* XXX grow map? */
492
493         if (kva == 0) {
494                 kva = (vm_offset_t)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
495                 flags = VMAP_MALLOC;
496         }
497
498         i = vmc->npages++;
499         vmc->pmap[i].flags = flags;
500         vmc->pmap[i].kva = kva;
501         vmc->pmap[i].pte_num = pagenum;
502         return (kva);
503 overlap:
504         panic("vm86_addpage: overlap");
505 full:
506         panic("vm86_addpage: not enough room");
507 }
508
509 /*
510  * called from vm86_bioscall, while in vm86 address space, to finalize setup.
511  */
512 void
513 vm86_prepcall(struct vm86frame *vmf)
514 {
515         struct vm86_kernel *vm86;
516         uint32_t *stack;
517         uint8_t *code;
518
519         code = (void *)0xa00;
520         stack = (void *)(0x1000 - 2);   /* keep aligned */
521         if ((vmf->vmf_trapno & PAGE_MASK) <= 0xff) {
522                 /* interrupt call requested */
523                 code[0] = INTn;
524                 code[1] = vmf->vmf_trapno & 0xff;
525                 code[2] = HLT;
526                 vmf->vmf_ip = (uintptr_t)code;
527                 vmf->vmf_cs = 0;
528         } else {
529                 code[0] = HLT;
530                 stack--;
531                 stack[0] = MAKE_VEC(0, (uintptr_t)code);
532         }
533         vmf->vmf_sp = (uintptr_t)stack;
534         vmf->vmf_ss = 0;
535         vmf->kernel_fs = vmf->kernel_es = vmf->kernel_ds = 0;
536         vmf->vmf_eflags = PSL_VIF | PSL_VM | PSL_USER;
537
538         vm86 = &curpcb->pcb_ext->ext_vm86;
539         if (!vm86->vm86_has_vme) 
540                 vm86->vm86_eflags = vmf->vmf_eflags;  /* save VIF, VIP */
541 }
542
543 /*
544  * vm86 trap handler; determines whether routine succeeded or not.
545  * Called while in vm86 space, returns to calling process.
546  */
547 void
548 vm86_trap(struct vm86frame *vmf)
549 {
550         caddr_t addr;
551
552         /* "should not happen" */
553         if ((vmf->vmf_eflags & PSL_VM) == 0)
554                 panic("vm86_trap called, but not in vm86 mode");
555
556         addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
557         if (*(u_char *)addr == HLT)
558                 vmf->vmf_trapno = vmf->vmf_eflags & PSL_C;
559         else
560                 vmf->vmf_trapno = vmf->vmf_trapno << 16;
561
562         vm86_biosret(vmf);
563 }
564
565 int
566 vm86_intcall(int intnum, struct vm86frame *vmf)
567 {
568         int retval;
569
570         if (intnum < 0 || intnum > 0xff)
571                 return (EINVAL);
572
573         vmf->vmf_trapno = intnum;
574         mtx_lock(&vm86_lock);
575         critical_enter();
576         retval = vm86_bioscall(vmf);
577         critical_exit();
578         mtx_unlock(&vm86_lock);
579         return (retval);
580 }
581
582 /*
583  * struct vm86context contains the page table to use when making
584  * vm86 calls.  If intnum is a valid interrupt number (0-255), then
585  * the "interrupt trampoline" will be used, otherwise we use the
586  * caller's cs:ip routine.  
587  */
588 int
589 vm86_datacall(intnum, vmf, vmc)
590         int intnum;
591         struct vm86frame *vmf;
592         struct vm86context *vmc;
593 {
594         pt_entry_t *pte = (pt_entry_t *)vm86paddr;
595         vm_paddr_t page;
596         int i, entry, retval;
597
598         mtx_lock(&vm86_lock);
599         for (i = 0; i < vmc->npages; i++) {
600                 page = vtophys(vmc->pmap[i].kva & PG_FRAME);
601                 entry = vmc->pmap[i].pte_num; 
602                 vmc->pmap[i].old_pte = pte[entry];
603                 pte[entry] = page | PG_V | PG_RW | PG_U;
604                 pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
605         }
606
607         vmf->vmf_trapno = intnum;
608         critical_enter();
609         retval = vm86_bioscall(vmf);
610         critical_exit();
611
612         for (i = 0; i < vmc->npages; i++) {
613                 entry = vmc->pmap[i].pte_num;
614                 pte[entry] = vmc->pmap[i].old_pte;
615                 pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
616         }
617         mtx_unlock(&vm86_lock);
618
619         return (retval);
620 }
621
622 vm_offset_t
623 vm86_getaddr(struct vm86context *vmc, u_short sel, u_short off)
624 {
625         int i, page;
626         vm_offset_t addr;
627
628         addr = (vm_offset_t)MAKE_ADDR(sel, off);
629         page = addr >> PAGE_SHIFT;
630         for (i = 0; i < vmc->npages; i++)
631                 if (page == vmc->pmap[i].pte_num)
632                         return (vmc->pmap[i].kva + (addr & PAGE_MASK));
633         return (0);
634 }
635
636 int
637 vm86_getptr(vmc, kva, sel, off)
638         struct vm86context *vmc;
639         vm_offset_t kva;
640         u_short *sel;
641         u_short *off;
642 {
643         int i;
644
645         for (i = 0; i < vmc->npages; i++)
646                 if (kva >= vmc->pmap[i].kva &&
647                     kva < vmc->pmap[i].kva + PAGE_SIZE) {
648                         *off = kva - vmc->pmap[i].kva;
649                         *sel = vmc->pmap[i].pte_num << 8;
650                         return (1);
651                 }
652         return (0);
653 }
654         
655 int
656 vm86_sysarch(td, args)
657         struct thread *td;
658         char *args;
659 {
660         int error = 0;
661         struct i386_vm86_args ua;
662         struct vm86_kernel *vm86;
663
664         if ((error = copyin(args, &ua, sizeof(struct i386_vm86_args))) != 0)
665                 return (error);
666
667         if (td->td_pcb->pcb_ext == 0)
668                 if ((error = i386_extend_pcb(td)) != 0)
669                         return (error);
670         vm86 = &td->td_pcb->pcb_ext->ext_vm86;
671
672         switch (ua.sub_op) {
673         case VM86_INIT: {
674                 struct vm86_init_args sa;
675
676                 if ((error = copyin(ua.sub_args, &sa, sizeof(sa))) != 0)
677                         return (error);
678                 if (cpu_feature & CPUID_VME)
679                         vm86->vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
680                 else
681                         vm86->vm86_has_vme = 0;
682                 vm86->vm86_inited = 1;
683                 vm86->vm86_debug = sa.debug;
684                 bcopy(&sa.int_map, vm86->vm86_intmap, 32);
685                 }
686                 break;
687
688 #if 0
689         case VM86_SET_VME: {
690                 struct vm86_vme_args sa;
691         
692                 if ((cpu_feature & CPUID_VME) == 0)
693                         return (ENODEV);
694
695                 if (error = copyin(ua.sub_args, &sa, sizeof(sa)))
696                         return (error);
697                 if (sa.state)
698                         load_cr4(rcr4() | CR4_VME);
699                 else
700                         load_cr4(rcr4() & ~CR4_VME);
701                 }
702                 break;
703 #endif
704
705         case VM86_GET_VME: {
706                 struct vm86_vme_args sa;
707
708                 sa.state = (rcr4() & CR4_VME ? 1 : 0);
709                 error = copyout(&sa, ua.sub_args, sizeof(sa));
710                 }
711                 break;
712
713         case VM86_INTCALL: {
714                 struct vm86_intcall_args sa;
715
716                 if ((error = priv_check(td, PRIV_VM86_INTCALL)))
717                         return (error);
718                 if ((error = copyin(ua.sub_args, &sa, sizeof(sa))))
719                         return (error);
720                 if ((error = vm86_intcall(sa.intnum, &sa.vmf)))
721                         return (error);
722                 error = copyout(&sa, ua.sub_args, sizeof(sa));
723                 }
724                 break;
725
726         default:
727                 error = EINVAL;
728         }
729         return (error);
730 }