]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/ia64/ia64/machdep.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / ia64 / ia64 / machdep.c
1 /*-
2  * Copyright (c) 2003,2004 Marcel Moolenaar
3  * Copyright (c) 2000,2001 Doug Rabson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_compat.h"
32 #include "opt_ddb.h"
33 #include "opt_kstack_pages.h"
34 #include "opt_sched.h"
35
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/systm.h>
39 #include <sys/bio.h>
40 #include <sys/buf.h>
41 #include <sys/bus.h>
42 #include <sys/cons.h>
43 #include <sys/cpu.h>
44 #include <sys/eventhandler.h>
45 #include <sys/exec.h>
46 #include <sys/imgact.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/linker.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/msgbuf.h>
54 #include <sys/pcpu.h>
55 #include <sys/ptrace.h>
56 #include <sys/random.h>
57 #include <sys/reboot.h>
58 #include <sys/rwlock.h>
59 #include <sys/sched.h>
60 #include <sys/signalvar.h>
61 #include <sys/syscall.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysproto.h>
65 #include <sys/ucontext.h>
66 #include <sys/uio.h>
67 #include <sys/uuid.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70
71 #include <ddb/ddb.h>
72
73 #include <net/netisr.h>
74
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_pager.h>
82
83 #include <machine/bootinfo.h>
84 #include <machine/cpu.h>
85 #include <machine/efi.h>
86 #include <machine/elf.h>
87 #include <machine/fpu.h>
88 #include <machine/intr.h>
89 #include <machine/mca.h>
90 #include <machine/md_var.h>
91 #include <machine/pal.h>
92 #include <machine/pcb.h>
93 #include <machine/reg.h>
94 #include <machine/sal.h>
95 #include <machine/sigframe.h>
96 #ifdef SMP
97 #include <machine/smp.h>
98 #endif
99 #include <machine/unwind.h>
100 #include <machine/vmparam.h>
101
102 /*
103  * For atomicity reasons, we demand that pc_curthread is the first
104  * field in the struct pcpu. It allows us to read the pointer with
105  * a single atomic instruction:
106  *      ld8 %curthread = [r13]
107  * Otherwise we would first have to calculate the load address and
108  * store the result in a temporary register and that for the load:
109  *      add %temp = %offsetof(struct pcpu), r13
110  *      ld8 %curthread = [%temp]
111  * A context switch inbetween the add and the ld8 could have the
112  * thread migrate to a different core. In that case,  %curthread
113  * would be the thread running on the original core and not actually
114  * the current thread.
115  */
116 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
117
118 static SYSCTL_NODE(_hw, OID_AUTO, freq, CTLFLAG_RD, 0, "");
119 static SYSCTL_NODE(_machdep, OID_AUTO, cpu, CTLFLAG_RD, 0, "");
120
121 static u_int bus_freq;
122 SYSCTL_UINT(_hw_freq, OID_AUTO, bus, CTLFLAG_RD, &bus_freq, 0,
123     "Bus clock frequency");
124
125 static u_int cpu_freq;
126 SYSCTL_UINT(_hw_freq, OID_AUTO, cpu, CTLFLAG_RD, &cpu_freq, 0,
127     "CPU clock frequency");
128
129 static u_int itc_freq;
130 SYSCTL_UINT(_hw_freq, OID_AUTO, itc, CTLFLAG_RD, &itc_freq, 0,
131     "ITC frequency");
132
133 int cold = 1;
134
135 struct bootinfo *bootinfo;
136
137 struct pcpu pcpu0;
138
139 extern u_int64_t kernel_text[], _end[];
140
141 extern u_int64_t ia64_gateway_page[];
142 extern u_int64_t break_sigtramp[];
143 extern u_int64_t epc_sigtramp[];
144
145 struct fpswa_iface *fpswa_iface;
146
147 vm_size_t ia64_pal_size;
148 vm_paddr_t ia64_pal_base;
149 vm_offset_t ia64_port_base;
150
151 u_int64_t ia64_lapic_addr = PAL_PIB_DEFAULT_ADDR;
152
153 struct ia64_pib *ia64_pib;
154
155 static int ia64_sync_icache_needed;
156
157 char machine[] = MACHINE;
158 SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, "");
159
160 static char cpu_model[64];
161 SYSCTL_STRING(_hw, HW_MODEL, model, CTLFLAG_RD, cpu_model, 0,
162     "The CPU model name");
163
164 static char cpu_family[64];
165 SYSCTL_STRING(_hw, OID_AUTO, family, CTLFLAG_RD, cpu_family, 0,
166     "The CPU family name");
167
168 #ifdef DDB
169 extern vm_offset_t ksym_start, ksym_end;
170 #endif
171
172 struct msgbuf *msgbufp = NULL;
173
174 /* Other subsystems (e.g., ACPI) can hook this later. */
175 void (*cpu_idle_hook)(sbintime_t) = NULL;
176
177 struct kva_md_info kmi;
178
179 #define Mhz     1000000L
180 #define Ghz     (1000L*Mhz)
181
182 static void
183 identifycpu(void)
184 {
185         char vendor[17];
186         char *family_name, *model_name;
187         u_int64_t features, tmp;
188         int number, revision, model, family, archrev;
189
190         /*
191          * Assumes little-endian.
192          */
193         *(u_int64_t *) &vendor[0] = ia64_get_cpuid(0);
194         *(u_int64_t *) &vendor[8] = ia64_get_cpuid(1);
195         vendor[16] = '\0';
196
197         tmp = ia64_get_cpuid(3);
198         number = (tmp >> 0) & 0xff;
199         revision = (tmp >> 8) & 0xff;
200         model = (tmp >> 16) & 0xff;
201         family = (tmp >> 24) & 0xff;
202         archrev = (tmp >> 32) & 0xff;
203
204         family_name = model_name = "unknown";
205         switch (family) {
206         case 0x07:
207                 family_name = "Itanium";
208                 model_name = "Merced";
209                 break;
210         case 0x1f:
211                 family_name = "Itanium 2";
212                 switch (model) {
213                 case 0x00:
214                         model_name = "McKinley";
215                         break;
216                 case 0x01:
217                         /*
218                          * Deerfield is a low-voltage variant based on the
219                          * Madison core. We need circumstantial evidence
220                          * (i.e. the clock frequency) to identify those.
221                          * Allow for roughly 1% error margin.
222                          */
223                         if (cpu_freq > 990 && cpu_freq < 1010)
224                                 model_name = "Deerfield";
225                         else
226                                 model_name = "Madison";
227                         break;
228                 case 0x02:
229                         model_name = "Madison II";
230                         break;
231                 }
232                 break;
233         case 0x20:
234                 ia64_sync_icache_needed = 1;
235
236                 family_name = "Itanium 2";
237                 switch (model) {
238                 case 0x00:
239                         model_name = "Montecito";
240                         break;
241                 case 0x01:
242                         model_name = "Montvale";
243                         break;
244                 }
245                 break;
246         }
247         snprintf(cpu_family, sizeof(cpu_family), "%s", family_name);
248         snprintf(cpu_model, sizeof(cpu_model), "%s", model_name);
249
250         features = ia64_get_cpuid(4);
251
252         printf("CPU: %s (", model_name);
253         if (cpu_freq)
254                 printf("%u MHz ", cpu_freq);
255         printf("%s)\n", family_name);
256         printf("  Origin = \"%s\"  Revision = %d\n", vendor, revision);
257         printf("  Features = 0x%b\n", (u_int32_t) features,
258             "\020"
259             "\001LB"    /* long branch (brl) instruction. */
260             "\002SD"    /* Spontaneous deferral. */
261             "\003AO"    /* 16-byte atomic operations (ld, st, cmpxchg). */ );
262 }
263
264 static void
265 cpu_startup(void *dummy)
266 {
267         char nodename[16];
268         struct pcpu *pc;
269         struct pcpu_stats *pcs;
270
271         /*
272          * Good {morning,afternoon,evening,night}.
273          */
274         identifycpu();
275
276 #ifdef PERFMON
277         perfmon_init();
278 #endif
279         printf("real memory  = %ld (%ld MB)\n", ptoa(realmem),
280             ptoa(realmem) / 1048576);
281
282         vm_ksubmap_init(&kmi);
283
284         printf("avail memory = %ld (%ld MB)\n", ptoa(cnt.v_free_count),
285             ptoa(cnt.v_free_count) / 1048576);
286  
287         if (fpswa_iface == NULL)
288                 printf("Warning: no FPSWA package supplied\n");
289         else
290                 printf("FPSWA Revision = 0x%lx, Entry = %p\n",
291                     (long)fpswa_iface->if_rev, (void *)fpswa_iface->if_fpswa);
292
293         /*
294          * Set up buffers, so they can be used to read disk labels.
295          */
296         bufinit();
297         vm_pager_bufferinit();
298
299         /*
300          * Traverse the MADT to discover IOSAPIC and Local SAPIC
301          * information.
302          */
303         ia64_probe_sapics();
304         ia64_pib = pmap_mapdev(ia64_lapic_addr, sizeof(*ia64_pib));
305
306         ia64_mca_init();
307
308         /*
309          * Create sysctl tree for per-CPU information.
310          */
311         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
312                 snprintf(nodename, sizeof(nodename), "%u", pc->pc_cpuid);
313                 sysctl_ctx_init(&pc->pc_md.sysctl_ctx);
314                 pc->pc_md.sysctl_tree = SYSCTL_ADD_NODE(&pc->pc_md.sysctl_ctx,
315                     SYSCTL_STATIC_CHILDREN(_machdep_cpu), OID_AUTO, nodename,
316                     CTLFLAG_RD, NULL, "");
317                 if (pc->pc_md.sysctl_tree == NULL)
318                         continue;
319
320                 pcs = &pc->pc_md.stats;
321
322                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
323                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
324                     "nasts", CTLFLAG_RD, &pcs->pcs_nasts,
325                     "Number of IPI_AST interrupts");
326
327                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
328                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
329                     "nclks", CTLFLAG_RD, &pcs->pcs_nclks,
330                     "Number of clock interrupts");
331
332                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
333                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
334                     "nextints", CTLFLAG_RD, &pcs->pcs_nextints,
335                     "Number of ExtINT interrupts");
336
337                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
338                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
339                     "nhardclocks", CTLFLAG_RD, &pcs->pcs_nhardclocks,
340                     "Number of IPI_HARDCLOCK interrupts");
341
342                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
343                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
344                     "nhighfps", CTLFLAG_RD, &pcs->pcs_nhighfps,
345                     "Number of IPI_HIGH_FP interrupts");
346
347                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
348                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
349                     "nhwints", CTLFLAG_RD, &pcs->pcs_nhwints,
350                     "Number of hardware (device) interrupts");
351
352                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
353                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
354                     "npreempts", CTLFLAG_RD, &pcs->pcs_npreempts,
355                     "Number of IPI_PREEMPT interrupts");
356
357                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
358                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
359                     "nrdvs", CTLFLAG_RD, &pcs->pcs_nrdvs,
360                     "Number of IPI_RENDEZVOUS interrupts");
361
362                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
363                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
364                     "nstops", CTLFLAG_RD, &pcs->pcs_nstops,
365                     "Number of IPI_STOP interrupts");
366
367                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
368                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
369                     "nstrays", CTLFLAG_RD, &pcs->pcs_nstrays,
370                     "Number of stray interrupts");
371         }
372 }
373 SYSINIT(cpu_startup, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
374
375 void
376 cpu_flush_dcache(void *ptr, size_t len)
377 {
378         vm_offset_t lim, va;
379
380         va = (uintptr_t)ptr & ~31;
381         lim = (uintptr_t)ptr + len;
382         while (va < lim) {
383                 ia64_fc(va);
384                 va += 32;
385         }
386
387         ia64_srlz_d();
388 }
389
390 /* Get current clock frequency for the given cpu id. */
391 int
392 cpu_est_clockrate(int cpu_id, uint64_t *rate)
393 {
394
395         if (pcpu_find(cpu_id) == NULL || rate == NULL)
396                 return (EINVAL);
397         *rate = (u_long)cpu_freq * 1000000ul;
398         return (0);
399 }
400
401 void
402 cpu_halt()
403 {
404
405         efi_reset_system();
406 }
407
408 void
409 cpu_idle(int busy)
410 {
411         register_t ie;
412         sbintime_t sbt = -1;
413
414         if (!busy) {
415                 critical_enter();
416                 sbt = cpu_idleclock();
417         }
418
419         ie = intr_disable();
420         KASSERT(ie != 0, ("%s called with interrupts disabled\n", __func__));
421
422         if (sched_runnable())
423                 ia64_enable_intr();
424         else if (cpu_idle_hook != NULL) {
425                 (*cpu_idle_hook)(sbt);
426                 /* The hook must enable interrupts! */
427         } else {
428                 ia64_call_pal_static(PAL_HALT_LIGHT, 0, 0, 0);
429                 ia64_enable_intr();
430         }
431
432         if (!busy) {
433                 cpu_activeclock();
434                 critical_exit();
435         }
436 }
437
438 int
439 cpu_idle_wakeup(int cpu)
440 {
441
442         return (0);
443 }
444
445 void
446 cpu_reset()
447 {
448
449         efi_reset_system();
450 }
451
452 void
453 cpu_switch(struct thread *old, struct thread *new, struct mtx *mtx)
454 {
455         struct pcb *oldpcb, *newpcb;
456
457         oldpcb = old->td_pcb;
458 #ifdef COMPAT_FREEBSD32
459         ia32_savectx(oldpcb);
460 #endif
461         if (PCPU_GET(fpcurthread) == old)
462                 old->td_frame->tf_special.psr |= IA64_PSR_DFH;
463         if (!savectx(oldpcb)) {
464                 newpcb = new->td_pcb;
465                 oldpcb->pcb_current_pmap =
466                     pmap_switch(newpcb->pcb_current_pmap);
467
468                 atomic_store_rel_ptr(&old->td_lock, mtx);
469
470 #if defined(SCHED_ULE) && defined(SMP)
471                 while (atomic_load_acq_ptr(&new->td_lock) == &blocked_lock)
472                         cpu_spinwait();
473 #endif
474
475                 PCPU_SET(curthread, new);
476
477 #ifdef COMPAT_FREEBSD32
478                 ia32_restorectx(newpcb);
479 #endif
480
481                 if (PCPU_GET(fpcurthread) == new)
482                         new->td_frame->tf_special.psr &= ~IA64_PSR_DFH;
483                 restorectx(newpcb);
484                 /* We should not get here. */
485                 panic("cpu_switch: restorectx() returned");
486                 /* NOTREACHED */
487         }
488 }
489
490 void
491 cpu_throw(struct thread *old __unused, struct thread *new)
492 {
493         struct pcb *newpcb;
494
495         newpcb = new->td_pcb;
496         (void)pmap_switch(newpcb->pcb_current_pmap);
497
498 #if defined(SCHED_ULE) && defined(SMP)
499         while (atomic_load_acq_ptr(&new->td_lock) == &blocked_lock)
500                 cpu_spinwait();
501 #endif
502
503         PCPU_SET(curthread, new);
504
505 #ifdef COMPAT_FREEBSD32
506         ia32_restorectx(newpcb);
507 #endif
508
509         restorectx(newpcb);
510         /* We should not get here. */
511         panic("cpu_throw: restorectx() returned");
512         /* NOTREACHED */
513 }
514
515 void
516 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
517 {
518
519         /*
520          * Set pc_acpi_id to "uninitialized".
521          * See sys/dev/acpica/acpi_cpu.c
522          */
523         pcpu->pc_acpi_id = 0xffffffff;
524 }
525
526 void
527 cpu_pcpu_setup(struct pcpu *pc, u_int acpi_id, u_int sapic_id)
528 {
529
530         pc->pc_acpi_id = acpi_id;
531         pc->pc_md.lid = IA64_LID_SET_SAPIC_ID(sapic_id);
532 }
533  
534 void
535 spinlock_enter(void)
536 {
537         struct thread *td;
538         int intr;
539
540         td = curthread;
541         if (td->td_md.md_spinlock_count == 0) {
542                 intr = intr_disable();
543                 td->td_md.md_spinlock_count = 1;
544                 td->td_md.md_saved_intr = intr;
545         } else
546                 td->td_md.md_spinlock_count++;
547         critical_enter();
548 }
549
550 void
551 spinlock_exit(void)
552 {
553         struct thread *td;
554         int intr;
555
556         td = curthread;
557         critical_exit();
558         intr = td->td_md.md_saved_intr;
559         td->td_md.md_spinlock_count--;
560         if (td->td_md.md_spinlock_count == 0)
561                 intr_restore(intr);
562 }
563
564 void
565 map_vhpt(uintptr_t vhpt)
566 {
567         pt_entry_t pte;
568         uint64_t psr;
569
570         pte = PTE_PRESENT | PTE_MA_WB | PTE_ACCESSED | PTE_DIRTY |
571             PTE_PL_KERN | PTE_AR_RW;
572         pte |= vhpt & PTE_PPN_MASK;
573
574         __asm __volatile("ptr.d %0,%1" :: "r"(vhpt),
575             "r"(pmap_vhpt_log2size << 2));
576
577         __asm __volatile("mov   %0=psr" : "=r"(psr));
578         __asm __volatile("rsm   psr.ic|psr.i");
579         ia64_srlz_i();
580         ia64_set_ifa(vhpt);
581         ia64_set_itir(pmap_vhpt_log2size << 2);
582         ia64_srlz_d();
583         __asm __volatile("itr.d dtr[%0]=%1" :: "r"(3), "r"(pte));
584         __asm __volatile("mov   psr.l=%0" :: "r" (psr));
585         ia64_srlz_i();
586 }
587
588 void
589 map_pal_code(void)
590 {
591         pt_entry_t pte;
592         vm_offset_t va;
593         vm_size_t sz;
594         uint64_t psr;
595         u_int shft;
596
597         if (ia64_pal_size == 0)
598                 return;
599
600         va = IA64_PHYS_TO_RR7(ia64_pal_base);
601
602         sz = ia64_pal_size;
603         shft = 0;
604         while (sz > 1) {
605                 shft++;
606                 sz >>= 1;
607         }
608
609         pte = PTE_PRESENT | PTE_MA_WB | PTE_ACCESSED | PTE_DIRTY |
610             PTE_PL_KERN | PTE_AR_RWX;
611         pte |= ia64_pal_base & PTE_PPN_MASK;
612
613         __asm __volatile("ptr.d %0,%1; ptr.i %0,%1" :: "r"(va), "r"(shft<<2));
614
615         __asm __volatile("mov   %0=psr" : "=r"(psr));
616         __asm __volatile("rsm   psr.ic|psr.i");
617         ia64_srlz_i();
618         ia64_set_ifa(va);
619         ia64_set_itir(shft << 2);
620         ia64_srlz_d();
621         __asm __volatile("itr.d dtr[%0]=%1" :: "r"(4), "r"(pte));
622         ia64_srlz_d();
623         __asm __volatile("itr.i itr[%0]=%1" :: "r"(1), "r"(pte));
624         __asm __volatile("mov   psr.l=%0" :: "r" (psr));
625         ia64_srlz_i();
626 }
627
628 void
629 map_gateway_page(void)
630 {
631         pt_entry_t pte;
632         uint64_t psr;
633
634         pte = PTE_PRESENT | PTE_MA_WB | PTE_ACCESSED | PTE_DIRTY |
635             PTE_PL_KERN | PTE_AR_X_RX;
636         pte |= ia64_tpa((uint64_t)ia64_gateway_page) & PTE_PPN_MASK;
637
638         __asm __volatile("ptr.d %0,%1; ptr.i %0,%1" ::
639             "r"(VM_MAXUSER_ADDRESS), "r"(PAGE_SHIFT << 2));
640
641         __asm __volatile("mov   %0=psr" : "=r"(psr));
642         __asm __volatile("rsm   psr.ic|psr.i");
643         ia64_srlz_i();
644         ia64_set_ifa(VM_MAXUSER_ADDRESS);
645         ia64_set_itir(PAGE_SHIFT << 2);
646         ia64_srlz_d();
647         __asm __volatile("itr.d dtr[%0]=%1" :: "r"(5), "r"(pte));
648         ia64_srlz_d();
649         __asm __volatile("itr.i itr[%0]=%1" :: "r"(2), "r"(pte));
650         __asm __volatile("mov   psr.l=%0" :: "r" (psr));
651         ia64_srlz_i();
652
653         /* Expose the mapping to userland in ar.k5 */
654         ia64_set_k5(VM_MAXUSER_ADDRESS);
655 }
656
657 static u_int
658 freq_ratio(u_long base, u_long ratio)
659 {
660         u_long f;
661
662         f = (base * (ratio >> 32)) / (ratio & 0xfffffffful);
663         return ((f + 500000) / 1000000);
664 }
665
666 static void
667 calculate_frequencies(void)
668 {
669         struct ia64_sal_result sal;
670         struct ia64_pal_result pal;
671         register_t ie;
672
673         ie = intr_disable();
674         sal = ia64_sal_entry(SAL_FREQ_BASE, 0, 0, 0, 0, 0, 0, 0);
675         pal = ia64_call_pal_static(PAL_FREQ_RATIOS, 0, 0, 0);
676         intr_restore(ie);
677
678         if (sal.sal_status == 0 && pal.pal_status == 0) {
679                 if (bootverbose) {
680                         printf("Platform clock frequency %ld Hz\n",
681                                sal.sal_result[0]);
682                         printf("Processor ratio %ld/%ld, Bus ratio %ld/%ld, "
683                                "ITC ratio %ld/%ld\n",
684                                pal.pal_result[0] >> 32,
685                                pal.pal_result[0] & ((1L << 32) - 1),
686                                pal.pal_result[1] >> 32,
687                                pal.pal_result[1] & ((1L << 32) - 1),
688                                pal.pal_result[2] >> 32,
689                                pal.pal_result[2] & ((1L << 32) - 1));
690                 }
691                 cpu_freq = freq_ratio(sal.sal_result[0], pal.pal_result[0]);
692                 bus_freq = freq_ratio(sal.sal_result[0], pal.pal_result[1]);
693                 itc_freq = freq_ratio(sal.sal_result[0], pal.pal_result[2]);
694         }
695 }
696
697 struct ia64_init_return
698 ia64_init(void)
699 {
700         struct ia64_init_return ret;
701         struct efi_md *md;
702         pt_entry_t *pbvm_pgtbl_ent, *pbvm_pgtbl_lim;
703         char *p;
704         vm_size_t mdlen;
705         int metadata_missing;
706
707         /*
708          * NO OUTPUT ALLOWED UNTIL FURTHER NOTICE.
709          */
710
711         ia64_set_fpsr(IA64_FPSR_DEFAULT);
712
713         /*
714          * Region 6 is direct mapped UC and region 7 is direct mapped
715          * WC. The details of this is controlled by the Alt {I,D}TLB
716          * handlers. Here we just make sure that they have the largest
717          * possible page size to minimise TLB usage.
718          */
719         ia64_set_rr(IA64_RR_BASE(6), (6 << 8) | (PAGE_SHIFT << 2));
720         ia64_set_rr(IA64_RR_BASE(7), (7 << 8) | (PAGE_SHIFT << 2));
721         ia64_srlz_d();
722
723         /* Initialize/setup physical memory datastructures */
724         ia64_physmem_init();
725
726         /*
727          * Process the memory map. This gives us the PAL locations,
728          * the I/O port base address, the available memory regions
729          * for initializing the physical memory map.
730          */
731         for (md = efi_md_first(); md != NULL; md = efi_md_next(md)) {
732                 mdlen = md->md_pages * EFI_PAGE_SIZE;
733                 switch (md->md_type) {
734                 case EFI_MD_TYPE_IOPORT:
735                         ia64_port_base = (uintptr_t)pmap_mapdev(md->md_phys,
736                             mdlen);
737                         break;
738                 case EFI_MD_TYPE_PALCODE:
739                         ia64_pal_base = md->md_phys;
740                         ia64_pal_size = mdlen;
741                         /*FALLTHROUGH*/
742                 case EFI_MD_TYPE_BAD:
743                 case EFI_MD_TYPE_FIRMWARE:
744                 case EFI_MD_TYPE_RECLAIM:
745                 case EFI_MD_TYPE_RT_CODE:
746                 case EFI_MD_TYPE_RT_DATA:
747                         /* Don't use these memory regions. */
748                         ia64_physmem_track(md->md_phys, mdlen);
749                         break;
750                 case EFI_MD_TYPE_BS_CODE:
751                 case EFI_MD_TYPE_BS_DATA:
752                 case EFI_MD_TYPE_CODE:
753                 case EFI_MD_TYPE_DATA:
754                 case EFI_MD_TYPE_FREE:
755                         /* These are ok to use. */
756                         ia64_physmem_add(md->md_phys, mdlen);
757                         break;
758                 }
759         }
760
761         /*
762          * Remove the PBVM and its page table from phys_avail. The loader
763          * passes the physical address of the page table to us. The virtual
764          * address of the page table is fixed.
765          * Track and the PBVM limit for later use.
766          */
767         ia64_physmem_delete(bootinfo->bi_pbvm_pgtbl, bootinfo->bi_pbvm_pgtblsz);
768         pbvm_pgtbl_ent = (void *)IA64_PBVM_PGTBL;
769         pbvm_pgtbl_lim = (void *)(IA64_PBVM_PGTBL + bootinfo->bi_pbvm_pgtblsz);
770         while (pbvm_pgtbl_ent < pbvm_pgtbl_lim) {
771                 if ((*pbvm_pgtbl_ent & PTE_PRESENT) == 0)
772                         break;
773                 ia64_physmem_delete(*pbvm_pgtbl_ent & PTE_PPN_MASK,
774                     IA64_PBVM_PAGE_SIZE);
775                 pbvm_pgtbl_ent++;
776         }
777
778         /* Finalize physical memory datastructures */
779         ia64_physmem_fini();
780
781         metadata_missing = 0;
782         if (bootinfo->bi_modulep)
783                 preload_metadata = (caddr_t)bootinfo->bi_modulep;
784         else
785                 metadata_missing = 1;
786
787         if (envmode == 0 && bootinfo->bi_envp)
788                 kern_envp = (caddr_t)bootinfo->bi_envp;
789         else
790                 kern_envp = static_env;
791
792         /*
793          * Look at arguments passed to us and compute boothowto.
794          */
795         boothowto = bootinfo->bi_boothowto;
796
797         if (boothowto & RB_VERBOSE)
798                 bootverbose = 1;
799
800         /*
801          * Wire things up so we can call the firmware.
802          */
803         map_pal_code();
804         efi_boot_minimal(bootinfo->bi_systab);
805         ia64_xiv_init();
806         ia64_sal_init();
807         calculate_frequencies();
808
809         set_cputicker(ia64_get_itc, (u_long)itc_freq * 1000000, 0);
810
811         /*
812          * Setup the PCPU data for the bootstrap processor. It is needed
813          * by printf(). Also, since printf() has critical sections, we
814          * need to initialize at least pc_curthread.
815          */
816         pcpup = &pcpu0;
817         ia64_set_k4((u_int64_t)pcpup);
818         pcpu_init(pcpup, 0, sizeof(pcpu0));
819         dpcpu_init(ia64_physmem_alloc(DPCPU_SIZE, PAGE_SIZE), 0);
820         cpu_pcpu_setup(pcpup, ~0U, ia64_get_lid());
821         PCPU_SET(curthread, &thread0);
822
823         /*
824          * Initialize the console before we print anything out.
825          */
826         cninit();
827
828         /* OUTPUT NOW ALLOWED */
829
830         if (metadata_missing)
831                 printf("WARNING: loader(8) metadata is missing!\n");
832
833         /* Get FPSWA interface */
834         fpswa_iface = (bootinfo->bi_fpswa == 0) ? NULL :
835             (struct fpswa_iface *)IA64_PHYS_TO_RR7(bootinfo->bi_fpswa);
836
837         /* Init basic tunables, including hz */
838         init_param1();
839
840         p = getenv("kernelname");
841         if (p != NULL) {
842                 strlcpy(kernelname, p, sizeof(kernelname));
843                 freeenv(p);
844         }
845
846         init_param2(physmem);
847
848         /*
849          * Initialize error message buffer (at end of core).
850          */
851         msgbufp = ia64_physmem_alloc(msgbufsize, PAGE_SIZE);
852         msgbufinit(msgbufp, msgbufsize);
853
854         proc_linkup0(&proc0, &thread0);
855         /*
856          * Init mapping for kernel stack for proc 0
857          */
858         p = ia64_physmem_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
859         thread0.td_kstack = (uintptr_t)p;
860         thread0.td_kstack_pages = KSTACK_PAGES;
861
862         mutex_init();
863
864         /*
865          * Initialize the rest of proc 0's PCB.
866          *
867          * Set the kernel sp, reserving space for an (empty) trapframe,
868          * and make proc0's trapframe pointer point to it for sanity.
869          * Initialise proc0's backing store to start after u area.
870          */
871         cpu_thread_alloc(&thread0);
872         thread0.td_frame->tf_flags = FRAME_SYSCALL;
873         thread0.td_pcb->pcb_special.sp =
874             (u_int64_t)thread0.td_frame - 16;
875         thread0.td_pcb->pcb_special.bspstore = thread0.td_kstack;
876
877         /*
878          * Initialize the virtual memory system.
879          */
880         pmap_bootstrap();
881
882         /*
883          * Initialize debuggers, and break into them if appropriate.
884          */
885 #ifdef DDB
886         ksym_start = bootinfo->bi_symtab;
887         ksym_end = bootinfo->bi_esymtab;
888 #endif
889
890         kdb_init();
891
892 #ifdef KDB
893         if (boothowto & RB_KDB)
894                 kdb_enter(KDB_WHY_BOOTFLAGS,
895                     "Boot flags requested debugger\n");
896 #endif
897
898         ia64_set_tpr(0);
899         ia64_srlz_d();
900
901         ret.bspstore = thread0.td_pcb->pcb_special.bspstore;
902         ret.sp = thread0.td_pcb->pcb_special.sp;
903         return (ret);
904 }
905
906 uint64_t
907 ia64_get_hcdp(void)
908 {
909
910         return (bootinfo->bi_hcdp);
911 }
912
913 void
914 bzero(void *buf, size_t len)
915 {
916         caddr_t p = buf;
917
918         while (((vm_offset_t) p & (sizeof(u_long) - 1)) && len) {
919                 *p++ = 0;
920                 len--;
921         }
922         while (len >= sizeof(u_long) * 8) {
923                 *(u_long*) p = 0;
924                 *((u_long*) p + 1) = 0;
925                 *((u_long*) p + 2) = 0;
926                 *((u_long*) p + 3) = 0;
927                 len -= sizeof(u_long) * 8;
928                 *((u_long*) p + 4) = 0;
929                 *((u_long*) p + 5) = 0;
930                 *((u_long*) p + 6) = 0;
931                 *((u_long*) p + 7) = 0;
932                 p += sizeof(u_long) * 8;
933         }
934         while (len >= sizeof(u_long)) {
935                 *(u_long*) p = 0;
936                 len -= sizeof(u_long);
937                 p += sizeof(u_long);
938         }
939         while (len) {
940                 *p++ = 0;
941                 len--;
942         }
943 }
944
945 u_int
946 ia64_itc_freq(void)
947 {
948
949         return (itc_freq);
950 }
951
952 void
953 DELAY(int n)
954 {
955         u_int64_t start, end, now;
956
957         sched_pin();
958
959         start = ia64_get_itc();
960         end = start + itc_freq * n;
961         /* printf("DELAY from 0x%lx to 0x%lx\n", start, end); */
962         do {
963                 now = ia64_get_itc();
964         } while (now < end || (now > start && end < start));
965
966         sched_unpin();
967 }
968
969 /*
970  * Send an interrupt (signal) to a process.
971  */
972 void
973 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
974 {
975         struct proc *p;
976         struct thread *td;
977         struct trapframe *tf;
978         struct sigacts *psp;
979         struct sigframe sf, *sfp;
980         u_int64_t sbs, sp;
981         int oonstack;
982         int sig;
983         u_long code;
984
985         td = curthread;
986         p = td->td_proc;
987         PROC_LOCK_ASSERT(p, MA_OWNED);
988         sig = ksi->ksi_signo;
989         code = ksi->ksi_code;
990         psp = p->p_sigacts;
991         mtx_assert(&psp->ps_mtx, MA_OWNED);
992         tf = td->td_frame;
993         sp = tf->tf_special.sp;
994         oonstack = sigonstack(sp);
995         sbs = 0;
996
997         /* save user context */
998         bzero(&sf, sizeof(struct sigframe));
999         sf.sf_uc.uc_sigmask = *mask;
1000         sf.sf_uc.uc_stack = td->td_sigstk;
1001         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
1002             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1003
1004         /*
1005          * Allocate and validate space for the signal handler
1006          * context. Note that if the stack is in P0 space, the
1007          * call to grow() is a nop, and the useracc() check
1008          * will fail if the process has not already allocated
1009          * the space with a `brk'.
1010          */
1011         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
1012             SIGISMEMBER(psp->ps_sigonstack, sig)) {
1013                 sbs = (u_int64_t)td->td_sigstk.ss_sp;
1014                 sbs = (sbs + 15) & ~15;
1015                 sfp = (struct sigframe *)(sbs + td->td_sigstk.ss_size);
1016 #if defined(COMPAT_43)
1017                 td->td_sigstk.ss_flags |= SS_ONSTACK;
1018 #endif
1019         } else
1020                 sfp = (struct sigframe *)sp;
1021         sfp = (struct sigframe *)((u_int64_t)(sfp - 1) & ~15);
1022
1023         /* Fill in the siginfo structure for POSIX handlers. */
1024         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
1025                 sf.sf_si = ksi->ksi_info;
1026                 sf.sf_si.si_signo = sig;
1027                 /*
1028                  * XXX this shouldn't be here after code in trap.c
1029                  * is fixed
1030                  */
1031                 sf.sf_si.si_addr = (void*)tf->tf_special.ifa;
1032                 code = (u_int64_t)&sfp->sf_si;
1033         }
1034
1035         mtx_unlock(&psp->ps_mtx);
1036         PROC_UNLOCK(p);
1037
1038         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
1039
1040         /* Copy the frame out to userland. */
1041         if (copyout(&sf, sfp, sizeof(sf)) != 0) {
1042                 /*
1043                  * Process has trashed its stack; give it an illegal
1044                  * instruction to halt it in its tracks.
1045                  */
1046                 PROC_LOCK(p);
1047                 sigexit(td, SIGILL);
1048                 return;
1049         }
1050
1051         if ((tf->tf_flags & FRAME_SYSCALL) == 0) {
1052                 tf->tf_special.psr &= ~IA64_PSR_RI;
1053                 tf->tf_special.iip = ia64_get_k5() +
1054                     ((uint64_t)break_sigtramp - (uint64_t)ia64_gateway_page);
1055         } else
1056                 tf->tf_special.iip = ia64_get_k5() +
1057                     ((uint64_t)epc_sigtramp - (uint64_t)ia64_gateway_page);
1058
1059         /*
1060          * Setup the trapframe to return to the signal trampoline. We pass
1061          * information to the trampoline in the following registers:
1062          *
1063          *      gp      new backing store or NULL
1064          *      r8      signal number
1065          *      r9      signal code or siginfo pointer
1066          *      r10     signal handler (function descriptor)
1067          */
1068         tf->tf_special.sp = (u_int64_t)sfp - 16;
1069         tf->tf_special.gp = sbs;
1070         tf->tf_special.bspstore = sf.sf_uc.uc_mcontext.mc_special.bspstore;
1071         tf->tf_special.ndirty = 0;
1072         tf->tf_special.rnat = sf.sf_uc.uc_mcontext.mc_special.rnat;
1073         tf->tf_scratch.gr8 = sig;
1074         tf->tf_scratch.gr9 = code;
1075         tf->tf_scratch.gr10 = (u_int64_t)catcher;
1076
1077         PROC_LOCK(p);
1078         mtx_lock(&psp->ps_mtx);
1079 }
1080
1081 /*
1082  * System call to cleanup state after a signal
1083  * has been taken.  Reset signal mask and
1084  * stack state from context left by sendsig (above).
1085  * Return to previous pc and psl as specified by
1086  * context left by sendsig. Check carefully to
1087  * make sure that the user has not modified the
1088  * state to gain improper privileges.
1089  *
1090  * MPSAFE
1091  */
1092 int
1093 sys_sigreturn(struct thread *td,
1094         struct sigreturn_args /* {
1095                 ucontext_t *sigcntxp;
1096         } */ *uap)
1097 {
1098         ucontext_t uc;
1099         struct trapframe *tf;
1100         struct pcb *pcb;
1101
1102         tf = td->td_frame;
1103         pcb = td->td_pcb;
1104
1105         /*
1106          * Fetch the entire context structure at once for speed.
1107          * We don't use a normal argument to simplify RSE handling.
1108          */
1109         if (copyin(uap->sigcntxp, (caddr_t)&uc, sizeof(uc)))
1110                 return (EFAULT);
1111
1112         set_mcontext(td, &uc.uc_mcontext);
1113
1114 #if defined(COMPAT_43)
1115         if (sigonstack(tf->tf_special.sp))
1116                 td->td_sigstk.ss_flags |= SS_ONSTACK;
1117         else
1118                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1119 #endif
1120         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
1121
1122         return (EJUSTRETURN);
1123 }
1124
1125 #ifdef COMPAT_FREEBSD4
1126 int
1127 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
1128 {
1129
1130         return sys_sigreturn(td, (struct sigreturn_args *)uap);
1131 }
1132 #endif
1133
1134 /*
1135  * Construct a PCB from a trapframe. This is called from kdb_trap() where
1136  * we want to start a backtrace from the function that caused us to enter
1137  * the debugger. We have the context in the trapframe, but base the trace
1138  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1139  * enough for a backtrace.
1140  */
1141 void
1142 makectx(struct trapframe *tf, struct pcb *pcb)
1143 {
1144
1145         pcb->pcb_special = tf->tf_special;
1146         pcb->pcb_special.__spare = ~0UL;        /* XXX see unwind.c */
1147         save_callee_saved(&pcb->pcb_preserved);
1148         save_callee_saved_fp(&pcb->pcb_preserved_fp);
1149 }
1150
1151 int
1152 ia64_flush_dirty(struct thread *td, struct _special *r)
1153 {
1154         struct iovec iov;
1155         struct uio uio;
1156         uint64_t bspst, kstk, rnat;
1157         int error, locked;
1158
1159         if (r->ndirty == 0)
1160                 return (0);
1161
1162         kstk = td->td_kstack + (r->bspstore & 0x1ffUL);
1163         if (td == curthread) {
1164                 __asm __volatile("mov   ar.rsc=0;;");
1165                 __asm __volatile("mov   %0=ar.bspstore" : "=r"(bspst));
1166                 /* Make sure we have all the user registers written out. */
1167                 if (bspst - kstk < r->ndirty) {
1168                         __asm __volatile("flushrs;;");
1169                         __asm __volatile("mov   %0=ar.bspstore" : "=r"(bspst));
1170                 }
1171                 __asm __volatile("mov   %0=ar.rnat;;" : "=r"(rnat));
1172                 __asm __volatile("mov   ar.rsc=3");
1173                 error = copyout((void*)kstk, (void*)r->bspstore, r->ndirty);
1174                 kstk += r->ndirty;
1175                 r->rnat = (bspst > kstk && (bspst & 0x1ffL) < (kstk & 0x1ffL))
1176                     ? *(uint64_t*)(kstk | 0x1f8L) : rnat;
1177         } else {
1178                 locked = PROC_LOCKED(td->td_proc);
1179                 if (!locked)
1180                         PHOLD(td->td_proc);
1181                 iov.iov_base = (void*)(uintptr_t)kstk;
1182                 iov.iov_len = r->ndirty;
1183                 uio.uio_iov = &iov;
1184                 uio.uio_iovcnt = 1;
1185                 uio.uio_offset = r->bspstore;
1186                 uio.uio_resid = r->ndirty;
1187                 uio.uio_segflg = UIO_SYSSPACE;
1188                 uio.uio_rw = UIO_WRITE;
1189                 uio.uio_td = td;
1190                 error = proc_rwmem(td->td_proc, &uio);
1191                 /*
1192                  * XXX proc_rwmem() doesn't currently return ENOSPC,
1193                  * so I think it can bogusly return 0. Neither do
1194                  * we allow short writes.
1195                  */
1196                 if (uio.uio_resid != 0 && error == 0)
1197                         error = ENOSPC;
1198                 if (!locked)
1199                         PRELE(td->td_proc);
1200         }
1201
1202         r->bspstore += r->ndirty;
1203         r->ndirty = 0;
1204         return (error);
1205 }
1206
1207 int
1208 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
1209 {
1210         struct trapframe *tf;
1211         int error;
1212
1213         tf = td->td_frame;
1214         bzero(mc, sizeof(*mc));
1215         mc->mc_special = tf->tf_special;
1216         error = ia64_flush_dirty(td, &mc->mc_special);
1217         if (tf->tf_flags & FRAME_SYSCALL) {
1218                 mc->mc_flags |= _MC_FLAGS_SYSCALL_CONTEXT;
1219                 mc->mc_scratch = tf->tf_scratch;
1220                 if (flags & GET_MC_CLEAR_RET) {
1221                         mc->mc_scratch.gr8 = 0;
1222                         mc->mc_scratch.gr9 = 0;
1223                         mc->mc_scratch.gr10 = 0;
1224                         mc->mc_scratch.gr11 = 0;
1225                 }
1226         } else {
1227                 mc->mc_flags |= _MC_FLAGS_ASYNC_CONTEXT;
1228                 mc->mc_scratch = tf->tf_scratch;
1229                 mc->mc_scratch_fp = tf->tf_scratch_fp;
1230                 /*
1231                  * XXX If the thread never used the high FP registers, we
1232                  * probably shouldn't waste time saving them.
1233                  */
1234                 ia64_highfp_save(td);
1235                 mc->mc_flags |= _MC_FLAGS_HIGHFP_VALID;
1236                 mc->mc_high_fp = td->td_pcb->pcb_high_fp;
1237         }
1238         save_callee_saved(&mc->mc_preserved);
1239         save_callee_saved_fp(&mc->mc_preserved_fp);
1240         return (error);
1241 }
1242
1243 int
1244 set_mcontext(struct thread *td, const mcontext_t *mc)
1245 {
1246         struct _special s;
1247         struct trapframe *tf;
1248         uint64_t psrmask;
1249
1250         tf = td->td_frame;
1251
1252         KASSERT((tf->tf_special.ndirty & ~PAGE_MASK) == 0,
1253             ("Whoa there! We have more than 8KB of dirty registers!"));
1254
1255         s = mc->mc_special;
1256         /*
1257          * Only copy the user mask and the restart instruction bit from
1258          * the new context.
1259          */
1260         psrmask = IA64_PSR_BE | IA64_PSR_UP | IA64_PSR_AC | IA64_PSR_MFL |
1261             IA64_PSR_MFH | IA64_PSR_RI;
1262         s.psr = (tf->tf_special.psr & ~psrmask) | (s.psr & psrmask);
1263         /* We don't have any dirty registers of the new context. */
1264         s.ndirty = 0;
1265         if (mc->mc_flags & _MC_FLAGS_ASYNC_CONTEXT) {
1266                 /*
1267                  * We can get an async context passed to us while we
1268                  * entered the kernel through a syscall: sigreturn(2)
1269                  * takes contexts that could previously be the result of
1270                  * a trap or interrupt.
1271                  * Hence, we cannot assert that the trapframe is not
1272                  * a syscall frame, but we can assert that it's at
1273                  * least an expected syscall.
1274                  */
1275                 if (tf->tf_flags & FRAME_SYSCALL) {
1276                         KASSERT(tf->tf_scratch.gr15 == SYS_sigreturn, ("foo"));
1277                         tf->tf_flags &= ~FRAME_SYSCALL;
1278                 }
1279                 tf->tf_scratch = mc->mc_scratch;
1280                 tf->tf_scratch_fp = mc->mc_scratch_fp;
1281                 if (mc->mc_flags & _MC_FLAGS_HIGHFP_VALID)
1282                         td->td_pcb->pcb_high_fp = mc->mc_high_fp;
1283         } else {
1284                 KASSERT((tf->tf_flags & FRAME_SYSCALL) != 0, ("foo"));
1285                 if ((mc->mc_flags & _MC_FLAGS_SYSCALL_CONTEXT) == 0) {
1286                         s.cfm = tf->tf_special.cfm;
1287                         s.iip = tf->tf_special.iip;
1288                         tf->tf_scratch.gr15 = 0;        /* Clear syscall nr. */
1289                 } else
1290                         tf->tf_scratch = mc->mc_scratch;
1291         }
1292         tf->tf_special = s;
1293         restore_callee_saved(&mc->mc_preserved);
1294         restore_callee_saved_fp(&mc->mc_preserved_fp);
1295
1296         return (0);
1297 }
1298
1299 /*
1300  * Clear registers on exec.
1301  */
1302 void
1303 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
1304 {
1305         struct trapframe *tf;
1306         uint64_t *ksttop, *kst;
1307
1308         tf = td->td_frame;
1309         ksttop = (uint64_t*)(td->td_kstack + tf->tf_special.ndirty +
1310             (tf->tf_special.bspstore & 0x1ffUL));
1311
1312         /*
1313          * We can ignore up to 8KB of dirty registers by masking off the
1314          * lower 13 bits in exception_restore() or epc_syscall(). This
1315          * should be enough for a couple of years, but if there are more
1316          * than 8KB of dirty registers, we lose track of the bottom of
1317          * the kernel stack. The solution is to copy the active part of
1318          * the kernel stack down 1 page (or 2, but not more than that)
1319          * so that we always have less than 8KB of dirty registers.
1320          */
1321         KASSERT((tf->tf_special.ndirty & ~PAGE_MASK) == 0,
1322             ("Whoa there! We have more than 8KB of dirty registers!"));
1323
1324         bzero(&tf->tf_special, sizeof(tf->tf_special));
1325         if ((tf->tf_flags & FRAME_SYSCALL) == 0) {      /* break syscalls. */
1326                 bzero(&tf->tf_scratch, sizeof(tf->tf_scratch));
1327                 bzero(&tf->tf_scratch_fp, sizeof(tf->tf_scratch_fp));
1328                 tf->tf_special.cfm = (1UL<<63) | (3UL<<7) | 3UL;
1329                 tf->tf_special.bspstore = IA64_BACKINGSTORE;
1330                 /*
1331                  * Copy the arguments onto the kernel register stack so that
1332                  * they get loaded by the loadrs instruction. Skip over the
1333                  * NaT collection points.
1334                  */
1335                 kst = ksttop - 1;
1336                 if (((uintptr_t)kst & 0x1ff) == 0x1f8)
1337                         *kst-- = 0;
1338                 *kst-- = 0;
1339                 if (((uintptr_t)kst & 0x1ff) == 0x1f8)
1340                         *kst-- = 0;
1341                 *kst-- = imgp->ps_strings;
1342                 if (((uintptr_t)kst & 0x1ff) == 0x1f8)
1343                         *kst-- = 0;
1344                 *kst = stack;
1345                 tf->tf_special.ndirty = (ksttop - kst) << 3;
1346         } else {                                /* epc syscalls (default). */
1347                 tf->tf_special.cfm = (3UL<<62) | (3UL<<7) | 3UL;
1348                 tf->tf_special.bspstore = IA64_BACKINGSTORE + 24;
1349                 /*
1350                  * Write values for out0, out1 and out2 to the user's backing
1351                  * store and arrange for them to be restored into the user's
1352                  * initial register frame.
1353                  * Assumes that (bspstore & 0x1f8) < 0x1e0.
1354                  */
1355                 suword((caddr_t)tf->tf_special.bspstore - 24, stack);
1356                 suword((caddr_t)tf->tf_special.bspstore - 16, imgp->ps_strings);
1357                 suword((caddr_t)tf->tf_special.bspstore -  8, 0);
1358         }
1359
1360         tf->tf_special.iip = imgp->entry_addr;
1361         tf->tf_special.sp = (stack & ~15) - 16;
1362         tf->tf_special.rsc = 0xf;
1363         tf->tf_special.fpsr = IA64_FPSR_DEFAULT;
1364         tf->tf_special.psr = IA64_PSR_IC | IA64_PSR_I | IA64_PSR_IT |
1365             IA64_PSR_DT | IA64_PSR_RT | IA64_PSR_DFH | IA64_PSR_BN |
1366             IA64_PSR_CPL_USER;
1367 }
1368
1369 int
1370 ptrace_set_pc(struct thread *td, unsigned long addr)
1371 {
1372         uint64_t slot;
1373
1374         switch (addr & 0xFUL) {
1375         case 0:
1376                 slot = IA64_PSR_RI_0;
1377                 break;
1378         case 1:
1379                 /* XXX we need to deal with MLX bundles here */
1380                 slot = IA64_PSR_RI_1;
1381                 break;
1382         case 2:
1383                 slot = IA64_PSR_RI_2;
1384                 break;
1385         default:
1386                 return (EINVAL);
1387         }
1388
1389         td->td_frame->tf_special.iip = addr & ~0x0FULL;
1390         td->td_frame->tf_special.psr =
1391             (td->td_frame->tf_special.psr & ~IA64_PSR_RI) | slot;
1392         return (0);
1393 }
1394
1395 int
1396 ptrace_single_step(struct thread *td)
1397 {
1398         struct trapframe *tf;
1399
1400         /*
1401          * There's no way to set single stepping when we're leaving the
1402          * kernel through the EPC syscall path. The way we solve this is
1403          * by enabling the lower-privilege trap so that we re-enter the
1404          * kernel as soon as the privilege level changes. See trap.c for
1405          * how we proceed from there.
1406          */
1407         tf = td->td_frame;
1408         if (tf->tf_flags & FRAME_SYSCALL)
1409                 tf->tf_special.psr |= IA64_PSR_LP;
1410         else
1411                 tf->tf_special.psr |= IA64_PSR_SS;
1412         return (0);
1413 }
1414
1415 int
1416 ptrace_clear_single_step(struct thread *td)
1417 {
1418         struct trapframe *tf;
1419
1420         /*
1421          * Clear any and all status bits we may use to implement single
1422          * stepping.
1423          */
1424         tf = td->td_frame;
1425         tf->tf_special.psr &= ~IA64_PSR_SS;
1426         tf->tf_special.psr &= ~IA64_PSR_LP;
1427         tf->tf_special.psr &= ~IA64_PSR_TB;
1428         return (0);
1429 }
1430
1431 int
1432 fill_regs(struct thread *td, struct reg *regs)
1433 {
1434         struct trapframe *tf;
1435
1436         tf = td->td_frame;
1437         regs->r_special = tf->tf_special;
1438         regs->r_scratch = tf->tf_scratch;
1439         save_callee_saved(&regs->r_preserved);
1440         return (0);
1441 }
1442
1443 int
1444 set_regs(struct thread *td, struct reg *regs)
1445 {
1446         struct trapframe *tf;
1447         int error;
1448
1449         tf = td->td_frame;
1450         error = ia64_flush_dirty(td, &tf->tf_special);
1451         if (!error) {
1452                 tf->tf_special = regs->r_special;
1453                 tf->tf_special.bspstore += tf->tf_special.ndirty;
1454                 tf->tf_special.ndirty = 0;
1455                 tf->tf_scratch = regs->r_scratch;
1456                 restore_callee_saved(&regs->r_preserved);
1457         }
1458         return (error);
1459 }
1460
1461 int
1462 fill_dbregs(struct thread *td, struct dbreg *dbregs)
1463 {
1464
1465         return (ENOSYS);
1466 }
1467
1468 int
1469 set_dbregs(struct thread *td, struct dbreg *dbregs)
1470 {
1471
1472         return (ENOSYS);
1473 }
1474
1475 int
1476 fill_fpregs(struct thread *td, struct fpreg *fpregs)
1477 {
1478         struct trapframe *frame = td->td_frame;
1479         struct pcb *pcb = td->td_pcb;
1480
1481         /* Save the high FP registers. */
1482         ia64_highfp_save(td);
1483
1484         fpregs->fpr_scratch = frame->tf_scratch_fp;
1485         save_callee_saved_fp(&fpregs->fpr_preserved);
1486         fpregs->fpr_high = pcb->pcb_high_fp;
1487         return (0);
1488 }
1489
1490 int
1491 set_fpregs(struct thread *td, struct fpreg *fpregs)
1492 {
1493         struct trapframe *frame = td->td_frame;
1494         struct pcb *pcb = td->td_pcb;
1495
1496         /* Throw away the high FP registers (should be redundant). */
1497         ia64_highfp_drop(td);
1498
1499         frame->tf_scratch_fp = fpregs->fpr_scratch;
1500         restore_callee_saved_fp(&fpregs->fpr_preserved);
1501         pcb->pcb_high_fp = fpregs->fpr_high;
1502         return (0);
1503 }
1504
1505 void
1506 ia64_sync_icache(vm_offset_t va, vm_offset_t sz)
1507 {
1508         vm_offset_t lim;
1509
1510         if (!ia64_sync_icache_needed)
1511                 return;
1512
1513         lim = va + sz;
1514         while (va < lim) {
1515                 ia64_fc_i(va);
1516                 va += 32;       /* XXX */
1517         }
1518
1519         ia64_sync_i();
1520         ia64_srlz_i();
1521 }