]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/ia64/ia64/mp_machdep.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / ia64 / ia64 / mp_machdep.c
1 /*-
2  * Copyright (c) 2001-2005 Marcel Moolenaar
3  * Copyright (c) 2000 Doug Rabson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_kstack_pages.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/ktr.h>
36 #include <sys/proc.h>
37 #include <sys/bus.h>
38 #include <sys/kthread.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/kernel.h>
43 #include <sys/pcpu.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/sysctl.h>
47 #include <sys/uuid.h>
48
49 #include <machine/atomic.h>
50 #include <machine/bootinfo.h>
51 #include <machine/cpu.h>
52 #include <machine/fpu.h>
53 #include <machine/intr.h>
54 #include <machine/mca.h>
55 #include <machine/md_var.h>
56 #include <machine/pal.h>
57 #include <machine/pcb.h>
58 #include <machine/sal.h>
59 #include <machine/smp.h>
60
61 #include <vm/vm.h>
62 #include <vm/pmap.h>
63 #include <vm/vm_extern.h>
64 #include <vm/vm_kern.h>
65
66 extern uint64_t bdata[];
67
68 MALLOC_DEFINE(M_SMP, "SMP", "SMP related allocations");
69
70 void ia64_ap_startup(void);
71
72 #define SAPIC_ID_GET_ID(x)      ((u_int)((x) >> 8) & 0xff)
73 #define SAPIC_ID_GET_EID(x)     ((u_int)(x) & 0xff)
74 #define SAPIC_ID_SET(id, eid)   ((u_int)(((id) & 0xff) << 8) | ((eid) & 0xff))
75
76 /* State used to wake and bootstrap APs. */
77 struct ia64_ap_state ia64_ap_state;
78
79 int ia64_ipi_ast;
80 int ia64_ipi_hardclock;
81 int ia64_ipi_highfp;
82 int ia64_ipi_nmi;
83 int ia64_ipi_preempt;
84 int ia64_ipi_rndzvs;
85 int ia64_ipi_stop;
86
87 static u_int
88 sz2shft(uint64_t sz)
89 {
90         uint64_t s;
91         u_int shft;
92
93         shft = 12;      /* Start with 4K */
94         s = 1 << shft;
95         while (s < sz) {
96                 shft++;
97                 s <<= 1;
98         }
99         return (shft);
100 }
101
102 static u_int
103 ia64_ih_ast(struct thread *td, u_int xiv, struct trapframe *tf)
104 {
105
106         PCPU_INC(md.stats.pcs_nasts);
107         CTR1(KTR_SMP, "IPI_AST, cpuid=%d", PCPU_GET(cpuid));
108         return (0);
109 }
110
111 static u_int
112 ia64_ih_hardclock(struct thread *td, u_int xiv, struct trapframe *tf)
113 {
114
115         PCPU_INC(md.stats.pcs_nhardclocks);
116         CTR1(KTR_SMP, "IPI_HARDCLOCK, cpuid=%d", PCPU_GET(cpuid));
117         hardclockintr();
118         return (0);
119 }
120
121 static u_int
122 ia64_ih_highfp(struct thread *td, u_int xiv, struct trapframe *tf)
123 {
124
125         PCPU_INC(md.stats.pcs_nhighfps);
126         ia64_highfp_save_ipi();
127         return (0);
128 }
129
130 static u_int
131 ia64_ih_preempt(struct thread *td, u_int xiv, struct trapframe *tf)
132 {
133
134         PCPU_INC(md.stats.pcs_npreempts);
135         CTR1(KTR_SMP, "IPI_PREEMPT, cpuid=%d", PCPU_GET(cpuid));
136         sched_preempt(curthread);
137         return (0);
138 }
139
140 static u_int
141 ia64_ih_rndzvs(struct thread *td, u_int xiv, struct trapframe *tf)
142 {
143
144         PCPU_INC(md.stats.pcs_nrdvs);
145         CTR1(KTR_SMP, "IPI_RENDEZVOUS, cpuid=%d", PCPU_GET(cpuid));
146         smp_rendezvous_action();
147         return (0);
148 }
149
150 static u_int
151 ia64_ih_stop(struct thread *td, u_int xiv, struct trapframe *tf)
152 {
153         u_int cpuid;
154
155         PCPU_INC(md.stats.pcs_nstops);
156         cpuid = PCPU_GET(cpuid);
157
158         savectx(PCPU_PTR(md.pcb));
159
160         CPU_SET_ATOMIC(cpuid, &stopped_cpus);
161         while (!CPU_ISSET(cpuid, &started_cpus))
162                 cpu_spinwait();
163         CPU_CLR_ATOMIC(cpuid, &started_cpus);
164         CPU_CLR_ATOMIC(cpuid, &stopped_cpus);
165         return (0);
166 }
167
168 struct cpu_group *
169 cpu_topo(void)
170 {
171
172         return smp_topo_none();
173 }
174
175 static void
176 ia64_store_mca_state(void* arg)
177 {
178         struct pcpu *pc = arg;
179         struct thread *td = curthread;
180
181         /*
182          * ia64_mca_save_state() is CPU-sensitive, so bind ourself to our
183          * target CPU.
184          */
185         thread_lock(td);
186         sched_bind(td, pc->pc_cpuid);
187         thread_unlock(td);
188
189         ia64_mca_init_ap();
190
191         /*
192          * Get and save the CPU specific MCA records. Should we get the
193          * MCA state for each processor, or just the CMC state?
194          */
195         ia64_mca_save_state(SAL_INFO_MCA);
196         ia64_mca_save_state(SAL_INFO_CMC);
197
198         kproc_exit(0);
199 }
200
201 void
202 ia64_ap_startup(void)
203 {
204         uint64_t vhpt;
205
206         ia64_ap_state.as_trace = 0x100;
207
208         ia64_set_rr(IA64_RR_BASE(5), (5 << 8) | (PAGE_SHIFT << 2) | 1);
209         ia64_set_rr(IA64_RR_BASE(6), (6 << 8) | (PAGE_SHIFT << 2));
210         ia64_set_rr(IA64_RR_BASE(7), (7 << 8) | (PAGE_SHIFT << 2));
211         ia64_srlz_d();
212
213         pcpup = ia64_ap_state.as_pcpu;
214         ia64_set_k4((intptr_t)pcpup);
215
216         ia64_ap_state.as_trace = 0x108;
217
218         vhpt = PCPU_GET(md.vhpt);
219         map_vhpt(vhpt);
220         ia64_set_pta(vhpt + (1 << 8) + (pmap_vhpt_log2size << 2) + 1);
221         ia64_srlz_i();
222
223         ia64_ap_state.as_trace = 0x110;
224
225         ia64_ap_state.as_awake = 1;
226         ia64_ap_state.as_delay = 0;
227
228         map_pal_code();
229         map_gateway_page();
230
231         ia64_set_fpsr(IA64_FPSR_DEFAULT);
232
233         /* Wait until it's time for us to be unleashed */
234         while (ia64_ap_state.as_spin)
235                 cpu_spinwait();
236
237         /* Initialize curthread. */
238         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
239         PCPU_SET(curthread, PCPU_GET(idlethread));
240
241         atomic_add_int(&ia64_ap_state.as_awake, 1);
242         while (!smp_started)
243                 cpu_spinwait();
244
245         CTR1(KTR_SMP, "SMP: cpu%d launched", PCPU_GET(cpuid));
246
247         cpu_initclocks();
248
249         ia64_set_tpr(0);
250         ia64_srlz_d();
251
252         ia64_enable_intr();
253
254         sched_throw(NULL);
255         /* NOTREACHED */
256 }
257
258 void
259 cpu_mp_setmaxid(void)
260 {
261
262         /*
263          * Count the number of processors in the system by walking the ACPI
264          * tables. Note that we record the actual number of processors, even
265          * if this is larger than MAXCPU. We only activate MAXCPU processors.
266          */
267         mp_ncpus = ia64_count_cpus();
268
269         /*
270          * Set the largest cpuid we're going to use. This is necessary for
271          * VM initialization.
272          */
273         mp_maxid = min(mp_ncpus, MAXCPU) - 1;
274 }
275
276 int
277 cpu_mp_probe(void)
278 {
279
280         /*
281          * If there's only 1 processor, or we don't have a wake-up vector,
282          * we're not going to enable SMP. Note that no wake-up vector can
283          * also mean that the wake-up mechanism is not supported. In this
284          * case we can have multiple processors, but we simply can't wake
285          * them up...
286          */
287         return (mp_ncpus > 1 && ia64_ipi_wakeup != 0);
288 }
289
290 void
291 cpu_mp_add(u_int acpi_id, u_int id, u_int eid)
292 {
293         struct pcpu *pc;
294         void *dpcpu;
295         u_int cpuid, sapic_id;
296
297         sapic_id = SAPIC_ID_SET(id, eid);
298         cpuid = (IA64_LID_GET_SAPIC_ID(ia64_get_lid()) == sapic_id)
299             ? 0 : smp_cpus++;
300
301         KASSERT(!CPU_ISSET(cpuid, &all_cpus),
302             ("%s: cpu%d already in CPU map", __func__, acpi_id));
303
304         if (cpuid != 0) {
305                 pc = (struct pcpu *)malloc(sizeof(*pc), M_SMP, M_WAITOK);
306                 pcpu_init(pc, cpuid, sizeof(*pc));
307                 dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
308                     M_WAITOK | M_ZERO);
309                 dpcpu_init(dpcpu, cpuid);
310         } else
311                 pc = pcpup;
312
313         cpu_pcpu_setup(pc, acpi_id, sapic_id);
314  
315         CPU_SET(pc->pc_cpuid, &all_cpus);
316 }
317
318 void
319 cpu_mp_announce()
320 {
321         struct pcpu *pc;
322         uint32_t sapic_id;
323         int i;
324
325         for (i = 0; i <= mp_maxid; i++) {
326                 pc = pcpu_find(i);
327                 if (pc != NULL) {
328                         sapic_id = IA64_LID_GET_SAPIC_ID(pc->pc_md.lid);
329                         printf("cpu%d: ACPI Id=%x, SAPIC Id=%x, SAPIC Eid=%x",
330                             i, pc->pc_acpi_id, SAPIC_ID_GET_ID(sapic_id),
331                             SAPIC_ID_GET_EID(sapic_id));
332                         if (i == 0)
333                                 printf(" (BSP)\n");
334                         else
335                                 printf("\n");
336                 }
337         }
338 }
339
340 void
341 cpu_mp_start()
342 {
343         struct ia64_sal_result result;
344         struct ia64_fdesc *fd;
345         struct pcpu *pc;
346         uintptr_t state;
347         u_char *stp;
348
349         state = ia64_tpa((uintptr_t)&ia64_ap_state);
350         fd = (struct ia64_fdesc *) os_boot_rendez;
351         result = ia64_sal_entry(SAL_SET_VECTORS, SAL_OS_BOOT_RENDEZ,
352             ia64_tpa(fd->func), state, 0, 0, 0, 0);
353
354         ia64_ap_state.as_pgtbl_pte = PTE_PRESENT | PTE_MA_WB |
355             PTE_ACCESSED | PTE_DIRTY | PTE_PL_KERN | PTE_AR_RW |
356             (bootinfo->bi_pbvm_pgtbl & PTE_PPN_MASK);
357         ia64_ap_state.as_pgtbl_itir = sz2shft(bootinfo->bi_pbvm_pgtblsz) << 2;
358         ia64_ap_state.as_text_va = IA64_PBVM_BASE;
359         ia64_ap_state.as_text_pte = PTE_PRESENT | PTE_MA_WB |
360             PTE_ACCESSED | PTE_DIRTY | PTE_PL_KERN | PTE_AR_RX |
361             (ia64_tpa(IA64_PBVM_BASE) & PTE_PPN_MASK);
362         ia64_ap_state.as_text_itir = bootinfo->bi_text_mapped << 2;
363         ia64_ap_state.as_data_va = (uintptr_t)bdata;
364         ia64_ap_state.as_data_pte = PTE_PRESENT | PTE_MA_WB |
365             PTE_ACCESSED | PTE_DIRTY | PTE_PL_KERN | PTE_AR_RW |
366             (ia64_tpa((uintptr_t)bdata) & PTE_PPN_MASK);
367         ia64_ap_state.as_data_itir = bootinfo->bi_data_mapped << 2;
368
369         /* Keep 'em spinning until we unleash them... */
370         ia64_ap_state.as_spin = 1;
371
372         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
373                 pc->pc_md.current_pmap = kernel_pmap;
374                 /* The BSP is obviously running already. */
375                 if (pc->pc_cpuid == 0) {
376                         pc->pc_md.awake = 1;
377                         continue;
378                 }
379
380                 ia64_ap_state.as_pcpu = pc;
381                 pc->pc_md.vhpt = pmap_alloc_vhpt();
382                 if (pc->pc_md.vhpt == 0) {
383                         printf("SMP: WARNING: unable to allocate VHPT"
384                             " for cpu%d", pc->pc_cpuid);
385                         continue;
386                 }
387
388                 stp = malloc(KSTACK_PAGES * PAGE_SIZE, M_SMP, M_WAITOK);
389                 ia64_ap_state.as_kstack = stp;
390                 ia64_ap_state.as_kstack_top = stp + KSTACK_PAGES * PAGE_SIZE;
391
392                 ia64_ap_state.as_trace = 0;
393                 ia64_ap_state.as_delay = 2000;
394                 ia64_ap_state.as_awake = 0;
395
396                 if (bootverbose)
397                         printf("SMP: waking up cpu%d\n", pc->pc_cpuid);
398
399                 /* Here she goes... */
400                 ipi_send(pc, ia64_ipi_wakeup);
401                 do {
402                         DELAY(1000);
403                 } while (--ia64_ap_state.as_delay > 0);
404
405                 pc->pc_md.awake = ia64_ap_state.as_awake;
406
407                 if (!ia64_ap_state.as_awake) {
408                         printf("SMP: WARNING: cpu%d did not wake up (code "
409                             "%#lx)\n", pc->pc_cpuid,
410                             ia64_ap_state.as_trace - state);
411                 }
412         }
413 }
414
415 static void
416 cpu_mp_unleash(void *dummy)
417 {
418         struct pcpu *pc;
419         int cpus;
420
421         if (mp_ncpus <= 1)
422                 return;
423
424         /* Allocate XIVs for IPIs */
425         ia64_ipi_ast = ia64_xiv_alloc(PI_DULL, IA64_XIV_IPI, ia64_ih_ast);
426         ia64_ipi_hardclock = ia64_xiv_alloc(PI_REALTIME, IA64_XIV_IPI,
427             ia64_ih_hardclock);
428         ia64_ipi_highfp = ia64_xiv_alloc(PI_AV, IA64_XIV_IPI, ia64_ih_highfp);
429         ia64_ipi_preempt = ia64_xiv_alloc(PI_SOFT, IA64_XIV_IPI,
430             ia64_ih_preempt);
431         ia64_ipi_rndzvs = ia64_xiv_alloc(PI_AV, IA64_XIV_IPI, ia64_ih_rndzvs);
432         ia64_ipi_stop = ia64_xiv_alloc(PI_REALTIME, IA64_XIV_IPI, ia64_ih_stop);
433
434         /* Reserve the NMI vector for IPI_STOP_HARD if possible */
435         ia64_ipi_nmi = (ia64_xiv_reserve(2, IA64_XIV_IPI, ia64_ih_stop) != 0)
436             ? ia64_ipi_stop : 0x400;    /* DM=NMI, Vector=n/a */
437
438         cpus = 0;
439         smp_cpus = 0;
440         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
441                 cpus++;
442                 if (pc->pc_md.awake) {
443                         kproc_create(ia64_store_mca_state, pc, NULL, 0, 0,
444                             "mca %u", pc->pc_cpuid);
445                         smp_cpus++;
446                 }
447         }
448
449         ia64_ap_state.as_awake = 1;
450         ia64_ap_state.as_spin = 0;
451
452         while (ia64_ap_state.as_awake != smp_cpus)
453                 cpu_spinwait();
454
455         if (smp_cpus != cpus || cpus != mp_ncpus) {
456                 printf("SMP: %d CPUs found; %d CPUs usable; %d CPUs woken\n",
457                     mp_ncpus, cpus, smp_cpus);
458         }
459
460         smp_active = 1;
461         smp_started = 1;
462
463         /*
464          * Now that all CPUs are up and running, bind interrupts to each of
465          * them.
466          */
467         ia64_bind_intr();
468 }
469 SYSINIT(start_aps, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, cpu_mp_unleash, NULL);
470
471 /*
472  * send an IPI to a set of cpus.
473  */
474 void
475 ipi_selected(cpuset_t cpus, int ipi)
476 {
477         struct pcpu *pc;
478
479         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
480                 if (CPU_ISSET(pc->pc_cpuid, &cpus))
481                         ipi_send(pc, ipi);
482         }
483 }
484
485 /*
486  * send an IPI to a specific CPU.
487  */
488 void
489 ipi_cpu(int cpu, u_int ipi)
490 {
491
492         ipi_send(cpuid_to_pcpu[cpu], ipi);
493 }
494
495 /*
496  * send an IPI to all CPUs EXCEPT myself.
497  */
498 void
499 ipi_all_but_self(int ipi)
500 {
501         struct pcpu *pc;
502
503         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
504                 if (pc != pcpup)
505                         ipi_send(pc, ipi);
506         }
507 }
508
509 /*
510  * Send an IPI to the specified processor.
511  */
512 void
513 ipi_send(struct pcpu *cpu, int xiv)
514 {
515         u_int sapic_id;
516
517         KASSERT(xiv != 0, ("ipi_send"));
518
519         sapic_id = IA64_LID_GET_SAPIC_ID(cpu->pc_md.lid);
520
521         ia64_mf();
522         ia64_st8(&(ia64_pib->ib_ipi[sapic_id][0]), xiv);
523         ia64_mf_a();
524         CTR3(KTR_SMP, "ipi_send(%p, %d): cpuid=%d", cpu, xiv, PCPU_GET(cpuid));
525 }