]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/kern/kern_tc.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / kern / kern_tc.c
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * Copyright (c) 2011 The FreeBSD Foundation
10  * All rights reserved.
11  *
12  * Portions of this software were developed by Julien Ridoux at the University
13  * of Melbourne under sponsorship from the FreeBSD Foundation.
14  */
15
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18
19 #include "opt_compat.h"
20 #include "opt_ntp.h"
21 #include "opt_ffclock.h"
22
23 #include <sys/param.h>
24 #include <sys/kernel.h>
25 #include <sys/limits.h>
26 #ifdef FFCLOCK
27 #include <sys/lock.h>
28 #include <sys/mutex.h>
29 #endif
30 #include <sys/sysctl.h>
31 #include <sys/syslog.h>
32 #include <sys/systm.h>
33 #include <sys/timeffc.h>
34 #include <sys/timepps.h>
35 #include <sys/timetc.h>
36 #include <sys/timex.h>
37 #include <sys/vdso.h>
38
39 /*
40  * A large step happens on boot.  This constant detects such steps.
41  * It is relatively small so that ntp_update_second gets called enough
42  * in the typical 'missed a couple of seconds' case, but doesn't loop
43  * forever when the time step is large.
44  */
45 #define LARGE_STEP      200
46
47 /*
48  * Implement a dummy timecounter which we can use until we get a real one
49  * in the air.  This allows the console and other early stuff to use
50  * time services.
51  */
52
53 static u_int
54 dummy_get_timecount(struct timecounter *tc)
55 {
56         static u_int now;
57
58         return (++now);
59 }
60
61 static struct timecounter dummy_timecounter = {
62         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
63 };
64
65 struct timehands {
66         /* These fields must be initialized by the driver. */
67         struct timecounter      *th_counter;
68         int64_t                 th_adjustment;
69         uint64_t                th_scale;
70         u_int                   th_offset_count;
71         struct bintime          th_offset;
72         struct timeval          th_microtime;
73         struct timespec         th_nanotime;
74         /* Fields not to be copied in tc_windup start with th_generation. */
75         volatile u_int          th_generation;
76         struct timehands        *th_next;
77 };
78
79 static struct timehands th0;
80 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
81 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
82 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
83 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
84 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
85 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
86 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
87 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
88 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
89 static struct timehands th0 = {
90         &dummy_timecounter,
91         0,
92         (uint64_t)-1 / 1000000,
93         0,
94         {1, 0},
95         {0, 0},
96         {0, 0},
97         1,
98         &th1
99 };
100
101 static struct timehands *volatile timehands = &th0;
102 struct timecounter *timecounter = &dummy_timecounter;
103 static struct timecounter *timecounters = &dummy_timecounter;
104
105 int tc_min_ticktock_freq = 1;
106
107 volatile time_t time_second = 1;
108 volatile time_t time_uptime = 1;
109
110 struct bintime boottimebin;
111 struct timeval boottime;
112 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
113 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
114     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
115
116 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
117 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
118
119 static int timestepwarnings;
120 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
121     &timestepwarnings, 0, "Log time steps");
122
123 struct bintime bt_timethreshold;
124 struct bintime bt_tickthreshold;
125 sbintime_t sbt_timethreshold;
126 sbintime_t sbt_tickthreshold;
127 struct bintime tc_tick_bt;
128 sbintime_t tc_tick_sbt;
129 int tc_precexp;
130 int tc_timepercentage = TC_DEFAULTPERC;
131 TUNABLE_INT("kern.timecounter.alloweddeviation", &tc_timepercentage);
132 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
133 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
134     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
135     sysctl_kern_timecounter_adjprecision, "I",
136     "Allowed time interval deviation in percents");
137
138 static void tc_windup(void);
139 static void cpu_tick_calibrate(int);
140
141 void dtrace_getnanotime(struct timespec *tsp);
142
143 static int
144 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
145 {
146 #ifndef __mips__
147 #ifdef SCTL_MASK32
148         int tv[2];
149
150         if (req->flags & SCTL_MASK32) {
151                 tv[0] = boottime.tv_sec;
152                 tv[1] = boottime.tv_usec;
153                 return SYSCTL_OUT(req, tv, sizeof(tv));
154         } else
155 #endif
156 #endif
157                 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
158 }
159
160 static int
161 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
162 {
163         u_int ncount;
164         struct timecounter *tc = arg1;
165
166         ncount = tc->tc_get_timecount(tc);
167         return sysctl_handle_int(oidp, &ncount, 0, req);
168 }
169
170 static int
171 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
172 {
173         uint64_t freq;
174         struct timecounter *tc = arg1;
175
176         freq = tc->tc_frequency;
177         return sysctl_handle_64(oidp, &freq, 0, req);
178 }
179
180 /*
181  * Return the difference between the timehands' counter value now and what
182  * was when we copied it to the timehands' offset_count.
183  */
184 static __inline u_int
185 tc_delta(struct timehands *th)
186 {
187         struct timecounter *tc;
188
189         tc = th->th_counter;
190         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
191             tc->tc_counter_mask);
192 }
193
194 /*
195  * Functions for reading the time.  We have to loop until we are sure that
196  * the timehands that we operated on was not updated under our feet.  See
197  * the comment in <sys/time.h> for a description of these 12 functions.
198  */
199
200 #ifdef FFCLOCK
201 void
202 fbclock_binuptime(struct bintime *bt)
203 {
204         struct timehands *th;
205         unsigned int gen;
206
207         do {
208                 th = timehands;
209                 gen = th->th_generation;
210                 *bt = th->th_offset;
211                 bintime_addx(bt, th->th_scale * tc_delta(th));
212         } while (gen == 0 || gen != th->th_generation);
213 }
214
215 void
216 fbclock_nanouptime(struct timespec *tsp)
217 {
218         struct bintime bt;
219
220         fbclock_binuptime(&bt);
221         bintime2timespec(&bt, tsp);
222 }
223
224 void
225 fbclock_microuptime(struct timeval *tvp)
226 {
227         struct bintime bt;
228
229         fbclock_binuptime(&bt);
230         bintime2timeval(&bt, tvp);
231 }
232
233 void
234 fbclock_bintime(struct bintime *bt)
235 {
236
237         fbclock_binuptime(bt);
238         bintime_add(bt, &boottimebin);
239 }
240
241 void
242 fbclock_nanotime(struct timespec *tsp)
243 {
244         struct bintime bt;
245
246         fbclock_bintime(&bt);
247         bintime2timespec(&bt, tsp);
248 }
249
250 void
251 fbclock_microtime(struct timeval *tvp)
252 {
253         struct bintime bt;
254
255         fbclock_bintime(&bt);
256         bintime2timeval(&bt, tvp);
257 }
258
259 void
260 fbclock_getbinuptime(struct bintime *bt)
261 {
262         struct timehands *th;
263         unsigned int gen;
264
265         do {
266                 th = timehands;
267                 gen = th->th_generation;
268                 *bt = th->th_offset;
269         } while (gen == 0 || gen != th->th_generation);
270 }
271
272 void
273 fbclock_getnanouptime(struct timespec *tsp)
274 {
275         struct timehands *th;
276         unsigned int gen;
277
278         do {
279                 th = timehands;
280                 gen = th->th_generation;
281                 bintime2timespec(&th->th_offset, tsp);
282         } while (gen == 0 || gen != th->th_generation);
283 }
284
285 void
286 fbclock_getmicrouptime(struct timeval *tvp)
287 {
288         struct timehands *th;
289         unsigned int gen;
290
291         do {
292                 th = timehands;
293                 gen = th->th_generation;
294                 bintime2timeval(&th->th_offset, tvp);
295         } while (gen == 0 || gen != th->th_generation);
296 }
297
298 void
299 fbclock_getbintime(struct bintime *bt)
300 {
301         struct timehands *th;
302         unsigned int gen;
303
304         do {
305                 th = timehands;
306                 gen = th->th_generation;
307                 *bt = th->th_offset;
308         } while (gen == 0 || gen != th->th_generation);
309         bintime_add(bt, &boottimebin);
310 }
311
312 void
313 fbclock_getnanotime(struct timespec *tsp)
314 {
315         struct timehands *th;
316         unsigned int gen;
317
318         do {
319                 th = timehands;
320                 gen = th->th_generation;
321                 *tsp = th->th_nanotime;
322         } while (gen == 0 || gen != th->th_generation);
323 }
324
325 void
326 fbclock_getmicrotime(struct timeval *tvp)
327 {
328         struct timehands *th;
329         unsigned int gen;
330
331         do {
332                 th = timehands;
333                 gen = th->th_generation;
334                 *tvp = th->th_microtime;
335         } while (gen == 0 || gen != th->th_generation);
336 }
337 #else /* !FFCLOCK */
338 void
339 binuptime(struct bintime *bt)
340 {
341         struct timehands *th;
342         u_int gen;
343
344         do {
345                 th = timehands;
346                 gen = th->th_generation;
347                 *bt = th->th_offset;
348                 bintime_addx(bt, th->th_scale * tc_delta(th));
349         } while (gen == 0 || gen != th->th_generation);
350 }
351
352 void
353 nanouptime(struct timespec *tsp)
354 {
355         struct bintime bt;
356
357         binuptime(&bt);
358         bintime2timespec(&bt, tsp);
359 }
360
361 void
362 microuptime(struct timeval *tvp)
363 {
364         struct bintime bt;
365
366         binuptime(&bt);
367         bintime2timeval(&bt, tvp);
368 }
369
370 void
371 bintime(struct bintime *bt)
372 {
373
374         binuptime(bt);
375         bintime_add(bt, &boottimebin);
376 }
377
378 void
379 nanotime(struct timespec *tsp)
380 {
381         struct bintime bt;
382
383         bintime(&bt);
384         bintime2timespec(&bt, tsp);
385 }
386
387 void
388 microtime(struct timeval *tvp)
389 {
390         struct bintime bt;
391
392         bintime(&bt);
393         bintime2timeval(&bt, tvp);
394 }
395
396 void
397 getbinuptime(struct bintime *bt)
398 {
399         struct timehands *th;
400         u_int gen;
401
402         do {
403                 th = timehands;
404                 gen = th->th_generation;
405                 *bt = th->th_offset;
406         } while (gen == 0 || gen != th->th_generation);
407 }
408
409 void
410 getnanouptime(struct timespec *tsp)
411 {
412         struct timehands *th;
413         u_int gen;
414
415         do {
416                 th = timehands;
417                 gen = th->th_generation;
418                 bintime2timespec(&th->th_offset, tsp);
419         } while (gen == 0 || gen != th->th_generation);
420 }
421
422 void
423 getmicrouptime(struct timeval *tvp)
424 {
425         struct timehands *th;
426         u_int gen;
427
428         do {
429                 th = timehands;
430                 gen = th->th_generation;
431                 bintime2timeval(&th->th_offset, tvp);
432         } while (gen == 0 || gen != th->th_generation);
433 }
434
435 void
436 getbintime(struct bintime *bt)
437 {
438         struct timehands *th;
439         u_int gen;
440
441         do {
442                 th = timehands;
443                 gen = th->th_generation;
444                 *bt = th->th_offset;
445         } while (gen == 0 || gen != th->th_generation);
446         bintime_add(bt, &boottimebin);
447 }
448
449 void
450 getnanotime(struct timespec *tsp)
451 {
452         struct timehands *th;
453         u_int gen;
454
455         do {
456                 th = timehands;
457                 gen = th->th_generation;
458                 *tsp = th->th_nanotime;
459         } while (gen == 0 || gen != th->th_generation);
460 }
461
462 void
463 getmicrotime(struct timeval *tvp)
464 {
465         struct timehands *th;
466         u_int gen;
467
468         do {
469                 th = timehands;
470                 gen = th->th_generation;
471                 *tvp = th->th_microtime;
472         } while (gen == 0 || gen != th->th_generation);
473 }
474 #endif /* FFCLOCK */
475
476 #ifdef FFCLOCK
477 /*
478  * Support for feed-forward synchronization algorithms. This is heavily inspired
479  * by the timehands mechanism but kept independent from it. *_windup() functions
480  * have some connection to avoid accessing the timecounter hardware more than
481  * necessary.
482  */
483
484 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
485 struct ffclock_estimate ffclock_estimate;
486 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
487 uint32_t ffclock_status;                /* Feed-forward clock status. */
488 int8_t ffclock_updated;                 /* New estimates are available. */
489 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
490
491 struct fftimehands {
492         struct ffclock_estimate cest;
493         struct bintime          tick_time;
494         struct bintime          tick_time_lerp;
495         ffcounter               tick_ffcount;
496         uint64_t                period_lerp;
497         volatile uint8_t        gen;
498         struct fftimehands      *next;
499 };
500
501 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
502
503 static struct fftimehands ffth[10];
504 static struct fftimehands *volatile fftimehands = ffth;
505
506 static void
507 ffclock_init(void)
508 {
509         struct fftimehands *cur;
510         struct fftimehands *last;
511
512         memset(ffth, 0, sizeof(ffth));
513
514         last = ffth + NUM_ELEMENTS(ffth) - 1;
515         for (cur = ffth; cur < last; cur++)
516                 cur->next = cur + 1;
517         last->next = ffth;
518
519         ffclock_updated = 0;
520         ffclock_status = FFCLOCK_STA_UNSYNC;
521         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
522 }
523
524 /*
525  * Reset the feed-forward clock estimates. Called from inittodr() to get things
526  * kick started and uses the timecounter nominal frequency as a first period
527  * estimate. Note: this function may be called several time just after boot.
528  * Note: this is the only function that sets the value of boot time for the
529  * monotonic (i.e. uptime) version of the feed-forward clock.
530  */
531 void
532 ffclock_reset_clock(struct timespec *ts)
533 {
534         struct timecounter *tc;
535         struct ffclock_estimate cest;
536
537         tc = timehands->th_counter;
538         memset(&cest, 0, sizeof(struct ffclock_estimate));
539
540         timespec2bintime(ts, &ffclock_boottime);
541         timespec2bintime(ts, &(cest.update_time));
542         ffclock_read_counter(&cest.update_ffcount);
543         cest.leapsec_next = 0;
544         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
545         cest.errb_abs = 0;
546         cest.errb_rate = 0;
547         cest.status = FFCLOCK_STA_UNSYNC;
548         cest.leapsec_total = 0;
549         cest.leapsec = 0;
550
551         mtx_lock(&ffclock_mtx);
552         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
553         ffclock_updated = INT8_MAX;
554         mtx_unlock(&ffclock_mtx);
555
556         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
557             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
558             (unsigned long)ts->tv_nsec);
559 }
560
561 /*
562  * Sub-routine to convert a time interval measured in RAW counter units to time
563  * in seconds stored in bintime format.
564  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
565  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
566  * extra cycles.
567  */
568 static void
569 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
570 {
571         struct bintime bt2;
572         ffcounter delta, delta_max;
573
574         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
575         bintime_clear(bt);
576         do {
577                 if (ffdelta > delta_max)
578                         delta = delta_max;
579                 else
580                         delta = ffdelta;
581                 bt2.sec = 0;
582                 bt2.frac = period;
583                 bintime_mul(&bt2, (unsigned int)delta);
584                 bintime_add(bt, &bt2);
585                 ffdelta -= delta;
586         } while (ffdelta > 0);
587 }
588
589 /*
590  * Update the fftimehands.
591  * Push the tick ffcount and time(s) forward based on current clock estimate.
592  * The conversion from ffcounter to bintime relies on the difference clock
593  * principle, whose accuracy relies on computing small time intervals. If a new
594  * clock estimate has been passed by the synchronisation daemon, make it
595  * current, and compute the linear interpolation for monotonic time if needed.
596  */
597 static void
598 ffclock_windup(unsigned int delta)
599 {
600         struct ffclock_estimate *cest;
601         struct fftimehands *ffth;
602         struct bintime bt, gap_lerp;
603         ffcounter ffdelta;
604         uint64_t frac;
605         unsigned int polling;
606         uint8_t forward_jump, ogen;
607
608         /*
609          * Pick the next timehand, copy current ffclock estimates and move tick
610          * times and counter forward.
611          */
612         forward_jump = 0;
613         ffth = fftimehands->next;
614         ogen = ffth->gen;
615         ffth->gen = 0;
616         cest = &ffth->cest;
617         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
618         ffdelta = (ffcounter)delta;
619         ffth->period_lerp = fftimehands->period_lerp;
620
621         ffth->tick_time = fftimehands->tick_time;
622         ffclock_convert_delta(ffdelta, cest->period, &bt);
623         bintime_add(&ffth->tick_time, &bt);
624
625         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
626         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
627         bintime_add(&ffth->tick_time_lerp, &bt);
628
629         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
630
631         /*
632          * Assess the status of the clock, if the last update is too old, it is
633          * likely the synchronisation daemon is dead and the clock is free
634          * running.
635          */
636         if (ffclock_updated == 0) {
637                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
638                 ffclock_convert_delta(ffdelta, cest->period, &bt);
639                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
640                         ffclock_status |= FFCLOCK_STA_UNSYNC;
641         }
642
643         /*
644          * If available, grab updated clock estimates and make them current.
645          * Recompute time at this tick using the updated estimates. The clock
646          * estimates passed the feed-forward synchronisation daemon may result
647          * in time conversion that is not monotonically increasing (just after
648          * the update). time_lerp is a particular linear interpolation over the
649          * synchronisation algo polling period that ensures monotonicity for the
650          * clock ids requesting it.
651          */
652         if (ffclock_updated > 0) {
653                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
654                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
655                 ffth->tick_time = cest->update_time;
656                 ffclock_convert_delta(ffdelta, cest->period, &bt);
657                 bintime_add(&ffth->tick_time, &bt);
658
659                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
660                 if (ffclock_updated == INT8_MAX)
661                         ffth->tick_time_lerp = ffth->tick_time;
662
663                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
664                         forward_jump = 1;
665                 else
666                         forward_jump = 0;
667
668                 bintime_clear(&gap_lerp);
669                 if (forward_jump) {
670                         gap_lerp = ffth->tick_time;
671                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
672                 } else {
673                         gap_lerp = ffth->tick_time_lerp;
674                         bintime_sub(&gap_lerp, &ffth->tick_time);
675                 }
676
677                 /*
678                  * The reset from the RTC clock may be far from accurate, and
679                  * reducing the gap between real time and interpolated time
680                  * could take a very long time if the interpolated clock insists
681                  * on strict monotonicity. The clock is reset under very strict
682                  * conditions (kernel time is known to be wrong and
683                  * synchronization daemon has been restarted recently.
684                  * ffclock_boottime absorbs the jump to ensure boot time is
685                  * correct and uptime functions stay consistent.
686                  */
687                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
688                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
689                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
690                         if (forward_jump)
691                                 bintime_add(&ffclock_boottime, &gap_lerp);
692                         else
693                                 bintime_sub(&ffclock_boottime, &gap_lerp);
694                         ffth->tick_time_lerp = ffth->tick_time;
695                         bintime_clear(&gap_lerp);
696                 }
697
698                 ffclock_status = cest->status;
699                 ffth->period_lerp = cest->period;
700
701                 /*
702                  * Compute corrected period used for the linear interpolation of
703                  * time. The rate of linear interpolation is capped to 5000PPM
704                  * (5ms/s).
705                  */
706                 if (bintime_isset(&gap_lerp)) {
707                         ffdelta = cest->update_ffcount;
708                         ffdelta -= fftimehands->cest.update_ffcount;
709                         ffclock_convert_delta(ffdelta, cest->period, &bt);
710                         polling = bt.sec;
711                         bt.sec = 0;
712                         bt.frac = 5000000 * (uint64_t)18446744073LL;
713                         bintime_mul(&bt, polling);
714                         if (bintime_cmp(&gap_lerp, &bt, >))
715                                 gap_lerp = bt;
716
717                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
718                         frac = 0;
719                         if (gap_lerp.sec > 0) {
720                                 frac -= 1;
721                                 frac /= ffdelta / gap_lerp.sec;
722                         }
723                         frac += gap_lerp.frac / ffdelta;
724
725                         if (forward_jump)
726                                 ffth->period_lerp += frac;
727                         else
728                                 ffth->period_lerp -= frac;
729                 }
730
731                 ffclock_updated = 0;
732         }
733         if (++ogen == 0)
734                 ogen = 1;
735         ffth->gen = ogen;
736         fftimehands = ffth;
737 }
738
739 /*
740  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
741  * the old and new hardware counter cannot be read simultaneously. tc_windup()
742  * does read the two counters 'back to back', but a few cycles are effectively
743  * lost, and not accumulated in tick_ffcount. This is a fairly radical
744  * operation for a feed-forward synchronization daemon, and it is its job to not
745  * pushing irrelevant data to the kernel. Because there is no locking here,
746  * simply force to ignore pending or next update to give daemon a chance to
747  * realize the counter has changed.
748  */
749 static void
750 ffclock_change_tc(struct timehands *th)
751 {
752         struct fftimehands *ffth;
753         struct ffclock_estimate *cest;
754         struct timecounter *tc;
755         uint8_t ogen;
756
757         tc = th->th_counter;
758         ffth = fftimehands->next;
759         ogen = ffth->gen;
760         ffth->gen = 0;
761
762         cest = &ffth->cest;
763         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
764         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
765         cest->errb_abs = 0;
766         cest->errb_rate = 0;
767         cest->status |= FFCLOCK_STA_UNSYNC;
768
769         ffth->tick_ffcount = fftimehands->tick_ffcount;
770         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
771         ffth->tick_time = fftimehands->tick_time;
772         ffth->period_lerp = cest->period;
773
774         /* Do not lock but ignore next update from synchronization daemon. */
775         ffclock_updated--;
776
777         if (++ogen == 0)
778                 ogen = 1;
779         ffth->gen = ogen;
780         fftimehands = ffth;
781 }
782
783 /*
784  * Retrieve feed-forward counter and time of last kernel tick.
785  */
786 void
787 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
788 {
789         struct fftimehands *ffth;
790         uint8_t gen;
791
792         /*
793          * No locking but check generation has not changed. Also need to make
794          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
795          */
796         do {
797                 ffth = fftimehands;
798                 gen = ffth->gen;
799                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
800                         *bt = ffth->tick_time_lerp;
801                 else
802                         *bt = ffth->tick_time;
803                 *ffcount = ffth->tick_ffcount;
804         } while (gen == 0 || gen != ffth->gen);
805 }
806
807 /*
808  * Absolute clock conversion. Low level function to convert ffcounter to
809  * bintime. The ffcounter is converted using the current ffclock period estimate
810  * or the "interpolated period" to ensure monotonicity.
811  * NOTE: this conversion may have been deferred, and the clock updated since the
812  * hardware counter has been read.
813  */
814 void
815 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
816 {
817         struct fftimehands *ffth;
818         struct bintime bt2;
819         ffcounter ffdelta;
820         uint8_t gen;
821
822         /*
823          * No locking but check generation has not changed. Also need to make
824          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
825          */
826         do {
827                 ffth = fftimehands;
828                 gen = ffth->gen;
829                 if (ffcount > ffth->tick_ffcount)
830                         ffdelta = ffcount - ffth->tick_ffcount;
831                 else
832                         ffdelta = ffth->tick_ffcount - ffcount;
833
834                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
835                         *bt = ffth->tick_time_lerp;
836                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
837                 } else {
838                         *bt = ffth->tick_time;
839                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
840                 }
841
842                 if (ffcount > ffth->tick_ffcount)
843                         bintime_add(bt, &bt2);
844                 else
845                         bintime_sub(bt, &bt2);
846         } while (gen == 0 || gen != ffth->gen);
847 }
848
849 /*
850  * Difference clock conversion.
851  * Low level function to Convert a time interval measured in RAW counter units
852  * into bintime. The difference clock allows measuring small intervals much more
853  * reliably than the absolute clock.
854  */
855 void
856 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
857 {
858         struct fftimehands *ffth;
859         uint8_t gen;
860
861         /* No locking but check generation has not changed. */
862         do {
863                 ffth = fftimehands;
864                 gen = ffth->gen;
865                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
866         } while (gen == 0 || gen != ffth->gen);
867 }
868
869 /*
870  * Access to current ffcounter value.
871  */
872 void
873 ffclock_read_counter(ffcounter *ffcount)
874 {
875         struct timehands *th;
876         struct fftimehands *ffth;
877         unsigned int gen, delta;
878
879         /*
880          * ffclock_windup() called from tc_windup(), safe to rely on
881          * th->th_generation only, for correct delta and ffcounter.
882          */
883         do {
884                 th = timehands;
885                 gen = th->th_generation;
886                 ffth = fftimehands;
887                 delta = tc_delta(th);
888                 *ffcount = ffth->tick_ffcount;
889         } while (gen == 0 || gen != th->th_generation);
890
891         *ffcount += delta;
892 }
893
894 void
895 binuptime(struct bintime *bt)
896 {
897
898         binuptime_fromclock(bt, sysclock_active);
899 }
900
901 void
902 nanouptime(struct timespec *tsp)
903 {
904
905         nanouptime_fromclock(tsp, sysclock_active);
906 }
907
908 void
909 microuptime(struct timeval *tvp)
910 {
911
912         microuptime_fromclock(tvp, sysclock_active);
913 }
914
915 void
916 bintime(struct bintime *bt)
917 {
918
919         bintime_fromclock(bt, sysclock_active);
920 }
921
922 void
923 nanotime(struct timespec *tsp)
924 {
925
926         nanotime_fromclock(tsp, sysclock_active);
927 }
928
929 void
930 microtime(struct timeval *tvp)
931 {
932
933         microtime_fromclock(tvp, sysclock_active);
934 }
935
936 void
937 getbinuptime(struct bintime *bt)
938 {
939
940         getbinuptime_fromclock(bt, sysclock_active);
941 }
942
943 void
944 getnanouptime(struct timespec *tsp)
945 {
946
947         getnanouptime_fromclock(tsp, sysclock_active);
948 }
949
950 void
951 getmicrouptime(struct timeval *tvp)
952 {
953
954         getmicrouptime_fromclock(tvp, sysclock_active);
955 }
956
957 void
958 getbintime(struct bintime *bt)
959 {
960
961         getbintime_fromclock(bt, sysclock_active);
962 }
963
964 void
965 getnanotime(struct timespec *tsp)
966 {
967
968         getnanotime_fromclock(tsp, sysclock_active);
969 }
970
971 void
972 getmicrotime(struct timeval *tvp)
973 {
974
975         getmicrouptime_fromclock(tvp, sysclock_active);
976 }
977
978 #endif /* FFCLOCK */
979
980 /*
981  * This is a clone of getnanotime and used for walltimestamps.
982  * The dtrace_ prefix prevents fbt from creating probes for
983  * it so walltimestamp can be safely used in all fbt probes.
984  */
985 void
986 dtrace_getnanotime(struct timespec *tsp)
987 {
988         struct timehands *th;
989         u_int gen;
990
991         do {
992                 th = timehands;
993                 gen = th->th_generation;
994                 *tsp = th->th_nanotime;
995         } while (gen == 0 || gen != th->th_generation);
996 }
997
998 /*
999  * System clock currently providing time to the system. Modifiable via sysctl
1000  * when the FFCLOCK option is defined.
1001  */
1002 int sysclock_active = SYSCLOCK_FBCK;
1003
1004 /* Internal NTP status and error estimates. */
1005 extern int time_status;
1006 extern long time_esterror;
1007
1008 /*
1009  * Take a snapshot of sysclock data which can be used to compare system clocks
1010  * and generate timestamps after the fact.
1011  */
1012 void
1013 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1014 {
1015         struct fbclock_info *fbi;
1016         struct timehands *th;
1017         struct bintime bt;
1018         unsigned int delta, gen;
1019 #ifdef FFCLOCK
1020         ffcounter ffcount;
1021         struct fftimehands *ffth;
1022         struct ffclock_info *ffi;
1023         struct ffclock_estimate cest;
1024
1025         ffi = &clock_snap->ff_info;
1026 #endif
1027
1028         fbi = &clock_snap->fb_info;
1029         delta = 0;
1030
1031         do {
1032                 th = timehands;
1033                 gen = th->th_generation;
1034                 fbi->th_scale = th->th_scale;
1035                 fbi->tick_time = th->th_offset;
1036 #ifdef FFCLOCK
1037                 ffth = fftimehands;
1038                 ffi->tick_time = ffth->tick_time_lerp;
1039                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1040                 ffi->period = ffth->cest.period;
1041                 ffi->period_lerp = ffth->period_lerp;
1042                 clock_snap->ffcount = ffth->tick_ffcount;
1043                 cest = ffth->cest;
1044 #endif
1045                 if (!fast)
1046                         delta = tc_delta(th);
1047         } while (gen == 0 || gen != th->th_generation);
1048
1049         clock_snap->delta = delta;
1050         clock_snap->sysclock_active = sysclock_active;
1051
1052         /* Record feedback clock status and error. */
1053         clock_snap->fb_info.status = time_status;
1054         /* XXX: Very crude estimate of feedback clock error. */
1055         bt.sec = time_esterror / 1000000;
1056         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1057             (uint64_t)18446744073709ULL;
1058         clock_snap->fb_info.error = bt;
1059
1060 #ifdef FFCLOCK
1061         if (!fast)
1062                 clock_snap->ffcount += delta;
1063
1064         /* Record feed-forward clock leap second adjustment. */
1065         ffi->leapsec_adjustment = cest.leapsec_total;
1066         if (clock_snap->ffcount > cest.leapsec_next)
1067                 ffi->leapsec_adjustment -= cest.leapsec;
1068
1069         /* Record feed-forward clock status and error. */
1070         clock_snap->ff_info.status = cest.status;
1071         ffcount = clock_snap->ffcount - cest.update_ffcount;
1072         ffclock_convert_delta(ffcount, cest.period, &bt);
1073         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1074         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1075         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1076         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1077         clock_snap->ff_info.error = bt;
1078 #endif
1079 }
1080
1081 /*
1082  * Convert a sysclock snapshot into a struct bintime based on the specified
1083  * clock source and flags.
1084  */
1085 int
1086 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1087     int whichclock, uint32_t flags)
1088 {
1089 #ifdef FFCLOCK
1090         struct bintime bt2;
1091         uint64_t period;
1092 #endif
1093
1094         switch (whichclock) {
1095         case SYSCLOCK_FBCK:
1096                 *bt = cs->fb_info.tick_time;
1097
1098                 /* If snapshot was created with !fast, delta will be >0. */
1099                 if (cs->delta > 0)
1100                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1101
1102                 if ((flags & FBCLOCK_UPTIME) == 0)
1103                         bintime_add(bt, &boottimebin);
1104                 break;
1105 #ifdef FFCLOCK
1106         case SYSCLOCK_FFWD:
1107                 if (flags & FFCLOCK_LERP) {
1108                         *bt = cs->ff_info.tick_time_lerp;
1109                         period = cs->ff_info.period_lerp;
1110                 } else {
1111                         *bt = cs->ff_info.tick_time;
1112                         period = cs->ff_info.period;
1113                 }
1114
1115                 /* If snapshot was created with !fast, delta will be >0. */
1116                 if (cs->delta > 0) {
1117                         ffclock_convert_delta(cs->delta, period, &bt2);
1118                         bintime_add(bt, &bt2);
1119                 }
1120
1121                 /* Leap second adjustment. */
1122                 if (flags & FFCLOCK_LEAPSEC)
1123                         bt->sec -= cs->ff_info.leapsec_adjustment;
1124
1125                 /* Boot time adjustment, for uptime/monotonic clocks. */
1126                 if (flags & FFCLOCK_UPTIME)
1127                         bintime_sub(bt, &ffclock_boottime);
1128                 break;
1129 #endif
1130         default:
1131                 return (EINVAL);
1132                 break;
1133         }
1134
1135         return (0);
1136 }
1137
1138 /*
1139  * Initialize a new timecounter and possibly use it.
1140  */
1141 void
1142 tc_init(struct timecounter *tc)
1143 {
1144         u_int u;
1145         struct sysctl_oid *tc_root;
1146
1147         u = tc->tc_frequency / tc->tc_counter_mask;
1148         /* XXX: We need some margin here, 10% is a guess */
1149         u *= 11;
1150         u /= 10;
1151         if (u > hz && tc->tc_quality >= 0) {
1152                 tc->tc_quality = -2000;
1153                 if (bootverbose) {
1154                         printf("Timecounter \"%s\" frequency %ju Hz",
1155                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1156                         printf(" -- Insufficient hz, needs at least %u\n", u);
1157                 }
1158         } else if (tc->tc_quality >= 0 || bootverbose) {
1159                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1160                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1161                     tc->tc_quality);
1162         }
1163
1164         tc->tc_next = timecounters;
1165         timecounters = tc;
1166         /*
1167          * Set up sysctl tree for this counter.
1168          */
1169         tc_root = SYSCTL_ADD_NODE(NULL,
1170             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1171             CTLFLAG_RW, 0, "timecounter description");
1172         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1173             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1174             "mask for implemented bits");
1175         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1176             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1177             sysctl_kern_timecounter_get, "IU", "current timecounter value");
1178         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1179             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1180              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1181         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1182             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1183             "goodness of time counter");
1184         /*
1185          * Never automatically use a timecounter with negative quality.
1186          * Even though we run on the dummy counter, switching here may be
1187          * worse since this timecounter may not be monotonous.
1188          */
1189         if (tc->tc_quality < 0)
1190                 return;
1191         if (tc->tc_quality < timecounter->tc_quality)
1192                 return;
1193         if (tc->tc_quality == timecounter->tc_quality &&
1194             tc->tc_frequency < timecounter->tc_frequency)
1195                 return;
1196         (void)tc->tc_get_timecount(tc);
1197         (void)tc->tc_get_timecount(tc);
1198         timecounter = tc;
1199 }
1200
1201 /* Report the frequency of the current timecounter. */
1202 uint64_t
1203 tc_getfrequency(void)
1204 {
1205
1206         return (timehands->th_counter->tc_frequency);
1207 }
1208
1209 /*
1210  * Step our concept of UTC.  This is done by modifying our estimate of
1211  * when we booted.
1212  * XXX: not locked.
1213  */
1214 void
1215 tc_setclock(struct timespec *ts)
1216 {
1217         struct timespec tbef, taft;
1218         struct bintime bt, bt2;
1219
1220         cpu_tick_calibrate(1);
1221         nanotime(&tbef);
1222         timespec2bintime(ts, &bt);
1223         binuptime(&bt2);
1224         bintime_sub(&bt, &bt2);
1225         bintime_add(&bt2, &boottimebin);
1226         boottimebin = bt;
1227         bintime2timeval(&bt, &boottime);
1228
1229         /* XXX fiddle all the little crinkly bits around the fiords... */
1230         tc_windup();
1231         nanotime(&taft);
1232         if (timestepwarnings) {
1233                 log(LOG_INFO,
1234                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1235                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1236                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1237                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1238         }
1239         cpu_tick_calibrate(1);
1240 }
1241
1242 /*
1243  * Initialize the next struct timehands in the ring and make
1244  * it the active timehands.  Along the way we might switch to a different
1245  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1246  */
1247 static void
1248 tc_windup(void)
1249 {
1250         struct bintime bt;
1251         struct timehands *th, *tho;
1252         uint64_t scale;
1253         u_int delta, ncount, ogen;
1254         int i;
1255         time_t t;
1256
1257         /*
1258          * Make the next timehands a copy of the current one, but do not
1259          * overwrite the generation or next pointer.  While we update
1260          * the contents, the generation must be zero.
1261          */
1262         tho = timehands;
1263         th = tho->th_next;
1264         ogen = th->th_generation;
1265         th->th_generation = 0;
1266         bcopy(tho, th, offsetof(struct timehands, th_generation));
1267
1268         /*
1269          * Capture a timecounter delta on the current timecounter and if
1270          * changing timecounters, a counter value from the new timecounter.
1271          * Update the offset fields accordingly.
1272          */
1273         delta = tc_delta(th);
1274         if (th->th_counter != timecounter)
1275                 ncount = timecounter->tc_get_timecount(timecounter);
1276         else
1277                 ncount = 0;
1278 #ifdef FFCLOCK
1279         ffclock_windup(delta);
1280 #endif
1281         th->th_offset_count += delta;
1282         th->th_offset_count &= th->th_counter->tc_counter_mask;
1283         while (delta > th->th_counter->tc_frequency) {
1284                 /* Eat complete unadjusted seconds. */
1285                 delta -= th->th_counter->tc_frequency;
1286                 th->th_offset.sec++;
1287         }
1288         if ((delta > th->th_counter->tc_frequency / 2) &&
1289             (th->th_scale * delta < ((uint64_t)1 << 63))) {
1290                 /* The product th_scale * delta just barely overflows. */
1291                 th->th_offset.sec++;
1292         }
1293         bintime_addx(&th->th_offset, th->th_scale * delta);
1294
1295         /*
1296          * Hardware latching timecounters may not generate interrupts on
1297          * PPS events, so instead we poll them.  There is a finite risk that
1298          * the hardware might capture a count which is later than the one we
1299          * got above, and therefore possibly in the next NTP second which might
1300          * have a different rate than the current NTP second.  It doesn't
1301          * matter in practice.
1302          */
1303         if (tho->th_counter->tc_poll_pps)
1304                 tho->th_counter->tc_poll_pps(tho->th_counter);
1305
1306         /*
1307          * Deal with NTP second processing.  The for loop normally
1308          * iterates at most once, but in extreme situations it might
1309          * keep NTP sane if timeouts are not run for several seconds.
1310          * At boot, the time step can be large when the TOD hardware
1311          * has been read, so on really large steps, we call
1312          * ntp_update_second only twice.  We need to call it twice in
1313          * case we missed a leap second.
1314          */
1315         bt = th->th_offset;
1316         bintime_add(&bt, &boottimebin);
1317         i = bt.sec - tho->th_microtime.tv_sec;
1318         if (i > LARGE_STEP)
1319                 i = 2;
1320         for (; i > 0; i--) {
1321                 t = bt.sec;
1322                 ntp_update_second(&th->th_adjustment, &bt.sec);
1323                 if (bt.sec != t)
1324                         boottimebin.sec += bt.sec - t;
1325         }
1326         /* Update the UTC timestamps used by the get*() functions. */
1327         /* XXX shouldn't do this here.  Should force non-`get' versions. */
1328         bintime2timeval(&bt, &th->th_microtime);
1329         bintime2timespec(&bt, &th->th_nanotime);
1330
1331         /* Now is a good time to change timecounters. */
1332         if (th->th_counter != timecounter) {
1333 #ifndef __arm__
1334                 if ((timecounter->tc_flags & TC_FLAGS_C3STOP) != 0)
1335                         cpu_disable_deep_sleep++;
1336                 if ((th->th_counter->tc_flags & TC_FLAGS_C3STOP) != 0)
1337                         cpu_disable_deep_sleep--;
1338 #endif
1339                 th->th_counter = timecounter;
1340                 th->th_offset_count = ncount;
1341                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1342                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1343 #ifdef FFCLOCK
1344                 ffclock_change_tc(th);
1345 #endif
1346         }
1347
1348         /*-
1349          * Recalculate the scaling factor.  We want the number of 1/2^64
1350          * fractions of a second per period of the hardware counter, taking
1351          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1352          * processing provides us with.
1353          *
1354          * The th_adjustment is nanoseconds per second with 32 bit binary
1355          * fraction and we want 64 bit binary fraction of second:
1356          *
1357          *       x = a * 2^32 / 10^9 = a * 4.294967296
1358          *
1359          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1360          * we can only multiply by about 850 without overflowing, that
1361          * leaves no suitably precise fractions for multiply before divide.
1362          *
1363          * Divide before multiply with a fraction of 2199/512 results in a
1364          * systematic undercompensation of 10PPM of th_adjustment.  On a
1365          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1366          *
1367          * We happily sacrifice the lowest of the 64 bits of our result
1368          * to the goddess of code clarity.
1369          *
1370          */
1371         scale = (uint64_t)1 << 63;
1372         scale += (th->th_adjustment / 1024) * 2199;
1373         scale /= th->th_counter->tc_frequency;
1374         th->th_scale = scale * 2;
1375
1376         /*
1377          * Now that the struct timehands is again consistent, set the new
1378          * generation number, making sure to not make it zero.
1379          */
1380         if (++ogen == 0)
1381                 ogen = 1;
1382         th->th_generation = ogen;
1383
1384         /* Go live with the new struct timehands. */
1385 #ifdef FFCLOCK
1386         switch (sysclock_active) {
1387         case SYSCLOCK_FBCK:
1388 #endif
1389                 time_second = th->th_microtime.tv_sec;
1390                 time_uptime = th->th_offset.sec;
1391 #ifdef FFCLOCK
1392                 break;
1393         case SYSCLOCK_FFWD:
1394                 time_second = fftimehands->tick_time_lerp.sec;
1395                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1396                 break;
1397         }
1398 #endif
1399
1400         timehands = th;
1401         timekeep_push_vdso();
1402 }
1403
1404 /* Report or change the active timecounter hardware. */
1405 static int
1406 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1407 {
1408         char newname[32];
1409         struct timecounter *newtc, *tc;
1410         int error;
1411
1412         tc = timecounter;
1413         strlcpy(newname, tc->tc_name, sizeof(newname));
1414
1415         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1416         if (error != 0 || req->newptr == NULL ||
1417             strcmp(newname, tc->tc_name) == 0)
1418                 return (error);
1419         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1420                 if (strcmp(newname, newtc->tc_name) != 0)
1421                         continue;
1422
1423                 /* Warm up new timecounter. */
1424                 (void)newtc->tc_get_timecount(newtc);
1425                 (void)newtc->tc_get_timecount(newtc);
1426
1427                 timecounter = newtc;
1428                 timekeep_push_vdso();
1429                 return (0);
1430         }
1431         return (EINVAL);
1432 }
1433
1434 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1435     0, 0, sysctl_kern_timecounter_hardware, "A",
1436     "Timecounter hardware selected");
1437
1438
1439 /* Report or change the active timecounter hardware. */
1440 static int
1441 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1442 {
1443         char buf[32], *spc;
1444         struct timecounter *tc;
1445         int error;
1446
1447         spc = "";
1448         error = 0;
1449         for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
1450                 sprintf(buf, "%s%s(%d)",
1451                     spc, tc->tc_name, tc->tc_quality);
1452                 error = SYSCTL_OUT(req, buf, strlen(buf));
1453                 spc = " ";
1454         }
1455         return (error);
1456 }
1457
1458 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1459     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1460
1461 /*
1462  * RFC 2783 PPS-API implementation.
1463  */
1464
1465 static int
1466 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1467 {
1468         int err, timo;
1469         pps_seq_t aseq, cseq;
1470         struct timeval tv;
1471
1472         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1473                 return (EINVAL);
1474
1475         /*
1476          * If no timeout is requested, immediately return whatever values were
1477          * most recently captured.  If timeout seconds is -1, that's a request
1478          * to block without a timeout.  WITNESS won't let us sleep forever
1479          * without a lock (we really don't need a lock), so just repeatedly
1480          * sleep a long time.
1481          */
1482         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1483                 if (fapi->timeout.tv_sec == -1)
1484                         timo = 0x7fffffff;
1485                 else {
1486                         tv.tv_sec = fapi->timeout.tv_sec;
1487                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1488                         timo = tvtohz(&tv);
1489                 }
1490                 aseq = pps->ppsinfo.assert_sequence;
1491                 cseq = pps->ppsinfo.clear_sequence;
1492                 while (aseq == pps->ppsinfo.assert_sequence &&
1493                     cseq == pps->ppsinfo.clear_sequence) {
1494                         err = tsleep(pps, PCATCH, "ppsfch", timo);
1495                         if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) {
1496                                 continue;
1497                         } else if (err != 0) {
1498                                 return (err);
1499                         }
1500                 }
1501         }
1502
1503         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1504         fapi->pps_info_buf = pps->ppsinfo;
1505
1506         return (0);
1507 }
1508
1509 int
1510 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1511 {
1512         pps_params_t *app;
1513         struct pps_fetch_args *fapi;
1514 #ifdef FFCLOCK
1515         struct pps_fetch_ffc_args *fapi_ffc;
1516 #endif
1517 #ifdef PPS_SYNC
1518         struct pps_kcbind_args *kapi;
1519 #endif
1520
1521         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1522         switch (cmd) {
1523         case PPS_IOC_CREATE:
1524                 return (0);
1525         case PPS_IOC_DESTROY:
1526                 return (0);
1527         case PPS_IOC_SETPARAMS:
1528                 app = (pps_params_t *)data;
1529                 if (app->mode & ~pps->ppscap)
1530                         return (EINVAL);
1531 #ifdef FFCLOCK
1532                 /* Ensure only a single clock is selected for ffc timestamp. */
1533                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1534                         return (EINVAL);
1535 #endif
1536                 pps->ppsparam = *app;
1537                 return (0);
1538         case PPS_IOC_GETPARAMS:
1539                 app = (pps_params_t *)data;
1540                 *app = pps->ppsparam;
1541                 app->api_version = PPS_API_VERS_1;
1542                 return (0);
1543         case PPS_IOC_GETCAP:
1544                 *(int*)data = pps->ppscap;
1545                 return (0);
1546         case PPS_IOC_FETCH:
1547                 fapi = (struct pps_fetch_args *)data;
1548                 return (pps_fetch(fapi, pps));
1549 #ifdef FFCLOCK
1550         case PPS_IOC_FETCH_FFCOUNTER:
1551                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1552                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1553                     PPS_TSFMT_TSPEC)
1554                         return (EINVAL);
1555                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1556                         return (EOPNOTSUPP);
1557                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1558                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1559                 /* Overwrite timestamps if feedback clock selected. */
1560                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1561                 case PPS_TSCLK_FBCK:
1562                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1563                             pps->ppsinfo.assert_timestamp;
1564                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1565                             pps->ppsinfo.clear_timestamp;
1566                         break;
1567                 case PPS_TSCLK_FFWD:
1568                         break;
1569                 default:
1570                         break;
1571                 }
1572                 return (0);
1573 #endif /* FFCLOCK */
1574         case PPS_IOC_KCBIND:
1575 #ifdef PPS_SYNC
1576                 kapi = (struct pps_kcbind_args *)data;
1577                 /* XXX Only root should be able to do this */
1578                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1579                         return (EINVAL);
1580                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1581                         return (EINVAL);
1582                 if (kapi->edge & ~pps->ppscap)
1583                         return (EINVAL);
1584                 pps->kcmode = kapi->edge;
1585                 return (0);
1586 #else
1587                 return (EOPNOTSUPP);
1588 #endif
1589         default:
1590                 return (ENOIOCTL);
1591         }
1592 }
1593
1594 void
1595 pps_init(struct pps_state *pps)
1596 {
1597         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1598         if (pps->ppscap & PPS_CAPTUREASSERT)
1599                 pps->ppscap |= PPS_OFFSETASSERT;
1600         if (pps->ppscap & PPS_CAPTURECLEAR)
1601                 pps->ppscap |= PPS_OFFSETCLEAR;
1602 #ifdef FFCLOCK
1603         pps->ppscap |= PPS_TSCLK_MASK;
1604 #endif
1605 }
1606
1607 void
1608 pps_capture(struct pps_state *pps)
1609 {
1610         struct timehands *th;
1611
1612         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1613         th = timehands;
1614         pps->capgen = th->th_generation;
1615         pps->capth = th;
1616 #ifdef FFCLOCK
1617         pps->capffth = fftimehands;
1618 #endif
1619         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1620         if (pps->capgen != th->th_generation)
1621                 pps->capgen = 0;
1622 }
1623
1624 void
1625 pps_event(struct pps_state *pps, int event)
1626 {
1627         struct bintime bt;
1628         struct timespec ts, *tsp, *osp;
1629         u_int tcount, *pcount;
1630         int foff, fhard;
1631         pps_seq_t *pseq;
1632 #ifdef FFCLOCK
1633         struct timespec *tsp_ffc;
1634         pps_seq_t *pseq_ffc;
1635         ffcounter *ffcount;
1636 #endif
1637
1638         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1639         /* If the timecounter was wound up underneath us, bail out. */
1640         if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
1641                 return;
1642
1643         /* Things would be easier with arrays. */
1644         if (event == PPS_CAPTUREASSERT) {
1645                 tsp = &pps->ppsinfo.assert_timestamp;
1646                 osp = &pps->ppsparam.assert_offset;
1647                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1648                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1649                 pcount = &pps->ppscount[0];
1650                 pseq = &pps->ppsinfo.assert_sequence;
1651 #ifdef FFCLOCK
1652                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1653                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1654                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1655 #endif
1656         } else {
1657                 tsp = &pps->ppsinfo.clear_timestamp;
1658                 osp = &pps->ppsparam.clear_offset;
1659                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1660                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1661                 pcount = &pps->ppscount[1];
1662                 pseq = &pps->ppsinfo.clear_sequence;
1663 #ifdef FFCLOCK
1664                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1665                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1666                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1667 #endif
1668         }
1669
1670         /*
1671          * If the timecounter changed, we cannot compare the count values, so
1672          * we have to drop the rest of the PPS-stuff until the next event.
1673          */
1674         if (pps->ppstc != pps->capth->th_counter) {
1675                 pps->ppstc = pps->capth->th_counter;
1676                 *pcount = pps->capcount;
1677                 pps->ppscount[2] = pps->capcount;
1678                 return;
1679         }
1680
1681         /* Convert the count to a timespec. */
1682         tcount = pps->capcount - pps->capth->th_offset_count;
1683         tcount &= pps->capth->th_counter->tc_counter_mask;
1684         bt = pps->capth->th_offset;
1685         bintime_addx(&bt, pps->capth->th_scale * tcount);
1686         bintime_add(&bt, &boottimebin);
1687         bintime2timespec(&bt, &ts);
1688
1689         /* If the timecounter was wound up underneath us, bail out. */
1690         if (pps->capgen != pps->capth->th_generation)
1691                 return;
1692
1693         *pcount = pps->capcount;
1694         (*pseq)++;
1695         *tsp = ts;
1696
1697         if (foff) {
1698                 timespecadd(tsp, osp);
1699                 if (tsp->tv_nsec < 0) {
1700                         tsp->tv_nsec += 1000000000;
1701                         tsp->tv_sec -= 1;
1702                 }
1703         }
1704
1705 #ifdef FFCLOCK
1706         *ffcount = pps->capffth->tick_ffcount + tcount;
1707         bt = pps->capffth->tick_time;
1708         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1709         bintime_add(&bt, &pps->capffth->tick_time);
1710         bintime2timespec(&bt, &ts);
1711         (*pseq_ffc)++;
1712         *tsp_ffc = ts;
1713 #endif
1714
1715 #ifdef PPS_SYNC
1716         if (fhard) {
1717                 uint64_t scale;
1718
1719                 /*
1720                  * Feed the NTP PLL/FLL.
1721                  * The FLL wants to know how many (hardware) nanoseconds
1722                  * elapsed since the previous event.
1723                  */
1724                 tcount = pps->capcount - pps->ppscount[2];
1725                 pps->ppscount[2] = pps->capcount;
1726                 tcount &= pps->capth->th_counter->tc_counter_mask;
1727                 scale = (uint64_t)1 << 63;
1728                 scale /= pps->capth->th_counter->tc_frequency;
1729                 scale *= 2;
1730                 bt.sec = 0;
1731                 bt.frac = 0;
1732                 bintime_addx(&bt, scale * tcount);
1733                 bintime2timespec(&bt, &ts);
1734                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1735         }
1736 #endif
1737
1738         /* Wakeup anyone sleeping in pps_fetch().  */
1739         wakeup(pps);
1740 }
1741
1742 /*
1743  * Timecounters need to be updated every so often to prevent the hardware
1744  * counter from overflowing.  Updating also recalculates the cached values
1745  * used by the get*() family of functions, so their precision depends on
1746  * the update frequency.
1747  */
1748
1749 static int tc_tick;
1750 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1751     "Approximate number of hardclock ticks in a millisecond");
1752
1753 void
1754 tc_ticktock(int cnt)
1755 {
1756         static int count;
1757
1758         count += cnt;
1759         if (count < tc_tick)
1760                 return;
1761         count = 0;
1762         tc_windup();
1763 }
1764
1765 static void __inline
1766 tc_adjprecision(void)
1767 {
1768         int t;
1769
1770         if (tc_timepercentage > 0) {
1771                 t = (99 + tc_timepercentage) / tc_timepercentage;
1772                 tc_precexp = fls(t + (t >> 1)) - 1;
1773                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1774                 FREQ2BT(hz, &bt_tickthreshold);
1775                 bintime_shift(&bt_timethreshold, tc_precexp);
1776                 bintime_shift(&bt_tickthreshold, tc_precexp);
1777         } else {
1778                 tc_precexp = 31;
1779                 bt_timethreshold.sec = INT_MAX;
1780                 bt_timethreshold.frac = ~(uint64_t)0;
1781                 bt_tickthreshold = bt_timethreshold;
1782         }
1783         sbt_timethreshold = bttosbt(bt_timethreshold);
1784         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1785 }
1786
1787 static int
1788 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1789 {
1790         int error, val;
1791
1792         val = tc_timepercentage;
1793         error = sysctl_handle_int(oidp, &val, 0, req);
1794         if (error != 0 || req->newptr == NULL)
1795                 return (error);
1796         tc_timepercentage = val;
1797         tc_adjprecision();
1798         return (0);
1799 }
1800
1801 static void
1802 inittimecounter(void *dummy)
1803 {
1804         u_int p;
1805         int tick_rate;
1806
1807         /*
1808          * Set the initial timeout to
1809          * max(1, <approx. number of hardclock ticks in a millisecond>).
1810          * People should probably not use the sysctl to set the timeout
1811          * to smaller than its inital value, since that value is the
1812          * smallest reasonable one.  If they want better timestamps they
1813          * should use the non-"get"* functions.
1814          */
1815         if (hz > 1000)
1816                 tc_tick = (hz + 500) / 1000;
1817         else
1818                 tc_tick = 1;
1819         tc_adjprecision();
1820         FREQ2BT(hz, &tick_bt);
1821         tick_sbt = bttosbt(tick_bt);
1822         tick_rate = hz / tc_tick;
1823         FREQ2BT(tick_rate, &tc_tick_bt);
1824         tc_tick_sbt = bttosbt(tc_tick_bt);
1825         p = (tc_tick * 1000000) / hz;
1826         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1827
1828 #ifdef FFCLOCK
1829         ffclock_init();
1830 #endif
1831         /* warm up new timecounter (again) and get rolling. */
1832         (void)timecounter->tc_get_timecount(timecounter);
1833         (void)timecounter->tc_get_timecount(timecounter);
1834         tc_windup();
1835 }
1836
1837 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1838
1839 /* Cpu tick handling -------------------------------------------------*/
1840
1841 static int cpu_tick_variable;
1842 static uint64_t cpu_tick_frequency;
1843
1844 static uint64_t
1845 tc_cpu_ticks(void)
1846 {
1847         static uint64_t base;
1848         static unsigned last;
1849         unsigned u;
1850         struct timecounter *tc;
1851
1852         tc = timehands->th_counter;
1853         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1854         if (u < last)
1855                 base += (uint64_t)tc->tc_counter_mask + 1;
1856         last = u;
1857         return (u + base);
1858 }
1859
1860 void
1861 cpu_tick_calibration(void)
1862 {
1863         static time_t last_calib;
1864
1865         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
1866                 cpu_tick_calibrate(0);
1867                 last_calib = time_uptime;
1868         }
1869 }
1870
1871 /*
1872  * This function gets called every 16 seconds on only one designated
1873  * CPU in the system from hardclock() via cpu_tick_calibration()().
1874  *
1875  * Whenever the real time clock is stepped we get called with reset=1
1876  * to make sure we handle suspend/resume and similar events correctly.
1877  */
1878
1879 static void
1880 cpu_tick_calibrate(int reset)
1881 {
1882         static uint64_t c_last;
1883         uint64_t c_this, c_delta;
1884         static struct bintime  t_last;
1885         struct bintime t_this, t_delta;
1886         uint32_t divi;
1887
1888         if (reset) {
1889                 /* The clock was stepped, abort & reset */
1890                 t_last.sec = 0;
1891                 return;
1892         }
1893
1894         /* we don't calibrate fixed rate cputicks */
1895         if (!cpu_tick_variable)
1896                 return;
1897
1898         getbinuptime(&t_this);
1899         c_this = cpu_ticks();
1900         if (t_last.sec != 0) {
1901                 c_delta = c_this - c_last;
1902                 t_delta = t_this;
1903                 bintime_sub(&t_delta, &t_last);
1904                 /*
1905                  * Headroom:
1906                  *      2^(64-20) / 16[s] =
1907                  *      2^(44) / 16[s] =
1908                  *      17.592.186.044.416 / 16 =
1909                  *      1.099.511.627.776 [Hz]
1910                  */
1911                 divi = t_delta.sec << 20;
1912                 divi |= t_delta.frac >> (64 - 20);
1913                 c_delta <<= 20;
1914                 c_delta /= divi;
1915                 if (c_delta > cpu_tick_frequency) {
1916                         if (0 && bootverbose)
1917                                 printf("cpu_tick increased to %ju Hz\n",
1918                                     c_delta);
1919                         cpu_tick_frequency = c_delta;
1920                 }
1921         }
1922         c_last = c_this;
1923         t_last = t_this;
1924 }
1925
1926 void
1927 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
1928 {
1929
1930         if (func == NULL) {
1931                 cpu_ticks = tc_cpu_ticks;
1932         } else {
1933                 cpu_tick_frequency = freq;
1934                 cpu_tick_variable = var;
1935                 cpu_ticks = func;
1936         }
1937 }
1938
1939 uint64_t
1940 cpu_tickrate(void)
1941 {
1942
1943         if (cpu_ticks == tc_cpu_ticks) 
1944                 return (tc_getfrequency());
1945         return (cpu_tick_frequency);
1946 }
1947
1948 /*
1949  * We need to be slightly careful converting cputicks to microseconds.
1950  * There is plenty of margin in 64 bits of microseconds (half a million
1951  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
1952  * before divide conversion (to retain precision) we find that the
1953  * margin shrinks to 1.5 hours (one millionth of 146y).
1954  * With a three prong approach we never lose significant bits, no
1955  * matter what the cputick rate and length of timeinterval is.
1956  */
1957
1958 uint64_t
1959 cputick2usec(uint64_t tick)
1960 {
1961
1962         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
1963                 return (tick / (cpu_tickrate() / 1000000LL));
1964         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
1965                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
1966         else
1967                 return ((tick * 1000000LL) / cpu_tickrate());
1968 }
1969
1970 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
1971
1972 static int vdso_th_enable = 1;
1973 static int
1974 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
1975 {
1976         int old_vdso_th_enable, error;
1977
1978         old_vdso_th_enable = vdso_th_enable;
1979         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
1980         if (error != 0)
1981                 return (error);
1982         vdso_th_enable = old_vdso_th_enable;
1983         timekeep_push_vdso();
1984         return (0);
1985 }
1986 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
1987     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1988     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
1989
1990 uint32_t
1991 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
1992 {
1993         struct timehands *th;
1994         uint32_t enabled;
1995
1996         th = timehands;
1997         vdso_th->th_algo = VDSO_TH_ALGO_1;
1998         vdso_th->th_scale = th->th_scale;
1999         vdso_th->th_offset_count = th->th_offset_count;
2000         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2001         vdso_th->th_offset = th->th_offset;
2002         vdso_th->th_boottime = boottimebin;
2003         enabled = cpu_fill_vdso_timehands(vdso_th);
2004         if (!vdso_th_enable)
2005                 enabled = 0;
2006         return (enabled);
2007 }
2008
2009 #ifdef COMPAT_FREEBSD32
2010 uint32_t
2011 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2012 {
2013         struct timehands *th;
2014         uint32_t enabled;
2015
2016         th = timehands;
2017         vdso_th32->th_algo = VDSO_TH_ALGO_1;
2018         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2019         vdso_th32->th_offset_count = th->th_offset_count;
2020         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2021         vdso_th32->th_offset.sec = th->th_offset.sec;
2022         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2023         vdso_th32->th_boottime.sec = boottimebin.sec;
2024         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
2025         enabled = cpu_fill_vdso_timehands32(vdso_th32);
2026         if (!vdso_th_enable)
2027                 enabled = 0;
2028         return (enabled);
2029 }
2030 #endif