]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/kern/subr_witness.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114
115 #include <machine/stdarg.h>
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS     KTR_SUBSYS
124 #else
125 #define KTR_WITNESS     0
126 #endif
127
128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
131
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134
135 #define WITNESS_COUNT           1024
136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
138 #define WITNESS_PENDLIST        1024
139
140 /* Allocate 256 KB of stack data space */
141 #define WITNESS_LO_DATA_COUNT   2048
142
143 /* Prime, gives load factor of ~2 at full load */
144 #define WITNESS_LO_HASH_SIZE    1021
145
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define LOCK_NCHILDREN  5
152 #define LOCK_CHILDCOUNT 2048
153
154 #define MAX_W_NAME      64
155
156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
157 #define FULLGRAPH_SBUF_SIZE     512
158
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define WITNESS_RELATED_MASK                                            \
171         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173                                           * observed. */
174 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178 /* Descendant to ancestor flags */
179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
180
181 /* Ancestor to descendant flags */
182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
183
184 #define WITNESS_INDEX_ASSERT(i)                                         \
185         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186
187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196         struct lock_object      *li_lock;
197         const char              *li_file;
198         int                     li_line;
199         u_int                   li_flags;
200 };
201
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213         struct lock_list_entry  *ll_next;
214         struct lock_instance    ll_children[LOCK_NCHILDREN];
215         u_int                   ll_count;
216 };
217
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223         char                    w_name[MAX_W_NAME];
224         uint32_t                w_index;  /* Index in the relationship matrix */
225         struct lock_class       *w_class;
226         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
227         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
228         struct witness          *w_hash_next; /* Linked list in hash buckets. */
229         const char              *w_file; /* File where last acquired */
230         uint32_t                w_line; /* Line where last acquired */
231         uint32_t                w_refcount;
232         uint16_t                w_num_ancestors; /* direct/indirect
233                                                   * ancestor count */
234         uint16_t                w_num_descendants; /* direct/indirect
235                                                     * descendant count */
236         int16_t                 w_ddb_level;
237         unsigned                w_displayed:1;
238         unsigned                w_reversed:1;
239 };
240
241 STAILQ_HEAD(witness_list, witness);
242
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248         struct witness  *wh_array[WITNESS_HASH_SIZE];
249         uint32_t        wh_size;
250         uint32_t        wh_count;
251 };
252
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257         uint16_t        from;
258         uint16_t        to;
259 };
260
261 struct witness_lock_order_data {
262         struct stack                    wlod_stack;
263         struct witness_lock_order_key   wlod_key;
264         struct witness_lock_order_data  *wlod_next;
265 };
266
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data). 
271  */
272 struct witness_lock_order_hash {
273         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
274         u_int   wloh_size;
275         u_int   wloh_count;
276 };
277
278 #ifdef BLESSING
279 struct witness_blessed {
280         const char      *b_lock1;
281         const char      *b_lock2;
282 };
283 #endif
284
285 struct witness_pendhelp {
286         const char              *wh_type;
287         struct lock_object      *wh_lock;
288 };
289
290 struct witness_order_list_entry {
291         const char              *w_name;
292         struct lock_class       *w_class;
293 };
294
295 /*
296  * Returns 0 if one of the locks is a spin lock and the other is not.
297  * Returns 1 otherwise.
298  */
299 static __inline int
300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
301 {
302
303         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305 }
306
307 static __inline int
308 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
309 {
310
311         return (key->from == 0 && key->to == 0);
312 }
313
314 static __inline int
315 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
316     const struct witness_lock_order_key *b)
317 {
318
319         return (a->from == b->from && a->to == b->to);
320 }
321
322 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
323                     const char *fname);
324 #ifdef KDB
325 static void     _witness_debugger(int cond, const char *msg);
326 #endif
327 static void     adopt(struct witness *parent, struct witness *child);
328 #ifdef BLESSING
329 static int      blessed(struct witness *, struct witness *);
330 #endif
331 static void     depart(struct witness *w);
332 static struct witness   *enroll(const char *description,
333                             struct lock_class *lock_class);
334 static struct lock_instance     *find_instance(struct lock_list_entry *list,
335                                     const struct lock_object *lock);
336 static int      isitmychild(struct witness *parent, struct witness *child);
337 static int      isitmydescendant(struct witness *parent, struct witness *child);
338 static void     itismychild(struct witness *parent, struct witness *child);
339 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
340 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
341 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
342 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
343 #ifdef DDB
344 static void     witness_ddb_compute_levels(void);
345 static void     witness_ddb_display(int(*)(const char *fmt, ...));
346 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
347                     struct witness *, int indent);
348 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
349                     struct witness_list *list);
350 static void     witness_ddb_level_descendants(struct witness *parent, int l);
351 static void     witness_ddb_list(struct thread *td);
352 #endif
353 static void     witness_free(struct witness *m);
354 static struct witness   *witness_get(void);
355 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
356 static struct witness   *witness_hash_get(const char *key);
357 static void     witness_hash_put(struct witness *w);
358 static void     witness_init_hash_tables(void);
359 static void     witness_increment_graph_generation(void);
360 static void     witness_lock_list_free(struct lock_list_entry *lle);
361 static struct lock_list_entry   *witness_lock_list_get(void);
362 static int      witness_lock_order_add(struct witness *parent,
363                     struct witness *child);
364 static int      witness_lock_order_check(struct witness *parent,
365                     struct witness *child);
366 static struct witness_lock_order_data   *witness_lock_order_get(
367                                             struct witness *parent,
368                                             struct witness *child);
369 static void     witness_list_lock(struct lock_instance *instance,
370                     int (*prnt)(const char *fmt, ...));
371 static void     witness_setflag(struct lock_object *lock, int flag, int set);
372
373 #ifdef KDB
374 #define witness_debugger(c)     _witness_debugger(c, __func__)
375 #else
376 #define witness_debugger(c)
377 #endif
378
379 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
380     "Witness Locking");
381
382 /*
383  * If set to 0, lock order checking is disabled.  If set to -1,
384  * witness is completely disabled.  Otherwise witness performs full
385  * lock order checking for all locks.  At runtime, lock order checking
386  * may be toggled.  However, witness cannot be reenabled once it is
387  * completely disabled.
388  */
389 static int witness_watch = 1;
390 TUNABLE_INT("debug.witness.watch", &witness_watch);
391 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
392     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
393
394 #ifdef KDB
395 /*
396  * When KDB is enabled and witness_kdb is 1, it will cause the system
397  * to drop into kdebug() when:
398  *      - a lock hierarchy violation occurs
399  *      - locks are held when going to sleep.
400  */
401 #ifdef WITNESS_KDB
402 int     witness_kdb = 1;
403 #else
404 int     witness_kdb = 0;
405 #endif
406 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
407 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
408
409 /*
410  * When KDB is enabled and witness_trace is 1, it will cause the system
411  * to print a stack trace:
412  *      - a lock hierarchy violation occurs
413  *      - locks are held when going to sleep.
414  */
415 int     witness_trace = 1;
416 TUNABLE_INT("debug.witness.trace", &witness_trace);
417 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
418 #endif /* KDB */
419
420 #ifdef WITNESS_SKIPSPIN
421 int     witness_skipspin = 1;
422 #else
423 int     witness_skipspin = 0;
424 #endif
425 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
426 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
427     0, "");
428
429 /*
430  * Call this to print out the relations between locks.
431  */
432 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
433     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
434
435 /*
436  * Call this to print out the witness faulty stacks.
437  */
438 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
439     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
440
441 static struct mtx w_mtx;
442
443 /* w_list */
444 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
445 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
446
447 /* w_typelist */
448 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
449 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
450
451 /* lock list */
452 static struct lock_list_entry *w_lock_list_free = NULL;
453 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
454 static u_int pending_cnt;
455
456 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
457 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
458 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
459 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
460     "");
461
462 static struct witness *w_data;
463 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
464 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
465 static struct witness_hash w_hash;      /* The witness hash table. */
466
467 /* The lock order data hash */
468 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
469 static struct witness_lock_order_data *w_lofree = NULL;
470 static struct witness_lock_order_hash w_lohash;
471 static int w_max_used_index = 0;
472 static unsigned int w_generation = 0;
473 static const char w_notrunning[] = "Witness not running\n";
474 static const char w_stillcold[] = "Witness is still cold\n";
475
476
477 static struct witness_order_list_entry order_lists[] = {
478         /*
479          * sx locks
480          */
481         { "proctree", &lock_class_sx },
482         { "allproc", &lock_class_sx },
483         { "allprison", &lock_class_sx },
484         { NULL, NULL },
485         /*
486          * Various mutexes
487          */
488         { "Giant", &lock_class_mtx_sleep },
489         { "pipe mutex", &lock_class_mtx_sleep },
490         { "sigio lock", &lock_class_mtx_sleep },
491         { "process group", &lock_class_mtx_sleep },
492         { "process lock", &lock_class_mtx_sleep },
493         { "session", &lock_class_mtx_sleep },
494         { "uidinfo hash", &lock_class_rw },
495 #ifdef  HWPMC_HOOKS
496         { "pmc-sleep", &lock_class_mtx_sleep },
497 #endif
498         { "time lock", &lock_class_mtx_sleep },
499         { NULL, NULL },
500         /*
501          * Sockets
502          */
503         { "accept", &lock_class_mtx_sleep },
504         { "so_snd", &lock_class_mtx_sleep },
505         { "so_rcv", &lock_class_mtx_sleep },
506         { "sellck", &lock_class_mtx_sleep },
507         { NULL, NULL },
508         /*
509          * Routing
510          */
511         { "so_rcv", &lock_class_mtx_sleep },
512         { "radix node head", &lock_class_rw },
513         { "rtentry", &lock_class_mtx_sleep },
514         { "ifaddr", &lock_class_mtx_sleep },
515         { NULL, NULL },
516         /*
517          * IPv4 multicast:
518          * protocol locks before interface locks, after UDP locks.
519          */
520         { "udpinp", &lock_class_rw },
521         { "in_multi_mtx", &lock_class_mtx_sleep },
522         { "igmp_mtx", &lock_class_mtx_sleep },
523         { "if_addr_lock", &lock_class_rw },
524         { NULL, NULL },
525         /*
526          * IPv6 multicast:
527          * protocol locks before interface locks, after UDP locks.
528          */
529         { "udpinp", &lock_class_rw },
530         { "in6_multi_mtx", &lock_class_mtx_sleep },
531         { "mld_mtx", &lock_class_mtx_sleep },
532         { "if_addr_lock", &lock_class_rw },
533         { NULL, NULL },
534         /*
535          * UNIX Domain Sockets
536          */
537         { "unp_global_rwlock", &lock_class_rw },
538         { "unp_list_lock", &lock_class_mtx_sleep },
539         { "unp", &lock_class_mtx_sleep },
540         { "so_snd", &lock_class_mtx_sleep },
541         { NULL, NULL },
542         /*
543          * UDP/IP
544          */
545         { "udp", &lock_class_rw },
546         { "udpinp", &lock_class_rw },
547         { "so_snd", &lock_class_mtx_sleep },
548         { NULL, NULL },
549         /*
550          * TCP/IP
551          */
552         { "tcp", &lock_class_rw },
553         { "tcpinp", &lock_class_rw },
554         { "so_snd", &lock_class_mtx_sleep },
555         { NULL, NULL },
556         /*
557          * netatalk
558          */
559         { "ddp_list_mtx", &lock_class_mtx_sleep },
560         { "ddp_mtx", &lock_class_mtx_sleep },
561         { NULL, NULL },
562         /*
563          * BPF
564          */
565         { "bpf global lock", &lock_class_mtx_sleep },
566         { "bpf interface lock", &lock_class_rw },
567         { "bpf cdev lock", &lock_class_mtx_sleep },
568         { NULL, NULL },
569         /*
570          * NFS server
571          */
572         { "nfsd_mtx", &lock_class_mtx_sleep },
573         { "so_snd", &lock_class_mtx_sleep },
574         { NULL, NULL },
575
576         /*
577          * IEEE 802.11
578          */
579         { "802.11 com lock", &lock_class_mtx_sleep},
580         { NULL, NULL },
581         /*
582          * Network drivers
583          */
584         { "network driver", &lock_class_mtx_sleep},
585         { NULL, NULL },
586
587         /*
588          * Netgraph
589          */
590         { "ng_node", &lock_class_mtx_sleep },
591         { "ng_worklist", &lock_class_mtx_sleep },
592         { NULL, NULL },
593         /*
594          * CDEV
595          */
596         { "vm map (system)", &lock_class_mtx_sleep },
597         { "vm page queue", &lock_class_mtx_sleep },
598         { "vnode interlock", &lock_class_mtx_sleep },
599         { "cdev", &lock_class_mtx_sleep },
600         { NULL, NULL },
601         /*
602          * VM
603          */
604         { "vm map (user)", &lock_class_sx },
605         { "vm object", &lock_class_rw },
606         { "vm page", &lock_class_mtx_sleep },
607         { "vm page queue", &lock_class_mtx_sleep },
608         { "pmap pv global", &lock_class_rw },
609         { "pmap", &lock_class_mtx_sleep },
610         { "pmap pv list", &lock_class_rw },
611         { "vm page free queue", &lock_class_mtx_sleep },
612         { NULL, NULL },
613         /*
614          * kqueue/VFS interaction
615          */
616         { "kqueue", &lock_class_mtx_sleep },
617         { "struct mount mtx", &lock_class_mtx_sleep },
618         { "vnode interlock", &lock_class_mtx_sleep },
619         { NULL, NULL },
620         /*
621          * ZFS locking
622          */
623         { "dn->dn_mtx", &lock_class_sx },
624         { "dr->dt.di.dr_mtx", &lock_class_sx },
625         { "db->db_mtx", &lock_class_sx },
626         { NULL, NULL },
627         /*
628          * spin locks
629          */
630 #ifdef SMP
631         { "ap boot", &lock_class_mtx_spin },
632 #endif
633         { "rm.mutex_mtx", &lock_class_mtx_spin },
634         { "sio", &lock_class_mtx_spin },
635         { "scrlock", &lock_class_mtx_spin },
636 #ifdef __i386__
637         { "cy", &lock_class_mtx_spin },
638 #endif
639 #ifdef __sparc64__
640         { "pcib_mtx", &lock_class_mtx_spin },
641         { "rtc_mtx", &lock_class_mtx_spin },
642 #endif
643         { "scc_hwmtx", &lock_class_mtx_spin },
644         { "uart_hwmtx", &lock_class_mtx_spin },
645         { "fast_taskqueue", &lock_class_mtx_spin },
646         { "intr table", &lock_class_mtx_spin },
647 #ifdef  HWPMC_HOOKS
648         { "pmc-per-proc", &lock_class_mtx_spin },
649 #endif
650         { "process slock", &lock_class_mtx_spin },
651         { "sleepq chain", &lock_class_mtx_spin },
652         { "umtx lock", &lock_class_mtx_spin },
653         { "rm_spinlock", &lock_class_mtx_spin },
654         { "turnstile chain", &lock_class_mtx_spin },
655         { "turnstile lock", &lock_class_mtx_spin },
656         { "sched lock", &lock_class_mtx_spin },
657         { "td_contested", &lock_class_mtx_spin },
658         { "callout", &lock_class_mtx_spin },
659         { "entropy harvest mutex", &lock_class_mtx_spin },
660         { "syscons video lock", &lock_class_mtx_spin },
661 #ifdef SMP
662         { "smp rendezvous", &lock_class_mtx_spin },
663 #endif
664 #ifdef __powerpc__
665         { "tlb0", &lock_class_mtx_spin },
666 #endif
667         /*
668          * leaf locks
669          */
670         { "intrcnt", &lock_class_mtx_spin },
671         { "icu", &lock_class_mtx_spin },
672 #ifdef __i386__
673         { "allpmaps", &lock_class_mtx_spin },
674         { "descriptor tables", &lock_class_mtx_spin },
675 #endif
676         { "clk", &lock_class_mtx_spin },
677         { "cpuset", &lock_class_mtx_spin },
678         { "mprof lock", &lock_class_mtx_spin },
679         { "zombie lock", &lock_class_mtx_spin },
680         { "ALD Queue", &lock_class_mtx_spin },
681 #ifdef __ia64__
682         { "MCA spin lock", &lock_class_mtx_spin },
683 #endif
684 #if defined(__i386__) || defined(__amd64__)
685         { "pcicfg", &lock_class_mtx_spin },
686         { "NDIS thread lock", &lock_class_mtx_spin },
687 #endif
688         { "tw_osl_io_lock", &lock_class_mtx_spin },
689         { "tw_osl_q_lock", &lock_class_mtx_spin },
690         { "tw_cl_io_lock", &lock_class_mtx_spin },
691         { "tw_cl_intr_lock", &lock_class_mtx_spin },
692         { "tw_cl_gen_lock", &lock_class_mtx_spin },
693 #ifdef  HWPMC_HOOKS
694         { "pmc-leaf", &lock_class_mtx_spin },
695 #endif
696         { "blocked lock", &lock_class_mtx_spin },
697         { NULL, NULL },
698         { NULL, NULL }
699 };
700
701 #ifdef BLESSING
702 /*
703  * Pairs of locks which have been blessed
704  * Don't complain about order problems with blessed locks
705  */
706 static struct witness_blessed blessed_list[] = {
707 };
708 static int blessed_count =
709         sizeof(blessed_list) / sizeof(struct witness_blessed);
710 #endif
711
712 /*
713  * This global is set to 0 once it becomes safe to use the witness code.
714  */
715 static int witness_cold = 1;
716
717 /*
718  * This global is set to 1 once the static lock orders have been enrolled
719  * so that a warning can be issued for any spin locks enrolled later.
720  */
721 static int witness_spin_warn = 0;
722
723 /* Trim useless garbage from filenames. */
724 static const char *
725 fixup_filename(const char *file)
726 {
727
728         if (file == NULL)
729                 return (NULL);
730         while (strncmp(file, "../", 3) == 0)
731                 file += 3;
732         return (file);
733 }
734
735 /*
736  * The WITNESS-enabled diagnostic code.  Note that the witness code does
737  * assume that the early boot is single-threaded at least until after this
738  * routine is completed.
739  */
740 static void
741 witness_initialize(void *dummy __unused)
742 {
743         struct lock_object *lock;
744         struct witness_order_list_entry *order;
745         struct witness *w, *w1;
746         int i;
747
748         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
749             M_NOWAIT | M_ZERO);
750
751         /*
752          * We have to release Giant before initializing its witness
753          * structure so that WITNESS doesn't get confused.
754          */
755         mtx_unlock(&Giant);
756         mtx_assert(&Giant, MA_NOTOWNED);
757
758         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
759         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
760             MTX_NOWITNESS | MTX_NOPROFILE);
761         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
762                 w = &w_data[i];
763                 memset(w, 0, sizeof(*w));
764                 w_data[i].w_index = i;  /* Witness index never changes. */
765                 witness_free(w);
766         }
767         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
768             ("%s: Invalid list of free witness objects", __func__));
769
770         /* Witness with index 0 is not used to aid in debugging. */
771         STAILQ_REMOVE_HEAD(&w_free, w_list);
772         w_free_cnt--;
773
774         memset(w_rmatrix, 0,
775             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
776
777         for (i = 0; i < LOCK_CHILDCOUNT; i++)
778                 witness_lock_list_free(&w_locklistdata[i]);
779         witness_init_hash_tables();
780
781         /* First add in all the specified order lists. */
782         for (order = order_lists; order->w_name != NULL; order++) {
783                 w = enroll(order->w_name, order->w_class);
784                 if (w == NULL)
785                         continue;
786                 w->w_file = "order list";
787                 for (order++; order->w_name != NULL; order++) {
788                         w1 = enroll(order->w_name, order->w_class);
789                         if (w1 == NULL)
790                                 continue;
791                         w1->w_file = "order list";
792                         itismychild(w, w1);
793                         w = w1;
794                 }
795         }
796         witness_spin_warn = 1;
797
798         /* Iterate through all locks and add them to witness. */
799         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
800                 lock = pending_locks[i].wh_lock;
801                 KASSERT(lock->lo_flags & LO_WITNESS,
802                     ("%s: lock %s is on pending list but not LO_WITNESS",
803                     __func__, lock->lo_name));
804                 lock->lo_witness = enroll(pending_locks[i].wh_type,
805                     LOCK_CLASS(lock));
806         }
807
808         /* Mark the witness code as being ready for use. */
809         witness_cold = 0;
810
811         mtx_lock(&Giant);
812 }
813 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
814     NULL);
815
816 void
817 witness_init(struct lock_object *lock, const char *type)
818 {
819         struct lock_class *class;
820
821         /* Various sanity checks. */
822         class = LOCK_CLASS(lock);
823         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
824             (class->lc_flags & LC_RECURSABLE) == 0)
825                 kassert_panic("%s: lock (%s) %s can not be recursable",
826                     __func__, class->lc_name, lock->lo_name);
827         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
828             (class->lc_flags & LC_SLEEPABLE) == 0)
829                 kassert_panic("%s: lock (%s) %s can not be sleepable",
830                     __func__, class->lc_name, lock->lo_name);
831         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
832             (class->lc_flags & LC_UPGRADABLE) == 0)
833                 kassert_panic("%s: lock (%s) %s can not be upgradable",
834                     __func__, class->lc_name, lock->lo_name);
835
836         /*
837          * If we shouldn't watch this lock, then just clear lo_witness.
838          * Otherwise, if witness_cold is set, then it is too early to
839          * enroll this lock, so defer it to witness_initialize() by adding
840          * it to the pending_locks list.  If it is not too early, then enroll
841          * the lock now.
842          */
843         if (witness_watch < 1 || panicstr != NULL ||
844             (lock->lo_flags & LO_WITNESS) == 0)
845                 lock->lo_witness = NULL;
846         else if (witness_cold) {
847                 pending_locks[pending_cnt].wh_lock = lock;
848                 pending_locks[pending_cnt++].wh_type = type;
849                 if (pending_cnt > WITNESS_PENDLIST)
850                         panic("%s: pending locks list is too small, "
851                             "increase WITNESS_PENDLIST\n",
852                             __func__);
853         } else
854                 lock->lo_witness = enroll(type, class);
855 }
856
857 void
858 witness_destroy(struct lock_object *lock)
859 {
860         struct lock_class *class;
861         struct witness *w;
862
863         class = LOCK_CLASS(lock);
864
865         if (witness_cold)
866                 panic("lock (%s) %s destroyed while witness_cold",
867                     class->lc_name, lock->lo_name);
868
869         /* XXX: need to verify that no one holds the lock */
870         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
871                 return;
872         w = lock->lo_witness;
873
874         mtx_lock_spin(&w_mtx);
875         MPASS(w->w_refcount > 0);
876         w->w_refcount--;
877
878         if (w->w_refcount == 0)
879                 depart(w);
880         mtx_unlock_spin(&w_mtx);
881 }
882
883 #ifdef DDB
884 static void
885 witness_ddb_compute_levels(void)
886 {
887         struct witness *w;
888
889         /*
890          * First clear all levels.
891          */
892         STAILQ_FOREACH(w, &w_all, w_list)
893                 w->w_ddb_level = -1;
894
895         /*
896          * Look for locks with no parents and level all their descendants.
897          */
898         STAILQ_FOREACH(w, &w_all, w_list) {
899
900                 /* If the witness has ancestors (is not a root), skip it. */
901                 if (w->w_num_ancestors > 0)
902                         continue;
903                 witness_ddb_level_descendants(w, 0);
904         }
905 }
906
907 static void
908 witness_ddb_level_descendants(struct witness *w, int l)
909 {
910         int i;
911
912         if (w->w_ddb_level >= l)
913                 return;
914
915         w->w_ddb_level = l;
916         l++;
917
918         for (i = 1; i <= w_max_used_index; i++) {
919                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
920                         witness_ddb_level_descendants(&w_data[i], l);
921         }
922 }
923
924 static void
925 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
926     struct witness *w, int indent)
927 {
928         int i;
929
930         for (i = 0; i < indent; i++)
931                 prnt(" ");
932         prnt("%s (type: %s, depth: %d, active refs: %d)",
933              w->w_name, w->w_class->lc_name,
934              w->w_ddb_level, w->w_refcount);
935         if (w->w_displayed) {
936                 prnt(" -- (already displayed)\n");
937                 return;
938         }
939         w->w_displayed = 1;
940         if (w->w_file != NULL && w->w_line != 0)
941                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
942                     w->w_line);
943         else
944                 prnt(" -- never acquired\n");
945         indent++;
946         WITNESS_INDEX_ASSERT(w->w_index);
947         for (i = 1; i <= w_max_used_index; i++) {
948                 if (db_pager_quit)
949                         return;
950                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
951                         witness_ddb_display_descendants(prnt, &w_data[i],
952                             indent);
953         }
954 }
955
956 static void
957 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
958     struct witness_list *list)
959 {
960         struct witness *w;
961
962         STAILQ_FOREACH(w, list, w_typelist) {
963                 if (w->w_file == NULL || w->w_ddb_level > 0)
964                         continue;
965
966                 /* This lock has no anscestors - display its descendants. */
967                 witness_ddb_display_descendants(prnt, w, 0);
968                 if (db_pager_quit)
969                         return;
970         }
971 }
972         
973 static void
974 witness_ddb_display(int(*prnt)(const char *fmt, ...))
975 {
976         struct witness *w;
977
978         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
979         witness_ddb_compute_levels();
980
981         /* Clear all the displayed flags. */
982         STAILQ_FOREACH(w, &w_all, w_list)
983                 w->w_displayed = 0;
984
985         /*
986          * First, handle sleep locks which have been acquired at least
987          * once.
988          */
989         prnt("Sleep locks:\n");
990         witness_ddb_display_list(prnt, &w_sleep);
991         if (db_pager_quit)
992                 return;
993         
994         /*
995          * Now do spin locks which have been acquired at least once.
996          */
997         prnt("\nSpin locks:\n");
998         witness_ddb_display_list(prnt, &w_spin);
999         if (db_pager_quit)
1000                 return;
1001         
1002         /*
1003          * Finally, any locks which have not been acquired yet.
1004          */
1005         prnt("\nLocks which were never acquired:\n");
1006         STAILQ_FOREACH(w, &w_all, w_list) {
1007                 if (w->w_file != NULL || w->w_refcount == 0)
1008                         continue;
1009                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1010                     w->w_class->lc_name, w->w_ddb_level);
1011                 if (db_pager_quit)
1012                         return;
1013         }
1014 }
1015 #endif /* DDB */
1016
1017 int
1018 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1019 {
1020
1021         if (witness_watch == -1 || panicstr != NULL)
1022                 return (0);
1023
1024         /* Require locks that witness knows about. */
1025         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1026             lock2->lo_witness == NULL)
1027                 return (EINVAL);
1028
1029         mtx_assert(&w_mtx, MA_NOTOWNED);
1030         mtx_lock_spin(&w_mtx);
1031
1032         /*
1033          * If we already have either an explicit or implied lock order that
1034          * is the other way around, then return an error.
1035          */
1036         if (witness_watch &&
1037             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1038                 mtx_unlock_spin(&w_mtx);
1039                 return (EDOOFUS);
1040         }
1041         
1042         /* Try to add the new order. */
1043         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1044             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1045         itismychild(lock1->lo_witness, lock2->lo_witness);
1046         mtx_unlock_spin(&w_mtx);
1047         return (0);
1048 }
1049
1050 void
1051 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1052     int line, struct lock_object *interlock)
1053 {
1054         struct lock_list_entry *lock_list, *lle;
1055         struct lock_instance *lock1, *lock2, *plock;
1056         struct lock_class *class, *iclass;
1057         struct witness *w, *w1;
1058         struct thread *td;
1059         int i, j;
1060
1061         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1062             panicstr != NULL)
1063                 return;
1064
1065         w = lock->lo_witness;
1066         class = LOCK_CLASS(lock);
1067         td = curthread;
1068
1069         if (class->lc_flags & LC_SLEEPLOCK) {
1070
1071                 /*
1072                  * Since spin locks include a critical section, this check
1073                  * implicitly enforces a lock order of all sleep locks before
1074                  * all spin locks.
1075                  */
1076                 if (td->td_critnest != 0 && !kdb_active)
1077                         kassert_panic("acquiring blockable sleep lock with "
1078                             "spinlock or critical section held (%s) %s @ %s:%d",
1079                             class->lc_name, lock->lo_name,
1080                             fixup_filename(file), line);
1081
1082                 /*
1083                  * If this is the first lock acquired then just return as
1084                  * no order checking is needed.
1085                  */
1086                 lock_list = td->td_sleeplocks;
1087                 if (lock_list == NULL || lock_list->ll_count == 0)
1088                         return;
1089         } else {
1090
1091                 /*
1092                  * If this is the first lock, just return as no order
1093                  * checking is needed.  Avoid problems with thread
1094                  * migration pinning the thread while checking if
1095                  * spinlocks are held.  If at least one spinlock is held
1096                  * the thread is in a safe path and it is allowed to
1097                  * unpin it.
1098                  */
1099                 sched_pin();
1100                 lock_list = PCPU_GET(spinlocks);
1101                 if (lock_list == NULL || lock_list->ll_count == 0) {
1102                         sched_unpin();
1103                         return;
1104                 }
1105                 sched_unpin();
1106         }
1107
1108         /*
1109          * Check to see if we are recursing on a lock we already own.  If
1110          * so, make sure that we don't mismatch exclusive and shared lock
1111          * acquires.
1112          */
1113         lock1 = find_instance(lock_list, lock);
1114         if (lock1 != NULL) {
1115                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1116                     (flags & LOP_EXCLUSIVE) == 0) {
1117                         printf("shared lock of (%s) %s @ %s:%d\n",
1118                             class->lc_name, lock->lo_name,
1119                             fixup_filename(file), line);
1120                         printf("while exclusively locked from %s:%d\n",
1121                             fixup_filename(lock1->li_file), lock1->li_line);
1122                         kassert_panic("excl->share");
1123                 }
1124                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1125                     (flags & LOP_EXCLUSIVE) != 0) {
1126                         printf("exclusive lock of (%s) %s @ %s:%d\n",
1127                             class->lc_name, lock->lo_name,
1128                             fixup_filename(file), line);
1129                         printf("while share locked from %s:%d\n",
1130                             fixup_filename(lock1->li_file), lock1->li_line);
1131                         kassert_panic("share->excl");
1132                 }
1133                 return;
1134         }
1135
1136         /* Warn if the interlock is not locked exactly once. */
1137         if (interlock != NULL) {
1138                 iclass = LOCK_CLASS(interlock);
1139                 lock1 = find_instance(lock_list, interlock);
1140                 if (lock1 == NULL)
1141                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1142                             iclass->lc_name, interlock->lo_name,
1143                             fixup_filename(file), line);
1144                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1145                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1146                             iclass->lc_name, interlock->lo_name,
1147                             fixup_filename(file), line);
1148         }
1149
1150         /*
1151          * Find the previously acquired lock, but ignore interlocks.
1152          */
1153         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1154         if (interlock != NULL && plock->li_lock == interlock) {
1155                 if (lock_list->ll_count > 1)
1156                         plock =
1157                             &lock_list->ll_children[lock_list->ll_count - 2];
1158                 else {
1159                         lle = lock_list->ll_next;
1160
1161                         /*
1162                          * The interlock is the only lock we hold, so
1163                          * simply return.
1164                          */
1165                         if (lle == NULL)
1166                                 return;
1167                         plock = &lle->ll_children[lle->ll_count - 1];
1168                 }
1169         }
1170         
1171         /*
1172          * Try to perform most checks without a lock.  If this succeeds we
1173          * can skip acquiring the lock and return success.
1174          */
1175         w1 = plock->li_lock->lo_witness;
1176         if (witness_lock_order_check(w1, w))
1177                 return;
1178
1179         /*
1180          * Check for duplicate locks of the same type.  Note that we only
1181          * have to check for this on the last lock we just acquired.  Any
1182          * other cases will be caught as lock order violations.
1183          */
1184         mtx_lock_spin(&w_mtx);
1185         witness_lock_order_add(w1, w);
1186         if (w1 == w) {
1187                 i = w->w_index;
1188                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1189                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1190                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1191                         w->w_reversed = 1;
1192                         mtx_unlock_spin(&w_mtx);
1193                         printf(
1194                             "acquiring duplicate lock of same type: \"%s\"\n", 
1195                             w->w_name);
1196                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1197                             fixup_filename(plock->li_file), plock->li_line);
1198                         printf(" 2nd %s @ %s:%d\n", lock->lo_name,
1199                             fixup_filename(file), line);
1200                         witness_debugger(1);
1201                 } else
1202                         mtx_unlock_spin(&w_mtx);
1203                 return;
1204         }
1205         mtx_assert(&w_mtx, MA_OWNED);
1206
1207         /*
1208          * If we know that the lock we are acquiring comes after
1209          * the lock we most recently acquired in the lock order tree,
1210          * then there is no need for any further checks.
1211          */
1212         if (isitmychild(w1, w))
1213                 goto out;
1214
1215         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1216                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1217
1218                         MPASS(j < WITNESS_COUNT);
1219                         lock1 = &lle->ll_children[i];
1220
1221                         /*
1222                          * Ignore the interlock.
1223                          */
1224                         if (interlock == lock1->li_lock)
1225                                 continue;
1226
1227                         /*
1228                          * If this lock doesn't undergo witness checking,
1229                          * then skip it.
1230                          */
1231                         w1 = lock1->li_lock->lo_witness;
1232                         if (w1 == NULL) {
1233                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1234                                     ("lock missing witness structure"));
1235                                 continue;
1236                         }
1237
1238                         /*
1239                          * If we are locking Giant and this is a sleepable
1240                          * lock, then skip it.
1241                          */
1242                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1243                             lock == &Giant.lock_object)
1244                                 continue;
1245
1246                         /*
1247                          * If we are locking a sleepable lock and this lock
1248                          * is Giant, then skip it.
1249                          */
1250                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1251                             lock1->li_lock == &Giant.lock_object)
1252                                 continue;
1253
1254                         /*
1255                          * If we are locking a sleepable lock and this lock
1256                          * isn't sleepable, we want to treat it as a lock
1257                          * order violation to enfore a general lock order of
1258                          * sleepable locks before non-sleepable locks.
1259                          */
1260                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1261                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1262                                 goto reversal;
1263
1264                         /*
1265                          * If we are locking Giant and this is a non-sleepable
1266                          * lock, then treat it as a reversal.
1267                          */
1268                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1269                             lock == &Giant.lock_object)
1270                                 goto reversal;
1271
1272                         /*
1273                          * Check the lock order hierarchy for a reveresal.
1274                          */
1275                         if (!isitmydescendant(w, w1))
1276                                 continue;
1277                 reversal:
1278
1279                         /*
1280                          * We have a lock order violation, check to see if it
1281                          * is allowed or has already been yelled about.
1282                          */
1283 #ifdef BLESSING
1284
1285                         /*
1286                          * If the lock order is blessed, just bail.  We don't
1287                          * look for other lock order violations though, which
1288                          * may be a bug.
1289                          */
1290                         if (blessed(w, w1))
1291                                 goto out;
1292 #endif
1293
1294                         /* Bail if this violation is known */
1295                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1296                                 goto out;
1297
1298                         /* Record this as a violation */
1299                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1300                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1301                         w->w_reversed = w1->w_reversed = 1;
1302                         witness_increment_graph_generation();
1303                         mtx_unlock_spin(&w_mtx);
1304
1305 #ifdef WITNESS_NO_VNODE
1306                         /*
1307                          * There are known LORs between VNODE locks. They are
1308                          * not an indication of a bug. VNODE locks are flagged
1309                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1310                          * is between 2 VNODE locks.
1311                          */
1312                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1313                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1314                                 return;
1315 #endif
1316
1317                         /*
1318                          * Ok, yell about it.
1319                          */
1320                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1321                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1322                                 printf(
1323                 "lock order reversal: (sleepable after non-sleepable)\n");
1324                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1325                             && lock == &Giant.lock_object)
1326                                 printf(
1327                 "lock order reversal: (Giant after non-sleepable)\n");
1328                         else
1329                                 printf("lock order reversal:\n");
1330
1331                         /*
1332                          * Try to locate an earlier lock with
1333                          * witness w in our list.
1334                          */
1335                         do {
1336                                 lock2 = &lle->ll_children[i];
1337                                 MPASS(lock2->li_lock != NULL);
1338                                 if (lock2->li_lock->lo_witness == w)
1339                                         break;
1340                                 if (i == 0 && lle->ll_next != NULL) {
1341                                         lle = lle->ll_next;
1342                                         i = lle->ll_count - 1;
1343                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1344                                 } else
1345                                         i--;
1346                         } while (i >= 0);
1347                         if (i < 0) {
1348                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1349                                     lock1->li_lock, lock1->li_lock->lo_name,
1350                                     w1->w_name, fixup_filename(lock1->li_file),
1351                                     lock1->li_line);
1352                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1353                                     lock->lo_name, w->w_name,
1354                                     fixup_filename(file), line);
1355                         } else {
1356                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1357                                     lock2->li_lock, lock2->li_lock->lo_name,
1358                                     lock2->li_lock->lo_witness->w_name,
1359                                     fixup_filename(lock2->li_file),
1360                                     lock2->li_line);
1361                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1362                                     lock1->li_lock, lock1->li_lock->lo_name,
1363                                     w1->w_name, fixup_filename(lock1->li_file),
1364                                     lock1->li_line);
1365                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1366                                     lock->lo_name, w->w_name,
1367                                     fixup_filename(file), line);
1368                         }
1369                         witness_debugger(1);
1370                         return;
1371                 }
1372         }
1373
1374         /*
1375          * If requested, build a new lock order.  However, don't build a new
1376          * relationship between a sleepable lock and Giant if it is in the
1377          * wrong direction.  The correct lock order is that sleepable locks
1378          * always come before Giant.
1379          */
1380         if (flags & LOP_NEWORDER &&
1381             !(plock->li_lock == &Giant.lock_object &&
1382             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1383                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1384                     w->w_name, plock->li_lock->lo_witness->w_name);
1385                 itismychild(plock->li_lock->lo_witness, w);
1386         }
1387 out:
1388         mtx_unlock_spin(&w_mtx);
1389 }
1390
1391 void
1392 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1393 {
1394         struct lock_list_entry **lock_list, *lle;
1395         struct lock_instance *instance;
1396         struct witness *w;
1397         struct thread *td;
1398
1399         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1400             panicstr != NULL)
1401                 return;
1402         w = lock->lo_witness;
1403         td = curthread;
1404
1405         /* Determine lock list for this lock. */
1406         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1407                 lock_list = &td->td_sleeplocks;
1408         else
1409                 lock_list = PCPU_PTR(spinlocks);
1410
1411         /* Check to see if we are recursing on a lock we already own. */
1412         instance = find_instance(*lock_list, lock);
1413         if (instance != NULL) {
1414                 instance->li_flags++;
1415                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1416                     td->td_proc->p_pid, lock->lo_name,
1417                     instance->li_flags & LI_RECURSEMASK);
1418                 instance->li_file = file;
1419                 instance->li_line = line;
1420                 return;
1421         }
1422
1423         /* Update per-witness last file and line acquire. */
1424         w->w_file = file;
1425         w->w_line = line;
1426
1427         /* Find the next open lock instance in the list and fill it. */
1428         lle = *lock_list;
1429         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1430                 lle = witness_lock_list_get();
1431                 if (lle == NULL)
1432                         return;
1433                 lle->ll_next = *lock_list;
1434                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1435                     td->td_proc->p_pid, lle);
1436                 *lock_list = lle;
1437         }
1438         instance = &lle->ll_children[lle->ll_count++];
1439         instance->li_lock = lock;
1440         instance->li_line = line;
1441         instance->li_file = file;
1442         if ((flags & LOP_EXCLUSIVE) != 0)
1443                 instance->li_flags = LI_EXCLUSIVE;
1444         else
1445                 instance->li_flags = 0;
1446         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1447             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1448 }
1449
1450 void
1451 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1452 {
1453         struct lock_instance *instance;
1454         struct lock_class *class;
1455
1456         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1457         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1458                 return;
1459         class = LOCK_CLASS(lock);
1460         if (witness_watch) {
1461                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1462                         kassert_panic(
1463                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1464                             class->lc_name, lock->lo_name,
1465                             fixup_filename(file), line);
1466                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1467                         kassert_panic(
1468                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1469                             class->lc_name, lock->lo_name,
1470                             fixup_filename(file), line);
1471         }
1472         instance = find_instance(curthread->td_sleeplocks, lock);
1473         if (instance == NULL) {
1474                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1475                     class->lc_name, lock->lo_name,
1476                     fixup_filename(file), line);
1477                 return;
1478         }
1479         if (witness_watch) {
1480                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1481                         kassert_panic(
1482                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1483                             class->lc_name, lock->lo_name,
1484                             fixup_filename(file), line);
1485                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1486                         kassert_panic(
1487                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1488                             class->lc_name, lock->lo_name,
1489                             instance->li_flags & LI_RECURSEMASK,
1490                             fixup_filename(file), line);
1491         }
1492         instance->li_flags |= LI_EXCLUSIVE;
1493 }
1494
1495 void
1496 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1497     int line)
1498 {
1499         struct lock_instance *instance;
1500         struct lock_class *class;
1501
1502         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1503         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1504                 return;
1505         class = LOCK_CLASS(lock);
1506         if (witness_watch) {
1507                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1508                         kassert_panic(
1509                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1510                             class->lc_name, lock->lo_name,
1511                             fixup_filename(file), line);
1512                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1513                         kassert_panic(
1514                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1515                             class->lc_name, lock->lo_name,
1516                             fixup_filename(file), line);
1517         }
1518         instance = find_instance(curthread->td_sleeplocks, lock);
1519         if (instance == NULL) {
1520                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1521                     class->lc_name, lock->lo_name,
1522                     fixup_filename(file), line);
1523                 return;
1524         }
1525         if (witness_watch) {
1526                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1527                         kassert_panic(
1528                             "downgrade of shared lock (%s) %s @ %s:%d",
1529                             class->lc_name, lock->lo_name,
1530                             fixup_filename(file), line);
1531                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1532                         kassert_panic(
1533                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1534                             class->lc_name, lock->lo_name,
1535                             instance->li_flags & LI_RECURSEMASK,
1536                             fixup_filename(file), line);
1537         }
1538         instance->li_flags &= ~LI_EXCLUSIVE;
1539 }
1540
1541 void
1542 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1543 {
1544         struct lock_list_entry **lock_list, *lle;
1545         struct lock_instance *instance;
1546         struct lock_class *class;
1547         struct thread *td;
1548         register_t s;
1549         int i, j;
1550
1551         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1552                 return;
1553         td = curthread;
1554         class = LOCK_CLASS(lock);
1555
1556         /* Find lock instance associated with this lock. */
1557         if (class->lc_flags & LC_SLEEPLOCK)
1558                 lock_list = &td->td_sleeplocks;
1559         else
1560                 lock_list = PCPU_PTR(spinlocks);
1561         lle = *lock_list;
1562         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1563                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1564                         instance = &(*lock_list)->ll_children[i];
1565                         if (instance->li_lock == lock)
1566                                 goto found;
1567                 }
1568
1569         /*
1570          * When disabling WITNESS through witness_watch we could end up in
1571          * having registered locks in the td_sleeplocks queue.
1572          * We have to make sure we flush these queues, so just search for
1573          * eventual register locks and remove them.
1574          */
1575         if (witness_watch > 0) {
1576                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1577                     lock->lo_name, fixup_filename(file), line);
1578                 return;
1579         } else {
1580                 return;
1581         }
1582 found:
1583
1584         /* First, check for shared/exclusive mismatches. */
1585         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1586             (flags & LOP_EXCLUSIVE) == 0) {
1587                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1588                     lock->lo_name, fixup_filename(file), line);
1589                 printf("while exclusively locked from %s:%d\n",
1590                     fixup_filename(instance->li_file), instance->li_line);
1591                 kassert_panic("excl->ushare");
1592         }
1593         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1594             (flags & LOP_EXCLUSIVE) != 0) {
1595                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1596                     lock->lo_name, fixup_filename(file), line);
1597                 printf("while share locked from %s:%d\n",
1598                     fixup_filename(instance->li_file),
1599                     instance->li_line);
1600                 kassert_panic("share->uexcl");
1601         }
1602         /* If we are recursed, unrecurse. */
1603         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1604                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1605                     td->td_proc->p_pid, instance->li_lock->lo_name,
1606                     instance->li_flags);
1607                 instance->li_flags--;
1608                 return;
1609         }
1610         /* The lock is now being dropped, check for NORELEASE flag */
1611         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1612                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1613                     lock->lo_name, fixup_filename(file), line);
1614                 kassert_panic("lock marked norelease");
1615         }
1616
1617         /* Otherwise, remove this item from the list. */
1618         s = intr_disable();
1619         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1620             td->td_proc->p_pid, instance->li_lock->lo_name,
1621             (*lock_list)->ll_count - 1);
1622         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1623                 (*lock_list)->ll_children[j] =
1624                     (*lock_list)->ll_children[j + 1];
1625         (*lock_list)->ll_count--;
1626         intr_restore(s);
1627
1628         /*
1629          * In order to reduce contention on w_mtx, we want to keep always an
1630          * head object into lists so that frequent allocation from the 
1631          * free witness pool (and subsequent locking) is avoided.
1632          * In order to maintain the current code simple, when the head
1633          * object is totally unloaded it means also that we do not have
1634          * further objects in the list, so the list ownership needs to be
1635          * hand over to another object if the current head needs to be freed.
1636          */
1637         if ((*lock_list)->ll_count == 0) {
1638                 if (*lock_list == lle) {
1639                         if (lle->ll_next == NULL)
1640                                 return;
1641                 } else
1642                         lle = *lock_list;
1643                 *lock_list = lle->ll_next;
1644                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1645                     td->td_proc->p_pid, lle);
1646                 witness_lock_list_free(lle);
1647         }
1648 }
1649
1650 void
1651 witness_thread_exit(struct thread *td)
1652 {
1653         struct lock_list_entry *lle;
1654         int i, n;
1655
1656         lle = td->td_sleeplocks;
1657         if (lle == NULL || panicstr != NULL)
1658                 return;
1659         if (lle->ll_count != 0) {
1660                 for (n = 0; lle != NULL; lle = lle->ll_next)
1661                         for (i = lle->ll_count - 1; i >= 0; i--) {
1662                                 if (n == 0)
1663                 printf("Thread %p exiting with the following locks held:\n",
1664                                             td);
1665                                 n++;
1666                                 witness_list_lock(&lle->ll_children[i], printf);
1667                                 
1668                         }
1669                 kassert_panic(
1670                     "Thread %p cannot exit while holding sleeplocks\n", td);
1671         }
1672         witness_lock_list_free(lle);
1673 }
1674
1675 /*
1676  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1677  * exempt Giant and sleepable locks from the checks as well.  If any
1678  * non-exempt locks are held, then a supplied message is printed to the
1679  * console along with a list of the offending locks.  If indicated in the
1680  * flags then a failure results in a panic as well.
1681  */
1682 int
1683 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1684 {
1685         struct lock_list_entry *lock_list, *lle;
1686         struct lock_instance *lock1;
1687         struct thread *td;
1688         va_list ap;
1689         int i, n;
1690
1691         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1692                 return (0);
1693         n = 0;
1694         td = curthread;
1695         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1696                 for (i = lle->ll_count - 1; i >= 0; i--) {
1697                         lock1 = &lle->ll_children[i];
1698                         if (lock1->li_lock == lock)
1699                                 continue;
1700                         if (flags & WARN_GIANTOK &&
1701                             lock1->li_lock == &Giant.lock_object)
1702                                 continue;
1703                         if (flags & WARN_SLEEPOK &&
1704                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1705                                 continue;
1706                         if (n == 0) {
1707                                 va_start(ap, fmt);
1708                                 vprintf(fmt, ap);
1709                                 va_end(ap);
1710                                 printf(" with the following");
1711                                 if (flags & WARN_SLEEPOK)
1712                                         printf(" non-sleepable");
1713                                 printf(" locks held:\n");
1714                         }
1715                         n++;
1716                         witness_list_lock(lock1, printf);
1717                 }
1718
1719         /*
1720          * Pin the thread in order to avoid problems with thread migration.
1721          * Once that all verifies are passed about spinlocks ownership,
1722          * the thread is in a safe path and it can be unpinned.
1723          */
1724         sched_pin();
1725         lock_list = PCPU_GET(spinlocks);
1726         if (lock_list != NULL && lock_list->ll_count != 0) {
1727                 sched_unpin();
1728
1729                 /*
1730                  * We should only have one spinlock and as long as
1731                  * the flags cannot match for this locks class,
1732                  * check if the first spinlock is the one curthread
1733                  * should hold.
1734                  */
1735                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1736                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1737                     lock1->li_lock == lock && n == 0)
1738                         return (0);
1739
1740                 va_start(ap, fmt);
1741                 vprintf(fmt, ap);
1742                 va_end(ap);
1743                 printf(" with the following");
1744                 if (flags & WARN_SLEEPOK)
1745                         printf(" non-sleepable");
1746                 printf(" locks held:\n");
1747                 n += witness_list_locks(&lock_list, printf);
1748         } else
1749                 sched_unpin();
1750         if (flags & WARN_PANIC && n)
1751                 kassert_panic("%s", __func__);
1752         else
1753                 witness_debugger(n);
1754         return (n);
1755 }
1756
1757 const char *
1758 witness_file(struct lock_object *lock)
1759 {
1760         struct witness *w;
1761
1762         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1763                 return ("?");
1764         w = lock->lo_witness;
1765         return (w->w_file);
1766 }
1767
1768 int
1769 witness_line(struct lock_object *lock)
1770 {
1771         struct witness *w;
1772
1773         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1774                 return (0);
1775         w = lock->lo_witness;
1776         return (w->w_line);
1777 }
1778
1779 static struct witness *
1780 enroll(const char *description, struct lock_class *lock_class)
1781 {
1782         struct witness *w;
1783         struct witness_list *typelist;
1784
1785         MPASS(description != NULL);
1786
1787         if (witness_watch == -1 || panicstr != NULL)
1788                 return (NULL);
1789         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1790                 if (witness_skipspin)
1791                         return (NULL);
1792                 else
1793                         typelist = &w_spin;
1794         } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1795                 typelist = &w_sleep;
1796         } else {
1797                 kassert_panic("lock class %s is not sleep or spin",
1798                     lock_class->lc_name);
1799                 return (NULL);
1800         }
1801
1802         mtx_lock_spin(&w_mtx);
1803         w = witness_hash_get(description);
1804         if (w)
1805                 goto found;
1806         if ((w = witness_get()) == NULL)
1807                 return (NULL);
1808         MPASS(strlen(description) < MAX_W_NAME);
1809         strcpy(w->w_name, description);
1810         w->w_class = lock_class;
1811         w->w_refcount = 1;
1812         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1813         if (lock_class->lc_flags & LC_SPINLOCK) {
1814                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1815                 w_spin_cnt++;
1816         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1817                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1818                 w_sleep_cnt++;
1819         }
1820
1821         /* Insert new witness into the hash */
1822         witness_hash_put(w);
1823         witness_increment_graph_generation();
1824         mtx_unlock_spin(&w_mtx);
1825         return (w);
1826 found:
1827         w->w_refcount++;
1828         mtx_unlock_spin(&w_mtx);
1829         if (lock_class != w->w_class)
1830                 kassert_panic(
1831                         "lock (%s) %s does not match earlier (%s) lock",
1832                         description, lock_class->lc_name,
1833                         w->w_class->lc_name);
1834         return (w);
1835 }
1836
1837 static void
1838 depart(struct witness *w)
1839 {
1840         struct witness_list *list;
1841
1842         MPASS(w->w_refcount == 0);
1843         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1844                 list = &w_sleep;
1845                 w_sleep_cnt--;
1846         } else {
1847                 list = &w_spin;
1848                 w_spin_cnt--;
1849         }
1850         /*
1851          * Set file to NULL as it may point into a loadable module.
1852          */
1853         w->w_file = NULL;
1854         w->w_line = 0;
1855         witness_increment_graph_generation();
1856 }
1857
1858
1859 static void
1860 adopt(struct witness *parent, struct witness *child)
1861 {
1862         int pi, ci, i, j;
1863
1864         if (witness_cold == 0)
1865                 mtx_assert(&w_mtx, MA_OWNED);
1866
1867         /* If the relationship is already known, there's no work to be done. */
1868         if (isitmychild(parent, child))
1869                 return;
1870
1871         /* When the structure of the graph changes, bump up the generation. */
1872         witness_increment_graph_generation();
1873
1874         /*
1875          * The hard part ... create the direct relationship, then propagate all
1876          * indirect relationships.
1877          */
1878         pi = parent->w_index;
1879         ci = child->w_index;
1880         WITNESS_INDEX_ASSERT(pi);
1881         WITNESS_INDEX_ASSERT(ci);
1882         MPASS(pi != ci);
1883         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1884         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1885
1886         /*
1887          * If parent was not already an ancestor of child,
1888          * then we increment the descendant and ancestor counters.
1889          */
1890         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1891                 parent->w_num_descendants++;
1892                 child->w_num_ancestors++;
1893         }
1894
1895         /* 
1896          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1897          * an ancestor of 'pi' during this loop.
1898          */
1899         for (i = 1; i <= w_max_used_index; i++) {
1900                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1901                     (i != pi))
1902                         continue;
1903
1904                 /* Find each descendant of 'i' and mark it as a descendant. */
1905                 for (j = 1; j <= w_max_used_index; j++) {
1906
1907                         /* 
1908                          * Skip children that are already marked as
1909                          * descendants of 'i'.
1910                          */
1911                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1912                                 continue;
1913
1914                         /*
1915                          * We are only interested in descendants of 'ci'. Note
1916                          * that 'ci' itself is counted as a descendant of 'ci'.
1917                          */
1918                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1919                             (j != ci))
1920                                 continue;
1921                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1922                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1923                         w_data[i].w_num_descendants++;
1924                         w_data[j].w_num_ancestors++;
1925
1926                         /* 
1927                          * Make sure we aren't marking a node as both an
1928                          * ancestor and descendant. We should have caught 
1929                          * this as a lock order reversal earlier.
1930                          */
1931                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1932                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1933                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1934                                     "both ancestor and descendant\n",
1935                                     i, j, w_rmatrix[i][j]); 
1936                                 kdb_backtrace();
1937                                 printf("Witness disabled.\n");
1938                                 witness_watch = -1;
1939                         }
1940                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1941                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1942                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1943                                     "both ancestor and descendant\n",
1944                                     j, i, w_rmatrix[j][i]); 
1945                                 kdb_backtrace();
1946                                 printf("Witness disabled.\n");
1947                                 witness_watch = -1;
1948                         }
1949                 }
1950         }
1951 }
1952
1953 static void
1954 itismychild(struct witness *parent, struct witness *child)
1955 {
1956         int unlocked;
1957
1958         MPASS(child != NULL && parent != NULL);
1959         if (witness_cold == 0)
1960                 mtx_assert(&w_mtx, MA_OWNED);
1961
1962         if (!witness_lock_type_equal(parent, child)) {
1963                 if (witness_cold == 0) {
1964                         unlocked = 1;
1965                         mtx_unlock_spin(&w_mtx);
1966                 } else {
1967                         unlocked = 0;
1968                 }
1969                 kassert_panic(
1970                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1971                     "the same lock type", __func__, parent->w_name,
1972                     parent->w_class->lc_name, child->w_name,
1973                     child->w_class->lc_name);
1974                 if (unlocked)
1975                         mtx_lock_spin(&w_mtx);
1976         }
1977         adopt(parent, child);
1978 }
1979
1980 /*
1981  * Generic code for the isitmy*() functions. The rmask parameter is the
1982  * expected relationship of w1 to w2.
1983  */
1984 static int
1985 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1986 {
1987         unsigned char r1, r2;
1988         int i1, i2;
1989
1990         i1 = w1->w_index;
1991         i2 = w2->w_index;
1992         WITNESS_INDEX_ASSERT(i1);
1993         WITNESS_INDEX_ASSERT(i2);
1994         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1995         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1996
1997         /* The flags on one better be the inverse of the flags on the other */
1998         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1999                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2000                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2001                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
2002                     "w_rmatrix[%d][%d] == %hhx\n",
2003                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2004                     i2, i1, r2);
2005                 kdb_backtrace();
2006                 printf("Witness disabled.\n");
2007                 witness_watch = -1;
2008         }
2009         return (r1 & rmask);
2010 }
2011
2012 /*
2013  * Checks if @child is a direct child of @parent.
2014  */
2015 static int
2016 isitmychild(struct witness *parent, struct witness *child)
2017 {
2018
2019         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2020 }
2021
2022 /*
2023  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2024  */
2025 static int
2026 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2027 {
2028
2029         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2030             __func__));
2031 }
2032
2033 #ifdef BLESSING
2034 static int
2035 blessed(struct witness *w1, struct witness *w2)
2036 {
2037         int i;
2038         struct witness_blessed *b;
2039
2040         for (i = 0; i < blessed_count; i++) {
2041                 b = &blessed_list[i];
2042                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2043                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2044                                 return (1);
2045                         continue;
2046                 }
2047                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2048                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2049                                 return (1);
2050         }
2051         return (0);
2052 }
2053 #endif
2054
2055 static struct witness *
2056 witness_get(void)
2057 {
2058         struct witness *w;
2059         int index;
2060
2061         if (witness_cold == 0)
2062                 mtx_assert(&w_mtx, MA_OWNED);
2063
2064         if (witness_watch == -1) {
2065                 mtx_unlock_spin(&w_mtx);
2066                 return (NULL);
2067         }
2068         if (STAILQ_EMPTY(&w_free)) {
2069                 witness_watch = -1;
2070                 mtx_unlock_spin(&w_mtx);
2071                 printf("WITNESS: unable to allocate a new witness object\n");
2072                 return (NULL);
2073         }
2074         w = STAILQ_FIRST(&w_free);
2075         STAILQ_REMOVE_HEAD(&w_free, w_list);
2076         w_free_cnt--;
2077         index = w->w_index;
2078         MPASS(index > 0 && index == w_max_used_index+1 &&
2079             index < WITNESS_COUNT);
2080         bzero(w, sizeof(*w));
2081         w->w_index = index;
2082         if (index > w_max_used_index)
2083                 w_max_used_index = index;
2084         return (w);
2085 }
2086
2087 static void
2088 witness_free(struct witness *w)
2089 {
2090
2091         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2092         w_free_cnt++;
2093 }
2094
2095 static struct lock_list_entry *
2096 witness_lock_list_get(void)
2097 {
2098         struct lock_list_entry *lle;
2099
2100         if (witness_watch == -1)
2101                 return (NULL);
2102         mtx_lock_spin(&w_mtx);
2103         lle = w_lock_list_free;
2104         if (lle == NULL) {
2105                 witness_watch = -1;
2106                 mtx_unlock_spin(&w_mtx);
2107                 printf("%s: witness exhausted\n", __func__);
2108                 return (NULL);
2109         }
2110         w_lock_list_free = lle->ll_next;
2111         mtx_unlock_spin(&w_mtx);
2112         bzero(lle, sizeof(*lle));
2113         return (lle);
2114 }
2115                 
2116 static void
2117 witness_lock_list_free(struct lock_list_entry *lle)
2118 {
2119
2120         mtx_lock_spin(&w_mtx);
2121         lle->ll_next = w_lock_list_free;
2122         w_lock_list_free = lle;
2123         mtx_unlock_spin(&w_mtx);
2124 }
2125
2126 static struct lock_instance *
2127 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2128 {
2129         struct lock_list_entry *lle;
2130         struct lock_instance *instance;
2131         int i;
2132
2133         for (lle = list; lle != NULL; lle = lle->ll_next)
2134                 for (i = lle->ll_count - 1; i >= 0; i--) {
2135                         instance = &lle->ll_children[i];
2136                         if (instance->li_lock == lock)
2137                                 return (instance);
2138                 }
2139         return (NULL);
2140 }
2141
2142 static void
2143 witness_list_lock(struct lock_instance *instance,
2144     int (*prnt)(const char *fmt, ...))
2145 {
2146         struct lock_object *lock;
2147
2148         lock = instance->li_lock;
2149         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2150             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2151         if (lock->lo_witness->w_name != lock->lo_name)
2152                 prnt(" (%s)", lock->lo_witness->w_name);
2153         prnt(" r = %d (%p) locked @ %s:%d\n",
2154             instance->li_flags & LI_RECURSEMASK, lock,
2155             fixup_filename(instance->li_file), instance->li_line);
2156 }
2157
2158 #ifdef DDB
2159 static int
2160 witness_thread_has_locks(struct thread *td)
2161 {
2162
2163         if (td->td_sleeplocks == NULL)
2164                 return (0);
2165         return (td->td_sleeplocks->ll_count != 0);
2166 }
2167
2168 static int
2169 witness_proc_has_locks(struct proc *p)
2170 {
2171         struct thread *td;
2172
2173         FOREACH_THREAD_IN_PROC(p, td) {
2174                 if (witness_thread_has_locks(td))
2175                         return (1);
2176         }
2177         return (0);
2178 }
2179 #endif
2180
2181 int
2182 witness_list_locks(struct lock_list_entry **lock_list,
2183     int (*prnt)(const char *fmt, ...))
2184 {
2185         struct lock_list_entry *lle;
2186         int i, nheld;
2187
2188         nheld = 0;
2189         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2190                 for (i = lle->ll_count - 1; i >= 0; i--) {
2191                         witness_list_lock(&lle->ll_children[i], prnt);
2192                         nheld++;
2193                 }
2194         return (nheld);
2195 }
2196
2197 /*
2198  * This is a bit risky at best.  We call this function when we have timed
2199  * out acquiring a spin lock, and we assume that the other CPU is stuck
2200  * with this lock held.  So, we go groveling around in the other CPU's
2201  * per-cpu data to try to find the lock instance for this spin lock to
2202  * see when it was last acquired.
2203  */
2204 void
2205 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2206     int (*prnt)(const char *fmt, ...))
2207 {
2208         struct lock_instance *instance;
2209         struct pcpu *pc;
2210
2211         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2212                 return;
2213         pc = pcpu_find(owner->td_oncpu);
2214         instance = find_instance(pc->pc_spinlocks, lock);
2215         if (instance != NULL)
2216                 witness_list_lock(instance, prnt);
2217 }
2218
2219 void
2220 witness_save(struct lock_object *lock, const char **filep, int *linep)
2221 {
2222         struct lock_list_entry *lock_list;
2223         struct lock_instance *instance;
2224         struct lock_class *class;
2225
2226         /*
2227          * This function is used independently in locking code to deal with
2228          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2229          * is gone.
2230          */
2231         if (SCHEDULER_STOPPED())
2232                 return;
2233         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2234         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2235                 return;
2236         class = LOCK_CLASS(lock);
2237         if (class->lc_flags & LC_SLEEPLOCK)
2238                 lock_list = curthread->td_sleeplocks;
2239         else {
2240                 if (witness_skipspin)
2241                         return;
2242                 lock_list = PCPU_GET(spinlocks);
2243         }
2244         instance = find_instance(lock_list, lock);
2245         if (instance == NULL) {
2246                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2247                     class->lc_name, lock->lo_name);
2248                 return;
2249         }
2250         *filep = instance->li_file;
2251         *linep = instance->li_line;
2252 }
2253
2254 void
2255 witness_restore(struct lock_object *lock, const char *file, int line)
2256 {
2257         struct lock_list_entry *lock_list;
2258         struct lock_instance *instance;
2259         struct lock_class *class;
2260
2261         /*
2262          * This function is used independently in locking code to deal with
2263          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2264          * is gone.
2265          */
2266         if (SCHEDULER_STOPPED())
2267                 return;
2268         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2269         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2270                 return;
2271         class = LOCK_CLASS(lock);
2272         if (class->lc_flags & LC_SLEEPLOCK)
2273                 lock_list = curthread->td_sleeplocks;
2274         else {
2275                 if (witness_skipspin)
2276                         return;
2277                 lock_list = PCPU_GET(spinlocks);
2278         }
2279         instance = find_instance(lock_list, lock);
2280         if (instance == NULL)
2281                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2282                     class->lc_name, lock->lo_name);
2283         lock->lo_witness->w_file = file;
2284         lock->lo_witness->w_line = line;
2285         if (instance == NULL)
2286                 return;
2287         instance->li_file = file;
2288         instance->li_line = line;
2289 }
2290
2291 void
2292 witness_assert(const struct lock_object *lock, int flags, const char *file,
2293     int line)
2294 {
2295 #ifdef INVARIANT_SUPPORT
2296         struct lock_instance *instance;
2297         struct lock_class *class;
2298
2299         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2300                 return;
2301         class = LOCK_CLASS(lock);
2302         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2303                 instance = find_instance(curthread->td_sleeplocks, lock);
2304         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2305                 instance = find_instance(PCPU_GET(spinlocks), lock);
2306         else {
2307                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2308                     class->lc_name, lock->lo_name);
2309                 return;
2310         }
2311         switch (flags) {
2312         case LA_UNLOCKED:
2313                 if (instance != NULL)
2314                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2315                             class->lc_name, lock->lo_name,
2316                             fixup_filename(file), line);
2317                 break;
2318         case LA_LOCKED:
2319         case LA_LOCKED | LA_RECURSED:
2320         case LA_LOCKED | LA_NOTRECURSED:
2321         case LA_SLOCKED:
2322         case LA_SLOCKED | LA_RECURSED:
2323         case LA_SLOCKED | LA_NOTRECURSED:
2324         case LA_XLOCKED:
2325         case LA_XLOCKED | LA_RECURSED:
2326         case LA_XLOCKED | LA_NOTRECURSED:
2327                 if (instance == NULL) {
2328                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2329                             class->lc_name, lock->lo_name,
2330                             fixup_filename(file), line);
2331                         break;
2332                 }
2333                 if ((flags & LA_XLOCKED) != 0 &&
2334                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2335                         kassert_panic(
2336                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2337                             class->lc_name, lock->lo_name,
2338                             fixup_filename(file), line);
2339                 if ((flags & LA_SLOCKED) != 0 &&
2340                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2341                         kassert_panic(
2342                             "Lock (%s) %s exclusively locked @ %s:%d.",
2343                             class->lc_name, lock->lo_name,
2344                             fixup_filename(file), line);
2345                 if ((flags & LA_RECURSED) != 0 &&
2346                     (instance->li_flags & LI_RECURSEMASK) == 0)
2347                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2348                             class->lc_name, lock->lo_name,
2349                             fixup_filename(file), line);
2350                 if ((flags & LA_NOTRECURSED) != 0 &&
2351                     (instance->li_flags & LI_RECURSEMASK) != 0)
2352                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2353                             class->lc_name, lock->lo_name,
2354                             fixup_filename(file), line);
2355                 break;
2356         default:
2357                 kassert_panic("Invalid lock assertion at %s:%d.",
2358                     fixup_filename(file), line);
2359
2360         }
2361 #endif  /* INVARIANT_SUPPORT */
2362 }
2363
2364 static void
2365 witness_setflag(struct lock_object *lock, int flag, int set)
2366 {
2367         struct lock_list_entry *lock_list;
2368         struct lock_instance *instance;
2369         struct lock_class *class;
2370
2371         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2372                 return;
2373         class = LOCK_CLASS(lock);
2374         if (class->lc_flags & LC_SLEEPLOCK)
2375                 lock_list = curthread->td_sleeplocks;
2376         else {
2377                 if (witness_skipspin)
2378                         return;
2379                 lock_list = PCPU_GET(spinlocks);
2380         }
2381         instance = find_instance(lock_list, lock);
2382         if (instance == NULL) {
2383                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2384                     class->lc_name, lock->lo_name);
2385                 return;
2386         }
2387
2388         if (set)
2389                 instance->li_flags |= flag;
2390         else
2391                 instance->li_flags &= ~flag;
2392 }
2393
2394 void
2395 witness_norelease(struct lock_object *lock)
2396 {
2397
2398         witness_setflag(lock, LI_NORELEASE, 1);
2399 }
2400
2401 void
2402 witness_releaseok(struct lock_object *lock)
2403 {
2404
2405         witness_setflag(lock, LI_NORELEASE, 0);
2406 }
2407
2408 #ifdef DDB
2409 static void
2410 witness_ddb_list(struct thread *td)
2411 {
2412
2413         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2414         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2415
2416         if (witness_watch < 1)
2417                 return;
2418
2419         witness_list_locks(&td->td_sleeplocks, db_printf);
2420
2421         /*
2422          * We only handle spinlocks if td == curthread.  This is somewhat broken
2423          * if td is currently executing on some other CPU and holds spin locks
2424          * as we won't display those locks.  If we had a MI way of getting
2425          * the per-cpu data for a given cpu then we could use
2426          * td->td_oncpu to get the list of spinlocks for this thread
2427          * and "fix" this.
2428          *
2429          * That still wouldn't really fix this unless we locked the scheduler
2430          * lock or stopped the other CPU to make sure it wasn't changing the
2431          * list out from under us.  It is probably best to just not try to
2432          * handle threads on other CPU's for now.
2433          */
2434         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2435                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2436 }
2437
2438 DB_SHOW_COMMAND(locks, db_witness_list)
2439 {
2440         struct thread *td;
2441
2442         if (have_addr)
2443                 td = db_lookup_thread(addr, TRUE);
2444         else
2445                 td = kdb_thread;
2446         witness_ddb_list(td);
2447 }
2448
2449 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2450 {
2451         struct thread *td;
2452         struct proc *p;
2453
2454         /*
2455          * It would be nice to list only threads and processes that actually
2456          * held sleep locks, but that information is currently not exported
2457          * by WITNESS.
2458          */
2459         FOREACH_PROC_IN_SYSTEM(p) {
2460                 if (!witness_proc_has_locks(p))
2461                         continue;
2462                 FOREACH_THREAD_IN_PROC(p, td) {
2463                         if (!witness_thread_has_locks(td))
2464                                 continue;
2465                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2466                             p->p_comm, td, td->td_tid);
2467                         witness_ddb_list(td);
2468                         if (db_pager_quit)
2469                                 return;
2470                 }
2471         }
2472 }
2473 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2474
2475 DB_SHOW_COMMAND(witness, db_witness_display)
2476 {
2477
2478         witness_ddb_display(db_printf);
2479 }
2480 #endif
2481
2482 static int
2483 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2484 {
2485         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2486         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2487         struct sbuf *sb;
2488         u_int w_rmatrix1, w_rmatrix2;
2489         int error, generation, i, j;
2490
2491         tmp_data1 = NULL;
2492         tmp_data2 = NULL;
2493         tmp_w1 = NULL;
2494         tmp_w2 = NULL;
2495         if (witness_watch < 1) {
2496                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2497                 return (error);
2498         }
2499         if (witness_cold) {
2500                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2501                 return (error);
2502         }
2503         error = 0;
2504         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2505         if (sb == NULL)
2506                 return (ENOMEM);
2507
2508         /* Allocate and init temporary storage space. */
2509         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2510         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2511         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2512             M_WAITOK | M_ZERO);
2513         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2514             M_WAITOK | M_ZERO);
2515         stack_zero(&tmp_data1->wlod_stack);
2516         stack_zero(&tmp_data2->wlod_stack);
2517
2518 restart:
2519         mtx_lock_spin(&w_mtx);
2520         generation = w_generation;
2521         mtx_unlock_spin(&w_mtx);
2522         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2523             w_lohash.wloh_count);
2524         for (i = 1; i < w_max_used_index; i++) {
2525                 mtx_lock_spin(&w_mtx);
2526                 if (generation != w_generation) {
2527                         mtx_unlock_spin(&w_mtx);
2528
2529                         /* The graph has changed, try again. */
2530                         req->oldidx = 0;
2531                         sbuf_clear(sb);
2532                         goto restart;
2533                 }
2534
2535                 w1 = &w_data[i];
2536                 if (w1->w_reversed == 0) {
2537                         mtx_unlock_spin(&w_mtx);
2538                         continue;
2539                 }
2540
2541                 /* Copy w1 locally so we can release the spin lock. */
2542                 *tmp_w1 = *w1;
2543                 mtx_unlock_spin(&w_mtx);
2544
2545                 if (tmp_w1->w_reversed == 0)
2546                         continue;
2547                 for (j = 1; j < w_max_used_index; j++) {
2548                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2549                                 continue;
2550
2551                         mtx_lock_spin(&w_mtx);
2552                         if (generation != w_generation) {
2553                                 mtx_unlock_spin(&w_mtx);
2554
2555                                 /* The graph has changed, try again. */
2556                                 req->oldidx = 0;
2557                                 sbuf_clear(sb);
2558                                 goto restart;
2559                         }
2560
2561                         w2 = &w_data[j];
2562                         data1 = witness_lock_order_get(w1, w2);
2563                         data2 = witness_lock_order_get(w2, w1);
2564
2565                         /*
2566                          * Copy information locally so we can release the
2567                          * spin lock.
2568                          */
2569                         *tmp_w2 = *w2;
2570                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2571                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2572
2573                         if (data1) {
2574                                 stack_zero(&tmp_data1->wlod_stack);
2575                                 stack_copy(&data1->wlod_stack,
2576                                     &tmp_data1->wlod_stack);
2577                         }
2578                         if (data2 && data2 != data1) {
2579                                 stack_zero(&tmp_data2->wlod_stack);
2580                                 stack_copy(&data2->wlod_stack,
2581                                     &tmp_data2->wlod_stack);
2582                         }
2583                         mtx_unlock_spin(&w_mtx);
2584
2585                         sbuf_printf(sb,
2586             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2587                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2588                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2589 #if 0
2590                         sbuf_printf(sb,
2591                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2592                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2593                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2594 #endif
2595                         if (data1) {
2596                                 sbuf_printf(sb,
2597                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2598                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2599                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2600                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2601                                 sbuf_printf(sb, "\n");
2602                         }
2603                         if (data2 && data2 != data1) {
2604                                 sbuf_printf(sb,
2605                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2606                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2607                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2608                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2609                                 sbuf_printf(sb, "\n");
2610                         }
2611                 }
2612         }
2613         mtx_lock_spin(&w_mtx);
2614         if (generation != w_generation) {
2615                 mtx_unlock_spin(&w_mtx);
2616
2617                 /*
2618                  * The graph changed while we were printing stack data,
2619                  * try again.
2620                  */
2621                 req->oldidx = 0;
2622                 sbuf_clear(sb);
2623                 goto restart;
2624         }
2625         mtx_unlock_spin(&w_mtx);
2626
2627         /* Free temporary storage space. */
2628         free(tmp_data1, M_TEMP);
2629         free(tmp_data2, M_TEMP);
2630         free(tmp_w1, M_TEMP);
2631         free(tmp_w2, M_TEMP);
2632
2633         sbuf_finish(sb);
2634         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2635         sbuf_delete(sb);
2636
2637         return (error);
2638 }
2639
2640 static int
2641 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2642 {
2643         struct witness *w;
2644         struct sbuf *sb;
2645         int error;
2646
2647         if (witness_watch < 1) {
2648                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2649                 return (error);
2650         }
2651         if (witness_cold) {
2652                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2653                 return (error);
2654         }
2655         error = 0;
2656
2657         error = sysctl_wire_old_buffer(req, 0);
2658         if (error != 0)
2659                 return (error);
2660         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2661         if (sb == NULL)
2662                 return (ENOMEM);
2663         sbuf_printf(sb, "\n");
2664
2665         mtx_lock_spin(&w_mtx);
2666         STAILQ_FOREACH(w, &w_all, w_list)
2667                 w->w_displayed = 0;
2668         STAILQ_FOREACH(w, &w_all, w_list)
2669                 witness_add_fullgraph(sb, w);
2670         mtx_unlock_spin(&w_mtx);
2671
2672         /*
2673          * Close the sbuf and return to userland.
2674          */
2675         error = sbuf_finish(sb);
2676         sbuf_delete(sb);
2677
2678         return (error);
2679 }
2680
2681 static int
2682 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2683 {
2684         int error, value;
2685
2686         value = witness_watch;
2687         error = sysctl_handle_int(oidp, &value, 0, req);
2688         if (error != 0 || req->newptr == NULL)
2689                 return (error);
2690         if (value > 1 || value < -1 ||
2691             (witness_watch == -1 && value != witness_watch))
2692                 return (EINVAL);
2693         witness_watch = value;
2694         return (0);
2695 }
2696
2697 static void
2698 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2699 {
2700         int i;
2701
2702         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2703                 return;
2704         w->w_displayed = 1;
2705
2706         WITNESS_INDEX_ASSERT(w->w_index);
2707         for (i = 1; i <= w_max_used_index; i++) {
2708                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2709                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2710                             w_data[i].w_name);
2711                         witness_add_fullgraph(sb, &w_data[i]);
2712                 }
2713         }
2714 }
2715
2716 /*
2717  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2718  * interprets the key as a string and reads until the null
2719  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2720  * hash value computed from the key.
2721  */
2722 static uint32_t
2723 witness_hash_djb2(const uint8_t *key, uint32_t size)
2724 {
2725         unsigned int hash = 5381;
2726         int i;
2727
2728         /* hash = hash * 33 + key[i] */
2729         if (size)
2730                 for (i = 0; i < size; i++)
2731                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2732         else
2733                 for (i = 0; key[i] != 0; i++)
2734                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2735
2736         return (hash);
2737 }
2738
2739
2740 /*
2741  * Initializes the two witness hash tables. Called exactly once from
2742  * witness_initialize().
2743  */
2744 static void
2745 witness_init_hash_tables(void)
2746 {
2747         int i;
2748
2749         MPASS(witness_cold);
2750
2751         /* Initialize the hash tables. */
2752         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2753                 w_hash.wh_array[i] = NULL;
2754
2755         w_hash.wh_size = WITNESS_HASH_SIZE;
2756         w_hash.wh_count = 0;
2757
2758         /* Initialize the lock order data hash. */
2759         w_lofree = NULL;
2760         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2761                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2762                 w_lodata[i].wlod_next = w_lofree;
2763                 w_lofree = &w_lodata[i];
2764         }
2765         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2766         w_lohash.wloh_count = 0;
2767         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2768                 w_lohash.wloh_array[i] = NULL;
2769 }
2770
2771 static struct witness *
2772 witness_hash_get(const char *key)
2773 {
2774         struct witness *w;
2775         uint32_t hash;
2776         
2777         MPASS(key != NULL);
2778         if (witness_cold == 0)
2779                 mtx_assert(&w_mtx, MA_OWNED);
2780         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2781         w = w_hash.wh_array[hash];
2782         while (w != NULL) {
2783                 if (strcmp(w->w_name, key) == 0)
2784                         goto out;
2785                 w = w->w_hash_next;
2786         }
2787
2788 out:
2789         return (w);
2790 }
2791
2792 static void
2793 witness_hash_put(struct witness *w)
2794 {
2795         uint32_t hash;
2796
2797         MPASS(w != NULL);
2798         MPASS(w->w_name != NULL);
2799         if (witness_cold == 0)
2800                 mtx_assert(&w_mtx, MA_OWNED);
2801         KASSERT(witness_hash_get(w->w_name) == NULL,
2802             ("%s: trying to add a hash entry that already exists!", __func__));
2803         KASSERT(w->w_hash_next == NULL,
2804             ("%s: w->w_hash_next != NULL", __func__));
2805
2806         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2807         w->w_hash_next = w_hash.wh_array[hash];
2808         w_hash.wh_array[hash] = w;
2809         w_hash.wh_count++;
2810 }
2811
2812
2813 static struct witness_lock_order_data *
2814 witness_lock_order_get(struct witness *parent, struct witness *child)
2815 {
2816         struct witness_lock_order_data *data = NULL;
2817         struct witness_lock_order_key key;
2818         unsigned int hash;
2819
2820         MPASS(parent != NULL && child != NULL);
2821         key.from = parent->w_index;
2822         key.to = child->w_index;
2823         WITNESS_INDEX_ASSERT(key.from);
2824         WITNESS_INDEX_ASSERT(key.to);
2825         if ((w_rmatrix[parent->w_index][child->w_index]
2826             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2827                 goto out;
2828
2829         hash = witness_hash_djb2((const char*)&key,
2830             sizeof(key)) % w_lohash.wloh_size;
2831         data = w_lohash.wloh_array[hash];
2832         while (data != NULL) {
2833                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2834                         break;
2835                 data = data->wlod_next;
2836         }
2837
2838 out:
2839         return (data);
2840 }
2841
2842 /*
2843  * Verify that parent and child have a known relationship, are not the same,
2844  * and child is actually a child of parent.  This is done without w_mtx
2845  * to avoid contention in the common case.
2846  */
2847 static int
2848 witness_lock_order_check(struct witness *parent, struct witness *child)
2849 {
2850
2851         if (parent != child &&
2852             w_rmatrix[parent->w_index][child->w_index]
2853             & WITNESS_LOCK_ORDER_KNOWN &&
2854             isitmychild(parent, child))
2855                 return (1);
2856
2857         return (0);
2858 }
2859
2860 static int
2861 witness_lock_order_add(struct witness *parent, struct witness *child)
2862 {
2863         struct witness_lock_order_data *data = NULL;
2864         struct witness_lock_order_key key;
2865         unsigned int hash;
2866         
2867         MPASS(parent != NULL && child != NULL);
2868         key.from = parent->w_index;
2869         key.to = child->w_index;
2870         WITNESS_INDEX_ASSERT(key.from);
2871         WITNESS_INDEX_ASSERT(key.to);
2872         if (w_rmatrix[parent->w_index][child->w_index]
2873             & WITNESS_LOCK_ORDER_KNOWN)
2874                 return (1);
2875
2876         hash = witness_hash_djb2((const char*)&key,
2877             sizeof(key)) % w_lohash.wloh_size;
2878         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2879         data = w_lofree;
2880         if (data == NULL)
2881                 return (0);
2882         w_lofree = data->wlod_next;
2883         data->wlod_next = w_lohash.wloh_array[hash];
2884         data->wlod_key = key;
2885         w_lohash.wloh_array[hash] = data;
2886         w_lohash.wloh_count++;
2887         stack_zero(&data->wlod_stack);
2888         stack_save(&data->wlod_stack);
2889         return (1);
2890 }
2891
2892 /* Call this whenver the structure of the witness graph changes. */
2893 static void
2894 witness_increment_graph_generation(void)
2895 {
2896
2897         if (witness_cold == 0)
2898                 mtx_assert(&w_mtx, MA_OWNED);
2899         w_generation++;
2900 }
2901
2902 #ifdef KDB
2903 static void
2904 _witness_debugger(int cond, const char *msg)
2905 {
2906
2907         if (witness_trace && cond)
2908                 kdb_backtrace();
2909         if (witness_kdb && cond)
2910                 kdb_enter(KDB_WHY_WITNESS, msg);
2911 }
2912 #endif