]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/vm/vm_fault.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104
105 #define PFBAK 4
106 #define PFFOR 4
107 #define PAGEORDER_SIZE (PFBAK+PFFOR)
108
109 static int prefault_pageorder[] = {
110         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
111         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
112         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
113         -4 * PAGE_SIZE, 4 * PAGE_SIZE
114 };
115
116 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
117 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
118
119 #define VM_FAULT_READ_BEHIND    8
120 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
121 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
122 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
123 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
124
125 struct faultstate {
126         vm_page_t m;
127         vm_object_t object;
128         vm_pindex_t pindex;
129         vm_page_t first_m;
130         vm_object_t     first_object;
131         vm_pindex_t first_pindex;
132         vm_map_t map;
133         vm_map_entry_t entry;
134         int lookup_still_valid;
135         struct vnode *vp;
136 };
137
138 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
139
140 static inline void
141 release_page(struct faultstate *fs)
142 {
143
144         vm_page_xunbusy(fs->m);
145         vm_page_lock(fs->m);
146         vm_page_deactivate(fs->m);
147         vm_page_unlock(fs->m);
148         fs->m = NULL;
149 }
150
151 static inline void
152 unlock_map(struct faultstate *fs)
153 {
154
155         if (fs->lookup_still_valid) {
156                 vm_map_lookup_done(fs->map, fs->entry);
157                 fs->lookup_still_valid = FALSE;
158         }
159 }
160
161 static void
162 unlock_and_deallocate(struct faultstate *fs)
163 {
164
165         vm_object_pip_wakeup(fs->object);
166         VM_OBJECT_WUNLOCK(fs->object);
167         if (fs->object != fs->first_object) {
168                 VM_OBJECT_WLOCK(fs->first_object);
169                 vm_page_lock(fs->first_m);
170                 vm_page_free(fs->first_m);
171                 vm_page_unlock(fs->first_m);
172                 vm_object_pip_wakeup(fs->first_object);
173                 VM_OBJECT_WUNLOCK(fs->first_object);
174                 fs->first_m = NULL;
175         }
176         vm_object_deallocate(fs->first_object);
177         unlock_map(fs); 
178         if (fs->vp != NULL) { 
179                 vput(fs->vp);
180                 fs->vp = NULL;
181         }
182 }
183
184 /*
185  * TRYPAGER - used by vm_fault to calculate whether the pager for the
186  *            current object *might* contain the page.
187  *
188  *            default objects are zero-fill, there is no real pager.
189  */
190 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
191                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
192
193 /*
194  *      vm_fault:
195  *
196  *      Handle a page fault occurring at the given address,
197  *      requiring the given permissions, in the map specified.
198  *      If successful, the page is inserted into the
199  *      associated physical map.
200  *
201  *      NOTE: the given address should be truncated to the
202  *      proper page address.
203  *
204  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
205  *      a standard error specifying why the fault is fatal is returned.
206  *
207  *      The map in question must be referenced, and remains so.
208  *      Caller may hold no locks.
209  */
210 int
211 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
212     int fault_flags)
213 {
214         struct thread *td;
215         int result;
216
217         td = curthread;
218         if ((td->td_pflags & TDP_NOFAULTING) != 0)
219                 return (KERN_PROTECTION_FAILURE);
220 #ifdef KTRACE
221         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
222                 ktrfault(vaddr, fault_type);
223 #endif
224         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
225             NULL);
226 #ifdef KTRACE
227         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
228                 ktrfaultend(result);
229 #endif
230         return (result);
231 }
232
233 int
234 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
235     int fault_flags, vm_page_t *m_hold)
236 {
237         vm_prot_t prot;
238         long ahead, behind;
239         int alloc_req, era, faultcount, nera, reqpage, result;
240         boolean_t growstack, is_first_object_locked, wired;
241         int map_generation;
242         vm_object_t next_object;
243         vm_page_t marray[VM_FAULT_READ_MAX];
244         int hardfault;
245         struct faultstate fs;
246         struct vnode *vp;
247         int locked, error;
248
249         hardfault = 0;
250         growstack = TRUE;
251         PCPU_INC(cnt.v_vm_faults);
252         fs.vp = NULL;
253         faultcount = reqpage = 0;
254
255 RetryFault:;
256
257         /*
258          * Find the backing store object and offset into it to begin the
259          * search.
260          */
261         fs.map = map;
262         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
263             &fs.first_object, &fs.first_pindex, &prot, &wired);
264         if (result != KERN_SUCCESS) {
265                 if (growstack && result == KERN_INVALID_ADDRESS &&
266                     map != kernel_map) {
267                         result = vm_map_growstack(curproc, vaddr);
268                         if (result != KERN_SUCCESS)
269                                 return (KERN_FAILURE);
270                         growstack = FALSE;
271                         goto RetryFault;
272                 }
273                 return (result);
274         }
275
276         map_generation = fs.map->timestamp;
277
278         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
279                 panic("vm_fault: fault on nofault entry, addr: %lx",
280                     (u_long)vaddr);
281         }
282
283         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
284             fs.entry->wiring_thread != curthread) {
285                 vm_map_unlock_read(fs.map);
286                 vm_map_lock(fs.map);
287                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
288                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
289                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
290                         vm_map_unlock_and_wait(fs.map, 0);
291                 } else
292                         vm_map_unlock(fs.map);
293                 goto RetryFault;
294         }
295
296         /*
297          * Make a reference to this object to prevent its disposal while we
298          * are messing with it.  Once we have the reference, the map is free
299          * to be diddled.  Since objects reference their shadows (and copies),
300          * they will stay around as well.
301          *
302          * Bump the paging-in-progress count to prevent size changes (e.g. 
303          * truncation operations) during I/O.  This must be done after
304          * obtaining the vnode lock in order to avoid possible deadlocks.
305          */
306         VM_OBJECT_WLOCK(fs.first_object);
307         vm_object_reference_locked(fs.first_object);
308         vm_object_pip_add(fs.first_object, 1);
309
310         fs.lookup_still_valid = TRUE;
311
312         if (wired)
313                 fault_type = prot | (fault_type & VM_PROT_COPY);
314
315         fs.first_m = NULL;
316
317         /*
318          * Search for the page at object/offset.
319          */
320         fs.object = fs.first_object;
321         fs.pindex = fs.first_pindex;
322         while (TRUE) {
323                 /*
324                  * If the object is dead, we stop here
325                  */
326                 if (fs.object->flags & OBJ_DEAD) {
327                         unlock_and_deallocate(&fs);
328                         return (KERN_PROTECTION_FAILURE);
329                 }
330
331                 /*
332                  * See if page is resident
333                  */
334                 fs.m = vm_page_lookup(fs.object, fs.pindex);
335                 if (fs.m != NULL) {
336                         /*
337                          * Wait/Retry if the page is busy.  We have to do this
338                          * if the page is either exclusive or shared busy
339                          * because the vm_pager may be using read busy for
340                          * pageouts (and even pageins if it is the vnode
341                          * pager), and we could end up trying to pagein and
342                          * pageout the same page simultaneously.
343                          *
344                          * We can theoretically allow the busy case on a read
345                          * fault if the page is marked valid, but since such
346                          * pages are typically already pmap'd, putting that
347                          * special case in might be more effort then it is 
348                          * worth.  We cannot under any circumstances mess
349                          * around with a shared busied page except, perhaps,
350                          * to pmap it.
351                          */
352                         if (vm_page_busied(fs.m)) {
353                                 /*
354                                  * Reference the page before unlocking and
355                                  * sleeping so that the page daemon is less
356                                  * likely to reclaim it. 
357                                  */
358                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
359                                 if (fs.object != fs.first_object) {
360                                         if (!VM_OBJECT_TRYWLOCK(
361                                             fs.first_object)) {
362                                                 VM_OBJECT_WUNLOCK(fs.object);
363                                                 VM_OBJECT_WLOCK(fs.first_object);
364                                                 VM_OBJECT_WLOCK(fs.object);
365                                         }
366                                         vm_page_lock(fs.first_m);
367                                         vm_page_free(fs.first_m);
368                                         vm_page_unlock(fs.first_m);
369                                         vm_object_pip_wakeup(fs.first_object);
370                                         VM_OBJECT_WUNLOCK(fs.first_object);
371                                         fs.first_m = NULL;
372                                 }
373                                 unlock_map(&fs);
374                                 if (fs.m == vm_page_lookup(fs.object,
375                                     fs.pindex)) {
376                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
377                                 }
378                                 vm_object_pip_wakeup(fs.object);
379                                 VM_OBJECT_WUNLOCK(fs.object);
380                                 PCPU_INC(cnt.v_intrans);
381                                 vm_object_deallocate(fs.first_object);
382                                 goto RetryFault;
383                         }
384                         vm_page_lock(fs.m);
385                         vm_page_remque(fs.m);
386                         vm_page_unlock(fs.m);
387
388                         /*
389                          * Mark page busy for other processes, and the 
390                          * pagedaemon.  If it still isn't completely valid
391                          * (readable), jump to readrest, else break-out ( we
392                          * found the page ).
393                          */
394                         vm_page_xbusy(fs.m);
395                         if (fs.m->valid != VM_PAGE_BITS_ALL)
396                                 goto readrest;
397                         break;
398                 }
399
400                 /*
401                  * Page is not resident, If this is the search termination
402                  * or the pager might contain the page, allocate a new page.
403                  */
404                 if (TRYPAGER || fs.object == fs.first_object) {
405                         if (fs.pindex >= fs.object->size) {
406                                 unlock_and_deallocate(&fs);
407                                 return (KERN_PROTECTION_FAILURE);
408                         }
409
410                         /*
411                          * Allocate a new page for this object/offset pair.
412                          *
413                          * Unlocked read of the p_flag is harmless. At
414                          * worst, the P_KILLED might be not observed
415                          * there, and allocation can fail, causing
416                          * restart and new reading of the p_flag.
417                          */
418                         fs.m = NULL;
419                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
420 #if VM_NRESERVLEVEL > 0
421                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
422                                         fs.object->flags |= OBJ_COLORED;
423                                         fs.object->pg_color = atop(vaddr) -
424                                             fs.pindex;
425                                 }
426 #endif
427                                 alloc_req = P_KILLED(curproc) ?
428                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
429                                 if (fs.object->type != OBJT_VNODE &&
430                                     fs.object->backing_object == NULL)
431                                         alloc_req |= VM_ALLOC_ZERO;
432                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
433                                     alloc_req);
434                         }
435                         if (fs.m == NULL) {
436                                 unlock_and_deallocate(&fs);
437                                 VM_WAITPFAULT;
438                                 goto RetryFault;
439                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
440                                 break;
441                 }
442
443 readrest:
444                 /*
445                  * We have found a valid page or we have allocated a new page.
446                  * The page thus may not be valid or may not be entirely 
447                  * valid.
448                  *
449                  * Attempt to fault-in the page if there is a chance that the
450                  * pager has it, and potentially fault in additional pages
451                  * at the same time.
452                  */
453                 if (TRYPAGER) {
454                         int rv;
455                         u_char behavior = vm_map_entry_behavior(fs.entry);
456
457                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
458                             P_KILLED(curproc)) {
459                                 behind = 0;
460                                 ahead = 0;
461                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
462                                 behind = 0;
463                                 ahead = atop(fs.entry->end - vaddr) - 1;
464                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
465                                         ahead = VM_FAULT_READ_AHEAD_MAX;
466                                 if (fs.pindex == fs.entry->next_read)
467                                         vm_fault_cache_behind(&fs,
468                                             VM_FAULT_READ_MAX);
469                         } else {
470                                 /*
471                                  * If this is a sequential page fault, then
472                                  * arithmetically increase the number of pages
473                                  * in the read-ahead window.  Otherwise, reset
474                                  * the read-ahead window to its smallest size.
475                                  */
476                                 behind = atop(vaddr - fs.entry->start);
477                                 if (behind > VM_FAULT_READ_BEHIND)
478                                         behind = VM_FAULT_READ_BEHIND;
479                                 ahead = atop(fs.entry->end - vaddr) - 1;
480                                 era = fs.entry->read_ahead;
481                                 if (fs.pindex == fs.entry->next_read) {
482                                         nera = era + behind;
483                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
484                                                 nera = VM_FAULT_READ_AHEAD_MAX;
485                                         behind = 0;
486                                         if (ahead > nera)
487                                                 ahead = nera;
488                                         if (era == VM_FAULT_READ_AHEAD_MAX)
489                                                 vm_fault_cache_behind(&fs,
490                                                     VM_FAULT_CACHE_BEHIND);
491                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
492                                         ahead = VM_FAULT_READ_AHEAD_MIN;
493                                 if (era != ahead)
494                                         fs.entry->read_ahead = ahead;
495                         }
496
497                         /*
498                          * Call the pager to retrieve the data, if any, after
499                          * releasing the lock on the map.  We hold a ref on
500                          * fs.object and the pages are exclusive busied.
501                          */
502                         unlock_map(&fs);
503
504                         if (fs.object->type == OBJT_VNODE) {
505                                 vp = fs.object->handle;
506                                 if (vp == fs.vp)
507                                         goto vnode_locked;
508                                 else if (fs.vp != NULL) {
509                                         vput(fs.vp);
510                                         fs.vp = NULL;
511                                 }
512                                 locked = VOP_ISLOCKED(vp);
513
514                                 if (locked != LK_EXCLUSIVE)
515                                         locked = LK_SHARED;
516                                 /* Do not sleep for vnode lock while fs.m is busy */
517                                 error = vget(vp, locked | LK_CANRECURSE |
518                                     LK_NOWAIT, curthread);
519                                 if (error != 0) {
520                                         vhold(vp);
521                                         release_page(&fs);
522                                         unlock_and_deallocate(&fs);
523                                         error = vget(vp, locked | LK_RETRY |
524                                             LK_CANRECURSE, curthread);
525                                         vdrop(vp);
526                                         fs.vp = vp;
527                                         KASSERT(error == 0,
528                                             ("vm_fault: vget failed"));
529                                         goto RetryFault;
530                                 }
531                                 fs.vp = vp;
532                         }
533 vnode_locked:
534                         KASSERT(fs.vp == NULL || !fs.map->system_map,
535                             ("vm_fault: vnode-backed object mapped by system map"));
536
537                         /*
538                          * now we find out if any other pages should be paged
539                          * in at this time this routine checks to see if the
540                          * pages surrounding this fault reside in the same
541                          * object as the page for this fault.  If they do,
542                          * then they are faulted in also into the object.  The
543                          * array "marray" returned contains an array of
544                          * vm_page_t structs where one of them is the
545                          * vm_page_t passed to the routine.  The reqpage
546                          * return value is the index into the marray for the
547                          * vm_page_t passed to the routine.
548                          *
549                          * fs.m plus the additional pages are exclusive busied.
550                          */
551                         faultcount = vm_fault_additional_pages(
552                             fs.m, behind, ahead, marray, &reqpage);
553
554                         rv = faultcount ?
555                             vm_pager_get_pages(fs.object, marray, faultcount,
556                                 reqpage) : VM_PAGER_FAIL;
557
558                         if (rv == VM_PAGER_OK) {
559                                 /*
560                                  * Found the page. Leave it busy while we play
561                                  * with it.
562                                  */
563
564                                 /*
565                                  * Relookup in case pager changed page. Pager
566                                  * is responsible for disposition of old page
567                                  * if moved.
568                                  */
569                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
570                                 if (!fs.m) {
571                                         unlock_and_deallocate(&fs);
572                                         goto RetryFault;
573                                 }
574
575                                 hardfault++;
576                                 break; /* break to PAGE HAS BEEN FOUND */
577                         }
578                         /*
579                          * Remove the bogus page (which does not exist at this
580                          * object/offset); before doing so, we must get back
581                          * our object lock to preserve our invariant.
582                          *
583                          * Also wake up any other process that may want to bring
584                          * in this page.
585                          *
586                          * If this is the top-level object, we must leave the
587                          * busy page to prevent another process from rushing
588                          * past us, and inserting the page in that object at
589                          * the same time that we are.
590                          */
591                         if (rv == VM_PAGER_ERROR)
592                                 printf("vm_fault: pager read error, pid %d (%s)\n",
593                                     curproc->p_pid, curproc->p_comm);
594                         /*
595                          * Data outside the range of the pager or an I/O error
596                          */
597                         /*
598                          * XXX - the check for kernel_map is a kludge to work
599                          * around having the machine panic on a kernel space
600                          * fault w/ I/O error.
601                          */
602                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
603                                 (rv == VM_PAGER_BAD)) {
604                                 vm_page_lock(fs.m);
605                                 vm_page_free(fs.m);
606                                 vm_page_unlock(fs.m);
607                                 fs.m = NULL;
608                                 unlock_and_deallocate(&fs);
609                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
610                         }
611                         if (fs.object != fs.first_object) {
612                                 vm_page_lock(fs.m);
613                                 vm_page_free(fs.m);
614                                 vm_page_unlock(fs.m);
615                                 fs.m = NULL;
616                                 /*
617                                  * XXX - we cannot just fall out at this
618                                  * point, m has been freed and is invalid!
619                                  */
620                         }
621                 }
622
623                 /*
624                  * We get here if the object has default pager (or unwiring) 
625                  * or the pager doesn't have the page.
626                  */
627                 if (fs.object == fs.first_object)
628                         fs.first_m = fs.m;
629
630                 /*
631                  * Move on to the next object.  Lock the next object before
632                  * unlocking the current one.
633                  */
634                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
635                 next_object = fs.object->backing_object;
636                 if (next_object == NULL) {
637                         /*
638                          * If there's no object left, fill the page in the top
639                          * object with zeros.
640                          */
641                         if (fs.object != fs.first_object) {
642                                 vm_object_pip_wakeup(fs.object);
643                                 VM_OBJECT_WUNLOCK(fs.object);
644
645                                 fs.object = fs.first_object;
646                                 fs.pindex = fs.first_pindex;
647                                 fs.m = fs.first_m;
648                                 VM_OBJECT_WLOCK(fs.object);
649                         }
650                         fs.first_m = NULL;
651
652                         /*
653                          * Zero the page if necessary and mark it valid.
654                          */
655                         if ((fs.m->flags & PG_ZERO) == 0) {
656                                 pmap_zero_page(fs.m);
657                         } else {
658                                 PCPU_INC(cnt.v_ozfod);
659                         }
660                         PCPU_INC(cnt.v_zfod);
661                         fs.m->valid = VM_PAGE_BITS_ALL;
662                         break;  /* break to PAGE HAS BEEN FOUND */
663                 } else {
664                         KASSERT(fs.object != next_object,
665                             ("object loop %p", next_object));
666                         VM_OBJECT_WLOCK(next_object);
667                         vm_object_pip_add(next_object, 1);
668                         if (fs.object != fs.first_object)
669                                 vm_object_pip_wakeup(fs.object);
670                         VM_OBJECT_WUNLOCK(fs.object);
671                         fs.object = next_object;
672                 }
673         }
674
675         vm_page_assert_xbusied(fs.m);
676
677         /*
678          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
679          * is held.]
680          */
681
682         /*
683          * If the page is being written, but isn't already owned by the
684          * top-level object, we have to copy it into a new page owned by the
685          * top-level object.
686          */
687         if (fs.object != fs.first_object) {
688                 /*
689                  * We only really need to copy if we want to write it.
690                  */
691                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
692                         /*
693                          * This allows pages to be virtually copied from a 
694                          * backing_object into the first_object, where the 
695                          * backing object has no other refs to it, and cannot
696                          * gain any more refs.  Instead of a bcopy, we just 
697                          * move the page from the backing object to the 
698                          * first object.  Note that we must mark the page 
699                          * dirty in the first object so that it will go out 
700                          * to swap when needed.
701                          */
702                         is_first_object_locked = FALSE;
703                         if (
704                                 /*
705                                  * Only one shadow object
706                                  */
707                                 (fs.object->shadow_count == 1) &&
708                                 /*
709                                  * No COW refs, except us
710                                  */
711                                 (fs.object->ref_count == 1) &&
712                                 /*
713                                  * No one else can look this object up
714                                  */
715                                 (fs.object->handle == NULL) &&
716                                 /*
717                                  * No other ways to look the object up
718                                  */
719                                 ((fs.object->type == OBJT_DEFAULT) ||
720                                  (fs.object->type == OBJT_SWAP)) &&
721                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
722                                 /*
723                                  * We don't chase down the shadow chain
724                                  */
725                             fs.object == fs.first_object->backing_object) {
726                                 /*
727                                  * get rid of the unnecessary page
728                                  */
729                                 vm_page_lock(fs.first_m);
730                                 vm_page_free(fs.first_m);
731                                 vm_page_unlock(fs.first_m);
732                                 /*
733                                  * grab the page and put it into the 
734                                  * process'es object.  The page is 
735                                  * automatically made dirty.
736                                  */
737                                 if (vm_page_rename(fs.m, fs.first_object,
738                                     fs.first_pindex)) {
739                                         unlock_and_deallocate(&fs);
740                                         goto RetryFault;
741                                 }
742                                 vm_page_xbusy(fs.m);
743                                 fs.first_m = fs.m;
744                                 fs.m = NULL;
745                                 PCPU_INC(cnt.v_cow_optim);
746                         } else {
747                                 /*
748                                  * Oh, well, lets copy it.
749                                  */
750                                 pmap_copy_page(fs.m, fs.first_m);
751                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
752                                 if (wired && (fault_flags &
753                                     VM_FAULT_CHANGE_WIRING) == 0) {
754                                         vm_page_lock(fs.first_m);
755                                         vm_page_wire(fs.first_m);
756                                         vm_page_unlock(fs.first_m);
757                                         
758                                         vm_page_lock(fs.m);
759                                         vm_page_unwire(fs.m, FALSE);
760                                         vm_page_unlock(fs.m);
761                                 }
762                                 /*
763                                  * We no longer need the old page or object.
764                                  */
765                                 release_page(&fs);
766                         }
767                         /*
768                          * fs.object != fs.first_object due to above 
769                          * conditional
770                          */
771                         vm_object_pip_wakeup(fs.object);
772                         VM_OBJECT_WUNLOCK(fs.object);
773                         /*
774                          * Only use the new page below...
775                          */
776                         fs.object = fs.first_object;
777                         fs.pindex = fs.first_pindex;
778                         fs.m = fs.first_m;
779                         if (!is_first_object_locked)
780                                 VM_OBJECT_WLOCK(fs.object);
781                         PCPU_INC(cnt.v_cow_faults);
782                         curthread->td_cow++;
783                 } else {
784                         prot &= ~VM_PROT_WRITE;
785                 }
786         }
787
788         /*
789          * We must verify that the maps have not changed since our last
790          * lookup.
791          */
792         if (!fs.lookup_still_valid) {
793                 vm_object_t retry_object;
794                 vm_pindex_t retry_pindex;
795                 vm_prot_t retry_prot;
796
797                 if (!vm_map_trylock_read(fs.map)) {
798                         release_page(&fs);
799                         unlock_and_deallocate(&fs);
800                         goto RetryFault;
801                 }
802                 fs.lookup_still_valid = TRUE;
803                 if (fs.map->timestamp != map_generation) {
804                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
805                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
806
807                         /*
808                          * If we don't need the page any longer, put it on the inactive
809                          * list (the easiest thing to do here).  If no one needs it,
810                          * pageout will grab it eventually.
811                          */
812                         if (result != KERN_SUCCESS) {
813                                 release_page(&fs);
814                                 unlock_and_deallocate(&fs);
815
816                                 /*
817                                  * If retry of map lookup would have blocked then
818                                  * retry fault from start.
819                                  */
820                                 if (result == KERN_FAILURE)
821                                         goto RetryFault;
822                                 return (result);
823                         }
824                         if ((retry_object != fs.first_object) ||
825                             (retry_pindex != fs.first_pindex)) {
826                                 release_page(&fs);
827                                 unlock_and_deallocate(&fs);
828                                 goto RetryFault;
829                         }
830
831                         /*
832                          * Check whether the protection has changed or the object has
833                          * been copied while we left the map unlocked. Changing from
834                          * read to write permission is OK - we leave the page
835                          * write-protected, and catch the write fault. Changing from
836                          * write to read permission means that we can't mark the page
837                          * write-enabled after all.
838                          */
839                         prot &= retry_prot;
840                 }
841         }
842         /*
843          * If the page was filled by a pager, update the map entry's
844          * last read offset.  Since the pager does not return the
845          * actual set of pages that it read, this update is based on
846          * the requested set.  Typically, the requested and actual
847          * sets are the same.
848          *
849          * XXX The following assignment modifies the map
850          * without holding a write lock on it.
851          */
852         if (hardfault)
853                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
854
855         if ((prot & VM_PROT_WRITE) != 0 ||
856             (fault_flags & VM_FAULT_DIRTY) != 0) {
857                 vm_object_set_writeable_dirty(fs.object);
858
859                 /*
860                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
861                  * if the page is already dirty to prevent data written with
862                  * the expectation of being synced from not being synced.
863                  * Likewise if this entry does not request NOSYNC then make
864                  * sure the page isn't marked NOSYNC.  Applications sharing
865                  * data should use the same flags to avoid ping ponging.
866                  */
867                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
868                         if (fs.m->dirty == 0)
869                                 fs.m->oflags |= VPO_NOSYNC;
870                 } else {
871                         fs.m->oflags &= ~VPO_NOSYNC;
872                 }
873
874                 /*
875                  * If the fault is a write, we know that this page is being
876                  * written NOW so dirty it explicitly to save on 
877                  * pmap_is_modified() calls later.
878                  *
879                  * Also tell the backing pager, if any, that it should remove
880                  * any swap backing since the page is now dirty.
881                  */
882                 if (((fault_type & VM_PROT_WRITE) != 0 &&
883                     (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
884                     (fault_flags & VM_FAULT_DIRTY) != 0) {
885                         vm_page_dirty(fs.m);
886                         vm_pager_page_unswapped(fs.m);
887                 }
888         }
889
890         vm_page_assert_xbusied(fs.m);
891
892         /*
893          * Page must be completely valid or it is not fit to
894          * map into user space.  vm_pager_get_pages() ensures this.
895          */
896         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
897             ("vm_fault: page %p partially invalid", fs.m));
898         VM_OBJECT_WUNLOCK(fs.object);
899
900         /*
901          * Put this page into the physical map.  We had to do the unlock above
902          * because pmap_enter() may sleep.  We don't put the page
903          * back on the active queue until later so that the pageout daemon
904          * won't find it (yet).
905          */
906         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
907         if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
908                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
909         VM_OBJECT_WLOCK(fs.object);
910         vm_page_lock(fs.m);
911
912         /*
913          * If the page is not wired down, then put it where the pageout daemon
914          * can find it.
915          */
916         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
917                 if (wired)
918                         vm_page_wire(fs.m);
919                 else
920                         vm_page_unwire(fs.m, 1);
921         } else
922                 vm_page_activate(fs.m);
923         if (m_hold != NULL) {
924                 *m_hold = fs.m;
925                 vm_page_hold(fs.m);
926         }
927         vm_page_unlock(fs.m);
928         vm_page_xunbusy(fs.m);
929
930         /*
931          * Unlock everything, and return
932          */
933         unlock_and_deallocate(&fs);
934         if (hardfault) {
935                 PCPU_INC(cnt.v_io_faults);
936                 curthread->td_ru.ru_majflt++;
937         } else 
938                 curthread->td_ru.ru_minflt++;
939
940         return (KERN_SUCCESS);
941 }
942
943 /*
944  * Speed up the reclamation of up to "distance" pages that precede the
945  * faulting pindex within the first object of the shadow chain.
946  */
947 static void
948 vm_fault_cache_behind(const struct faultstate *fs, int distance)
949 {
950         vm_object_t first_object, object;
951         vm_page_t m, m_prev;
952         vm_pindex_t pindex;
953
954         object = fs->object;
955         VM_OBJECT_ASSERT_WLOCKED(object);
956         first_object = fs->first_object;
957         if (first_object != object) {
958                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
959                         VM_OBJECT_WUNLOCK(object);
960                         VM_OBJECT_WLOCK(first_object);
961                         VM_OBJECT_WLOCK(object);
962                 }
963         }
964         /* Neither fictitious nor unmanaged pages can be cached. */
965         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
966                 if (fs->first_pindex < distance)
967                         pindex = 0;
968                 else
969                         pindex = fs->first_pindex - distance;
970                 if (pindex < OFF_TO_IDX(fs->entry->offset))
971                         pindex = OFF_TO_IDX(fs->entry->offset);
972                 m = first_object != object ? fs->first_m : fs->m;
973                 vm_page_assert_xbusied(m);
974                 m_prev = vm_page_prev(m);
975                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
976                     m->valid == VM_PAGE_BITS_ALL) {
977                         m_prev = vm_page_prev(m);
978                         if (vm_page_busied(m))
979                                 continue;
980                         vm_page_lock(m);
981                         if (m->hold_count == 0 && m->wire_count == 0) {
982                                 pmap_remove_all(m);
983                                 vm_page_aflag_clear(m, PGA_REFERENCED);
984                                 if (m->dirty != 0)
985                                         vm_page_deactivate(m);
986                                 else
987                                         vm_page_cache(m);
988                         }
989                         vm_page_unlock(m);
990                 }
991         }
992         if (first_object != object)
993                 VM_OBJECT_WUNLOCK(first_object);
994 }
995
996 /*
997  * vm_fault_prefault provides a quick way of clustering
998  * pagefaults into a processes address space.  It is a "cousin"
999  * of vm_map_pmap_enter, except it runs at page fault time instead
1000  * of mmap time.
1001  */
1002 static void
1003 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
1004 {
1005         int i;
1006         vm_offset_t addr, starta;
1007         vm_pindex_t pindex;
1008         vm_page_t m;
1009         vm_object_t object;
1010
1011         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1012                 return;
1013
1014         object = entry->object.vm_object;
1015
1016         starta = addra - PFBAK * PAGE_SIZE;
1017         if (starta < entry->start) {
1018                 starta = entry->start;
1019         } else if (starta > addra) {
1020                 starta = 0;
1021         }
1022
1023         for (i = 0; i < PAGEORDER_SIZE; i++) {
1024                 vm_object_t backing_object, lobject;
1025
1026                 addr = addra + prefault_pageorder[i];
1027                 if (addr > addra + (PFFOR * PAGE_SIZE))
1028                         addr = 0;
1029
1030                 if (addr < starta || addr >= entry->end)
1031                         continue;
1032
1033                 if (!pmap_is_prefaultable(pmap, addr))
1034                         continue;
1035
1036                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1037                 lobject = object;
1038                 VM_OBJECT_RLOCK(lobject);
1039                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1040                     lobject->type == OBJT_DEFAULT &&
1041                     (backing_object = lobject->backing_object) != NULL) {
1042                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1043                             0, ("vm_fault_prefault: unaligned object offset"));
1044                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1045                         VM_OBJECT_RLOCK(backing_object);
1046                         VM_OBJECT_RUNLOCK(lobject);
1047                         lobject = backing_object;
1048                 }
1049                 /*
1050                  * give-up when a page is not in memory
1051                  */
1052                 if (m == NULL) {
1053                         VM_OBJECT_RUNLOCK(lobject);
1054                         break;
1055                 }
1056                 if (m->valid == VM_PAGE_BITS_ALL &&
1057                     (m->flags & PG_FICTITIOUS) == 0)
1058                         pmap_enter_quick(pmap, addr, m, entry->protection);
1059                 VM_OBJECT_RUNLOCK(lobject);
1060         }
1061 }
1062
1063 /*
1064  * Hold each of the physical pages that are mapped by the specified range of
1065  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1066  * and allow the specified types of access, "prot".  If all of the implied
1067  * pages are successfully held, then the number of held pages is returned
1068  * together with pointers to those pages in the array "ma".  However, if any
1069  * of the pages cannot be held, -1 is returned.
1070  */
1071 int
1072 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1073     vm_prot_t prot, vm_page_t *ma, int max_count)
1074 {
1075         vm_offset_t end, va;
1076         vm_page_t *mp;
1077         int count;
1078         boolean_t pmap_failed;
1079
1080         if (len == 0)
1081                 return (0);
1082         end = round_page(addr + len);   
1083         addr = trunc_page(addr);
1084
1085         /*
1086          * Check for illegal addresses.
1087          */
1088         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1089                 return (-1);
1090
1091         count = howmany(end - addr, PAGE_SIZE);
1092         if (count > max_count)
1093                 panic("vm_fault_quick_hold_pages: count > max_count");
1094
1095         /*
1096          * Most likely, the physical pages are resident in the pmap, so it is
1097          * faster to try pmap_extract_and_hold() first.
1098          */
1099         pmap_failed = FALSE;
1100         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1101                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1102                 if (*mp == NULL)
1103                         pmap_failed = TRUE;
1104                 else if ((prot & VM_PROT_WRITE) != 0 &&
1105                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1106                         /*
1107                          * Explicitly dirty the physical page.  Otherwise, the
1108                          * caller's changes may go unnoticed because they are
1109                          * performed through an unmanaged mapping or by a DMA
1110                          * operation.
1111                          *
1112                          * The object lock is not held here.
1113                          * See vm_page_clear_dirty_mask().
1114                          */
1115                         vm_page_dirty(*mp);
1116                 }
1117         }
1118         if (pmap_failed) {
1119                 /*
1120                  * One or more pages could not be held by the pmap.  Either no
1121                  * page was mapped at the specified virtual address or that
1122                  * mapping had insufficient permissions.  Attempt to fault in
1123                  * and hold these pages.
1124                  */
1125                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1126                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1127                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1128                                 goto error;
1129         }
1130         return (count);
1131 error:  
1132         for (mp = ma; mp < ma + count; mp++)
1133                 if (*mp != NULL) {
1134                         vm_page_lock(*mp);
1135                         vm_page_unhold(*mp);
1136                         vm_page_unlock(*mp);
1137                 }
1138         return (-1);
1139 }
1140
1141 /*
1142  *      vm_fault_wire:
1143  *
1144  *      Wire down a range of virtual addresses in a map.
1145  */
1146 int
1147 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1148     boolean_t fictitious)
1149 {
1150         vm_offset_t va;
1151         int rv;
1152
1153         /*
1154          * We simulate a fault to get the page and enter it in the physical
1155          * map.  For user wiring, we only ask for read access on currently
1156          * read-only sections.
1157          */
1158         for (va = start; va < end; va += PAGE_SIZE) {
1159                 rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1160                 if (rv) {
1161                         if (va != start)
1162                                 vm_fault_unwire(map, start, va, fictitious);
1163                         return (rv);
1164                 }
1165         }
1166         return (KERN_SUCCESS);
1167 }
1168
1169 /*
1170  *      vm_fault_unwire:
1171  *
1172  *      Unwire a range of virtual addresses in a map.
1173  */
1174 void
1175 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1176     boolean_t fictitious)
1177 {
1178         vm_paddr_t pa;
1179         vm_offset_t va;
1180         vm_page_t m;
1181         pmap_t pmap;
1182
1183         pmap = vm_map_pmap(map);
1184
1185         /*
1186          * Since the pages are wired down, we must be able to get their
1187          * mappings from the physical map system.
1188          */
1189         for (va = start; va < end; va += PAGE_SIZE) {
1190                 pa = pmap_extract(pmap, va);
1191                 if (pa != 0) {
1192                         pmap_change_wiring(pmap, va, FALSE);
1193                         if (!fictitious) {
1194                                 m = PHYS_TO_VM_PAGE(pa);
1195                                 vm_page_lock(m);
1196                                 vm_page_unwire(m, TRUE);
1197                                 vm_page_unlock(m);
1198                         }
1199                 }
1200         }
1201 }
1202
1203 /*
1204  *      Routine:
1205  *              vm_fault_copy_entry
1206  *      Function:
1207  *              Create new shadow object backing dst_entry with private copy of
1208  *              all underlying pages. When src_entry is equal to dst_entry,
1209  *              function implements COW for wired-down map entry. Otherwise,
1210  *              it forks wired entry into dst_map.
1211  *
1212  *      In/out conditions:
1213  *              The source and destination maps must be locked for write.
1214  *              The source map entry must be wired down (or be a sharing map
1215  *              entry corresponding to a main map entry that is wired down).
1216  */
1217 void
1218 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1219     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1220     vm_ooffset_t *fork_charge)
1221 {
1222         vm_object_t backing_object, dst_object, object, src_object;
1223         vm_pindex_t dst_pindex, pindex, src_pindex;
1224         vm_prot_t access, prot;
1225         vm_offset_t vaddr;
1226         vm_page_t dst_m;
1227         vm_page_t src_m;
1228         boolean_t src_readonly, upgrade;
1229
1230 #ifdef  lint
1231         src_map++;
1232 #endif  /* lint */
1233
1234         upgrade = src_entry == dst_entry;
1235
1236         src_object = src_entry->object.vm_object;
1237         src_pindex = OFF_TO_IDX(src_entry->offset);
1238         src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1239
1240         /*
1241          * Create the top-level object for the destination entry. (Doesn't
1242          * actually shadow anything - we copy the pages directly.)
1243          */
1244         dst_object = vm_object_allocate(OBJT_DEFAULT,
1245             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1246 #if VM_NRESERVLEVEL > 0
1247         dst_object->flags |= OBJ_COLORED;
1248         dst_object->pg_color = atop(dst_entry->start);
1249 #endif
1250
1251         VM_OBJECT_WLOCK(dst_object);
1252         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1253             ("vm_fault_copy_entry: vm_object not NULL"));
1254         dst_entry->object.vm_object = dst_object;
1255         dst_entry->offset = 0;
1256         dst_object->charge = dst_entry->end - dst_entry->start;
1257         if (fork_charge != NULL) {
1258                 KASSERT(dst_entry->cred == NULL,
1259                     ("vm_fault_copy_entry: leaked swp charge"));
1260                 dst_object->cred = curthread->td_ucred;
1261                 crhold(dst_object->cred);
1262                 *fork_charge += dst_object->charge;
1263         } else {
1264                 dst_object->cred = dst_entry->cred;
1265                 dst_entry->cred = NULL;
1266         }
1267         access = prot = dst_entry->protection;
1268         /*
1269          * If not an upgrade, then enter the mappings in the pmap as
1270          * read and/or execute accesses.  Otherwise, enter them as
1271          * write accesses.
1272          *
1273          * A writeable large page mapping is only created if all of
1274          * the constituent small page mappings are modified. Marking
1275          * PTEs as modified on inception allows promotion to happen
1276          * without taking potentially large number of soft faults.
1277          */
1278         if (!upgrade)
1279                 access &= ~VM_PROT_WRITE;
1280
1281         /*
1282          * Loop through all of the virtual pages within the entry's
1283          * range, copying each page from the source object to the
1284          * destination object.  Since the source is wired, those pages
1285          * must exist.  In contrast, the destination is pageable.
1286          * Since the destination object does share any backing storage
1287          * with the source object, all of its pages must be dirtied,
1288          * regardless of whether they can be written.
1289          */
1290         for (vaddr = dst_entry->start, dst_pindex = 0;
1291             vaddr < dst_entry->end;
1292             vaddr += PAGE_SIZE, dst_pindex++) {
1293
1294                 /*
1295                  * Allocate a page in the destination object.
1296                  */
1297                 do {
1298                         dst_m = vm_page_alloc(dst_object, dst_pindex,
1299                             VM_ALLOC_NORMAL);
1300                         if (dst_m == NULL) {
1301                                 VM_OBJECT_WUNLOCK(dst_object);
1302                                 VM_WAIT;
1303                                 VM_OBJECT_WLOCK(dst_object);
1304                         }
1305                 } while (dst_m == NULL);
1306
1307                 /*
1308                  * Find the page in the source object, and copy it in.
1309                  * (Because the source is wired down, the page will be in
1310                  * memory.)
1311                  */
1312                 VM_OBJECT_RLOCK(src_object);
1313                 object = src_object;
1314                 pindex = src_pindex + dst_pindex;
1315                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1316                     src_readonly &&
1317                     (backing_object = object->backing_object) != NULL) {
1318                         /*
1319                          * Allow fallback to backing objects if we are reading.
1320                          */
1321                         VM_OBJECT_RLOCK(backing_object);
1322                         pindex += OFF_TO_IDX(object->backing_object_offset);
1323                         VM_OBJECT_RUNLOCK(object);
1324                         object = backing_object;
1325                 }
1326                 if (src_m == NULL)
1327                         panic("vm_fault_copy_wired: page missing");
1328                 pmap_copy_page(src_m, dst_m);
1329                 VM_OBJECT_RUNLOCK(object);
1330                 dst_m->valid = VM_PAGE_BITS_ALL;
1331                 dst_m->dirty = VM_PAGE_BITS_ALL;
1332                 VM_OBJECT_WUNLOCK(dst_object);
1333
1334                 /*
1335                  * Enter it in the pmap. If a wired, copy-on-write
1336                  * mapping is being replaced by a write-enabled
1337                  * mapping, then wire that new mapping.
1338                  */
1339                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1340
1341                 /*
1342                  * Mark it no longer busy, and put it on the active list.
1343                  */
1344                 VM_OBJECT_WLOCK(dst_object);
1345                 
1346                 if (upgrade) {
1347                         vm_page_lock(src_m);
1348                         vm_page_unwire(src_m, 0);
1349                         vm_page_unlock(src_m);
1350
1351                         vm_page_lock(dst_m);
1352                         vm_page_wire(dst_m);
1353                         vm_page_unlock(dst_m);
1354                 } else {
1355                         vm_page_lock(dst_m);
1356                         vm_page_activate(dst_m);
1357                         vm_page_unlock(dst_m);
1358                 }
1359                 vm_page_xunbusy(dst_m);
1360         }
1361         VM_OBJECT_WUNLOCK(dst_object);
1362         if (upgrade) {
1363                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1364                 vm_object_deallocate(src_object);
1365         }
1366 }
1367
1368
1369 /*
1370  * This routine checks around the requested page for other pages that
1371  * might be able to be faulted in.  This routine brackets the viable
1372  * pages for the pages to be paged in.
1373  *
1374  * Inputs:
1375  *      m, rbehind, rahead
1376  *
1377  * Outputs:
1378  *  marray (array of vm_page_t), reqpage (index of requested page)
1379  *
1380  * Return value:
1381  *  number of pages in marray
1382  */
1383 static int
1384 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1385         vm_page_t m;
1386         int rbehind;
1387         int rahead;
1388         vm_page_t *marray;
1389         int *reqpage;
1390 {
1391         int i,j;
1392         vm_object_t object;
1393         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1394         vm_page_t rtm;
1395         int cbehind, cahead;
1396
1397         VM_OBJECT_ASSERT_WLOCKED(m->object);
1398
1399         object = m->object;
1400         pindex = m->pindex;
1401         cbehind = cahead = 0;
1402
1403         /*
1404          * if the requested page is not available, then give up now
1405          */
1406         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1407                 return 0;
1408         }
1409
1410         if ((cbehind == 0) && (cahead == 0)) {
1411                 *reqpage = 0;
1412                 marray[0] = m;
1413                 return 1;
1414         }
1415
1416         if (rahead > cahead) {
1417                 rahead = cahead;
1418         }
1419
1420         if (rbehind > cbehind) {
1421                 rbehind = cbehind;
1422         }
1423
1424         /*
1425          * scan backward for the read behind pages -- in memory 
1426          */
1427         if (pindex > 0) {
1428                 if (rbehind > pindex) {
1429                         rbehind = pindex;
1430                         startpindex = 0;
1431                 } else {
1432                         startpindex = pindex - rbehind;
1433                 }
1434
1435                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1436                     rtm->pindex >= startpindex)
1437                         startpindex = rtm->pindex + 1;
1438
1439                 /* tpindex is unsigned; beware of numeric underflow. */
1440                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1441                     tpindex < pindex; i++, tpindex--) {
1442
1443                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1444                             VM_ALLOC_IFNOTCACHED);
1445                         if (rtm == NULL) {
1446                                 /*
1447                                  * Shift the allocated pages to the
1448                                  * beginning of the array.
1449                                  */
1450                                 for (j = 0; j < i; j++) {
1451                                         marray[j] = marray[j + tpindex + 1 -
1452                                             startpindex];
1453                                 }
1454                                 break;
1455                         }
1456
1457                         marray[tpindex - startpindex] = rtm;
1458                 }
1459         } else {
1460                 startpindex = 0;
1461                 i = 0;
1462         }
1463
1464         marray[i] = m;
1465         /* page offset of the required page */
1466         *reqpage = i;
1467
1468         tpindex = pindex + 1;
1469         i++;
1470
1471         /*
1472          * scan forward for the read ahead pages
1473          */
1474         endpindex = tpindex + rahead;
1475         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1476                 endpindex = rtm->pindex;
1477         if (endpindex > object->size)
1478                 endpindex = object->size;
1479
1480         for (; tpindex < endpindex; i++, tpindex++) {
1481
1482                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1483                     VM_ALLOC_IFNOTCACHED);
1484                 if (rtm == NULL) {
1485                         break;
1486                 }
1487
1488                 marray[i] = rtm;
1489         }
1490
1491         /* return number of pages */
1492         return i;
1493 }
1494
1495 /*
1496  * Block entry into the machine-independent layer's page fault handler by
1497  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1498  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1499  * spurious page faults. 
1500  */
1501 int
1502 vm_fault_disable_pagefaults(void)
1503 {
1504
1505         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1506 }
1507
1508 void
1509 vm_fault_enable_pagefaults(int save)
1510 {
1511
1512         curthread_pflags_restore(save);
1513 }